2020年北京市海淀区高三数学试卷--带答案
2020届北京市海淀区高三上学期期中数学试题(解析版)
2020届北京市海淀区高三上学期期中数学试题一、单选题1.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =U ,则实数a 的值可以为( ) A .2 B .1C .0D .2-【答案】D由题意可得{|1}A x x =≤-,根据A B R =U ,即可得出1a ≤-,从而求出结果. 解:{|},1{|}A x x B x x a =≤-=≥Q ,且A B R =U ,1a ∴≤-, ∴a 的值可以为2-. 故选:D .考查描述法表示集合的定义,以及并集的定义及运算. 2.下列函数值中,在区间(0,)+∞上不是..单调函数的是( ) A .y x = B .2y x =C.y x =+D .1y x =-【答案】D结合一次函数,二次函数,幂函数的性质可进行判断.解:由一次函数的性质可知,y x =在区间(0,)+∞上单调递增; 由二次函数的性质可知,2y x =在区间(0,)+∞上单调递增;由幂函数的性质可知,y x =+(0,)+∞上单调递增;结合一次函数的性质可知,1y x =-在()0,1上单调递减,在()1,+∞ 上单调递增. 故选:D .本题主要考查了基本初等函数的单调性的判断,属于基础试题. 3.已知等差数列{}n a 的前n 项和为n S ,若33S a =,且30a ≠,则43S S =( ) A .1 B .53C .83D .3【答案】C利用等差数列的通项公式与求和公式即可得出结果. 解:设等差数列{}n a 的公差为d ,33S a =Q ,且30a ≠,11332a d a d ∴+=+,可得120a d -=≠.∴()11143111434232282 3232332a da a S S a a a d ⨯++⨯-==⨯=⨯-+. 故选:C . 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.4.不等式11x >成立的一个充分不必要条件是( ) A .102x << B .1x > C .01x <<D .0x <【答案】A解出不等式,进而可判断出其一个充分不必要条件. 解:不等式11x >的解集为()0,1,则其一个充分不必要条件可以是10,2⎛⎫⎪⎝⎭; 故选:A .本题考查了充分、必要条件的判断与应用,属于基础题.5.如图,角α以Ox 为始边,它的终边与单位圆O 相交于点P ,且点P 的横坐标为35,则sin()2απ+的值为( )A .35-B .35C .45-D .45【答案】B由题意利用任意角的三角函数的定义,求得sin()2απ+的值. 解:角α以Ox 为始边,它的终边与单位圆O 相交于点P ,且点P 的横坐标为35,所以3cos 5α=则sin()3cos 52παα==+; 故选:B . 本题主要考查任意角的三角函数的定义,属于基础题.6.在四边形ABCD 中,//AB CD ,设(,)AC AB AD R λμλμ=+∈u u u r u u u r u u u r .若32λμ+=,则=CDABu u u r u u u r ( ) A .13B .12C .1D .2【答案】B作出草图,过C 作//CE AD ,又//CD AB .可得四边形AECD 是平行四边形. AC AE AD =+u u u r u u u r u u u r,根据() ,AC AB AD R λμλμ+∈u u u r u u u r u u u r =.可得1,AE AB μλ==u u u r u u u r ,又32λμ+=,可得12λ=,据此即可得出结果.解:如图所示,过C 作//CE AD ,又//CD AB . ∴四边形AECD 是平行四边形.AC AE AD ∴=+u u u r u u u r u u u r, 又() ,AC AB AD R λμλμ+∈u u u r u u u r u u u r =.1,AE AB μλ∴==u u u r u u u r,又3122λμλ+=∴=,,则1==2CDAE AB AB u u u r u u u r u u u r . 故选:B .本题考查了向量平行四边形法则、向量共线定理、平面向量基本定理、方程思想方法,考查了推理能力与计算能力,属于中档题.7.已知函数32()2f x x x x k =+--.若存在实数0x ,使得00()()f x f x -=-成立,则实数k 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞- C .[0,)+∞ D .(,0]-∞【答案】A根据题意将存在实数0x ,使得00()()f x f x -=-成立转化为()()00f x f x -=-有根,再根据方程变形可得,原问题转化为22x x k -=有根,进而转化为22y x x =-与y k =的图象有交点,根据数形结合即可求出结果.解:∵32()2f x x x x k =+--且00()()f x f x -=-,323222x x x k x x x k ∴-+--=-+--() 整理得22x x k -= ,∴原问题转化为22y x x =-与y k =的图象有交点, 画出22y x x =-的图象如下:当1x =时,1y =-,由图可知,1k ≥-. 故选:A . 本题考查了转化思想和数形结合思想,属于基础题. 8.设集合A 是集合*N 的子集,对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ∈N 都满足()0i A B ϕ=I 且()1i A B ϕ=U ;②任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i A B ϕ=I ()i A ϕg ()i B ϕ;③任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i A B ϕ=U ()+i A ϕ()i B ϕ;其中,所有正确结论的序号是( )A .①②B .②③C .①③D .①②③【答案】A根据题目中给的新定义,对于*,0i i N Aϕ∈=()或1,可逐一对命题进行判断,举实例例证明存在性命题是真命题,举反例可证明全称命题是假命题.解:∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*A B A B N ∴=∅=I U ,()()01i i A B A B ϕϕ∴==I U ;,故①正确;对于②,若()0i A B ϕ=I ,则()i A B ∉I ,则i A ∈且i B ∉,或i B ∈且i A ∉,或i A ∉且i B ∉;()()0i i A B ϕϕ∴⋅=;若()1i A B ϕ=I ,则()i A B ∈I ,则i A ∈且i B ∈; ()()1i i A B ϕϕ∴⋅=;∴任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i i A B Ai B ϕϕϕ=⋅I ()();正确,故②正确;对于③,例如:{}{}{}1232341234A B A B ===U ,,,,,,,,,,当2i =时,1i A B ϕ=U ();()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+U ; 故③错误;∴所有正确结论的序号是:①②; 故选:A .本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、填空题9.已知向量()1,2,(3,)a b t ==r r ,且//a b r r,则t = _____ 【答案】6直接利用向量的共线的充要条件求解即可.解:由向量()()1,2, 3,a b x ==r r ,若 //a b r r,可得236x =⨯=. 故答案为:6.本题考查平行向量坐标运算公式的应用,考查计算能力.10.函数()6f x x =的零点个数是________ 【答案】1首先求出函数()f x 的定义域为{}|0x x ≥,将原问题转化为260=,解方程,即可得出()f x 的零点个数.解:由题意可知()f x 的定义域为{}|0x x ≥,令()60f x x ==,可得260-=, 2=-(舍去)或3=,9x ∴=;所以函数()6f x x =的零点个数为1个. 故答案为:1.本题把二次函数与二次方程有机的结合来,由方程的根与函数零点的关系可知,求方程的根,就是确定函数的零点.11.已知数列{}n a 的前n 项和为2log n S n =,则1a =____,5678a a a a +++=_____ 【答案】0 1直接利用数列的递推关系式11n n n S a S S -⎧=⎨-⎩12n n =≥,求出数列的首项和5678a a a a +++的值.解:数列{}n a 的前n 项和为2log n S n =, 则112log 10a S ===; 又567884567822,log 8log 41a a a a S S a a a a +++=-∴+++=-=; 故答案为:0,1.本题考查了数列的数列的递推关系式11n nn S a S S -⎧=⎨-⎩12n n =≥的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.如图,网格纸上小正方形的边长为1.从,,,A B C D 四点中任取两个点作为向量b r的始点和终点,则a b ⋅r r的最大值为____________【答案】3由图可知,要使a b ⋅r r 取到最大值,即要求向量b r 在向量a r上的投影最大,然后再根据图形即可求出结果.解:由题意可知:则 cos cos ,a b a b a b b a b ⋅=⋅<⋅>=<>r r r r r r r r r,所以要使a b ⋅r r 取到最大值,即要求向量b r 在向量a r上的投影最大, 由图形可知:当向量b AC =r u u u r 时,向量b r 在向量a r上的投影最大,即cos ,=1010a b b a b ⋅=<>r r r r r 即a b ⋅r r的最大值为3. 故答案为:3.本题考查向量的数量积几何意义的应用,考查数形结合以及计算能力.13.已知数列{}n a 的通项公式为ln n a n =,若存在p R ∈,使得n a pn ≤对任意*n N ∈都成立,则p 的取值范围为__________ 【答案】ln 3,3⎡⎫+∞⎪⎢⎣⎭根据题意,利用数列的关系式,进一步进行转换,再利用函数的导数的应用求出函数的单调区间和最值,进一步利用函数的恒成立问题的应用求出结果.解:数列{}n a 的通项公式为ln n a n =,若存在p R ∈,使得n a pn ≤对任意的*n N ∈都成立, 则maxln n p n ⎛⎫ ⎪⎝⎭≥,设()ln x f x x=,则()21ln x xx f x x ⋅-'= , 令()21ln 0xf x x-'==,解得x e =, 所以函数的单调增区间为()0,e ,函数的减区间为(),e +∞, 所以函数在x e =时函数取最大值, 由于n N ∈,所以当3n =时函数最大值为ln 33. 所以p 的取值范围是ln 3,3⎡⎫+∞⎪⎢⎣⎭. 故答案为:ln 3,3⎡⎫+∞⎪⎢⎣⎭. 本题主要考查了利用函数的导数求出函数的单调区间和最值,恒成立问题的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.14.已知函数(),()f x x g x x ωω==,其中0>ω,,,A B C 是这两个函数图像的交点,且不共线.①当1ω=时,ABC ∆面积的最小值为___________;②若存在ABC ∆是等腰直角三角形,则ω的最小值为__________.【答案】2π2π①利用函数的图象和性质的应用求出三角形的底和高,进一步求出三角形的面积; ②利用等腰直角三角形的性质的应用求出ω的最小值.解:函数(),()f x x g x x ωω==,其中0>ω,,,A B C 是这两个函数图象的交点,当1ω=时,()2sin ,()2cos f xx g x x ωω==.所以函数的交点间的距离为一个周期2π,高为22 22222⋅+⋅=. 所以:()121122ABC S ππ∆⋅⋅+==. 如图所示:①当1ω=时,ABC ∆面积的最小值为2π;②若存在ABC ∆是等腰直角三角形,利用直角三角形斜边的中线等于斜边的一半,则222222πω⎭⋅=, 解得ω的最小值为 2π. 故答案为:2π, 2π.本题主要考查了三角函数的图象和性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.三、解答题15.已知数列{}n a 为各项均未正数的等比数列,n S 为其n 前项和,23a =,3436a a +=.()1求数列{}n a 的通项公式; ()2若121nS<,求n 的最大值.【答案】()113-=n n a ;()2 4(1)设等比数列{}n a 的公比为q ,由2343,36a a a =+=,可得123113,36.a q a q a q =⎧⎨+=⎩,即可求出结果.(2)3112131n n S -=<- ,即可得出结论.解:解:()1在等比数列{}n a 中,设{}n a 公比为q . 因为2343,36a a a =+=所以123113,36.a q a q a q =⎧⎨+=⎩ 所以23336q q +=.即2120q q +-=. 则3q =或4q =-. 因为0n a >, 所以0q >, 所以3q =. 因为213a a q ==, 所以11a =.所以数列{}n a 的通项公式1113n n n a a q --==()2在等比数列{}n a 中,因为()()1111nn a q S q q-=?-所以()13131132n nn S -==--因为121n S <, 所以()1311212nn S =-<. 