2020-2021学年江西省九江市一中高一上学期期末数学试卷

合集下载

江西师大附中2020-2021学年上学期高一数学月考试卷 答案和解析

江西师大附中2020-2021学年上学期高一数学月考试卷 答案和解析

江西师大附中【最新】上学期高一数学月考试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.设{}|3,A x x a =≤=则下列结论中正确的是( )A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉ 2.已知集合{}{}22|22,|22A x y x x B y y x x ==-+==-+,则A B =( ) A .(,1]-∞ B .[1,)+∞ C .[2,+∞) D .∅ 3.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .7个B .5个C .3个D .8个4.下列四个函数:(1)1y x =+,(2)||y x =,(3)21y x =-,(4)1y x=,其中定义域与值域相同的是( )A .(1)(2)B .(1)(2)(3)C .(1)(4)D .(1)(3)(4) 5.若32,222x x >-=-( ) A .45x -B .54x -C .3D .-3 6.已知A,B 是非空集合,定义{}|,,|A B x x A B x A B A x y ⎧⎫⎪⨯=∈∉==⎨⎪⎩且若,{}|||,=B x x x A B =>-⨯则( )A .(,0)(0,3]-∞⋃B .(-∞,3]C .( -∞,0)∪(0,3)D .( -∞,3) 7.已知函数2()23,()[2,)f x x mx f x =-+-+∞且在上为增函数,则(1)f 的取值范围是( )A .[3,)-+∞B .(,3]-∞-C .[13,)+∞D .(,13]-∞ 8.设函数()()()()()1,(0){ ,1,(0)2x a b a b f a b f x a b x ->++-⋅-=≠<则的值为( ) A .a B .b C .a ,b 中较小的数 D .a,b 中较大的数9.下列四个函数中,在(0,+∞)上为增函数的是( )A .()32f x x =-B .2()2f x x x =-C .()|1|f x x =+D .221()x f x x+= 10.设集合{}{}|10,|P x x Q m R y R =-<<=∈=,则下列关系中成立的是( )A .P Q ⊆B .Q P ⊆C .P Q =D .P Q Q =∩ 11.定义在[-1,1]上的函数1()2f x x =-+,则不等式(21)(32)f x f x +<+的解集为( )A .(1,)-+∞B .[1,0]-C .1[1,]3--D .1(1,]3 12.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若对任意[],x a b ∈,都有|()()|1f x g x -≤成立,则称()f x 和()g x 在[],a b 上是“密切函数”,区间[],a b 称为“密切区间”.若2()34f x x x =-+与()23g x x =-在[],a b 上是“密切函数”,则其“密切区间”可以是( )A .[]1,4B .[]2,4C .[]3,4D .[]2,3二、填空题13.设集合A ={x |-1≤x <2},B ={x |x ≤a },若A ∩B ≠,则实数a 的取值范围为________. 14.函数y =________.15.已知集合,A B 均为全集{1,2,3,4}U =的子集,且U C (){4},{1,2}A B B ==,则U (C )A B =_____. 16.已知函数()621,()21f x x x f x m x R =+--<+∈若对恒成立,则实数m 的取值范围为_______三、解答题17.设全集U =R ,集合{}|12A x x =-<,集合{}|1,B y y x x A ==+∈.求,()()U U A B C A C B ⋂⋂18.已知全集{}{}21,2,3,4,5,|540,U A x U x qx q R ==∈-+=∈(1)若U C A U =,求实数q 的取值范围;(2)若U C A 中有四个元素,求U C A 和q 的值.19.已知函数9()||,[1,6],.f x x a a x a R x=--+∈∈ (1)若1a =,试判断并用定义证明()f x 的单调性;(2)若8a =,求()f x 的值域.20.已知函数()2,() 4.f x x x g x x =-=+(1)解不等式()()f x g x >;(2)求()f x 在[0,](0)x a a ∈>上的最大值.21.已知集合{}221|0,|320.2x A x B x x ax a x -⎧⎫=<=-+<⎨⎬-⎩⎭ (1)若A B A =时,求实数a 的取值范围;(2)若A B ⋂≠∅时,求实数a 的取值范围.22.设二次函数2()(,,,0)f x ax bx c a b c R a =++∈≠满足下列条件:①(1)(1)f x f x -=--对x ∈R 恒成立; ②21()(1)2x f x x ≤≤+对x ∈R 恒成立.(1)求(1)f 的值; (2)求()f x 的解析式;(3)求最大的实数(1)m m >,使得存在实数t ,当[1,]x m ∈时,()f x t x +≤恒成立.参考答案1.D【解析】3≥,∴a A ∉故选:D2.B【解析】∵()A ,∞∞=-+,)1B ,∞⎡=+⎣ ∴A B ⋂=[)1,+∞故选:B3.A【分析】根据集合的补集判断集合的个数,进而求得集合的真子集个数.【详解】由题可知,集合A 有三个元素.所以A 的真子集个数为:32-1=7个.选A【点睛】集合中子集的个数为2n ,真子集的个数为2n -1,非空真子集的个数为2n -24.C【解析】(1)y=x+1的定义域与值域都是实数集R ,故定义域与值域相同;(2)y x =的定义域是实数集R ,值域为[0,+∞),故定义域与值域不相同;(3)函数y=x 2﹣1的定义域是实数集R ,值域为[﹣1,+∞),故定义域与值域不相同; (4)函数1y x=的定义域与值域都是(﹣∞,0)∪(0,+∞). 综上可知:其中定义域与值域相同的是(1)(4).故选C .5.C【解析】由322x >-,得2702x x -<-,∴72x 2<<,()()22212221243x x x x x -=---=---=,故选:C6.A【分析】根据条件分别求出集合,A B ,然后按照定义求出A B ⨯即可.【详解】由题意得{}{}2|30|03A x y x x x x x x ⎧⎫⎪===-=⎨⎪⎩或, {}{}0B x x x x x =-=,∴()()(),00,,3,A B A B ⋃=-∞⋃+∞⋂=+∞,∴()(],00,3A B ⨯=-∞⋃.故选A .【点睛】本题属于集合中的新定义问题,旨在考查接受和处理新信息的能力,解题时要充分理解题目的含义,进行全面分析、灵活处理.7.C【解析】∵函数()()[)223,2,f x x mx f x =-+-+∞且在上为增函数, ∴24m ≤-,即m 8≤-. ∴()15m 13f =-≥,故选:C点睛:二次函数的单调性问题注意两点:第一点开口方向,第二点对称轴》8.C【解析】∵函数()1,(0){ ,1,(0)x f x x ->=<∴当a b >时, ()()()()()b 22a b a b f a b a b a b ++-⋅-+--==; 当a b <时, ()()()()()a 22a b a b f a b a b a b ++-⋅-++-==; ∴()()()()2a b a b f a b a b ++-⋅-≠的值为a ,b 中较小的数故选:C9.C【解析】对于A ,()32f x x =-在(0,+∞)上为减函数,不符合;对于B ,()22f x x x =-在(0,1)上为减函数,在在(1,+∞)上为增函数,不符合; 对于C ,()1f x x =+在(0,+∞)上为增函数,符合;对于D ,()22112x x f x x x+==+在(0,+∞)上不单调,不符合; 故选:C10.A【解析】∵y R =∴2440mx mx --+≥在R 上恒成立,∴当0m =时,显然适合;当0m ≠时,2016160m m m ->⎧⎨+≤⎩,解得:1m 0-≤<, 综上,1m 0-≤≤,即[]1,0Q =-,又()1,0P =-∴P Q ⊆故选:A点睛:二次型不等式恒成立问题,注意对二次项系数的分类讨论,体会“三个二次”的关系. 11.D【解析】∵函数()12f x x =-+在定义域[-1,1]上单调递增, ∴121113212132x x x x -≤+≤⎧⎪-≤+≤⎨⎪+<+⎩,解得:11x 3-<≤-, ∴不等式()()2132f x f x +<+的解集为11,3⎛⎤-- ⎥⎝⎦故选D12.D【分析】 根据题意得到2571x x -+≤,计算2157x x -≤-+和2571x x -+≤得到答案.【详解】()f x 和()g x 在[],a b 上是“密切函数” 则|()()|1f x g x -≤即234231x x x -+-+≤,即2571x x -+≤故21571x x -≤-+≤恒成立. 22157580x x x x -≤-+∴-+≥,恒成立;2257156023x x x x x -+≤∴-+≤∴≤≤ 综上所述:[]2,3x ∈故选:D【点睛】本题考查了函数的新定义问题,意在考查学生的应用能力.13.a≥-1【解析】由A∩B≠,借助于数轴可知a≥-1.考点:交集14.1[,)2+∞【解析】设2μ65x x =---,()μ0>则原函数可化为y =又∵()2μ344x =-++≤∴0μ4<≤,02<,12≥, ∴函数y =的值域为1,2⎡⎫+∞⎪⎢⎣⎭故答案为1,2⎡⎫+∞⎪⎢⎣⎭15.{3}【解析】分析:求出集合B 的补集,然后由∁U (A ∪B )={4}可知3∈A ,进而由交集的定义得出结果.详解:∵全集U={1,2,3,4},B={1,2},∴∁U B={3,4}∵∁U (A ∪B )={4},∴3∈A∴A∩(∁U B )={3}故答案为{3}.点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解,在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.16.(3,)+∞【解析】 ()8162134,618,6x x f x x x x x x x -≥⎧⎪=+--=+-<<⎨⎪-+≤-⎩,,当x 1≥时,()7f x ≤;当61x -<<时,()7f x <;当6x ≤-时,()14f x ≤-;∴函数()f x 的最大值为7,又()21x m x R <+∈对恒成立,∴217m +>,m 3>故答案为:()3,+∞点睛:不等式的恒成立常规处理方法转化为函数的最值问题.绝对值函数的最值转化为分段函数的最值问题.17.(0,3),()()(,1][4,)U U A B C A C B ⋂=⋂=-∞-⋃+∞【解析】 1221213x x x -<⇒-<-<⇒-<<,()()1,3,0,4A B ∴=-=()()()()()][()0,3,14,,14,U U U A B A B C A C B C A B ⋂=⋃=-⋂=⋃=-∞-⋃+∞点睛:在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.18.(1)41329|,,1,,51525q q R q q q q 且⎧⎫∈≠≠≠≠⎨⎬⎩⎭; (2)45q =,U C A ={1,3,4,5} 【解析】 试题分析:(1)若U C A =U ,则A=∅,根据一元二次方程根的关系即可求q 的取值范围;(2)若U C A 中有四个元素,则等价为A 为单元素集合,然后进行求解即可. 试题解析:(1)∵U C A=U ,∴A=∅,即方程x 2﹣5qx+4=0无解,或方程x 2﹣5qx+4=0的解不在U 中. ∴△=25q 2﹣16<0,∴<q <,若方程x 2﹣5qx+4=0的解不在U 中,此时满足判别式△=25q 2﹣16≥0,即p≥或p≤﹣, 由12﹣5q•1+4≠0得q≠1; 由22﹣5q•2+4≠0得q≠;同理,由3、4、5不是方程的根,依次可得q≠,q≠1,q≠;综上可得所求范围是{q|q ∈R ,且q≠,q≠1,q≠}.(2)∵U C A 中有四个元素,∴A 为单元素集合,则△=25q 2﹣16=0, 即q=±,当A={1}时,q=1,不满足条件.; 当A={2}时,q=,满足条件.; 当A={3}时,q=,不满足条件.;当A={4}时,q=1,不满足条件.; 当A={5}时,q=,不满足条件.,∴q=,此时A={2}, 对应的∁U A={1,3,4,5}.19.(1)单调递增;(2) [6,10] 【解析】试题分析:(1)当a=1时,由x ∈[1,6],化简f (x ),用单调性定义讨论f (x )的增减性;(2)当()981?6a f x x x ⎛⎫==-+ ⎪⎝⎭时,,利用对勾函数的图象与性质可得()f x 的值域. 试题解析:(1)当1a =时,()[]9111,6f x x x x =--+∈ 9911x x x x=--+=-递增证:任取[]12,1,6x x ∈且12x x < 则()()()()122121212112999x x f x f x x x x x x x x x --=--+=--=()2112910x x x x ⎡⎤-+>⎢⎥⎣⎦()()()21f x f x f x ∴>∴在[]1,6上单调递增. (2)当8a =时,()999888816f x x x x x x x ⎛⎫=--+=--+=-+ ⎪⎝⎭ 令9t x x=+[]1,6x ∈ []6,10t ∴∈ ()[]166,10f x y t ∴==-∈所以()f x 的值域为[]6,10.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取12,x x ,并且12x x >(或12x x <);(2)作差:12()()f x f x -,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.20.(1) 4x > (2) ①当01a <<时,2()()2f x f a a a 大==-+②当11a ≤≤+()(1)1f x f 大==③当1a >+2()()2f x f a a a ==-大【解析】试题分析:(1) 不等式()()f x g x >可转化为()224x x x x ≥⎧⎨->+⎩或()4224x x x x -≤<⎧⎨->+⎩或()424x x x x <-⎧⎨---⎩,解后求并集即可;(2)()()22222(2)x x x f x x x x ⎧-≥=⎨-+<⎩,对a 分类讨论,求函数的最大值. 试题解析:(1)()()()22424x f x g x x x x x x x ≥⎧>⇒->+⇔⎨->+⎩ 或()4224x x x x -≤<⎧⎨->+⎩或()424x x x x <-⎧⎨---⎩ 22340x x x ≥⎧⇒⎨-->⎩或24240x x x -≤<⎧⎨-+<⎩或24340x x x <-⎧⎨--<⎩214x x x 或≥⎧⇒⎨-⎩或42x x φ-≤<⎧⎨∈⎩或414x x <-⎧⎨-<<⎩ 4x ⇒>(2)()()222222(2)x x x f x x x x x x ⎧-≥=-=⎨-+<⎩①当01a <<时,()()22f x f a a a ==-+大②当11a ≤≤+()()11f x f 大==③当1a >+()()22f x f a a a 大==-21.(1) 1a = (2) 122a << 【解析】试题分析:(1)对a 分类讨论,明确集合B ,由A B A ⋂=,可知:A B ⊆,从而得到实数a 的取值范围;(2)当A B ⋂=∅时,讨论a ,利用数轴确定实数a 的取值范围. 试题解析:()()(){}()()0,21,2,|2002,0a B a a A B x x a x a a B a a a B φ⎧>=⎪==--<⇒<=⎨⎪==⎩当时当时当时(1)01122a A B a a a >⎧⎪⊆⇒≤⇒=⎨⎪≥⎩由已知得(2)当A B ⋂=∅时若0a A B ≤⋂=∅时, 1022122a A B a a a a >⋂=∅≥≤⇒≥≤时,使,则或或 1202a a 或∴≥<≤综上:122a a ≥≤或122A B a ∴⋂≠∅<<当时22.(1) (1)1f = (2) 21()(1)4f x x =+ (3) 9m =大 【解析】试题分析:(1)由当x ∈(0,5)时,都有x≤f (x )≤2|x ﹣1|+1恒成立可得f (1)=1; (2)由f (﹣1+x )=f (﹣1﹣x )可得二次函数f (x )=ax 2+bx+c (a ,b ,c ∈R )的对称轴为x=﹣1,于是b=2a ,再由f (x )min =f (﹣1)=0,可得c=a ,从而可求得函数f (x )的解析式;(3)可由f (1+t )≤1,求得:﹣4≤t≤0,再利用平移的知识求得最大的实数m . 试题解析:(1)当x=1时,()()11111f f ≤≤⇒= (2)由已知可得()1,122bf x x b a a=-∴-=-⇒=的轴……① 由()111f a b c =⇒++=……②()211213213c a b a a a f x ax ax a ∴=--=--=-∴=++-,由()f x x ≥恒成立()221130ax a x a ⇒+-+-≥对R 恒成立则()20(4130a a a >⎧⎨∆=--≤⎩ 14a ⇒= 由()222111)2131)22f x x ax ax a x ≤+⇒++-≤+(恒成立(对x R ∈恒成立 ()2214160a x ax a ⇒-++-≤恒成立则()()221016421160a a a a -<⎧⎨∆=---≤⇒⎩ 4121(04a a ⎧<⎪⎪⎨⎪≤⇒=⎪⎩131,1244b c ∴==-=,()()22111114244f x x x x ∴=++=+(3)()()()[]211,1,4f x t x t f x t x m ∴+=+++≤使在恒成立,则使()y f x t =+的图像在y x =的下方,且m 最大,则1,m 为()f x t x +=的两个根 由()()211121044f t t t t +=⇒+=⇒==-或 ()0t f x x =≤当时,恒成立矛盾()()()22144431090194t f x x f m m m m m m m 当时,恒成立=--≤⇒-≤⇒-≤⇒-+≤⇒≤≤∴9m 大=.。

江西省九江市2022-2023学年高一上学期期末考试数学试卷及答案

江西省九江市2022-2023学年高一上学期期末考试数学试卷及答案

高一数学试卷本卷满分150分考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名˴准考证号填写在答题卡上。