所以3243n <. 所以5n <. 因为*n N ∈.所以4n ≤.即n 的最大值为4.本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.已知函数π()=2sin cos()3f x x x +.()1求函数()f x 的最小正周期;()2若()0f x m +≤对π[0,]2x ∈恒成立,求实数m 的取值范围. 【答案】()1π;()2(,1]-∞-(1)首先利用三角函数关系式的恒等变换,把函数的关系式的变形成正弦型函数,进一步求出函数的最小正周期.(2)利用函数的恒成立问题的应用和函数的最值的应用求出结果.解:解:()1因为()2sin cos 3f x x x π⎛⎫=++ ⎪⎝⎭2sin cos cos sin sin 33x x x ππ⎛⎫=-+⎪⎝⎭12sin cos 222x x x ⎛⎫=-+ ⎪ ⎪⎝⎭2sin cos 2x x x =+1sin 2cos 222x x =+ sin 23x π⎛⎫=+ ⎪⎝⎭所以()f x 的最小正周期为22T ππ== ()2“()0f x m +≤对0,2x π⎡⎤∈⎢⎥⎣⎦恒成立”等价于“()max 0f x m +≤”因为0,2x π⎡⎤∈⎢⎥⎣⎦所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦当232x ππ+=,即12x π=时()f x 的最大值为112f π⎛⎫= ⎪⎝⎭.所以10m +≤,所以实数m 的取值范围为(,1]-∞-.本题考查了三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 17.已知函数321()3f x ax x bx c =+++,曲线()y f x =在(0,(0))f 处的切线方程为1y x =+()1求,b c 的值;()2若函数()f x 存在极大值,求a 的取值范围.【答案】()111b c =⎧⎨=⎩;()2()(),00,1-∞⋃(1)求出函数的导数,结合切线方程得到关于,b c 的方程组,解出即可;(2)求出函数的导数,通过讨论a 的范围,结合二次函数,求出函数的单调区间,结合函数的存在极大值,确定a 的范围即可. 解:解:()1()2'2f x ax x b =++因为()f x 在点()()0,0f 处的切线方程为1y x =+,所以()()0101f f ⎧=⎪⎨='⎪⎩解得11b c =⎧⎨=⎩()2()32113f x ax x x =+++,①当0a =时,()21f x x x =++不存在极大值,不符合题意.②当0a >时,()221f x ax x =++.令2210ax x ++=.(i )当440a =-≤V ,即1a ≥时,不符合题意.(ii )当440a =->V ,即01a <<时,方程2210ax x ++=有两个不相等的实数根. 设方程两个根为12,x x ,且12x x <.()(),,x f x f x '的变化如表所示:所以()1f x 为极大值.③当0a <时,440a =->V 恒成立.设方程两个根为12,x x ,且12x x <.()(),,x f x f x '的变化如表所示:所以,()2f x 为极大值.综上,若函数()f x 存在极大值,a 的取值范围为()(),00,1-∞⋃.本题考查了切线方程问题,导数在函数的单调性和极值问题中的应用,考查分类讨论思想,转化思想等数学思想,是一道综合题. 18.在ABC ∆中,7,5,8a b c ===.()1求sin A 的值;()2若点P 为射线AB 上的一个动点(与点A 不重合),设APk PC=. ①求k 的取值范围;②直接写出一个k 的值,满足:存在两个不同位置的点P ,使得APk PC=.【答案】()1()2①⎛ ⎝⎦;②答案不唯一,取值在区间⎛ ⎝⎭上均正确 (1)利用余弦定理的应用求出A 的余弦值,进一步求出正弦值; (2)①直接利用正弦定理和关系式的变换的应用求出k 的取值范围;②根据共线的条件求出在区间⎛ ⎝⎭上即可解:解:()1在ABC V 中,7,5,8,a b c ===根据余弦定理2222b c a cosA bc +-=所以2225871cos 2582A +-==⨯⨯因为()0,A π∈,所以sinA ==()2①在ABC V 中,根据正弦定理,得sin sin CP APA ACP=∠sin sin sin sin3AP ACP ACP k ACPPC A π∠∠====∠ 因为点P 为射线AB 上一动点, 所以20,3ACR π⎛⎫∠∈ ⎪⎝⎭所以k的取值范围为⎛ ⎝⎦②答案不唯一.取值在区间1,3⎛ ⎝⎭上均正确.本题主要考查了正弦定理余弦定理和三角形面积公式的应用,考查学生的运算能力和转换能力及思维能力,属于基础题型. 19.已知函数ln ()xx f x e =. ()1判断函数()f x 在区间(0)1,上的单调性,并说明理由; ()2求证:1()2f x <.【答案】()1单调递增,理由见解析;()2证明见解析(1)因为()0,1x ∈,对()f x 求导,可证()0f x '>恒成立,即可证明结果; (2)证明“()12f x <”等价于证明“()max 12f x <”.求()f x 的最大值即可证明. 解:()1函数()f x 在区间()0,1上是单调递增函数. 理由如下:由()x lnx f x e=,得()1xlnxx f x e -'= 因为()0,1x ∈,所以11,ln 0x x ><. 因此10lnx x->.又因为0x e >, 所以()0f x '>恒成立.所以()f x 在区间()0,1上是单调递增函数.()2证明“()12f x <”等价于证明“()max 12f x <”由题意可得,(0,)x ∈+∞.因为()1xlnxx f x e -'=令()1lnx xg x -=,则()2110g x x x '=--<.所以()g x 在()0,∞+上单调递减 因为()()1110,10g g e e=>=-<, 所以存在唯一实数0x ,使得()00g x =,其中()01,x e ∈.()(),, x f x f x '的变化如表所示:所以()0f x 为函数()f x 的极大值. 因为函数()f x 在(0,)+∞有唯一的极大值. 所以()()00max ln ox x f x f x e == 因为001lnx x =, 所以()()000max 0ln 1o x x x f x f x e x e === 因为()01,x e ∈ 所以()0max 01112x f x x e e =<< 所以()12f x <本题主要考查了导数在函数单调性中的应用,以及利用导数求函数极值与最值,熟练掌握导数的相关性质是解题的关键,本题属于综合题.20.已知集合*M N ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a b c d ,,,,使得a b c d +=+,则称集合M 是“关联的”,并称集合{},,,a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.()1分别判断集合{}2,4,6,8,10和集合{}12,3,5,8,是“关联的”还是“独立的”?若是“关联的”,写出其所有..的关联子集; ()2已知集合{}12345,,,,a a a a a 是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的关联子集A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:12345,,,,a a a a a 是等差数列;()3集合M 是“独立的”,求证:存在x M ∈,使得294n n x -+>. 【答案】()1{}2,4,6,8,10是关联的,关联子集有{}{}{}2,4,6,84,6,8,102,4,8,10,,;{}1,2,3,5,8是独立的;()2证明见解析;()3证明见解析(1)根据题中所给的新定义,即可求解;(2)根据题意,{}12345,,,A a a a a =,{}21345 ,,,A a a a a =,{}31245 ,,,A a a a a =,{}41235 ,,,A a a a a =, {}51234 ,,,A a a a a =,进而利用反证法求解;(3)不妨设集合{}12,,(),5n M a a a n =⋅⋅⋅≥,*,1,2,...,i a N i n ∈=,且12...n a a a <<<.记{}*,1,i j T t t a a i j j N==+<<∈,进而利用反证法求解;解:解:()1{}2,4,6,8,10是“关联的”关联子集有{}{}{}2,4,6,84,6,8,102,4,8,10,,;{}1,2,3,5,8是“独立的”()2记集合M 的含有四个元素的集合分别为:{}12345,,,A a a a a =,{}21345 ,,,A a a a a =,{}31245 ,,,A a a a a =,{}41235 ,,,A a a a a =, {}51234 ,,,A a a a a =.所以,M 至多有5个“关联子集”.若{}21345 ,,,A a a a a =为“关联子集”,则{}12345,,,A a a a a =不是 “关联子集”,否则12a a =同理可得若{}21345 ,,,A a a a a =为“关联子集”,则34,A A 不是 “关联子集”.所以集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾.所以{}21345,,,A a a a a =一定不是“关联子集” 同理{}41235,,,A a a a a =一定不是“关联子集”. 所以集合M 的“关联子集”至多为135,,A A A .若1A 不是“关联子集”,则此时集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾;若3A 不是“关联子集”,则此时集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾;若5A 不是“关联子集”,则此时集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾;所以135,,A A A 都是“关联子集”所以有2534a a a a +=+,即5432a a a a -=-1524a a a a +=+,即5421a a a a -=-. 1423a a a a +=+,即4321=a a a a --,所以54433221a a a a a a a a -=-=-=-. 所以12345,,,,a a a a a 是等差数列.()3不妨设集合{}12,,(),5n M a a a n =⋅⋅⋅≥,*,1,2,...,i a N i n ∈=,且12...n a a a <<<. 记{}*,1,i j T t t a a i j j N==+<<∈.因为集合M 是“独立的”的,所以容易知道T 中恰好有()212n n n C -=个元素.假设结论错误,即不存在x M ∈,使得294n n x -+>所以任取x M ∈,294n n x -+≤,因为*x ∈N ,所以284n n x -+≤所以22228881134422i j n n n n n n n na a -+-+-+-+≤+-=-=+所以任取t T ∈,232n nt -≤+任取,123t T t ∈≥+=,所以23,4,,32n n T ⎧⎫-⊆⋅⋅⋅+⎨⎬⎩⎭,且T 中含有()212n n n C -=个元素. (i )若3T ∈,则必有121,2a a ==成立.因为5n ≥,所以一定有121n n a a a a -->-成立.所以12n n a a --≥.所以22218822442n n n n n n n na a --+-+-+≤+-=+*232,2n n T t t t N ⎧⎫-⎪⎪=≤≤+∈⎨⎬⎪⎪⎩⎭,284n n a n -+=,21824n n a n --+-=所以4T ∈,所以33a =,113n a a a a -+=+n 有矛盾,(ii )若3T ∉,23,4,,32n n T ⎧⎫-⊆⋅⋅⋅+⎨⎬⎩⎭而T 中含有()212n n n C -=个元素,所以*243,2n n T t t t N ⎧⎫-⎪⎪=≤≤+∈⎨⎬⎪⎪⎩⎭所以284n n a n -+=,21814n n a n --+-=因为4T ∈,所以121,3a a ==.因为222n n T -+∈,所以2222n n n na a --+=+所以22824n n a n --+-=所以123n a a a a -+=+n ,矛盾. 所以命题成立.本题属于新定义题,考查接受新知识,理解新知识,运用新知识的能力,反证法,等差数列,不等式缩放法,排列组合,本题属于难题.。
2020-2021年北京海淀高三期末数学试卷(附答案)
海淀区2020-2021学年第一学期期末考试高三数学试题本试卷共8奴, 150分)考试时常120分钟。
考生务必将若案答在答胧抵上.在试卷上作答无效。
考试结火后. 本试卷和空四纸•并文回,笫•海分]选择遐共40分)丁选择题共10小题.每小超4分,共40分.在街小题列出的四个选项中,选出符合题目要求的一项。
(I )抛物线/ 二 X 的准线力邪兄(A ) X = --( B ) X (C )V =(D ) V =--24 '2' 4(2)在梵平面内.竟数一一对应的点也广1+/(A )第 %fR (B )第二软限(C>第,象眼(D )第四象限⑶ 在&-2丫的展开式中,内的系数为(A )5(B ) -5(C ) 10(D ) 10(4)已知代线,:x +町,+ 2 = 0 , (A ) 1U(5)某三桎惟的三视图如用所示.止(1>徒《专》1X1点 A (-1,-1)和点B (2,2),若〃/力8,则实数。
的值为i) -1 (C> 2(D)-2该三板维的体积为J KM,J) 4 (C)6 (D) 12b = (-2,D, rt|a-6| = 2,则a ・6 =(B )0(A) -1(C) 1 (D) 2(7)己如a, 3是例个不同的平面,“a 〃夕的•个充分条件是(A)以内有无数11线平行J "(B)存在牛血丫, arr. P±r(C)存隹TihiL aDr = /n t夕Dy = 〃ll掰〃”(D)存在酉线7, Ila. Ilfi(8)L!知函数/(x)= l-2sirf(x + 2)则4(A) /(x)是偶函数函数/(x)的地小正阖期为2*(C)曲线F = /(.t)关J x = 一1对核:4(D) /0)>/(2)(9)数列SJ的通项公式为勺=“2-3〃・N・前〃比和为s.・给出下列三个结论:①存在止整数加,〃(〃”〃),使母Z-Z;②存在正施数初〃(m*府•使得q, = 2百♦•③记,4=4%…,。
北京市海淀区2020届高三上学期期末考试数学理试题Word版含答案
北京市海淀区2020届高三上学期期末考试数学理试题本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项.1.双曲线22122x y -=的左焦点坐标为A .(2,0)-B .(C .(1,0)-D . (4,0)-2.已知向量,a b 满足=((t =),,1)a 2,0b , 且a ⋅=a b ,则,a b 的夹角大小为 A .6π B .4π C .3π D .512π3.已知等差数列{}n a 满足1=2a ,公差0d ≠,且125,,a a a 成等比数列,则=d A .1B .2C .3D .44.直线+1y kx =被圆222x y +=截得的弦长为2,则k 的值为A . 0B .12±C .1±D .2±5.以正六边形的6个顶点中的三个作为顶点的三角形中,等腰三角形的个数为A .6B .7C .8D .126.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间(1,)+∞上存在零点”的 A 充分而不必要条件 B 必要而不充分条件 C 充分必要条件 D 既不充分也不必要条件7.已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中错误的是 A.函数()f x 的值域与()g x 的值域相同B.若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点C.把函数()f x 的图像向右平移2π个单位,就可以得到函数()g x 的图像 D.函数()f x 和()g x 在区间(,4π-)4π上都是增函数8.已知集合{}(,)150,150,,A s t s t s N t N =≤≤≤≤∈∈.若B A ⊆,且对任意的(,)a b B ∈,(,)x y B ∈,均有()()0a x b y --≤,则集合B 中元素个数的最大值为 A .25B .49C .75D .99二、填空题共6小题,每小题5分,共30分.9.以抛物线24y x =的焦点F 为圆心,且与其准线相切的圆的方程为 .10.执行如下图所示的程序框图,当输入的M 值为15,n 值为4 时,输出的S 值为.11.某三棱锥的三视图如上图所示,则这个三棱锥中最长的棱与最短的棱的长度分别为 , .12.设关于,x y 的不等式组,4,2,y x x y kx ≤⎧⎪≤⎨⎪≥-⎩表示的平面区域为Ω,若点A (1,-2),B (3,0),C (2,-3)中有且仅有两个点在Ω内,则k 的最大值为 . 13.ABC中,b ,且cos2cos A B =,则cos A = .14.正方体1111ABCD A B C D -的棱长为1,动点M 在线段CC 1上,动点P 在平面1111A B C D 上,且AP ⊥平面1MBD .(Ⅰ)当点M 与点C 重合时,线段AP 的长度为 ; (Ⅱ)线段AP 长度的最小值为 .三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)已知函数()s()cos22f x aco x x π=-- 其中0>a(Ⅰ)比较()6f π和()2f π的大小;(Ⅱ)求函数()f x 在区间[,]22ππ-的最小值.16.(本小题满分13分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X 表示学生的考核成绩,并规定85X ≥为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率; (Ⅱ)从图中考核成绩满足[70,79]X ∈的学生中任取3人,设Y 表示这3人重成绩满足8510X -≤的人数,求Y 的分布列和数学期望; (Ⅲ)根据以往培训数据,规定当85(1)0.510X P -≤≥时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.17.(本小题满分14分)在四棱锥P ABCD -中,平面ABCD ⊥平面PCD ,底面ABCD 为梯形,//AB CD ,AD PC ⊥ 且01,2,120AB AD DC DP PDC ====∠= (Ⅰ)求证:AD PDC ⊥平面;(Ⅱ)求二面角B-PD-C 的余弦值;(Ⅲ)若M 是棱PA 的中点,求证:对于棱BC 上任意一点F ,MF 与PC 都不平行.18.(本小题满分14分)椭圆2212x y +=的左焦点为F ,过点(2,0)M -的直线l 与椭圆交于不同两点A,B(Ⅰ)求椭圆G 的离心率;(Ⅱ)若点B 关于x 轴的对称点为B ’,求'AB 的取值范围.19. (本小题满分14分)已知函数xe x ax xf 2)(-=.(Ⅰ)当1a =-时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当0a >时,求证:2()f x e>-对任意(0,)x ∈+∞成立.20.(本小题满分13分)设n 为不小于3的正整数,集合{}{}12(,,...)0,1,1,2,...,n n i x x x x i n Ω=∈=,对于集合n Ω中的任意元素12(,,...,)n x x x α=,12(,,...,)n y y y β=记11112222()()...()n n n n x y x y x y x y x y x y αβ*=+-++-+++- (Ⅰ)当3n =时,若(1,1,0)α=,请写出满足3αβ*=的所有元素β (Ⅱ)设n αβ∈Ω,且+n ααββ**=,求αβ*的最大值和最小值;(Ⅲ)设S 是n Ω的子集,且满足:对于S 中的任意两个不同元素αβ,,有1n αβ*≥-成立,求集合S 中元素个数的最大值.北京市海淀区2020届高三上学期期末考试数学理试题参考答案一、选择题:本大题共8小题,每小题5分,共40分.1. A2. B3. D4. A5. C6. C7.C8. D二、填空题:本大题共6小题,每小题5分,共30分.9. 22(1)4x y -+= 10. 24 11. 2 12. 0三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)因为π1(),622a f =-π()12f a =+所以ππ13()()(1)()262222a a f f a -=+--=+因为0a >,所以3022a +>,所以ππ()()26f f >(Ⅱ)因为()sin cos2f x a x x =-2sin (12sin )a x x =--22sin sin 1x a x =+-设sin ,t x = ππ[,]22x ∈-,所以[1,1]t ∈-所以221y t at =+- 其对称轴为4at =- 当14at =-<-,即 4a >时,在1t =-时函数取得最小值1a - 当14a t =-≥-,即04a <≤时,在4at =-时函数取得最小值218a --16.解:(Ⅰ)设该名学生考核成绩优秀为事件A 由茎叶图中的数据可以知道,30名同学中,有7名同学考核优秀所以所求概率()P A 约为730(Ⅱ)Y 的所有可能取值为0,1,2,3因为成绩[70,80]X ∈的学生共有8人,其中满足|75|10X -≤的学生有5人所以33381(0)56C P Y C ===, 21353815(1)56C C P Y C === 12353830(2)56C C P Y C ===, 353810(3)56C P Y C === 随机变量Y 的分布列为115301015()0123565656568E Y =⨯+⨯+⨯+⨯= (Ⅲ)根据表格中的数据,满足85110X -≤的成绩有16个 所以8516810.5103015X P ⎛-⎫≤==>⎪⎝⎭所以可以认为此次冰雪培训活动有效.17.解:(Ⅰ)在平面PCD 中过点D 作DH DC ⊥,交PC 于H 因为平面ABCD ⊥平面PCD DH ⊂平面PCD平面ABCD I 平面PCD CD = 所以DH ⊥平面ABCD 因为AD ⊂平面ABCD所以 DH AD ⊥ 又AD PC ⊥,且PC DH H =I 所以AD ⊥平面PCD (Ⅱ)因为AD ⊥平面PCD ,所以AD CD ⊥ 又DH CD ⊥,DH AD ⊥以D 为原点,DA DC DH ,,所在直线分别为,,x y z 轴,建立空间直角坐标系所以(,,),(,,),(,(,,),(,,)D A P C B -00020001020210,因为AD ⊥平面PCD ,所以取平面PCD 的法向量为(,,)DA =200uu u r设平面PBD 的法向量为(,,)n x y z =r因为(,(,,)DP DB =-=01210uu u r uu u r ,所以n DP n DB ⎧⋅=⎪⎨⋅=⎪⎩00r uu u rr uu u r所以y x y ⎧-+=⎪⎨+=⎪⎩020令2z =,则y x =-=,所以()n =2r所以cos ,||||AD n AD n AD n ⋅<>===uuu r ruuu r r uuu u r r 由题知B PD C --为锐角,所以B PD C --的余弦值为19(Ⅲ) 法一:假设棱BC 上存在点F ,使得MF PC ,显然F 与点C 不同所以,,,P M F C 四点共面于α所以FC ⊂α,PM ⊂α 所以B FC ∈⊂α,A PM ∈⊂α所以α就是点,,A B C 确定的平面,所以P ∈α这与P ABCD -为四棱锥矛盾,所以假设错误,即问题得证 法二:假设棱BC 上存在点F ,使得MF PC连接AC ,取其中点N在PAC ∆中,因为,M N 分别为,PA CA 的中点,所以MNPC因为过直线外一点只有一条直线和已知直线平行,所以MF 与MN 重合 所以点F 在线段AC 上,所以F 是AC ,BC 的交点C ,即MF 就是MC 而MC 与PC 相交,矛盾,所以假设错误,问题得证 法三:假设棱BC 上存在点F ,使得MFPC ,设BF BC λ=,所以3(1,,(2,1,0)22MF MB BF λ=+=+-因为MFPC,所以(0,3,MF PC μμ==所以有120332λλμ⎧⎪-=⎪⎪+=⎨⎪⎪=⎪⎩,这个方程组无解所以假设错误,即问题得证 18.解:(Ⅰ)因为,a b ==2221,所以,a b c ===11所以离心率c e a ==2(Ⅱ)法一: 设1122(,),(,)A x y B x y显然直线l 存在斜率,设直线l 的方程为(2)y k x =+所以()x y y k x ⎧+=⎪⎨⎪=+⎩22122,所以()k x k x k +++-=222221882028160k ∆=->,所以k <212所以k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩212221228218221 因为22'(,)B x y -所以|'|AB = 因为22212121222816()()4(21)k x x x x x x k --=+-=+12121224(2)(2)()421ky y k x k x k x x k +=+++=++=+所以|'|AB==因为k ≤<2102,所以|'|AB ∈法二:设1122(,),(,)A x y B x y当直线l 是x轴时,|'|AB =当直线l 不是x 轴时,设直线l 的方程为2x t y =-所以x y x t y ⎧+=⎪⎨⎪=-⎩22122,所以()t y t y ++=-222420,28160t ∆=-> ,所以t >22 所以t y y t y y t ⎧+=⎪⎪+⎨⎪=⎪+⎩1221224222因为22'(,)B x y -所以|'|AB =因为 2222222212121212122216()()()[()4](1)(2)t x x ty ty t y y t y y y y t t -=-=-=+-=++所以|'|AB=22)2t ==-+因为t >22,所以|'|AB ∈ 综上,|'|AB的取值范围是.19.