2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮2.擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U ={x ∈N |0<x <8},A ={1,2,3,4},B ={3,4,5,6},则下列结论错误的是A.∁U B ={1,2,7}B.集合U 有7个元素C.A ⋂B ={3}D.A ⋃B ={1,2,3,4,5,6}2.已知a ,b ∈R ,那么“3a ≤3b ”是“13a log >13b log ”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若正实数a ,b 满足2ab=a 32b 12-1,则ab 的最小值为A.2B.22C.2D.44.在6个函数:①f (x )=2022x ;②f (x )=x 2022;③f (x )=2022x ;④f (x )=2022;⑤f (x )=2022x;⑥f (x )=2022x log 4.中,有a 个函数满足性质T 1:f (x +y )=f (x )+f (y );有b 个函数满足性质T 2:f (xy )=f (x )f (y ).则a +b 的值为A.3B.4C.5D.65.已知函数(其中a ,b 为常量,且a >0,a ≠1,b ≠0)的图像经过点A (1,6),B (3,24).若不等式b x +a x -a x b x m ≥05.在区间(-∞,0]上恒成立,则实数m 的取值范围是A.[2,+∞)B.[-2,+∞)C.(-∞,2]D.(-∞,-2]6.已知一组数据x 1,x 2,⋯,x n (n ≥2)的平均数为x ,标准差为s ,M =1n ni =1(x i -a )2 ,若a ≠x ,则s 与M 的大小关6.系为A.s <MB.s >MC.s =MD.不确定7.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世7.代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感7.染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据7.估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为 (ln 2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天8.已知函数f (x )=x 2-52x +3,x ≤1x +12x ,x >1,设a ∈R .若关于x 的不等式f (x )≥x2+a恒成立,则a 的取值范围是A.[-2,1]B.-24,324C.-324,1D.[-1,2]二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列函数中,既是偶函数也是在(1,+∞)上单调递增的函数有A.f (x )=3x +1B.f (x )=0C.f (x )=x 2D.f (x )=x -1x10.已知f (x ),g (x )都是定义在R 上的函数,∀x ,y ∈R ,都有f (x -y )=f (x )g (y )-g (x )f (y ),且f (-2)=f (1)≠0,10.则下列说法正确的有A.g (0)=1B.函数f (2x -1)的图像关于12,0对称C.g (1)+g (-1)=1D.若f (1)=32,则2023n =1f (n )=32 11.已知910>109,912>1011,1112>1211,设a =1211log ,b =1112,c =109log ,d =910,则下列结论中正确的是A.a <b B.c >bC.a >dD.c >d12.已知函数f (x )的定义域为R ,∀x ,y ∈R ,都有f (x +y )=f (x )f (y ),且当x >0时,0<f (x )<1.则下列结12.论中正确的是A.f (0)=1B.∀x ∈R ,有f (x )>0C.函数f (x )在R 上单调递增D.若f (3)=127,则不等式f (2x )f (x -2x 2)≤13的解集为12,1三、填空题(本题共4小题,每小题5分,共20分.)13.已知幂函数f (x )=x m 2-2m -3(m ∈N +)的图像关于直线x =0对称,且在(0,+∞)上单调递减,则关于a 的不等13.式(a +1)-m3<(3-2a )-m3的解集为____________.14.命题p :“若x 2≤4,则x <2022”是____________命题.(填“真”或“假”)15.设函数f (x )的定义域为R ,当x ∈[1,2]时,f (x )=a ⋅2x +b ,若f (0)+f (1)=-4,f (x )为偶函数,f (x +1)为奇15.函数,则f 72的值为____________.16.定义在R 上的函数f :R →R 满足:f (x 3)=[f (x )]3(∀x ∈R ),f (x 1)≠f (x 2)(∀x 1≠x 2),则f (0)+f (-1)+16.f (1)的值为____________.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)17.已知集合A ={x |2(x -1)<2log },B ={x |x 2-2ax +a 2-1<0}.17.从①A ⊆∁R B ;②B ⊆∁R A ;③(∁R A )∩B =∅中选择一个填入横线处并解答.17.(1)若a =1,求A ⋃B ;17.(2)若______,求实数a 的取值范围.17.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)18.已知p:x-1≤2,q:x2-2x+1-a2≥0(a>0).18.(1)证明:当a=1,q是p的必要不充分条件;18.(2)若p是¬q的必要不充分条件,求实数a的取值范围.19.(12分)19.设a,b∈R,已知定义在R上的函数f(x)=a-b5x+1为奇函数,且其图像过点1,23.19.(1)求f(x)的解析式;19.(2)判断f(x)的单调性,并证明你的结论.20.(12分)20.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运20.输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条件地下隧道的车辆20.通行能力,研究了该隧道内的车流速度v(单位:千米/小时)和车流密度x(单位:辆/千米)所满足的关系式20.为v=60,0<x≤3080-k150-x,30<x≤120(k∈R),进行的研究表明:当隧道内的车流密度达到120辆/千米时造成堵20.塞,此时车流速度时0千米/小时.20.(1)若车流速度不小于40千米/小时,求车流密度x的取值范围;20.(2)隧道内的车流量y(单位时间内通过隧道的车辆数,单位:辆/小时)满足y=xv,求隧道内车流量的最大值20.2(精确到1辆/小时),并指出车流量最大时的车流密度(精确到1辆/千米).(参考数据:5≈2.236)21.(12分)21.已知增函数f (x )是定义在(-1,1)的奇函数,函数g (x )=4x +m ∙2x +1+1-m .21.(1)解不等式f (2x -1)+f (3x -2)<0;21.(2)若存在两个不等的实数a ,b 使得f (a )+f (b )=0,且g (a )+g (b )≥0,求实数m 的范围.22.(12分)22.设函数f (x )=a x -2x +2log (0<a <1).22.(1)若a =12,解不等式f (x )>-1;22.(2)是否存在常数α,β∈(2,+∞),使函数f (x )在区间[α,β]上的值域为[a [a (β-1)],log a [a (α-1)]log ]?若22.(2)存在,求a 的取值范围;若不存在,说明理由.高一数学试卷参考答案及评分准则题号12345678答案C B B A C A B A 题号910111213141516答案ACABDBCDABD (-∞,-1)∪23,32真4-428.【解析】f (x )图像如图,最低点为1,32 ,平移y =x 2 得到g (x )=x 2+a ,当g (1)=32时为临界状态,解得a =-2或1.10.【解析】A.由题意有f (0)=f (0)g (0)-g (0)f (0)=0,则f (1)=f (1)g (0)-g (1)f (0)=f (1)g (0),因为f (1)≠0,故g (0)=1;B.函数f (2x -1)的图像关于12,0 对称⇔函数f (x )的图像关于(0,0)对称⇔函数f (x )是奇函数,由f (-x )=f (0)g (x )-f (x )g (0)=-f (x )知f (x )是奇函数;C.由f [1-(-1)]=f (2)=f (1)g (-1)-f (-1)g (1),因为f (x )是奇函数,则上式⇔-f (-2)=f (1)g (-1)+f (1)g (1),又因为f (-2)=f (1)≠0,所以g (1)+g (-1)=-1;D.f (x -1)=f (x )g (-1)-g (x )f (1),f (x +1)=f (x )g (-1)-g (x )f (-1)=f (x )g (-1)+g (x )f (1),将两式相加,有f (x -1)+f (x +1)+f (x )=0,则f (x )+f (x +2)+f (x +1)=0,所以f (x -1)=f (x +2),即f (x )的周期为3,易得f (2)=-32,f (3)=0,由2023=3×674+1,得2023n =1f (n )=6743n =1f (n )+f (1)=32 .16.【解析】由题意得f (-1)=[f (-1)]3,f (0)=[f (0)]3,f (1)=[f (1)]3,所以f (-1)、f (0)、f (1)是方程x =x 3的三个不等的实数根,由三根关系得f (-1)+f (0)+f (1)=0.(或解出方程的三个根为-1,0,1,相加得0)17.(1){x |0<x <5};…⋯⋯⋯⋯⋯5分17.(2)选①②:(-∞,0]⋃[6,+∞);选③:[2,4].⋯⋯⋯⋯⋯⋯5分18.(1)略,提示:q :x ∈R ;⋯⋯⋯⋯⋯⋯5分18.(2)(0,2].⋯⋯⋯⋯⋯⋯7分19.(1)f (x )=1-25x +1;⋯⋯⋯⋯⋯⋯6分19.(2)单调递增(用定义法证明,其他方法酌情给2~3分).⋯⋯⋯⋯⋯⋯6分19.【1】在(1)中,只求对a (或b )不给分20.(1)(0,90];⋯⋯⋯⋯⋯⋯6分20.(2)车流量的最大值约为3667辆/小时,此时车流密度为83辆/千米.⋯⋯⋯⋯⋯⋯6分20.【1】在(1)中,求出k =2400得3分20.【2】在(1)中,解出(0,90]得3分20.【3】在(2)中,车流量最大值算对得3分20.【4】在(2)中,车流密度算对得3分21.(1)13,35;⋯⋯⋯⋯⋯⋯5分21.(2)因为f (a )+f (b )=0,f (x )为定义在(-1,1)上的奇函数,21.2所以a +b =0,即b =-a ,不妨令a >b ,则a ∈(0,1),⋯⋯⋯⋯⋯⋯7分21.2g (x )=(2x )2+2m ⋅2x +1-m ,则g (a )+g (b )=g (a )+g (-a )=2a +12a2+2m 2a +12a-2m ,21.2令t =2a +12a ∈2,52 ,则t 2+2m (t -1)≥0,显然t -1>0,则m ≥-t 22t -2⋯⋯⋯⋯⋯8分21.2φ(t )=-t 22t -2=121t-122-12单调递减,⋯⋯⋯⋯⋯⋯9分21.2所以由题意得m >φ52=-2512,⋯⋯⋯⋯⋯⋯11分21.2即m 的取值范围为-2512,+∞ .⋯⋯⋯⋯⋯⋯12分22.(1)当a =12时,f (x )=12x -2x +2 log ,22.1f (x )>-1,即0<x -2x +2<2,⋯⋯⋯⋯⋯⋯2分22.1解得x ∈(-∞,-6)∪(2,+∞);⋯⋯⋯⋯⋯⋯4分22.(2)存在,a 的取值范围为0,19:22.2内层函数u =x -2x +2=1-4x +2在(2,+∞)上单调递增,外层函数y =a x log 在(2,+∞)上单调递减,22.2则由复合函数单调性可知f (x )在[α,β]上单调递减,⋯⋯⋯⋯⋯⋯5分22.2由题意得f (α)=a a (α-1)log f (β)=a a (β-1)log ,即α-2α+2=a (α-1)β-2β+2=a (β-1),⋯⋯⋯⋯⋯⋯7分22.2则α,β为关于t 的方程t -2t +2=a (t -1)(*)的两个不等的实数根,⋯⋯⋯⋯⋯⋯9分22.2方程(*)化简后为at 2+(a -1)t +2-2a =0,记φ(t )=at 2+(a -1)t +2-2a ,22.2那么(a-1)2-4a(2-2a)>01-aa>2φ(2)>00<a<1,解得0<a<19,⋯⋯⋯⋯⋯⋯11分22.2即a的取值范围为0,19.⋯⋯⋯⋯⋯⋯12分。

2020-2021学年南通一中高一上学期期末数学试卷(含解析)

2020-2021学年南通一中高一上学期期末数学试卷(含解析)

2020-2021学年南通一中高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分) 1.函数f(x)=8x 的值域是( )A. (−∞,+∞)B. (−∞,0)C. (0,+∞)D. (−∞,0)∪(0,+∞)2.已知sin(π+α)=−12,那么cosα的值为( )A. ±12B. 12C. √32D. ±√323.对于正弦函数y =sinx 的图象,下列说法错误的是( )A. 向左右无限伸展B. 与y =cosx 的图象形状相同,只是位置不同C. 与x 轴有无数个交点D. 关于y 轴对称4.设e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ ,若A ,B ,D 共线,则k 的值为( )A. −94B. −49C. −38D. 不存在5.如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°,则sin(α−β)=( )A. 4+3√310B. 4√3+310C. 4−3√310D. 4√3−3106.将最小正周期为3π的函数f(x)=cos(ωx +φ)−sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π4个单位,得到偶函数图象,则满足题意的φ的一个可能值为( )A. 7π12B. −5π12C. −π4D. π47.的最大值为( )A.B.C. D.8.已知扇形的面积为4,弧长为4,求这个扇形的圆心角是( )A. 4B. 2°C. 2D. 4°9.设A,B,C ∈(0,π2),且cosA +cosB =cosC ,sinA −sinB =sinC ,则C −A =( ).A. −π6B. −π3C. π3D. π3或−π310. 如图,在△ABC 中,∠A =π2,AB =3,AC =5,AF ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =25CA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,则DE ⃗⃗⃗⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ 的值为( ) A. 34 B. 12 C. −2 D. −1211. 定义域为R 的函数y =f(x),若对任意两个不相等的实数x 1,x 2,都有x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),则称函数为“H 函数”,现给出如下函数:①y =−x 3+x +1②y =3x −2(sinx −cosx)③y =e x +1④f(x)={ln|x|,x ≠00,x =0其中为“H 函数”的有( )A. ①②B. ③④C. ②③D. ①②③12. 设向量a ⃗ =(−1,2),b ⃗ =(λ,−1),且|a ⃗ −b ⃗ |=√a ⃗ 2+b⃗ 2,则λ等于( ) A. 2 B. ±2 C. −2 D. 0二、单空题(本大题共4小题,共20.0分)13. 设0<θ<π2,向量a ⃗ =(sin2θ,cosθ),b ⃗ =(cosθ,1),若a ⃗ //b ⃗ ,则cos2θ=______. 14. 已知(a +1)−23<(3−2a)−23,则a 的取值范围 . 15. 抛物线的准线与轴交于点,点在抛物线对称轴上,过可作直线交抛物线于点、,使得,则的取值范围是 .16. 在下列四个命题中,正确的命题有______.①若实数x ,y 满足x 2+y 2−2x −2y +1=0,则y−4x−2的取值范围为[43,+∞);②点M 是圆(x −3)2+(y −2)2=2上一动点,点N(0,−2)为定点,则|MN|的最大值是7;③若圆(x −3)2+(y +5)2=r 2(r >0)上有且只有两个点到直线4x −3y =2的距离为1,则4<r <6;④已知直线ax +by +c −1=0(bc >0)经过圆x 2+y 2−2y −5=0的圆心,则4b +1c 的最小值是10. 三、解答题(本大题共6小题,共70.0分)17. 已知向量a ⃗ 与b ⃗ 的夹角为2π3,|a ⃗ |=2,|b ⃗ |=3,记m ⃗⃗⃗ =3a ⃗ −2b ⃗ ,n ⃗ =2a ⃗ +k b ⃗(I) 若m ⃗⃗⃗ ⊥n ⃗ ,求实数k 的值;(II) 当k =−43时,求向量m ⃗⃗⃗ 与n ⃗ 的夹角θ.18. 已知函数f(x)=cosωx(sinωx +√3cosωx)(ω>0). (1)求函数f(x)的值域;(2)若方程f(x)=√32在区间[0,π]上恰有两个实数解,求ω的取值范围.19. 设函数f(x)=log 3(9x)⋅log 3(3x),19≤x ≤9,若t =log 3x. (1)求t 的取值范围. (2)求f(x)的值域.20. 如图,在菱形ABCD 中,若|AB ⃗⃗⃗⃗⃗ |=2√3,∠BAD =60°,BE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ .(1)若AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ ,求λ,μ,x ,y 的值; (2)求AE ⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗ .21. 已知函数f(x)=3xx+2,x ∈[0,4). (1)判别f(x)的单调性,并证明; (2)求函数f(x)的最值.22. 设函数y =f(x)的定义域为A ,区间I ⊆A.如果∃x 1,x 2∈I ,使得f(x 1)f(x 2)<0,那么称函数y =f(x)为区间I 上的“变号函数”.(1)判断下列函数是否为区间I上的“变号函数”,并说明理由.,+∞);①p(x)=1−3x,I=[13);②q(x)=sinx−cosx,I=(0,π2,1]上的“变号函数”.求实数a的取值范围.(2)若函数r(x)=ax2+(1−2a)x+1−a为区间[−12参考答案及解析1.答案:D解析:解:令y =8x ,则解析式中y 的取值范围即为函数的值域 则原函数的解析式可变形为x =8y , 要使该表达式有意义,分母y ≠0. ∴y ∈(−∞,0)∪(0,+∞) 故选:D .根据已知中函数的解析式,我们可使用“反表示法”求函数的值域,即根据已知函数的解析式,写出用y 表示x 的形式,令表达式有意义,即可求出满足条件的y 的取值范围,即原函数的值域. 本题考查的知识点是函数的值域,函数的值域的求法是函数中的难点之一,其中根据函数的解析式形式,选择适当的方法是求值域的问题.2.答案:D解析:利用诱导公式求出sinα,再利用同角三角函数关系式求出cosα即可. 本题考查诱导公式,同角三角函数关系式的应用.属于基础题.解:sin(π+α)=−12,则sinα=12,cosα=±√32.故选D .3.答案:D解析:解:y =sinx 是周期函数,图象可以向左右无限伸展,故A 正确,y =sin(x +π2)=cosx ,则与y =cosx 的图象形状相同,只是位置不同,故B 正确, 与x 轴有无数个交点,故C 正确,y =sinx 是奇函数,图象关于原点对称,故D 错误, 故选:D .根据y =sinx 的图象和性质分别进行判断即可.本题主要考查三角函数图象和性质,结合三角函数的图象是解决本题的关键.比较基础.4.答案:D解析:解:e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,且AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ ,若A ,B ,D 共线, 则BD ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,即(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ =λe 1⃗⃗⃗ +2λe 2⃗⃗⃗ ,∴{3−k =λ−(2k +1)=2λ, 解得k 的值不存在. 故选:D .根据平面向量的线性运算法则,利用共线定理和向量相等列出方程组,即可求出k 的值不存在. 本题考查了平面向量的线性运算与共线定理和向量相等的应用问题,是基础题目.5.答案:B解析:解:以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°, 可得sinα=45,cosα=−35,sin(α−β)=sinαcos30°−cosαsin30°=45×√32+35×12=3+4√310. 故选:B .利用任意角的三角函数的定义,求出α、β的三角函数值,然后利用两角差的正弦函数求解. 本题考查三角函数的定义的应用,两角差的正弦函数,考查计算能力.6.答案:B解析:本题主要考查由函数y =Acos(ωx +φ)的部分图象求解析式,函数y =Acos(ωx +φ)的图象变换规律,正弦函数、余弦函数的图象的奇偶性,属于基础题.由周期求得ω,可得函数f(x)的解析式,再根据函数y =Acos(ωx +φ)的图象变换规律,可得结论. 解:由于函数f(x)=cos(ωx +φ)−sin(ωx +φ)=√2cos(ωx +φ+π4)的最小正周期为3π=2πω,求得ω=23,∴函数f(x)=√2cos(23x +φ+π4).再把f(x)的图象向左平移π4个单位,得到偶函数y =√2cos[23(x +π4)+φ+π4] =√2cos(23x +5π12+φ),则满足题意的φ的一个可能值为−5π12, 故选B .7.答案:C解析:试题分析:因为函数,所以因此结合不等式的性质,得到,可知函数的最大值为4.选C.考点:本题主要考查三角函数的性质中值域的求解运用。

2020-2021学年江西省景德镇市高一(上)期末数学试卷 (解析版)

2020-2021学年江西省景德镇市高一(上)期末数学试卷 (解析版)

2020-2021学年江西省景德镇市高一(上)期末数学试卷一、选择题(共12小题).1.直线x+y﹣1=0的倾斜角为()A.30°B.60°C.120°D.150°2.m,n为空间中两条不重合直线,α为空间中一平面,则下列说法正确的是()A.若m∥n,n⊂α,则m∥αB.若m⊥α,m∥n,则n⊥αC.若m∥α,n⊂α,则m∥n D.若m⊥α,m⊥n,则n∥α3.已知集合A={x|0<log4x<2},B={x|e x﹣2≤1},则A∩(∁R B)=()A.(2,16)B.(3,8)C.(1,3]D.(1,+∞)4.已知三点A(m,1),B(4,2),C(﹣4,2m)在同一条直线上,则实数m的值为()A.0B.5C.0或5D.0或﹣55.在平面四边形ABCD中,AB=AD,CB=CD,将该四边形沿着对角线BD折叠,得到空间四边形ABCD,则异面直线AC,BD所成的角是()A.B.C.D.6.直线kx﹣y﹣1=0与直线x+2y﹣2=0的交点在第四象限,则实数k的取值范围为()A.B.C.D.7.已知函数,记,,,则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b8.如图,圆锥的母线长为4,点M为母线AB的中点,从点M处拉一条绳子,绕圆锥的侧面转一周达到B点,这条绳子的长度最短值为,则此圆锥的表面积为()A.4πB.5πC.6πD.8π9.如图,在各小正方形边长为1的网格上依次为某几何体的正视图.侧视图与俯视图,其中正视图为等边三角形,则此几何体的体积为()A.1+B.+C.+D.+10.如图,点P在正方体ABCD﹣A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A﹣D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的结论的个数是()A.1个B.2个C.3个D.4个11.攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八中校园腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为()A.B.C.D.12.设函数,若函数y=f(x)﹣4t在区间(﹣1,1)内有且仅有一个零点,则实数t的取值范围是()A.B.C.D.(﹣∞,﹣]∪{0}二、填空题(共4小题).13.如图所示,Rt△A'B'C'为水平放置的△ABC的直观图,其中A'C'⊥B'C',B'O'=O'C'=2,则△ABC的面积是.14.已知正四棱锥的底面边长为2,现用一平行于正四棱锥底面的平面去截这个棱锥,截得棱台的上、下底面的面积之比为1:4,若截去的小棱锥的侧棱长为2,则此棱台的表面积为.15.经过点P(﹣2,),且在坐标轴上截距相等的直线方程为.16.函数在区间(1,2)上为单调递减函数,则实数t的取值范围为.三、简答题(第17题10分,第18-22题每小题10分,共70分)17.已知直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,分别就下列条件求出实数m的值.(1)直线l1与l2垂直;(2)直线l1与l2平行.18.如图,长方体ABCD﹣A'B'C'D'由,AB=12,BC=10,AA'=6,过A'D'作长方体的截面A'D'EF使它成为正方形.(1)求三棱柱AA'F﹣DD'E的外接球的表面积;(2)求V B﹣A'D'EF.19.已知直线l1:mx+y﹣m﹣2=0,l2:3x+4y﹣n=0.(1)求直线l1的定点P,并求出直线l2的方程,使得定点P到直线l2的距离为;(2)过点P引直线l分别交x,y轴正半轴于A、B两点,求使得△AOB面积最小时,直线l的方程.20.已知函数f(x)=[(a﹣1)x﹣2](a>0且a≠1).(1)求f(x)的定义域;(2)若f(x)>0在上恒成立,求实数a的取值范围.21.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD.(1)设G,H分别为线段PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD.22.一副标准的三角板(如图1),∠ABC为直角,∠A=60°,∠DEF为直角,DE=EF,BC=DF,把BC与DF重合,拼成一个三棱锥(如图2),设M是线段AC的中点,N 是线段BC的中点.(1)求证:平面ABC⊥平面EMN;(2)设平面ABE∩平面MNE=l,求证:l∥AB.参考答案一、选择题(共12小题).1.直线x+y﹣1=0的倾斜角为()A.30°B.60°C.120°D.150°解:∵直线x+y﹣1=0的斜率k=﹣.设其倾斜角为θ(θ∈[0°,180°)),则tanθ=﹣.∴θ=150°.故选:D.2.m,n为空间中两条不重合直线,α为空间中一平面,则下列说法正确的是()A.若m∥n,n⊂α,则m∥αB.若m⊥α,m∥n,则n⊥αC.若m∥α,n⊂α,则m∥n D.若m⊥α,m⊥n,则n∥α解:若m∥n,n⊂α,则m⊂α或m∥α,故A错误;若m⊥α,则m垂直α内的两条相交直线a与b,又m∥n,∴n⊥a,n⊥b,则n⊥α,故B正确;若m∥α,n⊂α,则m∥n或m与n异面,故C错误;若m⊥α,m⊥n,则n∥α或n⊂α,故D错误.故选:B.3.已知集合A={x|0<log4x<2},B={x|e x﹣2≤1},则A∩(∁R B)=()A.(2,16)B.(3,8)C.(1,3]D.(1,+∞)解:由已知可得:A=(1,16),B=(﹣∞,2],所以∁R B=(2,+∞),则A∩(∁R B)=(2,16),故选:A.4.已知三点A(m,1),B(4,2),C(﹣4,2m)在同一条直线上,则实数m的值为()A.0B.5C.0或5D.0或﹣5解:∵三点A(m,1),B(4,2),C(﹣4,2m)在同一条直线上,∴=(4﹣m,1),=(﹣8,2m﹣2 ),与共线,∴(4﹣m)(2m﹣2)﹣(﹣8)=0,求得m=0或m=5,故选:C.5.在平面四边形ABCD中,AB=AD,CB=CD,将该四边形沿着对角线BD折叠,得到空间四边形ABCD,则异面直线AC,BD所成的角是()A.B.C.D.解:取BD中点O,连结AO,CO,∵AB=AD,BC=CD,∴AO⊥BD,CO⊥BD,又AO∩CO=O,∴BD⊥平面AOC,∵AC⊂平面AOC,∴BD⊥AC,∴对角线BD与AC所成的角的大小为.故选:D.6.直线kx﹣y﹣1=0与直线x+2y﹣2=0的交点在第四象限,则实数k的取值范围为()A.B.C.D.解:由题意可得,解得x=,y=,∴且,∴,故选:A.7.已知函数,记,,,则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b解:∵函数=,0<()<()0=1,>log33=1,||=|﹣log35|=log35>log3,当x>0时,f(x)=()x是减函数,∵,,,∴a,b,c的大小关系为a>b>c.故选:A.8.如图,圆锥的母线长为4,点M为母线AB的中点,从点M处拉一条绳子,绕圆锥的侧面转一周达到B点,这条绳子的长度最短值为,则此圆锥的表面积为()A.4πB.5πC.6πD.8π解:设底面圆半径为r,由母线长为4,所以侧面展开扇形的圆心角为α==;将圆锥侧面展开成一个扇形,从点M拉一绳子围绕圆锥侧面转到点B,最短距离为BM,如图所示:在Rt△ABM中,斜边BM的长度为:BM===2,解得cos=0,所以r=1,所以圆锥的表面积为S=π×12+π×1×4=5π.故选:B.9.如图,在各小正方形边长为1的网格上依次为某几何体的正视图.侧视图与俯视图,其中正视图为等边三角形,则此几何体的体积为()A.1+B.+C.+D.+解:由题意,几何体是底面为等腰直角三角形(其直角边长为2)的三棱锥和一个半圆锥(圆锥底面半径为1)的组合体,体积V==,故选:C.10.如图,点P在正方体ABCD﹣A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A﹣D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的结论的个数是()A.1个B.2个C.3个D.4个解:对于①,由题意知AD1∥BC1,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C的距离均相等,所以以P为顶点,平面AD1C为底面,则三棱锥A﹣D1PC的体积不变,故①正确;对于②,连接A1B,A1C1,A1C1∥AD1且相等,由于①知:AD1∥BC1,所以BA1C1∥面ACD1,从而由线面平行的定义可得,故②正确;对于③,由于DC⊥平面BCB1C1,所以DC⊥BC1,若DP⊥BC1,则BC1⊥平面DCP,BC1⊥PC,则P为中点,与P为动点矛盾,故③错误;对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,可得DB1⊥面ACD1,从而由面面垂直的判定知,故④正确.故选:C.11.攒尖是古代中国建筑中屋顶的一种结构形式.依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八中校园腾龙阁为例,它属重檐四角攒尖,它的上层轮廓可近似看作一个正四棱锥,若此正四棱锥的侧面积是底面积的3倍,则此正四棱锥的内切球半径与底面边长比为()A.B.C.D.解:设底边边长为a,正四棱锥的高为h,则斜高为,所以侧面积为4××a,即4××a=3a2,解得.设正四棱锥的内切球半径为r,由等积法可得,所以,即.故选:B.12.设函数,若函数y=f(x)﹣4t在区间(﹣1,1)内有且仅有一个零点,则实数t的取值范围是()A.B.C.D.(﹣∞,﹣]∪{0}解:=,其图象如下:函数y=f(x)﹣4t在区间(﹣1,1)内有且仅有一个零点,等价于f(x)﹣4t=0在区间(﹣1,1)内有且仅有一个实数根,又等价于函数f(x)的图象与直线y=4t在区间(﹣1,1)内有且仅有一个公共点.于是4t=0,或4t≤﹣1,即t=0或t,故选:D.二、填空题(本题共4小题,每小题5分,共20分)13.如图所示,Rt△A'B'C'为水平放置的△ABC的直观图,其中A'C'⊥B'C',B'O'=O'C'=2,则△ABC的面积是8.解:把直观图还原为原图形,如图所示:由题意知,BC=B′C′=4,OA=2O′A′=2×2=4,所以△ABC的面积是S△ABC=BC•OA=×4×4=8.故答案为:8.14.已知正四棱锥的底面边长为2,现用一平行于正四棱锥底面的平面去截这个棱锥,截得棱台的上、下底面的面积之比为1:4,若截去的小棱锥的侧棱长为2,则此棱台的表面积为.解:如图,设截面四边形为A1B1C1D1,则两四边形相似,由截面面积与底面积的比值为1:4,由相似比等于面积比的平方,可得,∵PA1=2,∴PA=PB=4,又已知BC=2,∴B1C1=1,取D为BC的中点,连接PD交B1C1=D1,则DD1为正四棱台的斜高,可得.∴此棱台的表面积为=.故答案为:.15.经过点P(﹣2,),且在坐标轴上截距相等的直线方程为y=﹣x或2x+2y+3=0.解:①当直线经过原点时,直线方程为y=﹣x;②当直线不经过原点时,设所求的直线方程为x+y=a,则a=2+=﹣,因此所求的直线方程为x+y=﹣,即2x+2y+3=0,故答案为:y=﹣x或2x+2y+3=0.16.函数在区间(1,2)上为单调递减函数,则实数t的取值范围为[1,2].解:∵函数在区间(1,2)上为单调递减函数,∴y=﹣x2+tx+2在区间(1,2)上大于零且为单调递减函数.而y=﹣x2+tx+2的对称轴为x=,∴,求得1≤t≤2,故答案为:[1,2].三、简答题(第17题10分,第18-22题每小题10分,共70分)17.已知直线l1:x+my+6=0和l2:(m﹣2)x+3y+2m=0,分别就下列条件求出实数m的值.(1)直线l1与l2垂直;(2)直线l1与l2平行.解:(1)∵直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,由l1⊥l2,可得1×(m﹣2)+m×3=0,解得m=;(2)由l1∥l2,可得m(m﹣2)=3且8(m﹣2)≠2m,解得m=﹣1.18.如图,长方体ABCD﹣A'B'C'D'由,AB=12,BC=10,AA'=6,过A'D'作长方体的截面A'D'EF使它成为正方形.(1)求三棱柱AA'F﹣DD'E的外接球的表面积;(2)求V B﹣A'D'EF.解:(1)因为截面A'D'EF为正方形,所以A'F=A'D'=10,AA'=6,在△AFA'中,AF=,取A'F的中点M,D'E的中点N,因为OF=OA=OA'=OD'=OE=OD,则MN的中点O为三棱柱AA'F﹣DD'E外接球的球心,所以r=OA'=,所以三棱柱AA'F﹣DD'E外接球的表面积为S=4πr2=4π•50=200π;(2)作BH⊥A'F,垂足为H,因为A'A⊥底面ABCD,EF⊂底面ABCD,所以EF⊥A'A,又EF⊥A'F,且A'A∩A'F=A,A'A,A'F⊂平面A'B'BA,所以EF⊥A'B'BA,又BH⊂平面A'B'BA,所以BH⊥EF,BH⊥A'F,EF∩A'F=F,EF,A'F⊂平面A'D'EF,所以BH⊥平面A'D'EF,故BH为四棱锥B﹣A'D'EF的高,又BF=AB﹣AF=4,所以BH=BF•sin∠BFH=BF•sin∠A'FA=,所以V B﹣A'D'EF=•S A'D'EF•BH=.19.已知直线l1:mx+y﹣m﹣2=0,l2:3x+4y﹣n=0.(1)求直线l1的定点P,并求出直线l2的方程,使得定点P到直线l2的距离为;(2)过点P引直线l分别交x,y轴正半轴于A、B两点,求使得△AOB面积最小时,直线l的方程.解:(1)直线l1:mx+y﹣m﹣2=0,即m(x﹣1)+﹣2=0,令x﹣1=0,求得x=1,y =2,可得直线l1的定点P(1,2).∵定点P(1,2)到直线l2:3x+4y﹣n=0的距离为=,∴n=3,或n =19,故直线l2:3x+4y﹣3=0 或3x+4y﹣19=0.(2)设过点P引直线l分别交x,y轴正半轴于A、B两点,设A(a,0)、B(0,b),则P、A、B三点共线,=,∴ab=2a+b≥2,当且仅当2a=b时,取等号,∴ab≥1,∴△AOB面积为ab最小值为,此时,a=,b=,直线l的斜率为﹣2,直线l的方程为y﹣2=﹣2(x﹣1),即2x﹣y﹣4=0.20.已知函数f(x)=[(a﹣1)x﹣2](a>0且a≠1).(1)求f(x)的定义域;(2)若f(x)>0在上恒成立,求实数a的取值范围.解:(1)令(a﹣1)x﹣2>0,当0<a<1时,a﹣1<0,(a﹣1)x>2则x<,当a>1时,a﹣1>0,(a﹣1)x>2则x>,综上所述:当0<a<1时,定义域为(﹣∞,);当a>1时,定义域为(,+∞);(2)当0<a<1时,,要使f(x)>0在上恒成立,则(a﹣1)×﹣2>1,解得a>,又0<a<1,所以无解;当a>1时,0<<1,要使f(x)>0在上恒成立,则f()>0且f(x)在上有意义,则,解得3<a<,所以实数a的取值范围为(3,).21.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD.(1)设G,H分别为线段PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD.【解答】(1)证明:如图1,连接BD,∵四边形ABCD为平行四边形,点H是AC的中点,∴AC与BD的交点即为点H,∴BH=DH,又∵BG=PG,AC∩BD=H,∴GH∥PD,又∵GH⊄平面PAD,PD⊂平面PAD,∴GH∥平面PAD.(2)证明:如图2,取棱PC的中点N,连接DN,依题意,得DN⊥PC,又∵平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,∴DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA,又已知PA⊥CD,CD∩DN=D,∴PA⊥平面PCD.22.一副标准的三角板(如图1),∠ABC为直角,∠A=60°,∠DEF为直角,DE=EF,BC=DF,把BC与DF重合,拼成一个三棱锥(如图2),设M是线段AC的中点,N 是线段BC的中点.(1)求证:平面ABC⊥平面EMN;(2)设平面ABE∩平面MNE=l,求证:l∥AB.【解答】(1)证明:∵M是AC的中点,N是BC的∴MN∥AB,∵AB⊥BC,∴MN⊥BC,∵BE⊥EC,BE=EC,N是BC的中点,∴EN⊥BC,∵MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴BC⊥平面EMN,又BC⊂平面ABC,∴平面ABC⊥平面EMN.(2)证明:∵M是AC的中点,N是BC的中点,∴MN∥AB,∵MN⊂平面EMN,AB⊄平面EMN,∴AB∥平面EMN,∵平面ABE∩平面MNE=l,∴l⊂平面EMN,且l⊂平面ABE,AB与l无交点,∴AB∥l.。

高一上学期期末数学考试卷及答案

高一上学期期末数学考试卷及答案

2020~2021学年度上学期高一年级期末考试卷数 学 试 卷注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,请认真阅读答题卡上的注意事项,将答案写在答题卡上。