解:(Ⅰ)因为()xax x f x -=e 2所以()'()xx a x af x -++=e22 当a =-1时,'()x x x f x --=e 21所以'()f -=e11,而()f -=e 21曲线()y f x =在(1,(1))f 处的切线方程为21()(1)e ey x --=-- 化简得到11e ey x =-- (Ⅱ)法一:因为()'()xx a x af x -++=e 22,令()'()x x a x a f x -++==e 220得x x ==12当a >0时,x ,'()f x ,()f x 在区间(0,)+∞ 的变化情况如下表:所以()f x 在[,)+∞0上的最小值为(),()f f x 20中较小的值,而2(0)0ef =>-,所以只需要证明()f x >-e22 因为()x a x a -++=22220,所以()x x a f x ax x x -=-=e e 22222222 设()x a x F x -=e 2,其中x >0,所以()()'()x xa x x a F x ----+==e e 2222 令'()F x =0,得a x +=322,当a >0时,x ,'()F x ,()F x 在区间(0,)+∞ 的变化情况如下表:所以()F x 在(,)+∞0上的最小值为()a a F ++-=e 12222,而()a a F ++--=>e e 122222 注意到x =>20, 所以(())fx x F =>-e222,问题得证 法二:因为“对任意的x >0,22e e x ax x ->-”等价于“对任意的x >0,220e ex ax x -+>” 即“x >0,2+12e e()0ex x ax x +->”,故只需证“x >0,22e e()0x ax x +->” 设2()2e e()x g x ax x =+- ,所以'()2e e(2)x g x a x =+- 设()'()h x g x =,'()2e 2e x h x =- 令'()F x =0,得x =31当a >0时,x ,'()h x ,()h x 在区间(0,)+∞ 的变化情况如下表:所以()h x (,)+∞0上的最小值为()h 1,而(1)2e e(2)e 0h a a =+-=> 所以x >0时,'()2e e(2)0x g x a x =+->,所以()g x 在(,)+∞0上单调递增 所以()(0)g x g >而(0)20g =>,所以()0g x >,问题得证 法三:“对任意的x >0,2()e f x >-”等价于“()f x 在(,)+∞0上的最小值大于2e-”因为()'()xx a x af x -++=e22,令'()f x =0得x x ==12当a >0时,x ,'()f x ,()f x 在在(,)∞+0上的变化情况如下表:所以()f x 在[,)+∞0上的最小值为 (),()f f x 20中较小的值,而2(0)0ef =>-,所以只需要证明()f x >-e22因为()x a x a -++=22220,所以()x x x ax x x x x a f =---=>e e e 22222222222 注意到x =2和a >0,所以x =>22 设()xxF x -=e 2,其中x >2 所以()()'()x xx x F x --=-=e e2121 当x >2时,'()F x >0,所以()F x 单调递增,所以()()F x F >=-e242而()--=-->e e e e 2242240 所以()()f x F x >->e222,问题得证法四:因为a >0,所以当x >0时,()x x ax x x f x --=>e e22设()x x F x -=e2,其中x >0所以()'()xx x F x -=e2 所以x ,'()F x ,()F x 的变化情况如下表:所以()F x 在x =2时取得最小值()F =-e 224,而()--=-->e e e e2242240 所以x >0时,2()eF x >-所以()()f x F x >>-e220. 解:(Ⅰ) 满足3αβ*=的元素为(0,0,1),(1,0,1),(0,1,1),(1,1,1) (Ⅱ)记12(,,,)n x x x α=,12(,,,)n y y y β=,注意到{0,1}i x ∈,所以(1)0i i x x -=, 所以11112222()()()n n n n x x x y x x x x x x x x αα*=+-++-+++-12n x x x =+++ 12n y y y ββ*=+++因为n ααββ*+*=,所以1212n n x x x y y y n +++++++=所以1212,,,,,,,n n x x x y y y 中有n 个量的值为1,n 个量的值为0.显然111122220()()()n n n n x y x y x y x y x y x y αβ≤*=+-++-+++-1122n n x y x y x y n ≤++++++=,当(1,1,,1)α=,(0,0,,0)β=时,αβ,满足n ααββ*+*=,n αβ*=.所以αβ*的最大值为n又11112222()()()n n n n x y x y x y x y x y x y αβ*=+-++-+++-1122()n n n x y x y x y =-+++注意到只有1i i x y ==时,1i i x y =,否则0i i x y = 而1212,,,,,,,n n x x x y y y 中n 个量的值为1,n 个量的值为0所以满足1i i x y =这样的元素i 至多有2n个, 当n 为偶数时,22n n n αβ*≥-=. 当22(1,1,,1,0,0,,0)n n αβ==个个时,满足n ααββ*+*=,且2n αβ*=. 所以αβ*的最小值为2n当n 为奇数时,且1i i x y =,这样的元素i 至多有12n -个,所以 1122n n n αβ-+*≥-=. 当1122(1,1,,1,0,0,,0)n n α+-=个个,1122(1,1,,1,0,0,,0)n n β-+=个个时,满足n ααββ*+*=,12n αβ-*=. 所以αβ*的最小值为12n - 综上:αβ*的最大值为n ,当n 为偶数时,αβ*的最小值为2n ,当n 为奇数时,12n αβ-*=.(Ⅲ)S 中的元素个数最大值为222n n ++设集合S 是满足条件的集合中元素个数最多的一个 记1S ={}1212(,,,)|1,n n x x x x x x n S αα=+++≥-∈, {}21212(,,,)|2,n n S x x x x x x n S αα==+++≤-∈显然1212S S S S S ==∅,集合1S 中元素个数不超过1n +个,下面我们证明集合2S 中元素个数不超过2n C 个212,(,,,)n S x x x αα∀∈=,则122n x x x n +++≤-则12n x x x ,,,中至少存在两个元素 0i j x x ==212,(,,,)n S y y y ββ∀∈=,βα≠因为 1n αβ*≥-,所以 ,i j y y 不能同时为0 所以对1i j n ≤<≤中的一组数,i j 而言, 在集合2S 中至多有一个元素12(,,,)n x x x α=满足i j x x ,同时为0所以集合2S 中元素个数不超过2n C 个所以集合S 中的元素个数为至多为2211nn C n n ++=++ 记1T ={}1212(,,,)|1,n n n x x x x x x n αα=+++≥-∈Ω,则1T 中共1n +个元素,对于任意的1T α∈,n β∈Ω,1n αβ*≥-. 对1i j n ≤<≤,记,12(,,,),i j n x x x β= 其中0i j x x ==,1t x =,,t i t j ≠≠记2,{|1}i j T i j n β=≤<≤,显然2,S αβ∀∈,αβ≠,均有1n αβ*≥-. 记12S T T =,S 中的元素个数为21n n ++,且满足,S αβ∀∈,αβ≠,均有1n αβ*≥-.综上所述,S 中的元素个数最大值为21n n ++.。
2020届北京市海淀区高三数学一模试题(含答案)
海淀区高三年级第二学期阶段性测试数学2020春第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)在复平面内,复数i(2- i)对应的点位于(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限(2) 已知集合A={x|0<x<3}, A ∩B= {1},则集合B 可以是(A) {1,2}(B) {1,3} (C) {0,1,2} (D) {1,2,3 } (3)已知双曲线2221(0)y x b b-=>的离心率为5,则b 的值为 (A) 1 (B) 2 (C) 3 (D) 4(4)已知实数a, b, c 在数轴上对应的点如图所示,则下列式子中正确的是(A) b-a<c+a (B)2c ab < ()c c C b a > (D) |b|c<|a|c(5)在61(2)x x-的展开式中,常数项为(A) -120 (B) 120 (C) -160 (D) 160 (6)如图,半径为1的圆M 与直线l 相切于点A,圆M 沿着直线l 滚动.当圆M 滚动到圆M'时,圆M'与直线1相切于点B,点A 运动到点A ',线段AB 的长度为3,2π则点M '到直线'BA 的距离为(A) 1 (3B 2(C 1()2D (7)已知函数f(x)=|x-m|与函数g(x)的图象关于y 轴对称.若g(x)在区间(1,2)内单调递减,则m 的取值范围为(A) [-1,+∞) (B) (-∞,-1] (C) [-2,+∞) (D) (-∞,-2](8)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()5A ()22B ()23C ()13D(9)若数列{}n a 满足12,a =则“*,,p r p r p r a a a +∀∈=N ”是“{}n a 为等比数列”的(A)充分而不必要条件(B)必要而不充分条件 (C)充分必要条件(D)既不充分也不必要条件 (10)形如221n +(n 是非负整数)的数称为费马数,记为.n F 数学家费马根据0123,,,,F F F F 4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那5F 的位数是(参考数据: lg2≈0.3010 )(A) 9(B) 10 (C) 11 (D) 12第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。(11)已知点P(1,2)在抛物线C 2:2y px =上,则抛物线C 的准线方程为___.(12)在等差数列{}n a 中,1253,16a a a =+=,则数列{}n a 的前4项的和为___.(13) 已知非零向量a , b 满足|a |=|a -b |,则1()2-⋅a b b =__. (14) 在△ABC 中, 43,4AB B π=∠=,点D 在边BC 上,2,3ADC π∠=CD=2,则AD=___ ; △ACD 的面积为____.(15) 如图,在等边三角形ABC 中, AB=6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x,点P 到此三角形中心O 距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x 的方程()3f x kx =+最多有5个实数根.其中,所有正确结论的序号是____.注:本题给出的结论中,有多个符合题目要求。全部选对得5分,不选或有错选得0分,其他得3分.三、解答题共6小题,共85分。解答应写出文字说明、演算步骤或证明过程。(16) (本小题共14分)如图,在三棱柱111ABC A B C -中,AB ⊥平面1111,22,3BB C C AB BB BC BC ====,点E 为11A C 的中点.( I)求证:1C B ⊥平面ABC;(II)求二面角A BC E --的大小.(17) (本小题共14分)已知函数212()2cos sin f x x x ωω=+.(I )求f(0)的值;(II)从①121,2ωω==121,1ωω==②这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[,]26ππ-上的最小值,并直接写出函数f(x)的一个周期.注:如果选择两个条件分别解答,按第一个解答计分。(18) (本小题共14分)科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障,下图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元)。 ( I )从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(II)从2010年至2019年中随机选取两个年份,设X 表示其中研发投入超过500亿元的年份的个数,求X 的分布列和数学期望;(III)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.(19) (本小题共15分)已知函数()x f x e ax =+.( I)当a=-1时,①求曲线y= f(x)在点(0, f(0))处的切线方程;②求函数f(x)的最小值;(II)求证:当()2,0a ∈-时,曲线() y f x =与1y lnx =-有且只有一个交点.(20) (本小题共14分)已知椭圆C :22221(0)x y a b a b+=>>123(,0),(,0),(0,)A a A a B b -,12A BA ∆的面积为2. (I)求椭圆C 的方程;(II)设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P,直线1A M 与直线2A B 交于点Q. 求证:△BPQ 为等腰三角形.(21) (本小题共14分)已知数列{}n a 是由正整数组成的无穷数列.若存在常数*k ∈N , 使得212n n n a a ka -+=任意的*n ∈N 成立,则称数列{}n a 具有性质()k ψ.(I)分别判断下列数列{}n a 是否具有性质(2)ψ; (直接写出结论)1n a =① 2,n n a =②(II)若数列{}n a 满足1(1,2,3,)n n a a n +≥=L ,求证:“数列{}n a 具有性质(2)ψ”是“数列{}n a 为常数列”的充分必要条件;(III)已知数列{}n a 中11,a =且1(1,2,3,)n n a a n +>=L .若数列{}n a 具有性质(4)ψ,求数列{}n a 的通项公式.。
北京市海淀区2020届高三数学一模试题含解析
(I)求f(0)的值;
(II)从① ;② 这两个条件中任选一个,作为题目的已知条件,求函数f(x)在 上的最小值,并直接写出函数f(x)的一个周期.