写在本试卷上无效。

一、单选题 本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1}, 则(C U A)∩B= ( )A.{-1}B.{0,1}C{-1,2,3} D.{-1,0,1,3}2.“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知函数,则( )A.B.C.6D.74.已知f(x)=(x-a)(x-b)+2(a<b),且α,β(α<β)是方程f(x)=0的两根,则α,β,a,b的大小关系是( )A.a<α<β<b B.a<α<b<βC.α<a<b<βD.α<a<β<b5.是定义在上的偶函数,在上是增函数,且,则使的的范围是( )A.B.C. D.6.已知,,且,则( )A.B.C.D.7.函数的定义域是( )A.B.C.D.8.函数的零点个数有( )A.0个B.1个C.2个D.3个二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列命题是“,”的表述方法的是()A.有一个,使得成立B.对有些,使得成立C.任选一个,都有成立D.至少有一个,使得成立10.下列命题中是真命题的有( )A.幂函数的图象都经过点和B.幂函数的图象不可能过第四象限C.当时,幂函数是增函数D.当时,幂函数在第一象限内函数值随值的增大而减小11.如果函数在上是增函数,对于任意的,则下列结论中正确的是( )A.B.C.D.12.已知函数有两个零点,,以下结论正确的是( )A.B.若,则C.D.函数有四个零点三、填空题 (每题5分,满分20分,将答案填在答题纸上)13.已知,则的解析式为___________.14.用二分法研究函数f(x)=x3+3x-1的零点时,第一次计算得f(0)<0,f(0.5)>0,第二次应计算f(x1),则x1=________.15.已知函数,若,则____.16.已知函数 (a>0,且a≠1),若在区间[1,2]上恒成立,则实数a的取值范围是________.四 解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)(1);(2).18.(12分)已知函数,试画出的图象,并根据图象解决下列两个问题.(1)写出函数的单调区间;(2)求函数在区间上的最大值.19.(12分)已知函数f(x)=,g(x)=(a>0且a≠1).(1)求函数φ(x)=f(x)+g(x)的定义域;(2)试确定不等式f(x)≤g(x)中x的取值范围.20.(12分)已知函数(1)判断函数在上的单调性,并给予证明;(2)求函数在,的最大值和最小值.21.(12分)已知函数(1)若在恒成立,求的取值范围;(2)设函数,解不等式.22.(12分)设函数是定义域为R的奇函数.(1)求的值;(2)若,试判断的单调性(不需证明),并求使不等式恒成立的t的取值范围;(3),求在上的最小值.数 学 试 卷 参考答案1 A 2.B 3.A 4.A 5.B 6.C 7.A 8.C9.ABD 10.BD 11.AB 12.ABC13. 14.0.25 15.1或-2 16.17.(1)原式;(2)原式.18. 的图象如图所示.(1) 在和上是增函数,在上是减函数,∴单调递增区间为,;单调递减区间为;(2)∵,,∴在区间上的最大值为.19. 解:(1)φ(x)=f(x)+g(x)的定义域为:,解得:,所以定义域为.(2) f(x)≤g(x),即为,定义域为.当时,,解得:,所以x的取值范围为.当时,,解得:,所以x的取值范围为.综上可得:当时,x的取值范围为.当时,x的取值范围为.20(1),函数在上是增函数,证明:任取,,且,则,,,,,即,在上是增函数;(2)在上是增函数,在,上单调递增,它的最大值是,最小值是.21.(1)在恒成立,即在恒成立, 分离参数得:,∵,∴从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即时,原不等式的解集是(4)当,即时,原不等式的解集是综上所述:当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是22.(1) ∵是定义域为R的奇函数,∴ f(0)=0,∴ 1-(k-1)=0,∴ k=2, (2)单减,单增,故f(x)在R上单减 ,故不等式化为∴,解得令∵在上为递增的 ∴∴设∴.即在上的最小值为.。

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。

2011九江市高一上学期期末数学试卷及答案

2011九江市高一上学期期末数学试卷及答案

江西九江市高一上学期期末数学试卷一.选择题:本大共12小题,每小题5分,共60分;在每小题的四个选项中只有一个是正确的;。

1、下列各式正确的是 ( B )A 、{}210x x ⊆≤B 、{}{}210x x ⊆≤C 、{}10x x ∅∈≤D 、{}10x x ∅⊂≤2、已知(){}(){},21,,3A x y y x B x y y x ==+==+,则A B = ( B ) A 、B B 、(){}2,5 C 、∅ D 、{}2,53、直线0133=+-x y 的倾斜角是 ( A ) A 、6π B 、 3π C 、4π D 、65π4、 设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是 ( C ) A.若,l βαα⊥⊥,则l ∥βB.若//,//l l βα,则α∥βC.若,//l ααβ⊥,则l β⊥ D.若//,l ααβ⊥,则l β⊥ 5、8.函数2()ln f x x x=-的零点所在的大致区间是( C ) A .(1,2) B .(e ,3) C .(2,e ) D .(e,+∞)6、图1是偶函数()y f x =的局部图象,根据图象 所给信息,下列结论正确的是( C ) A .(1)(2)0f f --> B .(1)(2)0f f --= C .(1)(2)0f f --< D .(1)(2)0f f -+<7、已知函数(1)f x x -=-,则函数()f x 的表达式为( D )A .2()21(0)f x x x x =++≥B .2()21(1)f x x x x =++-≥C .2()21(0)f x x x x =---≥D .2()21(1)f x x x x =---≥- 8、已知0ab ≠,点(,)M a b 是圆x 2+y 2=r 2内一点,直线m 是以点M 为中点的弦所在的直线,直线l 的方程是2ax by r +=,则下列结论正确的是( C )y xo1 32图1正视图侧视图俯视图aaaa2a2a2aA.m//l ,且l 与圆相交B.l ⊥m,且l 与圆相切C.m//l ,且l 与圆相离D.l ⊥m,且l 与圆相离 9、一几何体的三视图如下,则它的体积是( A )A.333a π+ B. 3712a π C. 331612a π+ D. 373a π 10、若圆222)5()3(r y x =++-上有且只有两个点到直线234=-y x 的距离为1,则半径r 的取值范围是( A )A.)6,4(B.)6,4[C.]6,4(D.]6,4[11、设()f x 是定义在R 上的函数,令()()()2010g x f x f x =--, 则()()2010g x g x +-= 012、若直线210ax y ++=与直线20x y +-=互相垂直,则a = -2 13、与直线3450x y -+=平行且与圆224x y +=相切的直线的方程是01043=+-y x 或01043=--y x .14、 长方体的一个顶点上的三条棱长分别是3,4,5 ,且它的8个顶点都在同一个球面上,则这个球的表面积是 50π 15、已知函数()f x ,如果对任意一个三角形,只要它的三边长,,a b c 都在()f x 的定义域内,就有()()(),,f a f b f c 也是某个三角形的三边长,则称()f x 为“保三角形函数”.在函数①()1f x x =,②()2f x x =,③()23f x x =中, 其中 ①② 是“保三角形函数”.(填上正确的函数序号) 16、已知集合A={x |x x y 24-+=,R x ∈},集合B={y |32421--=+x x y ,A x ∈}。