【答案】(I) ;(II) ① 时 , ;② 时 , 。
【解析】
【分析】
(I)将 代入求值即可;
(II)①用二倍角和辅助角公式化简可得 ,再由 可得 ,结合正弦函数图象求解最值;
14。在△ABC中, ,点D在边BC上, CD=2,则AD=___;△ACD的面积为____。
【答案】 (1). (2)。
【解析】
【分析】
在 中用正弦定理求解 ,在 用面积公式可得。
【详解】
在 中由正弦定理得: ,
.
在 中, ,
故答案为: ; .
【点睛】本题考查平面几何中解三角形问题.
其求解思路:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理、勾股定理求解;
8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为( )
A. B。 C. D。
【答案】C
【解析】
【分析】
四棱锥底面是直角梯形, 底面 ,可知最长棱是 ,在直角三角形 中利用勾股定理可解.
【详解】
由三视图知,四棱锥底面是直角梯形, 底面 , ,最长棱是 ,
在 中, ,在 中, ,
,
。
故选:D.
【点睛】由几何体三视图还原其直观图时应注意的问题。要熟悉柱、锥、球、台的三视图,结合空间想象将三视图还原为直观图.
此时 到达 , ,则点 到直线 的距离为 。
故选:C.
【点睛】本题考查圆的渐开线变式运用.
圆的渐开线性质:(1)渐开线的发生线滚过的距离等于其在基圆滚过的弧长。(2)渐开线上任一点的法线恒与基圆相切。
北京市海淀区2020届高三年级第二学期期末练习数学(二模)(含答案)
北京市海淀区高三年级第二学期期末练习数学2020.6 本试卷共6页,150分.考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
( 1)若全集U= R, A = {x I x< 1} , B = (x I x >一1},则(A)A<;;B(B)Bt;;A( C)B <;; CuA ( 2)下列函数中,值域为[0, + 00 )且为偶函数的是(A) y=x2 (B)y=lx-11( C)y=cosx ( D)CuA <;;B (D)y=lnx( 3 )若抛物线y2= 12x的焦点为F,点P在此抛物线上且横坐标为3,则I PFI等于(A)4( B)6( C) 8( D)10(4)已知三条不同的直线I,m, n和两个不同的平面α,F,下列四个命题中正确的为(A)若m Hα,n Hα,则m II n(B )若I II m, meα,则I I Iα (C)若I IIα,111 p,则αIIP(D)若I IIα,11..p,则α.1..p( 5)在!:::.ABC中,若a=1,b=8,叫=牛则LA的大小为(A)号(B)*(C)号(D)亏(6)将函数f(x)=血(2x-f)的图象向左刊号个单位长度,得到函数g(x)的图象,则g(x)=(A)sin ( 2x+号)( C)cos2x ( B)sin ( 2x +子)( D)-cos2x.,..l,... ‘., ..、,’.白..‘.,.,- .. ‘,,.a ‘‘’---------.--‘--. ,,e ’(.a L ... ι’’-.俨’ ..………又\一图……一….‘.’j j i g --j e--! -J j e - -J j a - -…\…一左…………::l i t i --; ... ,-a a ----’ ----E ’’- --··a 句脚’7··|’;l e i --d a ”’-E .. 、怡、,-J ;’jl ;l - J I ;1 -j z ;! ;I J I 丁,人(:1万,」视→、a x a ’…·视→………/一主一\……俯丁··;,.:J e --e ·--- ’’’----- -------- ’’’’也’’’-r -a ,,.. e g-- ..,..,‘‘,,.. ,‘(7)某三棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,(B)1(D )4那么该三棱锥的体积为(A)t ( C )2( 8)对于非零向量a,b ,“(a+b)·a =2矿”是“a =b ”的(B )必要而不充分条件(A)充分而不必要条件( D)既不充分也不必要条件(C)充分必要条件(9)如图,正方体ABCD-A 1B 1C 1D 1的棱长为2,点。
2020届海淀区高三期中数学试卷及答案
海淀区高三年级第一学期期中练习数 学(理科) 2013.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B =( A )A. {1,1,2}-B. {1,2}C. {1,2}-D. {2}2. 下列函数中,值域为(0,)+∞的函数是( C )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()tan f x x =3. 在ABC ∆中,若tan 2A =-,则cos A =( B )B.D. 4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( C )A. 2-B. 12-C. 12D. 25.若a ∈R ,则“2a a >”是“1a >”的( B )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)nn a n =-,则数列的前n 项和n S 的最小值是( B ) A. 3SB. 4SC. 5SD. 6S7. 已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为( D ) A. 2[,0)3- B. [1,0)- C. [2,3) D. (0,)+∞8. 已知函数sin cos ()sin cos x xf x x x+=,在下列给出结论中:① π是()f x 的一个周期;② ()f x 的图象关于直线x 4π=对称; ③ ()f x 在(,0)2π-上单调递减. 其中,正确结论的个数为( C ) A. 0个B.1个C. 2个D. 3个二、填空题:本大题共6小题,每小题5分,共30分。
2020年北京市海淀区高三一模数学试卷+答案
2020年北京市海淀区高三一模数学试卷2020.5 本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时长120分钟。
考生务必将答案写在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第I 卷(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 在复平面内,复数i(2i)-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2. 已知集合{|03},{1}A x x A B =<<=,则集合B 可以是 (A ){1,2}(B ){1,3}(C ){0,1,2}(D ){1,2,3}3. 已知双曲线2221(0)yx b b-=>的离心率是5,则b 的值为(A )1 (B )2 (C )3 (D )44. 已知实数,,a b c 在数轴上对应的点如图所示,则下列式子中正确的是 (A )b a c a -<+(B )2c ab < (C )c c b a>(D )||||b c a c <5. 在61(2)x x-的展开式中,常数项为(A )120-(B )120(C )160-(D )1606. 如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为 (A )1 (B )32(C )22(D )127. 已知函数()||f x x m =-与函数()g x 的图象关于y 轴对称.若()g x 在区间(1,2)内单调递减,则m 的取值范围为 (A )[1,)-+∞(B )(,1]-∞-(C )[2,)-+∞(D )(,2]-∞-8. 某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为 (A )5 (B )22 (C )23 (D )139. 若数列{}n a 满足12a =,则“*,,p r p r p r a a a +∀∈=N ”是“{}n a 为等比数列”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件10. 形如221n+(n 是非负整数)的数称为费马数,记为n F .数学家费马根据01234,,,,F F F F F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那么5F 的位数是(参考数据:lg 20.3010≈) (A )9(B )10(C )11(D )12第II 卷(非选择题 共110分)二、填空题:共5小题,每小题5分,共25分。
2020年北京市海淀区高三一模数学试卷+答案
2020年北京市海淀区高三一模数学试卷2020.5 本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时长120分钟。
考生务必将答案写在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第I 卷(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 在复平面内,复数i(2i)-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 2. 已知集合{|03},{1}A x x A B =<<=,则集合B 可以是 (A ){1,2}(B ){1,3}(C ){0,1,2}(D ){1,2,3}3. 已知双曲线2221(0)y x b b-=>的离心率是5,则b 的值为(A )1 (B )2 (C )3 (D )44. 已知实数,,a b c 在数轴上对应的点如图所示,则下列式子中正确的是 (A )b a c a -<+ (B )2c ab < (C )c c b a>(D )||||b c a c <5. 在61(2)x x-的展开式中,常数项为(A )120- (B )120 (C )160-(D )1606. 如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为 (A )1 (B )32(C )22(D )127. 已知函数()||f x x m =-与函数()g x 的图象关于y 轴对称.若()g x 在区间(1,2)内单调递减,则m 的取值范围为 (A )[1,)-+∞(B )(,1]-∞-(C )[2,)-+∞(D )(,2]-∞-8. 某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为 (A )5 (B )22 (C )23 (D )139. 若数列{}n a 满足12a =,则“*,,p r p r p r a a a +∀∈=N ”是“{}n a 为等比数列”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件10. 形如221n+(n 是非负整数)的数称为费马数,记为n F .数学家费马根据01234,,,,F F F F F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那么5F 的位数是(参考数据:lg 20.3010≈) (A )9(B )10(C )11(D )12第II 卷(非选择题 共110分)二、填空题:共5小题,每小题5分,共25分。
北京市海淀区2020届高三数学一模试题(含解析)
北京市海淀区2020届高三数学一模试题(含解析)第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数(2)i i -对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】试题分析:()212i i i -=+,对应的点为1,2,在第一象限 考点:复数运算2.已知集合{}|03A x x =<<, 1A B ,则集合B 可以是( )A. {1,2}B. {1,3}C. {0,1,2}D. {1,2,3 }【答案】B 【解析】 【分析】集合A ,B 是数集,{}|03A x x =<< , 1A B , B 集合中一定没有元素2,由选项可得. 【详解】 1A B ,则集合B 中一定有元素1,又{}|03A x x =<<,B 集合中一定没有元素2B ∴可以是{1}3, 故选:B.【点睛】本题考查集合交集运算. 交集运算口诀:“越交越少,公共部分”.3.已知双曲线2221(0)y x b b-=>则b 的值为( )A. 1B. 2C. 3D. 4【答案】B【解析】 【分析】由题知21a = ,5ce a== 及222+c a b 联解可得【详解】由题知21a = ,5ce a ==,222222+5c a b e a a ,2b ∴=.故选:B.【点睛】本题考查利用双曲线离心率求双曲线方程.求双曲线方程的思路: (1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a b c ,,的方程组,解出22a b ,,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解).(2)当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是设双曲线的一般方程为221(0)mx ny mn +=<求解.4.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A. b a c aB. 2c ab <C.c c b a> D.b c a c【答案】D 【解析】 【分析】由数轴知0c b a <<< ,不妨取=3,2,1c ba 检验选项得解. 【详解】由数轴知0cb a <<< ,不妨取=3,2,1c b a,对于A ,2121 ,∴ 不成立.对于B ,2(3)(2)(1),∴ 不成立.对于C , 3231-<---,∴ 不成立. 对于D ,(3)1(3) 2 ,因此成立.