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。

答案:A={(-∞,1]}。

B={2}。

A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。

答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。

3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。

答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。

答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。

答案:选项A是正确的。

因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。

6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。

答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。

根据题意,πrl=6π,所以l=6/r。

而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。

将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。

我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。

答案:点P的坐标为(1,2)。

因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。

江西省九江市2024-2025学年高三上学期开学考试 数学含答案

江西省九江市2024-2025学年高三上学期开学考试 数学含答案

数学试卷(答案在最后)试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.96i2i i -+的虚部为()A.7- B.6- C.7i- D.6i-2.已知等差数列{}n a 的前n 项和为n S ,若2612a a +=,则7S =()A.48B.42C.24D.213.已知一组数据:3,5,7,,9x 的平均数为6,则该组数据的40%分位数为()A.4.5 B.5C.5.5D.64.定义运算:a b ad bc c d=-.已知()sin cos180sin 270cos tan60ααα=+,则tan α=()A.2B.3C.2-D.3-5.已知某地区高考二检数学共有8000名考生参与,且二检的数学成绩X 近似服从正态分布()295,N σ,若成绩在80分以下的有1500人,则可以估计()95110P X ≤≤=()A.532B.516C.1132 D.3166.已知函数()2122,1e ,1x x ax a x f x x x -⎧-+->=⎨--≤⎩在上单调递减,则a 的取值范围为()A.[]2,4- B.[)4,+∞ C.(],4∞- D.0,47.已知圆台的上、下底面的面积分别为4π,25π,侧面积为35π,则该圆台外接球的球心到上底面的距离为()A.278B.274C.378D.3748.已知O 为坐标原点,抛物线2:2(0)C x py p =>的焦点F 到准线l 的距离为1,过点F 的直线1l 与C 交于,M N 两点,过点M 作C 的切线2l 与,x y 轴分别交于,P Q 两点,则PQ ON ⋅=()A.12B.12-C.14D.14-二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()π3sin ,3cos 232x x f x g x ⎛⎫=+= ⎪⎝⎭,则()A.()f x 的最小正周期为4πB.()f x 与()g x 有相同的最小值C.直线πx =为()f x 图象的一条对称轴D.将()f x 的图象向左平移π3个单位长度后得到()g x 的图像10.已知函数()3223f x x x =-,则()A.1是()f x 的极小值点B.()f x 的图象关于点11,22⎛⎫-⎪⎝⎭对称C.()()1g x f x =+有3个零点D.当01x <<时,()()211f x f x ->-11.已知正方体1111ABCD A B C D -的体积为8,线段1,CC BC 的中点分别为,E F ,动点G 在下底面1111D C B A 内(含边界),动点H 在直线1AD 上,且1GE AA =,则()A.三棱锥H DEF -的体积为定值B.动点G 的轨迹长度为5π2C.不存在点G ,使得EG ⊥平面DEFD.四面体DEFG 体积的最大值为1526三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()()3,2,2,a b x =-=,若()2b a a -⊥ ,则x =______.13.定义:如果集合U 存在一组两两不交(两个集合的交集为空集时,称为不交)的非空真子集1A ,()*2,,k A A k ∈N ,且12k A A A U =U U L U ,那么称子集族{}12,,,k A A A 构成集合U 的一个k 划分.已知集合{}2650I x x x =∈-+<N∣,则集合I 的所有划分的个数为__________.14.已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,点M 在以2F 为圆心、2OF 为半径的圆上,且直线1MF 与圆2F 相切,若直线1MF 与C 的一条渐近线交于点N ,且1F M MN = ,则C 的离心率为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知ABC V 中,角,,A B C 所对的边分别为,,a b c ,其中23sin cos sin a B A b A =.(1)求A 的值;(2)若ABC V 36,求ABC V 的外接圆面积.16.如图,在四棱锥S ABCD -中,底面ABCD 为正方形,45,,ASD ADS M N ∠∠== 分别在棱,SB SC 上,且,,,A D N M 四点共面.(1)证明:SA MN ⊥;(2)若SM BM =,且二面角S AD C --为直二面角,求平面SCD 与平面ADNM 夹角的余弦值.17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,右焦点为F ,点23(,22-在C 上.(1)求C 的方程;(2)已知O 为坐标原点,点A 在直线():0l y kx m k =+≠上,若直线l 与C 相切,且FA l ⊥,求OA 的值.18.已知函数()1ee xf x x x +=-.(1)求曲线()y f x =在点()()1,1f --处的切线方程;(2)记(1)中切线方程为()y F x =,比较()(),f x F x 的大小关系,并说明理由;(3)若0x >时,()()ln 2e 1f x x a x -≥---,求a 的取值范围.19.已知首项为1的数列{}n a 满足221144n n n n a a a a ++=++.(1)若20a >,在所有{}()14n a n ≤≤中随机抽取2个数列,记满足40a <的数列{}n a 的个数为X ,求X 的分布列及数学期望EX ;(2)若数列{}n a 满足:若存在5m a ≤-,则存在{}(1,2,,12k m m ∈-≥ 且)*m ∈N ,使得4km aa -=.(i )若20a >,证明:数列{}n a 是等差数列,并求数列{}n a 的前n 项和n S ;(ii )在所有满足条件的数列{}n a 中,求使得20250s a +=成立的s 的最小值.数学试卷试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.96i2i i -+的虚部为()A.7- B.6- C.7i- D.6i-【答案】A 【解析】【分析】根据复数的运算化简得67i --,再根据虚部的定义即可求解.【详解】2296i 9i 6i 2i 2i 69i 2i 67i i i--+=+=--+=--,则所求虚部为7-.故选:A .2.已知等差数列{}n a 的前n 项和为n S ,若2612a a +=,则7S =()A.48B.42C.24D.21【答案】B 【解析】【分析】利用等差数列项的性质求出17a a +的值,再由等差数列的求和公式即可求得.【详解】因{}n a 为等差数列,故172612a a a a +==+,则1772)7(712422a a S +==⨯=.故选:B.3.已知一组数据:3,5,7,,9x 的平均数为6,则该组数据的40%分位数为()A.4.5B.5C.5.5D.6【答案】C 【解析】【分析】由平均数及百分位数的定义求解即可.【详解】依题意,357965x ++++=,解得6x =,将数据从小到大排列可得:3,5,6,7,9,又50.42⨯=,则40%分位数为565.52+=.故选:C.4.定义运算:a b ad bc c d=-.已知()sin cos180sin 270cos tan60ααα=+,则tan α=()A.2B.3C.2- D.3-【答案】D 【解析】cos cos ααα+=-,再根据同角三角函数的商数关系即可求解.cos cos ααα+=-2cos αα=-,故sin tan cos 3ααα==-.故选:D .5.已知某地区高考二检数学共有8000名考生参与,且二检的数学成绩X 近似服从正态分布()295,N σ,若成绩在80分以下的有1500人,则可以估计()95110P X ≤≤=()A.532B.516C.1132 D.316【答案】B 【解析】【分析】解法一,求出3(80)16P X <=,根据正态分布的对称性,即可求得答案;解法二,求出数学成绩在80分至95分的人数,由对称性,再求出数学成绩在95分至110分的人数,即可求得答案.【详解】解法一:依题意,得15003(80)800016P X <==,故()()135951108095(95)(80)21616P X P X P X P X ≤≤=≤≤=<-<=-;解法二:数学成绩在80分至95分的有400015002500-=人,由对称性,数学成绩在95分至110分的也有2500人,故()2500595110800016P X ≤≤==.故选:B.6.已知函数()2122,1e ,1x x ax a x f x x x -⎧-+->=⎨--≤⎩在上单调递减,则a 的取值范围为()A.[]2,4- B.[)4,+∞ C.(],4∞- D.0,4【答案】D 【解析】【分析】由函数在R 上单调递减,列出相应的不等式组14222a a a ⎧≤⎪⎨⎪-+-≤-⎩,即可求解.【详解】当(],1x ∞∈-时,()1ex f x x -=--,因为1e x y -=-和y x =-都是减函数,所以()f x 在−∞,1上单调递减,当()1,x ∈+∞时,()222f x x ax ax =-+-,要使其在()1,+∞上单调递减,则14a≤,所以14222a a a ⎧≤⎪⎨⎪-+-≤-⎩,解得04a ≤≤,故D 正确.故选:D.7.已知圆台的上、下底面的面积分别为4π,25π,侧面积为35π,则该圆台外接球的球心到上底面的距离为()A.278B.274C.378D.374【答案】C 【解析】【分析】由圆台的侧面积公式求出母线长,再由勾股定理得到高即可计算;【详解】依题意,记圆台的上、下底面半径分别为12,r r ,则2212π4π,π25πr r ==,则122,5r r ==,设圆台的母线长为l ,则()12π35πr r l +=,解得5l =,则圆台的高4h ==,记外接球球心到上底面的距离为x ,则()2222245x x +=-+,解得378=x .故选:C.8.已知O 为坐标原点,抛物线2:2(0)C x py p =>的焦点F 到准线l 的距离为1,过点F 的直线1l 与C 交于,M N 两点,过点M 作C 的切线2l 与,x y 轴分别交于,P Q 两点,则PQ ON ⋅=()A.12B.12-C.14D.14-【答案】C 【解析】【分析】通过联立方程组的方法求得,P Q 的坐标,然后根据向量数量积运算求得PQ ON ⋅.【详解】依题意,抛物线2:2C x y =,即212y x =,则1,0,2y x F ⎛⎫= ⎪⎝⎭',设221212,,,22x x M x N x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,直线11:2l y kx =+,联立22,1,2x y y kx ⎧=⎪⎨=+⎪⎩得2210x kx --=,则121x x =-.而直线()21211:2x l y x x x -=-,即2112x y x x =-,令0y =,则12x x =,即1,02x P ⎛⎫ ⎪⎝⎭,令0x =,则212x y =-,故210,2x Q ⎛⎫- ⎪⎝⎭,则211,22x x PQ ⎛⎫=-- ⎪⎝⎭ ,故2212121244x x x x PQ ON ⋅=--=.故选:C【点睛】求解抛物线的切线方程,可以联立切线的方程和抛物线的方程,然后利用判别式来求解,也可以利用导数来进行求解.求解抛物线与直线有关问题,可以利用联立方程组的方法来求得公共点的坐标.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()π3sin ,3cos 232x x f x g x ⎛⎫=+=⎪⎝⎭,则()A.()f x 的最小正周期为4πB.()f x 与()g x 有相同的最小值C.直线πx =为()f x 图象的一条对称轴D.将()f x 的图象向左平移π3个单位长度后得到()g x 的图像【答案】ABD 【解析】【分析】对于A :根据正弦型函数的最小正周期分析判断;对于B :根据解析式可得()f x 与()g x 的最小值;对于C :代入求()πf ,结合最值与对称性分析判断;对于D :根据三角函数图象变换结合诱导公式分析判断.【详解】因为()()π3sin ,3cos 232x x f x g x ⎛⎫=+=⎪⎝⎭,对于选项A :()f x 的最小正周期2π4π12T ==,故A 正确;对于选项B :()f x 与()g x 的最小值均为3-,故B 正确;对于选项C :因为()5π3π3sin362f ==≠±,可知直线πx =不为()f x 图象的对称轴,故C 错误;对于选项D :将()f x 的图象向左平移π3个单位长度后,得到()ππ3sin 3cos 3222x x f x g x ⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:ABD.10.已知函数()3223f x x x =-,则()A.1是()f x 的极小值点B.()f x 的图象关于点11,22⎛⎫-⎪⎝⎭对称C.()()1g x f x =+有3个零点D.当01x <<时,()()211f x f x ->-【答案】AB 【解析】【分析】利用导数求函数极值点判断选项A ;通过证明()()11f x f x +-=-得函数图象的对称点判断选项B ;利用函数单调性和零点存在定理判断选项C ;利用单调性比较函数值的大小判断选项D.【详解】对于A ,函数()3223f x x x =-,()()26661f x x x x x =='--,令()0f x '=,解得0x =或1x =,故当(),0x ∞∈-时′>0,当∈0,1时,′<0,当∈1,+∞时′>0,则()f x 在(),0∞-上单调递增,在0,1上单调递减,在1,+∞上单调递增,故1是()f x 的极小值点,故A 正确:对于B,因为()()3232322321232(1)3(1)2326623631f x f x x x x x x x x x x x x +-=-+---=-+-+--+-=-,所以()f x 的图象关于点11,22⎛⎫-⎪⎝⎭对称,故B 正确;对于C ,()()321231g x f x x x =+=-+,易知()(),g x f x 的单调性一致,而()10g =,故()()1g x f x =+有2个零点,故C 错误;对于D ,当01x <<时,21110x x -<-<-<,而()f x 在()1,0-上单调递增,故()()211f x f x -<-,故D 错误.故选:AB.11.已知正方体1111ABCD A B C D -的体积为8,线段1,CC BC 的中点分别为,E F ,动点G 在下底面1111D C B A 内(含边界),动点H 在直线1AD 上,且1GE AA =,则()A.三棱锥H DEF -的体积为定值B.动点G 的轨迹长度为5π2C.不存在点G ,使得EG ⊥平面DEFD.四面体DEFG 体积的最大值为1526【答案】ACD 【解析】【分析】对于A ,由题意可证1AD ∥平面DEF ,因此点H 到平面DEF 的距离等于点A 到平面DEF 的距离,其为定值,据此判断A ;对于B ,根据题意求出正方体边长及1C G 的长,由此可知点G 的运动轨迹;对于C ,建立空间直角坐标系,求出平面DEF 的法向量,假设点G 的坐标,求出EG 的方向向量,假设EG ⊥平面DEF ,则平面DEF 的法向量和EG 的方向向量共线,进而求出点G 的坐标,再判断点G 是否满足B 中的轨迹即可;对于D ,利用空间直角坐标系求出点G 到平面DEF 的距离,求出距离的最大值即可.【详解】对于A ,如图,连接1BC 、1AD ,依题意,EF ∥1BC ∥1AD ,而1AD ⊄平面,DEF EF ⊂平面DEF ,故1AD ∥平面DEF ,所以点H 到平面DEF 的距离等于点A 到平面DEF 的距离,其为定值,所以点H 到平面DEF 的距离为定值,故三棱维H DEF -的体积为定值,故A 正确;对于B ,因为正方体1111ABCD A B C D -的体积为8,故12AA =,则2GE =,而11EC =,故22113C G GE EC =-=故动点G 的轨迹为以1C 31111D C B A 内的部分,即四分之一圆弧,故所求轨迹长度为13π2π342⨯=,故B 错误;以1C 为坐标原点,11111,,C D C B C C 所在直线分别为,,x y z轴,建立如图所示的空间直角坐标系,则()()()2,0,2,0,0,1,0,1,2D E F ,故()()2,0,1,0,1,1DE EF =--=,设 =s s 为平面DEF 的法向量,则0,0,n EF n DE ⎧⋅=⎪⎨⋅=⎪⎩故0,20,y z x z +=⎧⎨--=⎩令2z =,故()1,2,2n =--为平面DEF 的一个法向量,设()()0000,,00,0G x y x y ≥≥,故()00,,1EG x y =-,若EG ⊥平面DEF ,则//n EG uuu rr,则001122x y -==--,解得001,12x y ==,但22003x y +≠,所以不存在点点G ,使得EG ⊥平面DEF ,故C 正确;对于D ,因为DEF 为等腰三角形,故2211323222222DEFEF S EF DE ⎛⎫=⋅-== ⎪⎝⎭,而点G 到平面DEF 的距离0000222233EG n x y x y d n ⋅++++===,令03cos x θ=,则0π3sin ,0,2y θθ⎡⎤=∈⎢⎥⎣⎦,则()222333d θϕθθ+++++==≤,其中1tan 2ϕ=,则四面体DEFG 体积的最大值为13223236++⨯⨯=,故D 正确.故选:ACD.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()()3,2,2,a b x =-=,若()2b a a -⊥ ,则x =______.【答案】10-【解析】【分析】利用向量的线性运算并由向量垂直的坐标表示列式即可求解.【详解】依题意,()24,4b a x -=-+,故()212280b a a x -⋅=---= ,解得10x =-.故答案为:10-13.定义:如果集合U 存在一组两两不交(两个集合的交集为空集时,称为不交)的非空真子集1A ,()*2,,k A A k ∈N ,且12k A A A U =U U L U ,那么称子集族{}12,,,k A A A 构成集合U 的一个k 划分.已知集合{}2650I x x x =∈-+<N∣,则集合I 的所有划分的个数为__________.【答案】4【解析】【分析】解二次不等式得到集合I ,由子集族的定义对集合I 进行划分.【详解】依题意,{}{}{}2650152,3,4I x x x x x =∈-+<=∈<<=N N∣,I 的2划分为{}{}{}{2,3},{4},{2,4},{3},{3,4},{2},共3个,I 的3划分为{}{}{}{}2,3,4,共1个,故集合I 的所有划分的个数为4.故答案为:414.已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,点M 在以2F 为圆心、2OF 为半径的圆上,且直线1MF 与圆2F 相切,若直线1MF 与C 的一条渐近线交于点N ,且1F M MN = ,则C 的离心率为__________.【答案】2【解析】【分析】由题意可得21F M NF ⊥,由此求出1F M ,1230MF F ∠=o,即可求出N 点坐标,代入b y x a=,即可得出答案.【详解】不妨设点M 在第一象限,连接2F M ,则212,F M NF F M c ⊥=,故1F M ==,1230MF F ∠=o,设()00,N x y ,因为1F M MN =,所以M 为1NF 的中点,112NF F M ==,故0y =.0sin30,cos302x c c ==⋅-= ,将()2N c 代入b y x a =中,故32b a =,则2c e a ===.故答案为:72.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知ABC V 中,角,,A B C 所对的边分别为,,a b c ,其中2sin cos sin B A b A =.(1)求A 的值;(2)若ABC V 6,求ABC V 的外接圆面积.【答案】(1)π3A =(2)4π3【解析】【分析】(1)利用正弦定理化简已知条件,从而求得A .(2)根据三角形的面积公式、余弦定理等知识求得外接圆的半径,从而求得外接圆的面积.【小问1详解】2sin cos sin sinA B A B A=,因为sin,sin0A B≠sinA A=,则tan A=,因为()0,πA∈,故π3A=.【小问2详解】由题意13sin24ABCS bc A===,故4bc=.由余弦定理得222222cos()3(6)12a b c bc A b c bc a=+-=+-=--,解得2a=.故ABCV的外接圆半径2sinaRA==,故所求外接圆面积24ππ3S R==.16.如图,在四棱锥S ABCD-中,底面ABCD为正方形,45,,ASD ADS M N∠∠== 分别在棱,SB SC 上,且,,,A D N M四点共面.(1)证明:SA MN⊥;(2)若SM BM=,且二面角S AD C--为直二面角,求平面SCD与平面ADNM夹角的余弦值.【答案】(1)证明见解析(2)12【解析】【分析】(1)先证明线面平行再应用线面平行性质定理得出MN//AD,再结合SA AD⊥,即可证明;(2)应用面面垂直建系,应用空间向量法求出面面角的余弦值.【小问1详解】因为45ASD ADS ∠∠== ,故90SAD ∠= ,则SA AD ⊥,因为AD //,BC AD ⊄平面,SBC BC ⊂平面SBC ,故AD //平面SBC ,而平面ADNM 平面,SBC MN AD =⊂平面ADNM ,故MN //AD ,则SA MN ⊥.【小问2详解】因为二面角S AD C --为直二面角,故平面SAD ⊥平面ABCD .而平面SAD ⋂平面,ABCD AD SA =⊂平面,SAD SA AD ⊥,故SA ⊥平面ABCD ,又底面ABCD 为正方形,所以,,SA AB SA AD AB AD ⊥⊥⊥,以点A 为坐标原点,,,AB AD AS 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系A xyz -,不妨设2AB =,则()()()()()0,0,0,0,0,2,2,2,0,0,2,0,1,0,1A S C D M ,故()()()()2,2,2,0,2,2,0,2,0,1,0,1SC SD AD AM =-=-==,设平面ADNM 的法向量为()111,,n x y z =,则1110,20,n AM x z n AD y ⎧⋅=+=⎪⎨⋅==⎪⎩ 令11x =,可得()1,0,1n =- .设平面SCD 的法向量为()222,,m x y z =,则22222220,2220,m SD y z m SC x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩ 令21y =,可得()0,1,1m = ,故平面SCD 与平面ADNM 夹角的余弦值1cos 2m n m n θ⋅== .17.已知椭圆2222:1(0)x y C a b a b +=>>,右焦点为F ,点23(,22-在C 上.(1)求C 的方程;(2)已知O 为坐标原点,点A 在直线():0l y kx m k =+≠上,若直线l 与C 相切,且FA l ⊥,求OA 的值.【答案】(1)2212x y +=(2)OA =【解析】【分析】(1)根据椭圆离心率定义和椭圆上的点以及,,a b c 的关系式列出方程组,解之即得;(2)将直线与椭圆方程联立,消元,根据题意,由Δ0=推得2221m k =+,又由FA l ⊥,写出直线FA 的方程,与直线l 联立,求得点A 坐标,计算2||OA ,将前式代入化简即得.【小问1详解】设s 0,依题意,222222131,24c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩解得222,1,a b ==故C 的方程为2212x y +=.【小问2详解】如图,依题意1,0,联立22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩消去y ,可得()222214220k x kmx m +++-=,依题意,需使()()2222Δ16421220k m k m =-+-=,整理得2221m k =+(*).因为FA l ⊥,则直线FA 的斜率为1k-,则其方程为()11y x k =--,联立1(1),y x k y kx m ⎧=--⎪⎨⎪=+⎩解得221,1,1km x kk m y k -⎧=⎪⎪+⎨+⎪=⎪+⎩即221,11km k m A k k -+⎛⎫ ⎪++⎝⎭故()()()()()2222222222222222211(1)()11||1111k m km k m k m k m mOA k k k k ++-++++++====++++,将(*)代入得,22221222,11m k k k++==++故OA =18.已知函数()1ee xf x x x +=-.(1)求曲线()y f x =在点()()1,1f --处的切线方程;(2)记(1)中切线方程为()y F x =,比较()(),f x F x 的大小关系,并说明理由;(3)若0x >时,()()ln 2e 1f x x a x -≥---,求a 的取值范围.【答案】(1)e 1y x =--(2)()()f x F x ≥,理由见解析(3)(],0-∞【解析】【分析】(1)根据导数的几何意义,即可求得答案;(2)令()()()1e1x m x f x F x x +=-=+,求出其导数,进而求得函数最值,即可得结论;(3)将原问题变为1e ln 2x x x x ax +---≥,即()ln 1eln 11x x x x ax ++-++-≥在()0,∞+上恒成立,同构函数,利用导数判断函数单调性,结合讨论a 的范围,即可求得答案.【小问1详解】依题意,()1e 1f -=-,而()()11e e x f x x +=+-',故()1e,f '-=-故所求切线方程为()e 1e 1y x -+=-+,即e 1y x =--.【小问2详解】由(1)知()e 1F x x =--,结论;()()f x F x ≥,下面给出证明:令()()()1e1x m x f x F x x +=-=+,则()()11e x m x x +=+',当1x <-时,()()0,m x m x '<在(),1∞--上单调递减,当1x >-时,()()0,m x m x '>在()1,-+∞上单调递增,故()()10m x m ≥-=,即()()f x F x ≥.【小问3详解】依题意得1e ln 2x x x x ax +---≥,则()ln 1eln 11x x x x ax ++-++-≥在()0,∞+上恒成立,令()e 1xg x x =--,则()e 1xg x '=-,令()0g x '=,得0x =,故当(),0x ∈-∞时,()0g x '<,当()0,x ∞∈+时,()0g x '>,故()g x 在区间(),0-∞上单调递减,在区间()0,∞+上单调递增,则()()00g x g ≥=,当0a ≤时,10,e ln 20,0x x x x x ax +∀>---≥≤,此时10,e ln 2x x x x x ax +∀>---≥;当0a >时,令()ln 1h x x x =++,显然()h x 在区间()0,∞+上单调递增,又()221110,120e eh h ⎛⎫=-=⎪⎝⎭,故存在021,1e x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,则01000e ln 20x x x x +---=,而00ax >,不合题意,舍去.综上所述,a 的取值范围为(],0-∞.【点睛】不等式恒成立问题常见方法:①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);②数形结合(()y f x =图象在()y g x =上方即可);③分类讨论参数.19.已知首项为1的数列{}n a 满足221144n n n n a a a a ++=++.(1)若20a >,在所有{}()14n a n ≤≤中随机抽取2个数列,记满足40a <的数列{}n a 的个数为X ,求X的分布列及数学期望EX ;(2)若数列{}n a 满足:若存在5m a ≤-,则存在{}(1,2,,12k m m ∈-≥ 且)*m ∈N ,使得4km aa -=.(i )若20a >,证明:数列{}n a 是等差数列,并求数列{}n a 的前n 项和n S ;(ii )在所有满足条件的数列{}n a 中,求使得20250s a +=成立的s 的最小值.【答案】(1)分布列见解析,1(2)(i )证明见解析,22n S n n =-(ii )1520【解析】【分析】(1)根据递推关系化简可得14n n a a +=+,或1,n n a a +=-写出数列的前四项,利用古典概型即可求出分布列及期望;(2)(i )假设数列{}n a 中存在最小的整数()3i i ≥,使得1i i a a -=-,根据所给条件可推出存在{}1,2,,1k i ∈- ,使得41k i a a =+≤-,矛盾,即可证明;(ii )由题意可确定1,5,9,,2017,2021,2025------ 必为数列{}n a 中的项,构成新数列{}n b ,确定其通项公式及5072025b =-,探求s a 与n b 的关系得解.【小问1详解】依题意,221144n n n n a a a a ++=++,故22114444a n n n a a a a ++-+=++,即()()22122n n a a +-=+,故14n n a a +=+,或1,n n a a +=-因为121,0a a =>,故25a =;则:1,5,9,13;:1,5,9,9;:1,5,5,5;:1,5,5,1n n n n a a a a ----,故X 的可能取值为0,1,2,故()()()21122222222444C C C C 1210,12C 6C 3C 6P X P X P X =========,故X 的分布列为X012P162316故1210121636EX =⨯+⨯+⨯=.【小问2详解】(i )证明:由(1)可知,当2n ≥时,1n n a a -=-或124,5n n a a a -=+=;假设此时数列{}n a 中存在最小的整数()3i i ≥,使得1i i a a -=-,则121,,,i a a a - 单调递增,即均为正数,且125i a a -≥=,所以15i i a a -=-≤-;则存在{}1,2,,1k i ∈- ,使得41k i a a =+≤-,此时与121,,,i a a a - 均为正数矛盾,所以不存在整数()3i i ≥,使得1i i a a -=-,故14n n a a -=+.所以数列{}n a 是首项为1、公差为4的等差数列,则()21422n n n S n n n -=+⋅=-.(ii )解:由20250s a +=,可得2025s a =-,由题设条件可得1,5,9,,2017,2021,2025------ 必为数列{}n a 中的项;记该数列为{}n b ,有()431507n b n n =-+≤≤;不妨令n j b a =,则143j j a a n +=-=-或1447j j a a n +=+=-+,均不为141;n b n +=--此时243j a n +=-+或41n +或47n -或411n -+,均不为141s b n +=--.上述情况中,当1243,41j j a n a n ++=-=+时,32141j j n a a n b +++=-=--=,结合11a =,则有31n n a b -=.由5072025b =-可知,使得20250s a +=成立的s 的最小值为350711520⨯-=.【点睛】关键点点睛:第一问数列与概率结合,关键在于得出数列前四项的所有可能,即可按照概率问题求解,第二问的关键在于对于新定义数列,理解并会利用一般的抽象方法推理,反证,探求数列中项的变换规律,能力要求非常高,属于困难题目.。