故选:D .【点睛】利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法. 5.在61(2)x x-的展开式中,常数项为( )A. 120-B. 120C. 160-D. 160【答案】C 【解析】 【分析】写出二项式展开式的通项公式求出常数项. 【详解】61(2)x x-展开式的通项2616(1)2k k k k kT C x ,令260,3k k常数项333316(1)2=160T C故选:C .【点睛】本题考查二项定理. 二项展开式问题的常见类型及解法:(1)求展开式中的特定项或其系数.可依据条件写出第1k +项,再由特定项的特点求出k 值即可.(2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第1k +项,由特定项得出k 值,最后求出其参数.6.如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3,2π则点M '到直线BA '的距离为( )A. 1 3 C.22D.12【答案】C 【解析】 【分析】 线段AB 的长度为3,2π即圆滚动了34圈,此时A 到达A ',90BM A,则点M '到直线'BA 的距离可求.【详解】线段AB 的长度为3,2π设圆滚动了x 圈,则332,24x x 即圆滚动了34圈, 此时A 到达A ',90BM A ,则点M '到直线BA '的距离为2sin 452r . 故选:C .【点睛】本题考查圆的渐开线变式运用.圆的渐开线性质:(1)渐开线的发生线滚过的距离等于其在基圆滚过的弧长.(2)渐开线上任一点的法线恒与基圆相切.7.已知函数f (x )=|x -m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A. [-1,+∞) B. (-∞,-1]C. [-2,+∞)D. (-∞,-2]【答案】D 【解析】 【分析】函数()f x 与()g x 的图象关于y 轴对称,得到()=()g x f x x m ,再利用绝对值函数性质列出不等式求解.【详解】函数()f x x m =-与函数()g x 的图象关于y 轴对称,()=()g x f x x m ,()g x 在区间(12),内单调递减, 则22mm ,,故选:D .【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为( )A. 5B. 22C. 23D. 13【答案】C 【解析】 【分析】四棱锥底面是直角梯形,EA 底面ABCD ,可知最长棱是EC ,在直角三角形EAC 中利用勾股定理可解.【详解】由三视图知,四棱锥底面是直角梯形,EA ⊥底面ABCD ,2EA AB BC ,最长棱是EC ,在Rt ABC ∆中,222AC AB BC =+,在Rt EAC 中,222EC EA AC ,222212EC EA AB BC ,EC =故选:D .【点睛】由几何体三视图还原其直观图时应注意的问题.要熟悉柱、锥、球、台的三视图,结合空间想象将三视图还原为直观图.9.若数列{}n a 满足12,a =则“*,,p r p r p r a a a +∀∈=N ”是“{}n a 为等比数列”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】*,,p r p r p r a a a +∀∈=N ,不妨设1r =,则11p p a a a ,+=12p p a a ,+∴=可证充分性;{}n a 为等比数列且2q时得不到p r p r a a a +=,可知必要性不成立【详解】不妨设1r =,则11p p a a a ,+=12p p a a ,+∴=12p pa a {}n a ∴为等比数列;故充分性成立反之若{}n a 为等比数列,不妨设公比为q ,111=2p r r p r p q a a q ++-+-=,22214pr pr p ra a a q q当2q时p r p r a a a +≠,所以必要性不成立故选:A .【点睛】(1)证明一个数列为等比数列常用定义法与中项公式法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可. (2)利用递推关系时要注意对n =1时的情况进行验证.10.形如221n+(n 是非负整数)的数称为费马数,记为.n F 数学家费马根据0123,,,,F F F F 4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那5F 的位数是( )(参考数据: lg 2≈0.3010 ) A. 9 B. 10C. 11D. 12【答案】B 【解析】 【分析】32521F ,设322m ,两边取常用对数估算m 的位数即可.【详解】32521F ,设322m,则两边取常用对数得32lg lg 232lg 2320.30109.632m .9.63291010m ,故5F 的位数是10, 故选:B .【点睛】解决对数运算问题的常用方法: (1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2lg51+=简化计算.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知点P (1,2)在抛物线C 2:2y px =上,则抛物线C 的准线方程为___. 【答案】1x =- 【解析】 【分析】(12)P ,代入抛物线方程,求出2p =,可求准线方程.【详解】(12)P ,在抛物线C 2:2y px =上,24,2p p ==, 准线方程为12px =-=-, 故答案为:1x =-.【点睛】本题考查抛物线的性质.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.12.在等差数列{}n a 中,1253,16a a a =+=,则数列{}n a 的前4项的和为___. 【答案】24 【解析】 【分析】利用等差数列基本量关系求通项. 利用等差数列前n 项和公式求出n S . 【详解】设等差数列的公差为d .2516a a +=,11146d a a d +++=,13a =,2d ∴=,1(1)3(1)22+1na a n dn n ,(2)1444()4(39)=2422a a S . 故答案为:24【点睛】本题考查解决等差数列通项公式及前n 项和n S .(1)等差数列基本量计算问题的思路:与等差数列有关的基本运算问题,主要围绕着通项公式1(1)n a a n d =+-和前n 项和公式11()(1)22n nn a a n n dS na ,在两个公式中共涉及五个量:1n n a d n a S ,,,,,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.13.已知非零向量a b , 满足a a b ,则1()2a b b -⋅=__.【答案】0 【解析】 【分析】aa b 两边平方求出2||2b a b =⋅;化简1()2a b b -⋅ 可求解.【详解】由aa b 两边平方,得222|||||+|2a a b a b -=⋅,2||2b a b =⋅,211()=022a b b a b b a b a b -⋅=⋅-=⋅-⋅,故答案为:0【点睛】本题考查平面向量数量积的应用. 求向量模的常用方法:(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式2+a x y =(2)若向量a b , 是以非坐标形式出现的,求向量a 的模可应用公式22•a a a a ==或2222||)2?(a b ab aa b b ==+,先求向量模的平方,再通过向量数量积的运算求解.14.在△ABC 中,4AB B π=∠=,点D 在边BC 上,2,3ADC π∠=CD =2,则AD =___;△ACD 的面积为____.【答案】 (1). 【解析】 【分析】在ABD △中用正弦定理求解AD ,在ACD 用面积公式可得. 【详解】2,3ADC π∠=,3ADB π∴∠=在ABD △中由正弦定理得:sinB sinAD ABADB=∠, sinB4sin sin 3AB AD ADBππ===∠在ACD 中,11sin 222ACDSAD DC CDA =⨯∠=⨯=, 故答案为:【点睛】本题考查平面几何中解三角形问题.其求解思路:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理、勾股定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.15.如图,在等边三角形ABC 中, AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是____. 【答案】①② 【解析】 【分析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解.【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤, P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤, P 分别在CA 上运动时的函数解析式22()3(12),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(12),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象知:正确的是①②. 故答案为:①②【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.如图,在三棱柱111ABC A B C -中,AB ⊥平面1111,22,3BB C C AB BB BC BC ====,点E 为11A C 的中点.(I)求证:1C B ⊥平面ABC ; (II)求二面角A BC E --的大小. 【答案】(1)证明见解析;(2)3π【解析】 【分析】 (I) 证1BCC B ,在同一平面内用“数据说话”,证1AB C B ⊥ 用线面垂直的性质;(II) 以B 为原点,建立空间直角坐标系,求出(1,0,0),BC 1(,3,1),2BE求出平面BEC 求出的法向量,利用空间向量夹角公式可得.【详解】(I)AB ⊥平面11,BB C C 1C B ⊂平面11CBB C ,1AB C B ∴⊥,在1CBC △中,1112,1,3CC BB BC BC ====,22211BC BC CC +=, 1BC C B ,AB BC B ⋂=,1C B ∴⊥平面ABC ;(II)由(I)知11ABC B ABCB BCC B ,,,则建立空间直角坐标系B xyz -,则1(0,0,0),(,3,1),(1,0,0)2B EC,1(1,0,0),(,3,1),2BC BE设平面BEC的法向量为(,,)n x y z=,故n BCn BE⎧⋅=⎨⋅=⎩,1302xx y z=⎧⎪∴⎨-++=⎪⎩.令3y=,0,3,3x y z,(0,3,3)n,又平面BAC的法向量为(0,1,0)m=,1cos,2m nm nm n.由题知二面角A BC E--为锐二面角,所以二面角A BC E--的大小为3π.【点睛】本题考查线面垂直判定及利用空间向量计算二面角大小.计算二面角大小的常用方法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小17.已知函数212()2cos sinf x x xωω=+.(I)求f(0)的值;(II)从①121,2ωω==;②121,1ωω==这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[,]26ππ-上的最小值,并直接写出函数f(x)的一个周期.【答案】(I) 0;(II) ①121,2ωω==时min ()1f x =,T π=;②121,1ωω==时min ()1f x =-,2T π=.【解析】 【分析】(I)将0x =代入求值即可;(II)①用二倍角和辅助角公式化简可得()+)+14f x x π=,再由[,]26x ππ∈-可得372[,]4412x πππ+∈-,结合正弦函数图象求解最值; ②121,1ωω==,()222cos sin 2sin sin 2f x x x x x =+=-++利用抛物线知识求解【详解】(I)2(0)2cos 0sin 02f =+=; (II)①121,2ωω==,由题意得2()2cos sin 2cos 2sin 21+)+14f x x x x x x π=+=++=,T π∴=,[,]26x ππ∈-,372[,]4412x πππ∴+∈-,故sin 2124x π⎛⎫-≤+≤ ⎪⎝⎭,所以当2x π=-时,()f x 取最小值1-. ②121,1ωω==,22()2cos sin 2sin sin 2f x x x x x =+=-++,[,]26x ππ∈-,令sin x t =,21[1,],()222t f t t t ∴∈-=-++,∴当1t =-时,函数取得最小值为(1)1f -=-.2()2cos sin f x x x =+,22(+2)2cos (+2)sin(+2)2cos sin f x x x x x πππ∴=+=+,2T π∴=【点睛】本题考查三角恒等变换在三角函数图象和性质中的应用. (1)利用三角恒等变换及辅助角公式把三角函数关系式化成sin()A xk 或cos()A x k 的形式;(2)根据自变量的范围确定x ωϕ+的范围,根据相应的正弦曲线或余弦曲线求值域或最值. (3)换元转化为二次函数研究最值.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障,下图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(I )从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(II )从2010年至2019年中随机选取两个年份,设X 表示其中研发投入超过500亿元的年份的个数,求X 的分布列和数学期望;(III )根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由. 【答案】(I)910; (II)()1E X =分布列如下: X0 12 ()P X295929(III)2010年到2019年共10年中,研发投入占当年总营收的百分比超过10%有9年,每年基本上都在增加,因此公司在发展的过程中重视研发.【解析】 【分析】(I) 折线图中2010年到2019年共10年中,2010年公司研发投入占当年总营收的百分比在10%以下(II) 2010年到2019年共10年中,研发投入超过500亿元的有5年,X 的取值可能为0,1,2,超几何分布求概率.(III) 图中信息10年中,研发投入占当年总营收的百分比超过10%有9年,每年基本上都在增加, 判断公司在发展的过程中比较重视研发.【详解】(I)由题知,2010年到2019年共10年中,研发投入占当年总营收的百分比超过10%有9年,设从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%为事件A ,9()10P A ∴=. (II)由题意得X 的取值可能为0,1,2()25210209C P X C ===,()1155210519C P C X C ⋅===, ()25210229C P X C ===.X 的分布列为()2520121999E X =⨯+⨯+⨯=.(III )2010年到2019年共10年中,研发投入占当年总营收的百分比超过10%有9年,每年基本上都在增加,因此公司在发展的过程中重视研发. 【点睛】超几何分布的特征.(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布.求离散型随机变量分布列的步骤. 19.已知函数()x f x e ax =+. (I )当a =-1时,①求曲线y = f (x )在点(0,f (0))处的切线方程; ②求函数f (x )的最小值;(II )求证:当()2,0a ∈-时,曲线() y f x =与1y lnx =-有且只有一个交点. 【答案】(1)切线方程1y =;min ()1f x =;(2)证明见解析 【解析】 【分析】(I)函数求导'()1xf x e =-,求出(0)k f '=得切线方程;解()0f x '>求单增区间,解()0f x '<求单减区间;利用单调性求最值;(II)构造()()ln 10xg x e ax x x =++->得到函数调调性,由零点存在性定理证有且只有一个零点.【详解】(I)当1a =-时,①函数()xf x e x =-,0(0)=1f e ∴=,()1x f x e =-',即0(0)1=0f e -'=,∴曲线()y f x =在点()(0)0f ,处的切线方程为1y =.②令()1>0x f x e -'=,得0x >,令()1<0x f x e -'=,得0x <, 所以()f x 在(0,+)∞上单增,在(,0)-∞单减,∴函数()f x 的最小值为min ()(0)1f x f ==.(II) 当()2,0a ∈-时,曲线() y f x =与1ln y x =-有且只有一个交点. 等价于()()ln 10xg x e ax x x =++->有且只有一个零点.()()10x g x e a x x'=++>, 当()0,1x ∈时,11,1xe x >>,()2,0a ∈-,则()10x g x e a x'=++>, 当[)1,x ∈+∞时,12,0xe e x >>>, ()2,0a ∈-,则()10x g x e a x'=++>,()g x ∴在()0,∞+上单增,又1121()220ea g e e e e=+-<-<, ()220e g e e ae e e =+>->,由零点存在性定理得()g x 有唯一零点,即曲线() y f x =与1ln y x =-有且只有一个交点. 【点睛】判断函数零点个数及分布区间的方法:(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上; (2)定理法:利用零点存在性定理进行判断;(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.20.已知椭圆C :22221(0)x y a b a b+=>>12(,0),(,0),(0,)A a A a B b -,12A BA ∆的面积为2.(I)求椭圆C 的方程;(II)设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P ,直线1A M 与直线2A B 交于点Q .求证:△BPQ 为等腰三角形.【答案】(I)2214x y +=;(II)证明见解析【解析】 【分析】(I)运用椭圆离心率公式和三角形面积公式,结合,,a b c 的关系,解方程可得2,1a b ==,从而得到椭圆方程(II) 设(),M m n ,直线2A M 的直线方程为()22ny x m =--直线1A B 的直线方程为112y x =+,联解求出P 点坐标,同理求出Q 坐标,22225(1)4p p p BP x y x =+-=,22225(1)4Q Q Q BQ x y x =+-=,只需证明22=P Q x x ,利用作差法可证明.【详解】(I)由题意得2221222c aab b c a ⎧=⎪⎪⎪⋅=⎨⎪+=⎪⎪⎩,解得2,1,a b c ===故椭圆的方程为2214xy +=.(II)由题意得()()()122,0,2,0,0,1A A B -,设点(),M m n ,则有2244m n +=,又直线2A M 的直线方程为()22ny x m =--,直线1A B 的直线方程为112y x =+, ()22112n y x m y x ⎧=-⎪⎪-∴⎨⎪=+⎪⎩,解得24422422m n x n m n y n m +-⎧=⎪⎪-+⎨⎪=⎪-+⎩,P ∴点的坐标为2444,2222m n n n m n m +-⎛⎫⎪-+-+⎝⎭.又直线1A M 的直线方程为()22n y x m =++,直线2A B 的直线方程为112y x =-+. ()22112n y x m y x ⎧=+⎪⎪+∴⎨⎪=-+⎪⎩,解得24422422m n x n m n y n m -+⎧=⎪⎪++⎨⎪=⎪++⎩,Q ∴点的坐标为2444,2222m n n n m n m -+⎛⎫⎪++++⎝⎭.22225(1)4p p p BP x y x ∴=+-=,22225(1)4Q Q Q BQ x y x ∴=+-=. 2222244244()()2222P Q m n m n x x n m n m +--+-=--+++()()()()()()22222242222422222222m n n m m n n m n m n m +-++--+-+=-+++()()222264(44)02222mn m n n m n m +-==-+++,22=BP BQ ∴,BP BQ ∴=,∴△BPQ 为等腰三角形.【点睛】圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等. 通常利用代数方法,即把要求证的等式或不等式用坐标形式表示出来,然后进行化简计算等进行证明21.已知数列{}n a 是由正整数组成的无穷数列.若存在常数*k ∈N ,使得212n n n a a ka -+=任意的*n ∈N 成立,则称数列{}n a 具有性质()k ψ.(1)分别判断下列数列{}n a 是否具有性质(2)ψ; (直接写出结论) ①1n a = ②2,nn a =(2)若数列{}n a 满足1(1,2,3,)n n a a n +≥=,求证:“数列{}n a 具有性质(2)ψ”是“数列{}n a 为常数列”的充分必要条件;(3)已知数列{}n a 中11,a =且1(1,2,3,)n n a a n +>=.若数列{}n a 具有性质(4)ψ,求数列{}n a 的通项公式.【答案】(1)①1n a =时,数列{}n a 具有性质(2)ψ;②2n n a =时,数列{}n a 不具有性质(2)ψ.(2)证明见解析(3)21n a n =-. 【解析】 【分析】(1)代入验证即可得.(2)充分性: 由212+2n n n a a a -≥及数列{}n a 具有性质(2)ψ可得212==2n n n a a a -;必要性:数列{}n a 为常数列,所以1n a a =可证2122n n n a a a -+=.(3)数列{}n a 具有性质(4)ψ,求出2=3a ,由3424=12a a a +=,34a ≥对34,a a 取值进行证明排除,得到1234=13=5=7a a a a =,,, ,猜想21n a n =-,用反证法证明猜想成立. 【详解】(1)①1n a =时,数列{}n a 具有性质(2)ψ.②2nn a =时,数列{}n a 不具有性质(2)ψ.(2)1(1,2,3,)n n a a n +≥=,2122+n n n a a a -∴≥,等号成立,当且仅当212==2n n n a a a -,因为数列{}n a 具有性质(2)ψ,即2122n n n a a a -+=, 所以数列{}n a 为常数列.必要性:因为数列{}n a 为常数列,所以1n a a =, 2122n n n a a a -+=成立,即数列{}n a 具有性质(2)ψ.(3)11,a =数列{}n a 具有性质(4)ψ,1221=34a a a a ∴+=,, 3424=12a a a +=,34a ≥.若34=4=8a a ,,1n n a a +>569+10=19a a ∴+≥563=164a a a +=矛盾;若36a ≥,则46a ≤矛盾.所以1234=13=5=7a a a a =,,, , 所以猜想21n a n =-. 证明如下:假设命题不成立,设{}212min |4341i i r i N a i a i +-=∈≠-≠-或(3r ≥ ), 考虑数列{}n b ,当24=4(2)n n r b a r +---时具有性质(4)ψ, 此时1234=13=5=7b b b b =,,, ,即21=43r a r --或2=41r a r -,矛盾,21n a n ∴=-. 【点睛】数列与不等式相结合问题的处理方法(1)如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等. (2)如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等. 总之,解决这类问题,要把数列和不等式的知识巧妙结合起来,综合处理.。
2020海淀区高三数学期末上学期试题及答案
海淀区高三年级第一学期期末练习数学 2020. 01本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}2,3,4B =,则集合UA B 是(A ){1,3,5,6}(B ){1,3,5} (C ){1,3} (D ){1,5}(2)抛物线24y x =的焦点坐标为 (A )(0,1)(B )(10,) (C )(0,1-) (D )(1,0)-(3)下列直线与圆22(1)(1)2x y -+-=相切的是(A )y x =- (B )y x =(C )2y x =- (D )2y x =(4)已知,a b R ,且a b ,则(A )11a b(B )sin sin a b(C )11()()33ab (D )22a b(5)在51()x x-的展开式中,3x 的系数为 (A )5(B )5(C )10(D )10(6)已知平面向量,,a b c 满足++=0a b c ,且||||||1===a b c ,则⋅a b 的值为(A )12(B )12(C )32(D 2(7)已知α, β, γ是三个不同的平面,且=m αγ,=n βγ,则“m n ∥”是“αβ∥”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)已知等边△ABC 边长为3. 点D 在BC 边上,且BD CD >,AD =下列结论中错误的是(A )2BDCD= (B )2ABDACDS S ∆∆= (C )cos 2cos BADCAD∠=∠ (D )sin 2sin BAD CAD ∠=∠(9)声音的等级()f x (单位:dB )与声音强度x (单位:2W/m )满足12()10lg110x f x -=⨯⨯.喷气式飞机起飞时,声音的等级约为140dB ;一般说话时,声音的等级约为60dB ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的 (A )610倍(B )810倍(C )1010倍(D )1210倍(10)若点N 为点M 在平面上的正投影,则记()Nf M . 如图,在棱长为1的正方体1111ABCDA B C D 中,记平面11AB C D 为,平面ABCD 为,点P 是棱1CC 上一动点(与C ,1C 不重合),1[()]Q f f P ,2[()]Q f f P . 给出下列三个结论:①线段2PQ长度的取值范围是1[2;②存在点P 使得1PQ ∥平面;③存在点P 使得12PQ PQ .其中,所有正确结论的序号是(A )①②③(B )②③(C )①③(D )①②第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
北京市海淀区2020届高三年级第二学期期末练习数学(二模)(含答案)
( 1 )若全集U=R, A=(xlx<l}, B=(xlx>-1},则
(A) A 巨B
(B) B旦A
(C) B 旦 Cu
(D) CuA 豆B
(2 )下列函数中,值域为[ 0, + oc )且为偶函数的是
(A) y=x2
(B)y=lx-11
( C) y=cosx
(D)y=lnx
( 3 )若抛物线y2: 12x 的焦点为 F,点 P在此抛物线上且横坐标为 3,则 IPFI 等于
(D) -cos2x
高三年级(数学) 第1页(共6页)
(7)某三棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,
那么该三棱锥的体积为 (A)t ( C) 2
1 (B)
(D)4
; j | ’’’’也’’’-r-a,,.