2020-2021学年江西省南昌二中高一(上)第一次月考数学试卷及答案

2020-2021学年江西省南昌二中高一(上)第一次月考数学试卷及答案

2020-2021学年江西省南昌二中高一(上)第一次月考数学试卷一、选择题(每小题5分,满分60分)1.(5分)方程组的解集可表示为()A.{1,2}B.(1,2)C.{(x,y)|x=1,y=2}D.2.(5分)已知集合A={a,|a|,a﹣2},若2∈A,则实数a的值为()A.﹣2B.2C.4D.2或43.(5分)已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值是()A.1B.﹣1C.0,1D.﹣1,0,1 4.(5分)下面的对应是从集合A到集合B的一一映射()A.A=R,B=R,对应关系f:y=,x∈A,y∈BB.X=R,Y={非负实数},对应关系f:y=x4,x∈X,y∈YC.M={1,2,3,4},N={2,4,6,8,10},对应关系f:n=2m,n∈N,m∈MD.A={平面上的点},B={(x,y)|x,y∈R},对应关系f:A中的元素对应它在平面上的坐标5.(5分)对于全集U的子集M,N,若M是N的真子集,则下列集合中必为空集的是()A.(∁U M)∩N B.M∩(∁U N)C.(∁U M)∩(∁U N)D.M∩N6.(5分)已知m<﹣2,点(m﹣1,y1),(m,y2),(m+1,y3)都在二次函数y=x2﹣2x 的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3 7.(5分)已知定义在R上的函数f(x)的值域为,则函数的值域为()A.[,]B.[,1]C.[,1]D.(0,]∪[,+∞)8.(5分)某年级先后举办了数学、历史、音乐的讲座,其中有85人听了数学讲座,70人听了历史讲座,61人听了音乐讲座,16人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有5人听了全部讲座.则听讲座的人数为()A.181B.182C.183D.1849.(5分)已知函数的值域是[0,+∞),则实数m的取值范围是()A.[﹣2,2]B.[﹣1,2]C.[﹣2,﹣1]∪[2,+∞)D.(﹣∞,﹣1]∪[2,+∞)10.(5分)已知函数,则不等式f(x+1)>f(2x)的解集为()A.(﹣∞,1)B.(﹣∞,1]C.[,0]D.[,1)11.(5分)已知函数,当x∈[1,4]时,f(x)>1恒成立,则实数m的取值范围为()A.[﹣4,+∞)B.[﹣2,+∞)C.(﹣4,+∞)D.(﹣2,+∞)12.(5分)若存在n∈R,且存在x∈[1,m],使得不等式|mx2+1|+|2nx|≤3x成立,则实数m 的取值范围是()A.[1,2]B.(﹣∞,2]C.(1,2]D.[2,+∞)二、填空题(每小题5分,满分20分)13.(5分)设函数,函数f(x)•g(x)的定义域为.14.(5分)函数y=kx2﹣4x﹣8在区间[5,10]上单调递增,则实数k的取值范围为.15.(5分)已知集合A,B,C,且A⊆B,A⊆C,若B={1,2,3,4},C={0,1,2,3},则所有满足要求的集合A的各个元素之和为.16.(5分)已知函数,若方程f(x)=g(x)有两个实根为x1,x2,且x1=tx2,t∈[,3],则实数a的取值范围为.三、解答题(共6小题,共70分)17.(10分)已知集合A={x|≤0},B={x|x2﹣3x+2<0},U=R,.求(Ⅰ)A∩B;(Ⅱ)A∪B;(Ⅲ)(∁U A)∩B.18.(12分)(1)已知f(x)满足3f(x)+2f(1﹣x)=4x,求f(x)解析式;(2)已知函数,当x>0时,求g(f(x))的解析式.19.(12分)已知集合A={x|0≤x≤2},B={x|a≤x≤3﹣2a}.(1)若(∁U A)∪B=R,求a的取值范围;(2)若A∩B≠B,求a的取值范围.20.(12分)已知二次函数f(x)=ax2+bx+c,f(0)=1,f(1)=0,且对任意实数x均有f(x)≥0成立.(1)求f(x)解析式;(2)若函数g(x)=f(x)+2(1﹣m)x在[2,+∞)上的最小值为﹣7,求实数m的值.21.(12分)已知定义在R上的函数f(x)对任意x1,x2∈R都有等式f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,有f(x)>1.(1)求证:函数f(x)在R上单调递增;(2)若f(3)=4,关于x不等式恒成立,求t的取值范围.22.(12分)已知函数f(x)=|x+m|2﹣3|x|.(1)当m=0时,求函数y=f(x)的单调递减区间;(2)当0<m≤1时,若对任意的x∈[m,+∞),不等式f(x﹣m﹣1)≤2f(x﹣m)恒成立,求实数m的取值范围.2020-2021学年江西省南昌二中高一(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题5分,满分60分)1.(5分)方程组的解集可表示为()A.{1,2}B.(1,2)C.{(x,y)|x=1,y=2}D.【分析】求出方程组的解,结合选项即可得解.【解答】解:方程组的解为,∴方程组的解集中只有一个元素,且此元素是有序数对,∴{(x,y)|x=1,y=2}、、{(1,2)}均符合题意.故选:C.【点评】本题主要考查方程组的解以及集合的表示方法,属于基础题.2.(5分)已知集合A={a,|a|,a﹣2},若2∈A,则实数a的值为()A.﹣2B.2C.4D.2或4【分析】由集合A={a,|a|,a﹣2},2∈A,得a=2,|a|=2或a﹣2=2,再由集合中元素的互异性能求出实数a的值.【解答】解:∵集合A={a,|a|,a﹣2},2∈A,∴a=2,|a|=2或a﹣2=2,解得a=﹣2或a=2或a=4.当a=﹣2时,A={﹣2,2,﹣4},成立;当a=2时,a=|a|,A中有两个相等元素,不满足互异性;当a=4时,a=|a|,A中有两个相等元素,不满足互异性.实数a的值为﹣2.故选:A.【点评】本题考查实数值的求法,考查元素与集合的关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.(5分)已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值是()A.1B.﹣1C.0,1D.﹣1,0,1【分析】若A有且仅有两个子集,则A为单元素集,所以关于x的方程ax2+2x+a=0恰有一个实数解,分类讨论能求出实数a的取值范围.【解答】解:由题意可得,集合A为单元素集,(1)当a=0时,A={x|2x=0}={0},此时集合A的两个子集是{0},∅,(2)当a≠0时则△=4﹣4a2=0解得a=±1,当a=﹣1时,集合A的两个子集是{1},∅,当a=1,此时集合A的两个子集是{﹣1},∅.综上所述,a的取值为﹣1,0,1.故选:D.【点评】本题考查根据子集与真子集的概念,解题时要认真审题,注意分析法、讨论法和等价转化法的合理运用.属于基础题.4.(5分)下面的对应是从集合A到集合B的一一映射()A.A=R,B=R,对应关系f:y=,x∈A,y∈BB.X=R,Y={非负实数},对应关系f:y=x4,x∈X,y∈YC.M={1,2,3,4},N={2,4,6,8,10},对应关系f:n=2m,n∈N,m∈MD.A={平面上的点},B={(x,y)|x,y∈R},对应关系f:A中的元素对应它在平面上的坐标【分析】利用映射和一一映射的定义求解.【解答】解:对于选项A:集合A中的元素0,在集合B中没有与之对应的y的值,所以选项A错误;对于选项B:集合X中的元素2与﹣2都与集合Y中的元素16对应,所以不是从集合X 到集合Y的一一映射,所以选项B错误;对于选项C:集合N中的元素10在集合M中没有原像,所以不是从集合M到集合N的一一映射,所以选项C错误;对于选项D:平面上的任意一点都存在唯一的有序实数对(x,y)与之对应,反过来,任意一组有序实数对(x,y)都对应平面上的唯一的一个点,所以是从集合A到集合B 的一一映射,所以选项D正确,故选:D.【点评】本题主要考查了映射和一一映射的概念,是基础题.5.(5分)对于全集U的子集M,N,若M是N的真子集,则下列集合中必为空集的是()A.(∁U M)∩N B.M∩(∁U N)C.(∁U M)∩(∁U N)D.M∩N【分析】根据题目给出的全集是U,M,N是全集的子集,M是N的真子集画出集合图形,由图形表示出三个集合间的关系,从而看出是空集的选项.【解答】解:集合U,M,N的关系如图,由图形看出,(∁U N)∩M是空集.故选:B.【点评】本题考查了交、并、补集的混合运算,考查了集合的图形表示法,考查了数形结合的解题思想,是基础题.6.(5分)已知m<﹣2,点(m﹣1,y1),(m,y2),(m+1,y3)都在二次函数y=x2﹣2x 的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y3【分析】欲比较y3,y2,y1的大小,利用二次函数的单调性,只须考虑三点的横坐标是不是在对称轴的某一侧,结合二次函数的单调性即得.【解答】解:∵m<﹣2,∴m﹣1<m<m+1<﹣1,即三点都在二次函数对称轴的左侧,又二次函数y=x2﹣2x在对称轴的左侧是单调减函数,∴y3<y2<y1故选:B.【点评】本小题主要考查函数单调性的应用、二次函数的性质、二次函数的性质的应用等基础知识,考查数形结合思想.属于基础题.7.(5分)已知定义在R上的函数f(x)的值域为,则函数的值域为()A.[,]B.[,1]C.[,1]D.(0,]∪[,+∞)【分析】由f(x)的值域可知f(x+1)的值域,先用换元法设t=1﹣2f(x+1)将g(x)转化为关于的二次函数,再结合二次函数的性质即可求出g(x)的值域.【解答】解:R上的函数f(x)的值域为,则f(x+1)的值域也为,故1﹣2f(x+1)∈,设t=1﹣2f(x+1)∈,则,∴=,,由二次函数的性质可知:当时,g(x)取最大值1;当时,g(x)取最小值;∴g(x)的值域为,故选:C.【点评】本题考查了利用换元法和数形结合思想,判断二次函数的最值问题,属于中档题.8.(5分)某年级先后举办了数学、历史、音乐的讲座,其中有85人听了数学讲座,70人听了历史讲座,61人听了音乐讲座,16人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有5人听了全部讲座.则听讲座的人数为()A.181B.182C.183D.184【分析】设全班同学是全集U,听数学讲座的人组成集合A,听历史讲座的人组成集合B,听音乐讲座的人组成集合C,根据题意,用韦恩图表示出各部分的人数,即可求出【解答】解:设全班同学是全集U,听数学讲座的人组成集合A,听历史讲座的人组成集合B,听音乐讲座的人组成集合C,根据题意,用韦恩图表示,如图所示:,由韦恩图可知,听讲座的人数为62+7+5+11+4+50+45=184(人),故选:D.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.9.(5分)已知函数的值域是[0,+∞),则实数m的取值范围是()A.[﹣2,2]B.[﹣1,2]C.[﹣2,﹣1]∪[2,+∞)D.(﹣∞,﹣1]∪[2,+∞)【分析】m=﹣2,则y=(m+2)x2+2mx+1为一次函数,符合题意;m≠﹣2,y=(m+2)x2+2mx+1为二次函数,需要开口向上,且与x轴有交点,用判别式求解m的范围即可.【解答】解:要使函数的值域是[0,+∞),则y=(m+2)x2+2mx+1的最小值≤0,当m=﹣2时,,符合题意;当m≠﹣2时,要使函数的值域是[0,+∞),则y=(m+2)x2+2mx+1为二次函数,开口向上,且与x轴有交点,∴m+2≥0,且△=4m2﹣4(m+2)≥0,∴﹣2<m≤﹣1或m≥2;综上可知﹣2≤m≤﹣1或m≥2,故选:C.【点评】本题需要对m=﹣2和m≠﹣2进行分类讨论,当m≠﹣2时结合利用二次函数的根的存在性判断即可,属于基础题.10.(5分)已知函数,则不等式f(x+1)>f(2x)的解集为()A.(﹣∞,1)B.(﹣∞,1]C.[,0]D.[,1)【分析】根据题意,先分析函数的定义域,再由常见函数的单调性可得f(x)在区间[﹣1,1]上为增函数,由此原不等式等价于,解可得x的取值范围,即可得答案.【解答】解:根据题意,函数,有,解可得﹣1≤x≤1,即函数的定义域为[﹣1,1],函数y=在区间[﹣1,1]上为增函数,y=在区间[﹣1,1]上为减函数,则函数f(x)=﹣在区间[﹣1,1]上为增函数,则f(x+1)>f(2x)⇔,解可得﹣≤x≤0,即不等式的解集为[﹣,0],故选:C.【点评】本题考查函数单调性的性质以及应用,注意函数的定义域,属于基础题.11.(5分)已知函数,当x∈[1,4]时,f(x)>1恒成立,则实数m的取值范围为()A.[﹣4,+∞)B.[﹣2,+∞)C.(﹣4,+∞)D.(﹣2,+∞)【分析】设=t,t∈[1,2],原不等式等价为﹣m<t+在t∈[1,2]恒成立,即有﹣m<t+在t∈[1,2]的最小值,运用基本不等式可得最小值,进而得到所求范围.【解答】解:设=t,由x∈[1,4],可得t∈[1,2],则当x∈[1,4]时,f(x)>1恒成立,即为t2+mt+4>1,即﹣m<t+在t∈[1,2]恒成立,即有﹣m<t+在t∈[1,2]的最小值,由t+≥2=2,当且仅当t=∈[1,2]时,取得等号,则﹣m<2,即m>﹣2,可得m的取值范围是(﹣2,+∞).故选:D.【点评】本题考查函数恒成立问题解法,注意运用参数分离和基本不等式,考查转化思想和运算能力,属于中档题.12.(5分)若存在n∈R,且存在x∈[1,m],使得不等式|mx2+1|+|2nx|≤3x成立,则实数m 的取值范围是()A.[1,2]B.(﹣∞,2]C.(1,2]D.[2,+∞)【分析】由题易知m>1恒成立,则此时利用|2n|恒定非负将不等式进行变形求解即可.【解答】解:因为x∈[1,m],所以m>1,则mx2+1>0,所以原不等式可变为mx2+1+|2nx|≤3x,因为x∈[1,m],所以原不等式进一步变形为mx2+1+|2n|x≤3x,所以,令,则f(x)在区间[1,m]上是减少的,由存在性可知在区间[1,m]上有解,所以f(x)在[1,m]上的最大值应不小于0,所以f(1)≥0,即﹣m+2≥0,解得:m≤2,综上可得:m的取值范围为1<m≤2.故选:C.【点评】本题考查基本不等式及不等式恒成立问题,属于难题.二、填空题(每小题5分,满分20分)13.(5分)设函数,函数f(x)•g(x)的定义域为(,+∞).【分析】根据f(x),g(x)的解析式即可得出:要使得f(x)•g(x)有意义,则需满足2x﹣3>0,然后解出x的范围即可.【解答】解:要使f(x)•g(x)有意义,则:2x﹣3>0,解得,∴f(x)•g(x)的定义域为.故答案为:.【点评】本题考查了函数定义域的定义及求法,考查了计算能力,属于基础题.14.(5分)函数y=kx2﹣4x﹣8在区间[5,10]上单调递增,则实数k的取值范围为[,+∞).【分析】由题意可知区间[5,10]是函数增区间的子集,对k分情况讨论,利用二次函数的性质求解.【解答】解:∵函数y=kx2﹣4x﹣8在区间[5,10]上单调递增,∴区间[5,10]是函数增区间的子集,①当k=0时,函数y=﹣4x﹣8,在区间[5,10]上单调递减,不符合题意;②当k>0时,函数y=kx2﹣4x﹣8的增区间为[,+∞),∴,解得k,∴k;③当k<0时,函数y=kx2﹣4x﹣8的增区间为(﹣∞,],∴10,解得k,∴k∈∅,综上所述,实数k的取值范围为[,+∞),故答案为:[,+∞).【点评】本题主要考查了二次函数的图象和性质,对k分情况讨论是解题关键,是中档题.15.(5分)已知集合A,B,C,且A⊆B,A⊆C,若B={1,2,3,4},C={0,1,2,3},则所有满足要求的集合A的各个元素之和为24.【分析】由题意推出集合A是两个集合的子集,求出集合B,C的公共元素得到集合A,进而求出结论.【解答】解:因为集合A,B,C,且A⊆B,A⊆C,B={1,2,3,4},C={0,1,2,3},所以集合A是两个集合的子集,集合B,C的公共元素是1,2,3,所以满足上述条件的集合A=∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},∴所有满足要求的集合A的各个元素之和为:4(1+2+3)=24.故答案为:24.【点评】本题考查集合的基本运算,集合的子集的运算,考查基本知识的应用.16.(5分)已知函数,若方程f(x)=g(x)有两个实根为x1,x2,且x1=tx2,t∈[,3],则实数a的取值范围为[,].【分析】把方程f(x)=g(x)有两个实根为x1,x2,转化为ax2+x+1=0(x≠0)有两个实根为x1,x2,由根与系数的关系及x1=tx2可得a与t的关系,分离a,结合双勾函数求最值.【解答】解:方程f(x)=g(x)即为,亦即ax2+x+1=0(x≠0),由题意,△=1﹣4a≥0,即a.且,,又x1=tx2,得a===,t∈[,3],当t=1时,有最小值4,则a有最大值,当t=或3时,t+有最大值,则a有最小值为.∴实数a的取值范围为[,],故答案为:[,].【点评】本题考查函数零点与方程根的关系,考查数学转化思想方法,训练了利用双勾函数求最值,是中档题.三、解答题(共6小题,共70分)17.(10分)已知集合A={x|≤0},B={x|x2﹣3x+2<0},U=R,.求(Ⅰ)A∩B;(Ⅱ)A∪B;(Ⅲ)(∁U A)∩B.【分析】化简集合A、B,再求A∩B与A∪B、(∁U A)∩B.【解答】解:集合A={x|≤0}={x|﹣5<x≤},B={x|x2﹣3x+2<0}={x|1<x<2},U=R,(Ⅰ)A∩B={x|﹣5<x≤}∩{x|1<x<2}={x|1<x≤};(Ⅱ)A∪B={x|﹣5<x≤}∪{x|1<x<2}={x|﹣5<x<2};(Ⅲ)∵∁U A={x|x≤﹣5或x>},∴(∁U A)∩B={x|x≤﹣5或x>}∩{x|1<x<2}={x|<x<2}.【点评】本题考查了集合的化简与运算问题,是基础题目.18.(12分)(1)已知f(x)满足3f(x)+2f(1﹣x)=4x,求f(x)解析式;(2)已知函数,当x>0时,求g(f(x))的解析式.【分析】(1)直接利用换元法的应用和解方程组求出函数的关系式.(2)利用函数的定义域的应用求出函数的关系式.【解答】解:(1)解令x=1﹣x,则1﹣x=x,所以3f(x)+2f(1﹣x)=4x,整理得3f(1﹣x)+2f(x)=4(1﹣x),则,解得:;(2)由于函数,当x>0时,g(f(x))=.故:.【点评】本题考查的知识要点:函数的解析式的求法,换元法,主要考查学生的运算能力和转换能力及思维能力,属于基础题.19.(12分)已知集合A={x|0≤x≤2},B={x|a≤x≤3﹣2a}.(1)若(∁U A)∪B=R,求a的取值范围;(2)若A∩B≠B,求a的取值范围.【分析】(1)根据补集与并集的定义,列出不等式组求得a的取值范围.(2)根据A∩B=B得B⊆A,讨论B=∅和B≠∅时,分别求出对应a的取值范围,再求A∩B≠B时a的取值范围.【解答】解:(1)由集合A={x|0≤x≤2},所以∁U A={x|x<0或x>2},又B={x|a≤x≤3﹣2a},(∁U A)∪B=R,所以,解得a≤0;所以实数a的取值范围是(﹣∞,0].(2)若A∩B=B,则B⊆A,当B=∅时,3﹣2a<a,解得a>1;当B≠∅时,有a≤1,要使B⊆A,则,解得;综上知,实数a的取值范围是;所以A∩B≠B时a的取值范围是的补集,为.【点评】本题考查了集合的定义与运算问题,也考查了推理与转化能力,是中档题.20.(12分)已知二次函数f(x)=ax2+bx+c,f(0)=1,f(1)=0,且对任意实数x均有f(x)≥0成立.(1)求f(x)解析式;(2)若函数g(x)=f(x)+2(1﹣m)x在[2,+∞)上的最小值为﹣7,求实数m的值.【分析】(1)利用函数值以及函数的值域,转化求解a,b,c,即可得到函数的解析式.(2)求出函数的解析式,通过函数的最小值,求解m的值即可.【解答】解:(1)二次函数f(x)=ax2+bx+c,f(0)=1,f(1)=0,所以c=1,a+b =﹣1,对任意实数x均有f(x)≥0成立,△=b2﹣4a=0,解得a=1,b=﹣2,所以函数的解析式为:f(x)=x2﹣2x+1;(2)g(x)=x2﹣2mx+1,函数的对称轴为x=m,①当m<2时,g(x)min=g(2)=5﹣4m=﹣7,则m=3(舍);②当m≥2时,,得.综上,.【点评】本题考查函数的解析式的求法,二次函数的最值的求法,考查转化思想以及计算能力.21.(12分)已知定义在R上的函数f(x)对任意x1,x2∈R都有等式f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,有f(x)>1.(1)求证:函数f(x)在R上单调递增;(2)若f(3)=4,关于x不等式恒成立,求t的取值范围.【分析】(1)任取x1,x2∈R,且x1<x2,则x2﹣x1>0,结合已知条件以及单调性的定义推出结果.(2)结合已知条件推出恒成立,利用函数的性质,转化求解即可.【解答】(1)证明:任取x1,x2∈R,且x1<x2,则x2﹣x1>0,∴f(x2﹣x1)>1,f(x2)=f(x1)+f(x2﹣x1)﹣1,∴f(x2)>f(x1).故函数f(x)在R上单调递增.(2)解:f(3)=f(1)+f(2)﹣1=f(1)﹣1+f(1)+f(1)﹣1=3f(1)﹣2,∴f(1)=2,原不等式等价于,故恒成立,令,,∴,y+t>1,∴t>1﹣y,∴t∈(﹣1,+∞).【点评】本题考查函数的应用,不等式的证明,考查转化思想以及计算能力,是难题.22.(12分)已知函数f(x)=|x+m|2﹣3|x|.(1)当m=0时,求函数y=f(x)的单调递减区间;(2)当0<m≤1时,若对任意的x∈[m,+∞),不等式f(x﹣m﹣1)≤2f(x﹣m)恒成立,求实数m的取值范围.【分析】(1)求得m=0时,f(x)的分段函数形式,结合二次函数的对称轴和单调性,可得所求单调递减区间;(2)由题意可得原不等式等价为x2﹣4x+6m﹣1+3|x﹣(1+m)|≥0在x∈[m,+∞)上恒成立,令g(x)=x2﹣4x+6m﹣1+3|x﹣(1+m)|,只需g(x)min≥0即可,写出g(x)的分段函数的形式,讨论单调性可得最小值,解不等式可得所求范围.【解答】解:(1)因为m=0,所以f(x)=x2﹣3|x|=,因为函数f(x)=x2﹣3x的对称轴为,开口向上,所以当时,函数f(x)=x2﹣3x单调递减;当时,函数f(x)=x2﹣3x 单调递增;又函数f(x)=x2+3x的对称轴为,开口向上,所以当时,函数f(x)=x2+3x单调递增;当时,函数f(x)=x2+3x 单调递减;因此,函数y=f(x)的单调递减区间为:(﹣∞,﹣)和;(2)由题意,不等式f(x﹣m﹣1)≤2f(x﹣m)可化为(x﹣1)2﹣3|x﹣1﹣m|≤2x2﹣6|x﹣m|,即x2﹣4x+6m﹣1+3|x﹣(1+m)|≥0在x∈[m,+∞)上恒成立,令g(x)=x2﹣4x+6m﹣1+3|x﹣(1+m)|,则只需g(x)min≥0即可;因为0<m≤1,所以1<m+1≤2,因此g(x)=x2﹣4x+6m﹣1+3|x﹣(1+m)|=,当m≤x≤m+1时,函数g(x)=x2﹣7x+9m+2开口向上,对称轴为:,所以函数g(x)在[m,m+1]上单调递减;当x>m+1时,函数g(x)=x2﹣x+3m﹣4开口向上,对称轴为.所以函数g(x)在[m+1,+∞)上单调递增,因此,由g(x)min≥0得m2+4m﹣4≥0,解得或,因为0<m≤1,所以.即实数m的取值范围为.【点评】本题考查函数的单调区间的求法,以及函数恒成立问题解法,考查转化思想和分类讨论思想、运算能力和推理能力,属于中档题.。

江西省九江市2023-2024学年高一下学期期末考试数学试卷

江西省九江市2023-2024学年高一下学期期末考试数学试卷

江西省九江市2023-2024学年高一下学期期末考试数学试卷一、单选题 1.复数2i2iz +=在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.已知cos25sin 3αα+=,则sin α=( )A .12B .12-C D .3.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,则下列命题正确的是( ) A .若m P ,n n P α,则m P α B .若,,n n m m αβ⊥⊥⊂,则αP β C .若αP ,m ββ⊥,则m α⊥ D .若,m αββ⊥⊂,则m α⊥4.已知,a b rr 满足3a b a b =⋅=-r r r r ,则cos ,a a b +=r r r ( )A B C . D .5.ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知sin cos a a C b C =+,则( ) A .cos sin B C = B .sin cos B C = C .cos sin A B =D .sin cos A B =6.如图,单位圆M 与数轴相切于原点O ,把数轴看成一个“皮尺”,对于任意一个正数a ,它对应正半轴上的点A ,把线段OA 按逆时针方向缠绕到圆M 上,点A 对应单位圆上点A ',这样就得到一个以点M 为顶点,以MO 为始边,经过逆时针旋转以MA '为终边的圆心角α,该角的弧度数为a .若扇形OMA '面积为π6,则OA OA '⋅=u u u r u u u r ( )A B C .π3D .π67.如图,已知圆锥顶点为P ,底面直径为π,4,6AB AB APB ∠==,以AB 为直径的球O 与圆锥相交的曲线记为Ω(异于圆锥的底面),则曲线Ω的长为( )A .B .3πC .2πD .7π38.已知函数()()sin (0,0)f x A x A ωϕω=+>>的部分图象如图.若1220x x +=,则co s 2ϕ=( )A .12B C .12-D .二、多选题9.已知复数12,z z ,则下列命题中正确的是( ) A .若12=z z ,则21z z =± B .1212z z z z ⋅=⋅ C .若21z z =,则12=z zD .若1212z z z z +=-,则120z z =10.把函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数2πsin 4y x ⎛⎫=- ⎪⎝⎭的图象,则()f x ()A .最小正周期为πB .值域为[]0,1C .图象关于直线π6x =-对称D .在π5π,66⎡⎤-⎢⎥⎣⎦上单调递增11.四棱锥P ABCD -的底面为正方形,PA ⊥平面,2,1ABCD PA AB ==,动点M 在线段PC 上(不含端点),点M 到平面ABCD 和平面PAD 的距离分别为12,d d ,则( )A .过,,M A D 三点的截面为直角梯形B .BDM VC .四棱锥P ABCD -外接球的表面积为6π D .122d d +为定值.三、填空题12.已知向量()()cos ,sin ,3,1a b θθ==-r r .若a b ⊥r r ,则tan θ的值为.13.如图“四角反棱台”,它是由两个相互平行的正方形经过旋转、连接而成,且上底面正方形的四个顶点在下底面的射影点为下底面正方形各边的中点.若下底面正方形边长为4,“四角反棱台”高为3,则该几何体体积为.14.已知,αβ是函数()π13sin 2123f x x ⎛⎫=+- ⎪⎝⎭在π0,2⎛⎫⎪⎝⎭上的两个零点,且αβ<,则αβ+=,()sin αβ-=.四、解答题15.如图,已知正四棱台111111,24ABCD A B C D AB A B -==,侧棱1AA =(1)求证:1AA P 平面1BDC ; (2)求证:平面1A BC ⊥平面1BDC .16.如图,在平面直角坐标系xOy 中,单位圆O 与x 轴正半轴的交点为A ,点,B C 在单位圆上,且满足[),,,0,πAOB AOC αβαβ∠=∠=∈.(1)若43,55B ⎛⎫- ⎪⎝⎭,求πcos 6α⎛⎫- ⎪⎝⎭的值;(2)若π3α=,求CA CB ⋅u u u r u u u r 的取值范围.17.如图,在三棱锥A BCD -中,O 为BD 的中点,OCD V 是边长为1的等边三角形,AB CD ⊥.(1)证明:CD ⊥平面ABC ;(2)若,AB AC AO =与平面BCD 所成的角为60o ,求三棱锥A BCD -的体积.18.ABC V 中,,,a b c 分别为内角,,A B C 所对的边,已知()22cos sin a B b A c a b -=-.(1)求A ;(2)设BC 的中点为,2D a =,求AD 的最大值.19.已知定义域为R 的函数()h x 满足:对于任意的x ∈R ,都有()()()ππh x h x h +=+,则称函数()h x 具有性质P .(1)若一次函数()f x 具有性质P ,且()21f =,求()f x 的解析式;(2)若函数()()cos g x x ωϕ=+(其中()()1,3,0,πωϕ∈∈)具有性质P ,求()g x 的单调递增区间;(3)对于(1)(2)中的函数()(),f x g x ,求函数()()()π1F x f x g x =-+在区间[]2π,4π-上的所有零点之和.。

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

高中数学必修二期末考试综合检测试卷第二学期高一期末测试一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z=(1-i)+m(1+i)是纯虚数,则实数m=( )A.-2B.-1C.0D.12.幸福感指数是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意程度越高.现随机抽取6位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( )A.7B.7.5C.8D.93.已知α为平面,a,b为两条不同的直线,则下列结论正确的是( )A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α4.已知在平行四边形ABCD中,M,N分别是BC,CD的中点,如果=a,=b,那么=( )A.a-bB.-a+bC.a+bD.-a-b5.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则该圆锥的体积为( )A.πB.πC.πD.2π6.庆祝中华人民共和国成立70周年的阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就,装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位进行一次采访,则被采访者都关注了此次大阅兵的概率为( )A. B. C. D.7.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120 km,D在A的北偏东30°方向,且与A相距60 km,C在B的北偏东30°方向,且与B相距60 km.一架飞机从城市D出发,以360 km/h 的速度向城市C飞行,飞行了15 min后,接到命令改变航向,飞向城市B,此时飞机距离城市B的距离为( )A.120 kmB.60 kmC.60 kmD.60 km8.如图,在平面直角坐标系xOy中,原点O为正八边形P1P2P3P4P5P6P7P8的中心,P1P8⊥x轴,若坐标轴上的点M(异于原点)满足2++=0(其中1≤i≤8,1≤j≤8,且i,j∈N*),则满足以上条件的点M的个数为( )A.2B.4C.6D.8二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知复数z满足(1-i)z=2i,则下列关于复数z的结论正确的是( )A.|z|=B.复数z的共轭复数=-1-iC.复平面内表示复数z的点位于第二象限D.复数z是方程x2+2x+2=0的一个根10.某市教体局对全市高一年级学生的身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到如下统计图,则下列结论正确的是( )A.样本中女生人数多于男生人数B.样本中B层次人数最多C.样本中E层次的男生人数为6D.样本中D层次的男生人数多于女生人数11.已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是( )A.如果B⊆A,那么P(A∪B)=0.2,P(AB)=0.5B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0C.如果A与B相互独立,那么P(A∪B)=0.7,P(AB)=0D.如果A与B相互独立,那么P()=0.4,P(A)=0.412.如图,正方体ABCD-A'B'C'D'的棱长为1,则下列命题中正确的是( )A.若点M,N分别是线段A'A,A'D'的中点,则MN∥BC'B.点C到平面ABC'D'的距离为C.直线BC与平面ABC'D'所成的角等于D.三棱柱AA'D'-BB'C'的外接球的表面积为3π三、填空题(本题共4小题,每小题5分,共20分)13.已知a,b,c分别为△ABC的三个内角A,B,C的对边,且bcos C+ccos B=asin A,则A= .14.已知数据x1,x2,x3,…,x m的平均数为10,方差为2,则数据2x1-1,2x2-1,2x3-1,…,2x m-1的平均数为,方差为.15.已知|a|=3,|b|=2,(a+2b)·(a-3b)=-18,则a与b的夹角为.16.如图,在三棱锥V-ABC中,AB=2,VA=VB,AC=BC,VC=1,且AV⊥BV,AC⊥BC,则二面角V-AB-C的余弦值是.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量a=(1,2),b=(4,-3).(1)若向量c∥a,且|c|=2,求c的坐标;(2)若向量b+ka与b-ka互相垂直,求实数k的值.18.(12分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a=,c=1,A=.(1)求b及△ABC的面积S;(2)若D为BC边上一点,且,求∠ADB的正弦值.从①AD=1,②∠CAD=这两个条件中任选一个,补充在上面的问题中,并解答.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)在四面体A-BCD中,E,F,M分别是AB,BC,CD的中点,且BD=AC=2,EM=1.(1)求证:EF∥平面ACD;(2)求异面直线AC与BD所成的角.20.(12分)溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为,乙队每人回答问题正确的概率分别为,,,且每人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.(12分)如图,在三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,PA=AB=BC=2,点D为线段AC的中点,点E 为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)当PA∥平面BDE时,求三棱锥P-BDE的体积.22.(12分)2020年开始,山东推行全新的高考制度.新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分.2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的物理、化学、生物三科总分成绩,以20为组距分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中用比例分配的分层随机抽样方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.答案全解全析1.B 复数z=(1-i)+m(1+i)=(m+1)+(m-1)i,因为z是纯虚数,所以解得m=-1.2.C 将6个数据按照从小到大的顺序排列为5,5,6,7,8,9,因为6×80%=4.8,所以第5个数据即为这组数据的第80百分位数,故选C.3.B 如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面,因此B选项正确,易知A、C、D错误.4.B =-=+-(+)=+--=-+=-a+b.5.A 设圆锥的底面半径为r,母线长为l,依题意有2πr=·2πl,所以l=2r,又圆锥的表面积为3π,所以πr2+πrl=3π,解得r=1,因此圆锥的高h==,于是体积V=πr2h=π×12×=π.6.C 这6位外国人分别记为a,A,B,C,D,E,其中a未关注此次大阅兵,A,B,CD,E关注了此次大阅兵, 则样本点有(a,A),(a,B),(a,C),(a,D),(a,E),(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D ,E),共15个,其中被采访者都关注了此次大阅兵的样本点有10个,故所求概率为=.故选C.7.D 取AB的中点E,连接DE,BD.设飞机飞行了15 min后到达F点,连接BF,如图所示,则BF即为所求.因为E为AB的中点,且AB=120 km,所以AE=EB=60 km,又∠DAE=60°,AD=60 km,所以三角形DAE为等边三角形,所以DE=60 km,∠ADE=60°,在等腰三角形EDB中,∠DEB=120°,所以∠EDB=∠EBD=30°,所以∠ADB=90°,所以BD2=AB2-AD2=1202-602=10 800,所以BD=60 km,因为∠CBE=90°+30°=120°,∠EBD=30°,所以∠CBD=90°,所以CD===240 km,所以cos∠BDC===,因为DF=360×=90 km,所以在三角形BDF中,BF2=BD2+DF2-2×BD×DF×cos∠BDF=(60)2+902-2×60×90×=10 800,所以BF=60 km,即此时飞机距离城市B的距离为60 km.8.D 取线段P i P j的中点Q k,因为2++=0,所以+=-2,即2=-2,所以=-,于是Q k,O,M共线,因为点M在坐标轴上,所以Q k也在坐标轴上,于是满足条件的(i,j)的情况有(1,8),(2,7),(3,6),(4,5),(2,3),(1,4),(5,8),(6,7),即满足条件的点M有8个.9.ABCD 由(1-i)z=2i得z==-1+i,于是|z|=,其共轭复数=-1-i,复数z在复平面内对应的点是(-1,1),位于第二象限.因为(-1+i)2+2(-1+i)+2=0,所以复数z是方程x2+2x+2=0的一个根,故选项A、B、C、D均正确.10.ABC 样本中女生人数为9+24+15+9+3=60,则男生人数为40,故A选项正确;样本中B层次人数为24+40×30%=36,并且B层次占女生和男生的比例均最大,故B层次人数最多,B选项正确;E层次中的男生人数为40×(1-10%-30%-25%-20%)=6,故C选项正确;D层次中,男生人数为40×20%=8,女生人数为9,故D选项错误.11.BD 由于B⊆A,所以A∪B=A,AB=B,于是P(A∪B)=P(A)=0.5,P(AB)=P(A∩B)=P(B)=0.2,故A选项错误;由于A与B互斥,所以P(A∪B)=P(A)+P(B)=0.5+0.2=0.7,AB为不可能事件,因此P(AB)=0,故B 选项正确;如果A与B相互独立,那么P(AB)=P(A)P(B)=0.1,故C选项错误;P()=P()P()=0.5×0.8=0.4,P(A)=P(A)P()=0.5×0.8=0.4,故D选项正确.12.ACD 因为M,N分别是线段A'A,A'D'的中点,所以MN∥AD',又因为AD'∥BC',所以MN∥BC',故A 选项正确;连接B'C,易证B'C⊥平面ABC'D',因此点C到平面ABC'D'的距离为B'C=,故B选项错误;直线BC与平面ABC'D'所成的角为∠CBC'=,故C选项正确;三棱柱AA'D'-BB'C'的外接球即正方体的外接球,其半径R=,因此其表面积为4π×=3π,故D选项正确.13.答案90°解析由正弦定理可得sin Bcos C+sin Ccos B=sin2A,即sin(B+C)=sin 2A,所以sin A=sin2A,易知sin A≠0,所以sin A=1,故A=90°.14.答案19;8解析依题意可得2x1-1,2x2-1,…,2x m-1的平均数为2×10-1=19,方差为22×2=8.15.答案解析设a,b的夹角为θ,依题意有|a|2-a·b-6|b|2=-18,所以32-3×2×cos θ-6×22=-18,解得cos θ=,由于θ∈[0,π],故θ=.16.答案解析取AB的中点D,连接VD,CD,由于VA=VB,AC=BC,所以VD⊥AB,CD⊥AB,于是∠VDC就是二面角V-AB-C的平面角.因为AV⊥BV,AC⊥BC,AB=2,所以VD=,DC=,又VC=1,所以cos∠VDC==.17.解析(1)解法一:因为向量c∥a,所以设c=λa,(1分)则c2=(λa)2,即(2)2=λ2a2,(2分)所以20=5λ2,解得λ=±2.(4分)所以c=2a=(2,4)或c=-2a=(-2,-4).(5分)解法二:设向量c=(x,y).(1分)因为c∥a,且a=(1,2),所以2x=y,(2分)因为|c|=2,所以=2,(3分)由解得或(4分)所以c=(2,4)或c=(-2,-4).(5分)(2)因为向量b+ka与b-ka互相垂直,所以(b+ka)·(b-ka)=0,(6分)即b2-k2a2=0.(7分)因为a=(1,2),b=(4,-3),所以a2=5,b2=25,(8分)所以25-5k2=0,解得k=±.(10分)18.解析(1)由余弦定理得,()2=b2+12-2bcos ,(2分)整理得b2+b-6=0,解得b=2或b=-3(舍去).(5分)所以△ABC的面积S=bcsin A=×2×1×=.(6分)(2)选择条件①.在△ABC中,由正弦定理=,得=,(8分)所以sin B=.(9分)因为AD=AB=1,所以∠ADB=∠B.(10分)所以sin∠ADB=sin B,所以sin∠ADB=.(12分)选择条件②.在△ABC中,由余弦定理的推论,得cos B==.(8分)因为A=,所以∠BAD=-=,(9分)所以sin∠ADB=cos B,即sin∠ADB=.(12分)19.解析(1)证明:因为E,F分别为AB,BC的中点,所以EF∥AC.(2分)因为EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.(4分)(2)易得EF∥AC,FM∥BD,(5分)所以∠EFM为异面直线AC与BD所成的角(或其补角).(7分)在△EFM中,EF=FM=EM=1,所以△EFM为等边三角形,(10分)所以∠EFM=60°,即异面直线AC与BD所成的角为60°.(12分)20.解析(1)记“甲队总得分为3分”为事件A,“甲队总得分为1分”为事件B.甲队得3分,即三人都答对,其概率P(A)=××=.(2分)甲队得1分,即三人中只有一人答对,其余两人都答错,其概率P(B)=××+××+××=.(5分)所以甲队总得分为3分的概率为,甲队总得分为1分的概率为.(6分)(2)记“甲队总得分为2分”为事件C,“乙队总得分为1分”为事件D.甲队得2分,即三人中有两人答对,剩余一人答错,则P(C)=××+××+××=.(8分)乙队得1分,即三人中只有一人答对,其余两人都答错,则P(D)=××+××+××=.(11分)由题意得,事件C与事件D相互独立.所以甲队总得分为2分且乙队总得分为1分的概率为P(C)P(D)=×=.(12分)21.解析(1)证明:因为PA⊥底面ABC,且BD⊂底面ABC,所以PA⊥BD.(1分)因为AB=BC,且点D为线段AC的中点,所以BD⊥AC.(2分)又PA∩AC=A,所以BD⊥平面PAC.(3分)又BD⊂平面BDE,所以平面BDE⊥平面PAC.(4分)(2)因为PA∥平面BDE,PA⊂平面PAC,平面PAC∩平面BDE=ED,所以ED∥PA.(5分)因为点D为AC的中点,所以点E为PC的中点.(6分)解法一:由题意知P到平面BDE的距离与A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE=V E-ABD=V E-ABC=V P-ABC=×××2×2×2=.所以三棱锥P-BDE的体积为.(12分)解法二:由题意知点P到平面BDE的距离与点A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE.(8分)由题意得AC=2,AD=,BD=,DE=1,(9分)由(1)知,AD⊥BD,AD⊥DE,且BD∩DE=D,所以AD⊥平面BDE,(10分)所以V A-BDE=AD·S△BDE=×××1×=.所以三棱锥P-BDE的体积为.(12分)解法三:由题意得AC=2,AD=,BD=,DE=1,(8分)由(1)知,BD⊥平面PDE,且S△PDE=DE·AD=×1×=.(10分)所以V P-BDE=V B-PDE=BD·S△PDE=××=.所以三棱锥P-BDE的体积为.(12分)22.解析(1)由题图得,(0.002+0.009 5+0.011+0.012 5+0.007 5+a+0.002 5)×20=1,(1分)解得a=0.005.(2分)(2)(i)因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以三科总分成绩的中位数在[220,240)内,(3分)设中位数为x,则(0.002+0.009 5+0.011)×20+0.012 5×(x-220)=0.5,解得x=224,即中位数为224.(5分)(ii)三科总分成绩的平均数为170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.1+290×0.05=225.6.(7分)(3)三科总分成绩在[220,240),[260,280)两组内的学生分别有25人,10人,故抽样比为=.(8分)所以从三科总分成绩为[220,240)和[260,280)的两组中抽取的学生人数分别为25×=5,10×=2.(9分)记事件A=“抽取的这2名学生来自不同组”.三科总分成绩在[220,240)内的5人分别记为a1,a2,a3,a4,a5,在[260,280)内的2人分别记为b1,b2.现在这7人中抽取2人,则试验的样本空间Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4) ,(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)},共21个样本点.(10分) 其中A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(a5,b1),(a5,b2)},共10个样本点.(11分)所以P(A)=,即抽取的这2名学生来自不同组的概率为.(12分)。