:. xa ;z;; ’; eg-..,.
a ! ..,‘‘,,,‘
- - ’ ’ e- ;··丁 …… …
人数为
〉 飞J 〉
(A) 9
( B) 10
J , ‘ ‘
FU
、 ‘ E ,
-- -EA
、
,
( D) 12
高三年级(数学) 第2页(共6页)
- ’ -/ - - e , 一主
- - · …一\ -丁 人(: , 万1 」, 视 →、
…·视’ →
-
J
’
j
J
- da”’-
-
7··
- - - - - a ::l \… --J -J .‘.’j
… …
· - a一…
… 又\
I I l E · - - i 左 j j j 一图
( 8)对于非零向量 a, b,“ ( a+b)·a=2矿 ” 是 “a=b” 的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅲ)已知数列 A2n1 的特征值为 n 1,求
| xi xj | 的最小值.
1i j2n1
海淀区 2020 届高三年级第一学期期末练习参考答案
数学
2020.01
阅卷须知:
1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.
(D) (1, 0)
(3)下列直线与圆 (x 1)2 ( y 1)2 2 相切的是
(A) y x
(B) y x
(C) y 2x
(4)已知 a, b Î R ,且 a > b ,则
(D) y 2x
(A) 1 < 1 ab
(B) sin a > sin b
(5)在 (x 1 )5 的展开式中, x3的系数为
高三年级(数学)第 4页(共 5 页)
(22)(本小题共 14 分) 给定整数 n(n 2) ,数列 A2n1:x1, x2 ,, x2n1 每项均为整数,在 A2n1 中去掉一项
xk , 并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大 值记为 mk (k 1, 2,, 2n 1) . 将 m1, m2 ,, m2n1 中的最小值称为数列 A2n1 的特征值.
A1
B1
C ,C1 不重合),Q1 = fg [ fb (P)] ,Q2 = fb [ fg (P)] . 给出下
P
列三个结论:
D
C
①线段
PQ2
长度的取值范围是
[
1 2
,
2); 2
②存在点 P 使得 PQ1 ∥平面 b ;
③存在点 P 使得 PQ1 ^ PQ2 .
其中,所有正确结论的序号是
A
B
(A)①②③
抽取 10 个小区进行调查,若在抽取的 10 个小区中再随机地选取 2 个小区做深入
调查,记这 2 个小区中为优质小区的个数为ξ,求ξ的分布列及数学期望.
(20)(本小题共 14 分)
已知椭圆
C
:
x2 a2
y2 b2
1
(a b
0) 的右顶点
A2,0 ,且离心率为
3. 2
(Ⅰ)求椭圆 C 的方程;
(1)已知集合U 1, 2,3, 4,5, 6 , A 1,3,5 , B 2,3, 4,则集合 A ðU B 是
(A)1,3,5, 6}
(B) 1, 3, 5}
(C) 1, 3}
(D)1, 5}
(2)抛物线 y2 4x 的焦点坐标为
(A) (0,1)
(B) (1,0)
(C) (0, 1)
2
2
2
f (x)
0
2
0
2
0
(15)用“五点法”作函数 f (x) Asin(x ) 的图象时,列表如下:
高三年级(数学)第 2页(共 5 页)
则 f (1) _________, f (0) f ( 1) _________. 2
(16)已知曲线 C: x4 y4 mx2 y2 1( m 为常数).
sin BAD sin CAD
2
高三年级(数学)第 1页(共 5 页)
(9)声音的等级
f
( x )(单位:dB)与声音强度
x(单位:W /m2
)满足
f
(x)
10
lg
x 11012
.
喷气式飞机起飞时,声音的等级约为 140dB;一般说话时,声音的等级约为 60dB,那
么喷气式飞机起飞时声音强度约为一般说话时声音强度的
海淀区高三年级第一学期期末练习
数学
2020. 01
本试卷共 4 页,150 分。考试时长 120 分钟。考生务必将答案答在答题纸上,在试卷上
作答无效。考试结束后,将本试卷和答题纸一并交回。 第一部分(选择题 共 40 分)
一、选择题共 10 小题,每小题 4 分,共 40 分。在每小题列出的四个选项中,选出符合题目 要求的一项。
高三年级(数学)第 3页(共 5 页)
小区 指标值 权重 教育与文化(0.20) 医疗与养老(0.20) 交通与购物(0.32) 休闲与健身(0.28)
A 小区
0.7 0.7 0.5 0.5
B 小区
0.9 0.6 0.7 0.6
C 小区
0.1 0.3 0.2 0.1
注 : 每 个 小 区 “15 分 钟 社 区 生 活 圈 ” 指 数 T w1T1 w2T2 w3T3 w4T4 , 其 中 w1, w2 , w3, w4 为该小区四个方面的权重,T1,T2 ,T3,T4 为该小区四个方面的指标值(小区 每一个方面的指标值为 0~1 之间的一个数值).
x
(A) -5
(B) 5
(C) (1)a < (1)b 33
(C) -10
(D) a2 > b2 (D)10
(6)已知平面向量 a, b, c 满足 a b c 0 ,且 | a || b || c | 1 ,则 a b 的值为
(A) - 1 2
1 (B)
2
(C) - 3 2
(D) 3 2
(7)已知 , , 是三个不同的平面,且 =m , =n ,则“ m∥n ”是“ ∥ ”的
题号
1
2
3
4
5
678源自910答案 D
B
A
C
A
A
B
C
B
D
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.
题号 11
12
13
14
15
16
答案
0
2
2
(1,16)
2; 0
1 ②③; m 2 均可
三、解答题共 6 小题,共 80 分。解答应写出文字说明、演算步骤或证明过程。
(17)解:(Ⅰ) f (x) 1 cos 2x 3 sin 2x 1
(Ⅰ)已知数列 A5 :1, 2, 3, 3, 3 ,写出 m1, m2 , m3 的值及 A5 的特征值; (Ⅱ)若 x1 x2 x2n1 ,当[i (n 1)][ j (n 1)] 0 ,其中 i, j {1, 2,, 2n 1}且
i j 时,判断 | mi mj | 与 | xi x j | 的大小关系,并说明理由;
现有 100 个小区的“15 分钟社区生活圈”指数数据,整理得到如下频数分布表:
分组 [0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1]
频数
10
20
30
30
10
(Ⅰ)分别判断 A,B,C 三个小区是否是优质小区,并说明理由;
(Ⅱ)对这 100 个小区按照优质小区、良好小区、中等小区和待改进小区进行分层抽样,
(Ⅱ)设 O 为原点,过点 O 的直线 l 与椭圆 C 交于两点 P , Q ,直线 AP 和 AQ 分别
与直线 x 4 交于点 M , N .求△ APQ 与△ AMN 面积之和的最小值.
(21)(本小题共 13 分) 已知函数 f (x) ex (ax2 1) (a 0) .
(Ⅰ)求曲线 y f (x) 在点 (0, f (0)) 处的切线方程; (Ⅱ)若函数 f (x) 有极小值,求证: f (x) 的极小值小于1.
3) ,点 B , C
x2 分别为双曲线
a2
y2 3
1
(a 0) 的左、右顶点.
若△ABC
为正三角形,则该双曲线的离心率为_________.
(14)已知函数 f (x) x a 在区间 (1, 4) 上存在最小值,则实数 a 的取值范围是_________. x
x
1
1
4
2
5
11
4
2
4
x
0
3
(0, 0, 2) , B(1,1, CM (1, 0,1) ,
0) , M (1, 0,1) ,
CN
(
1
,
1
,1)
.
22
N
(
1 2
,
1 2
,1)
.
设平面 CMN 的法向量为 n (x, y, z) ,
则
n
CM
0,
n CN 0.
x z 0,
即
1 2
x
1 2
y
z
0.
令 x 1则 y 1, z 1,
kπ
π 3
, kπ
π 6
(k
Z)
.
(Ⅱ)方法 1:因为 x [0, m] ,
所以 2x π [ π , 2m π] .
66
6
又因为 x [0, m] , f (x) sin(2x π ) 的最大值为 1, 6
所以 2m π π . 62
解得 m π . 6
所以 m 的最小值为 π . 6
(A)106 倍
(B)108 倍
(C)1010 倍
(D)1012 倍
(10)若点 N 为点 M 在平面a 上的正投影,则记 N = fa (M ) . 如
D1
C1
图 , 在 棱 长 为 1 的 正 方 体 ABCD - A1B1C1D1 中 , 记 平 面 AB1C1D 为 b ,平面 ABCD 为g ,点 P 是棱 CC1 上一动点(与
VAC ,
所以VC 平面 ABC .
又因为 AB 平面 ABC , 所以 AB VC .
(Ⅲ)在平面 ABC 内过点 C 做 CH 垂直于 AC,
由(Ⅱ)知,VC 平面 ABC ,
因为 CH 平面 ABC ,