2023-2024学年江西省九江市高一(下)期末数学试卷(含答案)

2023-2024学年江西省九江市高一(下)期末数学试卷(含答案)

2023-2024学年江西省九江市高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.复数z =2+i 2i 在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知cos2α+5sinα=3,则sinα=( )A. 12B. −12C. 32 D. − 323.已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则下列命题正确的是( )A. 若m//n ,n//α,则m//αB. 若n ⊥α,n ⊥m ,m ⊂β,则α//βC. 若α//β,m ⊥β,则m ⊥αD. 若α⊥β,m ⊂β,则m ⊥α4.已知a ,b 满足|a |=|b |=b =−3,则cos 〈a ,a +b〉=( )A. 2 55 B. 55 C. −2 55 D. − 555.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =asinC +bcosC ,则( )A. cosB =sinCB. sinB =cosCC. cosA =sinBD. sinA =cosB6.如图,单位圆M 与数轴相切于原点O ,把数轴看成一个“皮尺”,对于任意一个正数a ,它对应正半轴上的点A ,把线段OA 按逆时针方向缠绕到圆M 上,点A 对应单位圆上点A′,这样就得到一个以点M 为顶点,以MO 为始边,经过逆时针旋转以MA′为终边的圆心角α,该角的弧度数为a.若扇形OMA′面积为π6,则OA ⋅OA′=( )A. 36πB. 33πC. π3 D. π67.如图,已知圆锥顶点为P ,底面直径为AB,AB =4,∠APB =π6,以AB 为直径的球O 与圆锥相交的曲线记为Ω(异于圆锥的底面),则曲线Ω的长为( )A. 2 3πB. 3πC. 2πD. 73π8.已知函数f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象如图.若x 1+2x 2=0,则cos2φ=( )A. 12B. 32C. −12D. − 32二、多选题:本题共3小题,共18分。

2020-2021学年新教材高一数学上学期期末复习练习(四)

2020-2021学年新教材高一数学上学期期末复习练习(四)

2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。

江西省九江市第一中学2020-2021学年高一上学期入学考试——数学试题

江西省九江市第一中学2020-2021学年高一上学期入学考试——数学试题

2019级高一新生摸底考试数 学 试 卷第I 卷(选择题)一、选择题(本大题共6小题,每小题3分,共18分) 1.3的相反数是( )A . 3-B . +3C . 13-D .132.2018年我国大学生毕业人数预计将达到8210000人,这个数据用科学记数法表示为( ) A .8.21×107 B .82.1×106 C . 8.21×106 D . 0.821×107 3. 若一组数据2、3、4、x 、5的众数是2,则这组数据的中位数是( ) A.2 B.3 C. 4 D.54. 当R x ∈时,一元二次不等式012>+-kx kx 恒成立,则k 的取值范围是( ) A.04k << B. 4k < C. 04k ≤< D.04k k <>或5. 在四边形ABCD 中,对角线,AC BD 相交于点O ,则添加下列条件组合中,①AC BD ⊥②AB BC =③AC BD =④,OA OC OB OD ==一定能判定四边形ABCD 为菱形的是( )A.①②B.①③C.②③D.①④ 6. 对于二次函数2(1)(1)2y m x m x m =-++-下列说法错误的是( ) A. 当m=3时,函数图象的顶点坐标是(﹣1,﹣8) B. 当m >1时,函数图象截x 轴所得的线段长度大于3 C. 当m <0时,函数在14x >时,y 随x 的增大而减小 D. 不论m 取何值,函数图象经过两个定点二.填空题(本大题共6小题,每小题3分,共18分) 7.如图,把等边△AOB 绕点O 逆时针旋转到△COD 的位置,若旋转角是40°,则∠AOD 的度数为____________.8.如图,在平面直角坐标系中,函数2y x =-与y kx b =+的图象交于点,2)P m (则不等式2kx b x +>-的解为__________________________.9.《九章算术》有一题,”今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各 几何?” 大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长为1丈,那么门的高和宽是多少?(提示:1丈=10尺=100寸)设门宽为x 尺,列方程为__________________________.10. 已知一元二次方程2210x x --=的两根分别为12,x x 则2111224(1)(1)=x x x x -+++__________.11.已知关于x 的不等式组的整数解共有3个,则b 的取值范围是_______________.12.在四边形ABCD 中,//,90,3,11,6AB DC B AB BC DC ︒∠====.点P 在BC 上,连接,AP DP .若ABP ∆与PCD ∆相似,则BP 的长是___________. 三、(本大题共5小题,每小题6分,共30分) 13.(1)解方程:125332x x +--= (2)解不等式:2615641x x x --+>-14.如图,ABCD 中,点E 在BC 边上,点F 在AD 边的延长线上,且:1:4DF AD =EF 与CD 的交于点G .(1)若:1:3BE EC =,求证:BD EF =;(2)若2,63DG BE GC ==求AD 的长.15.解关于x 的不等式:2(1)(21)20a x a x -+-+>16.布袋中放有x 个白球、y 个黄球、2个红球,它们除颜色外其它都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是13.(1)请问摸到黑球是________事件;摸到红球是________事件.(填“不可能”、“必然”或“随机”)(2)当x =2时,随机地摸出2个球,试用画树状图或列表的方法表示摸球的所有结果,并求出摸到一个黄球一个白球的概率.17.如图1,是一种折叠椅,忽略其支架等的宽度,得到它的侧面简化结构图(图2),支架与坐板均用线段表示.若坐板CD 平行于地面,前支撑架AB 与后支撑架OF 分别与CD 交于点E ,D ,ED=25cm ,OD=20cm ,DF=40cm ,∠ODC=60°,∠AED=50°. (1)求两支架着地点B ,F 之间的距离;(2)若A 、D 两点所在的直线正好与地面垂直,求椅子的高度.(参数数据:sin60°=0.87,cos60°=0.5,tan60°=1.73,sin50°=0.77,cos50°=0.64,tan50°=1.19)四、(本大题共3小题,每小题8分,共24分)18. 2018年12月4日是我国第五个国家宪法日.12月3日,由省委宣传部、省司法厅和省普法办共同举办的江西省首个“宪法宣传周”活动在南昌市法治广场正式启动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题
17.已知全集 集合 , ,

(1)求 ;
(2)若 ,求实数 的取值范围.
18.如图:正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.
(1)求证:A1C//平面AB1D;
(2)求点C到平面AB1D的距离.
19.设函数 是定义域(0,+∞)上的增函数,且 = .
(1)求 的值;
考点:函数的概念.
5.C
【解析】
由题意可知,点AB,的中点坐标为(2,0,3),由于纵坐标为零,因此可知线段AB的中点在空间直角坐标系中的位置是在xoz面内,选C.
6.A
【解析】
试题分析:因为直线的斜率为1,所以 ,解得 ;故选A.
考点:直线的斜率公式.
7.C
【解析】
试题分析:若 , ,则 ,又因为 ,所以 ,故①正确;若 , ,则 或 ,又 ,则 可能平行或相交,故②错误;若 , ,则 或 ,又 ,则 可能平行、相交或异面,故③错误;若 , ,则 或 ,又 ,则 ,故④正确;故选C.
(1)若 ,试求点 的坐标;
(2)求证:经过 三点的圆必过定点,并求出所有定点的坐标.
22.已知函数 , 是常数.
(1)若 ,方程 有两解,求 的值.
(2)是否存在常数 ,使 对任意 恒成立?若存在,求常数 的取值范围;若不存在,简要说明理由.
参考答案
1.B
【解析】
试题分析:由题意,得 ,即集合 的元素个数是1;故选B.
3.直线 的斜率是()
A. B. C. D.
4.已知集合M={-1,1,2,4},N={0,1,2},给出下列四个对应关系:
①y=x2,②y=x+1,③y=2x,④y=log2|x|.其中能构成从M到N的函数的是()
A.①B.②C.③D.④
5.设 ,则线段AB的中点在空间直角坐标系中的位置是()
A.在 轴上B.在 面内C.在 面内D.在Байду номын сангаас面内
考点:圆的标准方程.
3.D
【解析】
试题分析:将 化为 ,即直线 的斜率为 ;故选D.
考点:1.直线方程的一般式和斜截式;2.直线的斜率.
4.D
【解析】
试题分析:当 时, ,所以 不能构成从M到N的函数;当 时, ,所以 不能构成从M到N的函数;当 时, ,所以 不能构成从M到N的函数;当 时, ,所以 能构成从M到N的函数;故选D.
考点:1.圆的一般方程;2.两圆的位置关系.
【技巧点睛】本题考查圆的一般方程和两圆的位置关系,属于中档题;因为 是两个不同圆上的动点,直接求其距离的最值无法下手;本题的技巧所在,将两动点的距离的最值问题转化为两圆的圆心间的距离问题,即 的最小值为两圆的圆心间的距离减去两圆的半径.
A.(-4,-3)B.(-3,-2)
C.(-2,-1)D.(-1,0)
二、填空题
13.计算:2log510+log50.25=.
14.设a,b∈R,且 ,若奇函数f(x)="lg" 在区间(-b,b)上有定义.则b的取值范围是.
15.已知x,y满足x2+y2=1,则 的最小值为_______
16.已知函数 ,如果对任意一个三角形,只要它的三边长 都在 的定义域内,就有 也是某个三角形的三边长,则称 为“保三角形函数”.在函数① ,② ,③ 中,其中是“保三角形函数”.(填上正确的函数序号)
(2)若 =1,求不等式 的解集.
20.已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a、b的值.
(1)直线l1过点(-3,-1),并且直线l1与直线l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1、l2的距离相等.
21.已知圆 的方程为 ,直线 的方程为 ,点 在直线 上,过 点作圆 的切线 ,切点为 .
考点:1.圆的对称性;2.直线与圆的位置关系.
10.A
【解析】
试题分析:
表示 轴上的点 到点 和点 的距离之和,由平面几何知识,得:当 三点
共线时, 取得最小值 ;故选A.
考点:两点间的距离公式.
11.C
【解析】
试题分析:圆 的圆心坐标为 ,半径为 ;
圆 的圆心坐标为 ,半径为 ,且 ,
则 的最小值为 ;故选C.
B.直线与圆相交,但不过圆心
C.直线与圆相切
D.直线与圆无公共点
9.过点A(11,2)作圆 的弦,其中弦长为整数的共有
A.16条B.17条C.32条D.34条
10.函数 的最小值为()
A. B. C. D.
11.点P在圆 上,点Q在圆 上,则|PQ|的最小值是()
A.5B.0C.3 -5D.5-2
12.已知单调函数f(x)满足分f(0)=3,且 = ,则函数零点所在区间为()
考点:1.集合的表示;2.集合的运算.
【易错点睛】本题考查利用描述法表示集合和集合的交集运算,属于基础题;利用描述法表示集合时,要注意代表元素的意义,且不要出现错误;如 表示函数 的定义域,是一个数集; 表示函数 的值域,是一个数集; 表示函数 的图象,是一个点集.
2.B
【解析】
试题分析:由圆的方程 ,可得该圆的圆心坐标为 ;故选B.
考点:空间中线面位置关系的转化.
8.C
【解析】
直线 的倾斜角为 ,则将其绕原点按逆时针方向旋转 后得到的直线的倾斜角为 ,所以直线方程为 .圆心 到直线 的距离 ,所以直线与圆相切,故选C
9.C
【解析】
试题分析:将 化为 ,即该圆的圆心坐标为 ,半径为 ,且 ,且经过点 的弦的最大长度为 (当弦过圆心时),最小弦长为 (当弦与直线 垂直时),所以其中弦长为整数的可能是10(一条), (各两条,共30条),26(一条),一共32条;故选C.
6.过点M(-1,m),N(m+1,4)的直线的斜率等于1,则m的值为()
A.1B. C.2D.
7.已知直线 平面 且 给出下列四个命题:
①若 则 ②若 则 ③若 则 ④若 则
其中真命题是()
A.①②B.①③C.①④D.②④
8.直线 绕原点逆时针方向旋转 后所得直线与圆 的位置关系是()
A.直线过圆心
【最新】江西省九江市一中高一上学期期末数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 ,则集合 的元素个数是()
A.0B.1C.2D.3
2.圆 的圆心坐标为()
A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)
相关文档
最新文档