微积分(二)同步练习答案

合集下载

微积分II真题含答案

微积分II真题含答案

微积分II真题含答案微积分II真题含答案一、填空题(每题3分,共30分)1、函数的定义域是____________. 2、设,则________________. 3、广义积分的敛散性为_____________. 4、____________ . 5、若 . 6、微分方程的通解是____. 7、级数的敛散性为 . 8、已知边际收益R/(x)=3x2+1000,R(0)=0,则总收益函数R(x)=____________. 9、交换的积分次序= . 10、微分方程的阶数为_____阶. 二、单选题(每题3分,共15分)1、下列级数收敛的是()A,B,C,D,2、,微分方程的通解为()A,B,C,D,3、设D为:,二重积分=()A, B, C, D,0 4、若A, B, C, D, 5、=()A, 0 B, 1 C, 2 D, 三、计算下列各题(本题共4小题,每小题8分,共32分)1.已知2. 求,其中D是由,x=1和x轴围成的区域。

3. 已知z=f(x,y)由方程确定,求4.判定级数的敛散性. 四、应用题(本题共2小题,每小题9分,共18分):1. 求由和x轴围成的图形的面积及该图形绕x轴旋转所得旋转体的体积。

2. 已知x表示劳动力,y表示资本,某生产商的生产函数为,劳动力的单位成本为200元,,每单位资本的成本为400元,总1/ 14预算为*****元,问生产商应如何确定x和y,使产量达到最大?。

五、证明题(5分)一、填空题(每小题3分,共30分)1, 2,3,发散4,0 5,6,y=cx 7,收敛8,R(x)=x3+1000x 9,10,2 二、单选题(每小题3分,共15分)1,B 2,B 3,C 4,C 5,D 三、计算题(每小题8分,共32分)1、解:令2、3、整理方程得:4、先用比值判别法判别的敛散性,(2分)收敛,所以绝对收敛。

(交错法不行就用比较法) (8分)四、应用题(每小题9分,共18分)1、解:2、解:约束条件为200x+400y-*****=0 (2分)构造拉格朗日函数,(4分),求一阶偏导数,(6分)得唯一解为:,(8分)根据实际意义,唯一的驻点就是最大值点,该厂获得最大产量时的x为40,y为230. (9分)五、证明题(5分)证明:设对等式两边积分,得:(2分)(4分)解得:题设结论得证。

微积分(2)练习题2_答案

微积分(2)练习题2_答案

《微积分(2)》练习题2答案一、求下列积分(4小题,每小题9分,共36分)3411(3)xx dx x+-⎰、 解:原式c xx x+++=34313ln 34122cos x xdx ⎰、 解:原式⎰+++=-=c x x x x x xdx x x x sin 2cos 2sin sin 2sin 22,13⎰、 解:令2t x =,原式)2ln 1(2)]1ln([2121010+=+-=+=⎰t t dt t t4134xx e dx ⎰、 解:原式)1(41|41411041044-===⎰e edx exx,二、求下列偏导数(3小题,每小题9分,共27分)45z 1sin(),z z x y x yδδδδ=+、 求, 解:)cos(4543y x x x z +=∂∂ )cos(5544y x y x z +=∂∂ 22z 2(,),z z f x y xy x yδδδδ=-、 求,解:y f x f xz 212'+'=∂∂x f y f xz 212'+'-=∂∂333z 3(,)x 31z z f x y y z xyz x yδδδδ=++-=、 由确定,求,解:两边对x 求偏导数: 0333322='--'+xx z xy yz z z x 得 xyzx yz xz 333322--=∂∂ 两边对y 求偏导数: 0333322='--'+y y z xy xz z z y 得 xyzy xz yz 333322--=∂∂三、解下列常微分方程(2小题,每小题9分,共18分) 21cos dx xdx =、 y 解:dx x dy y ⎰⎰=cos 2,c x y+=sin 313,224dy xy x dx+=、解:2)2(]4[22222+=+=⎰+⎰=--⎰x x x dx x dxx ce e c e dx e x c e y , 四、求曲线22y x =-与直线y x =围成的面积(9分) 解:2/9)2/3/2()2(1223212=--=----⎰x x x dx x x五、(,)z z x y =由F(x-y,y-z,z-x)=0确定,求z z xyδδδδ+(10分)解:32F F F z '+'-=',31F F F x '-'=',21F F F y '+'-=',1-=''+''=∂∂+∂∂z y z x F F F F yz xz ,注:第三题第1小题 xdx dxy cos 2= 应改为 xdx dy y cos 2=;第二题、第五题中所有yz xz δδδδ 中的符号 δ 都要改成 ∂ ;。

微积分2参考答案

微积分2参考答案

参考答案及提示第一章 函数习题一1、(1)-1、2、-3. (2)-4、23、.86443222-+--x x x x 、(3)有界. 2、略.3、解:∵362)(2-+=x x f x∴3623)(6)(2)(22--=--+-=-x x x x x f ∴64)]()([21)(2-=-+=x x f x f x ϕxx f x f x 12)]()([21)(=--=φ又∵)(646)(4)(22x x x x ϕϕ=-=--=-,即)(z ϕ是偶函数;)(6)(6)(x x x x ψψ-=-=-=-,即)(x ψ是奇函数.4、(1)解:由题知,设c bx ax x R ++=2)(且满足方程组:⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧++=++==0421*******0c b a cb ac b a c∴.4212x Rx +-=(2)解:由题列方程组:⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧⋅+=⋅+=⋅+=2510905030432c b a c b a c b a c b a即2510p Q ⋅+=.(3) 解:由题意有:⎩⎨⎧≤<⨯⨯-+⨯≤≤=10007009.0130)700(1307007000130x x x x R5、(1)解:∵Z k k x ∈≠+,+21ππ∴⎭⎬⎫⎩⎨⎧±±=-+≠ ,2,1,0,12|k k x x ππ.(2)∵131≤-≤-x ,∴]4,2[∈x .(3)∵⎩⎨⎧≠≥-03x x ,∴]3,0()0,(⋃-∞.(4)∵,0ln ≥x ∴1≥x ,∴),1(+∞∈x .*6、解:由题有x e x f x -==1))(()(2ϕϕ,∴).1,(,)1ln()(-∞∈-=x x x ϕ7、(1)uy =u = 3x-1. (2)2u y = u = lgv v = arccosw 2x w =(3)y=au 3v u = v=1+x. * (4)ua y =u=sinv wv =12+=x w8、(1)47-=x y . (2)1)1(2-+=x x y . (3)2arcsin31x y =. (4)21-=-e x y*9、略.第一章 单元测验题1、(1),8)2(,6)1(,4)0(πππ===g g g .2)2(,125)3(ππ=-=-g g2、解:由题知)3,2(]2,7[04913032⋃-∈⇒⎪⎩⎪⎨⎧≥-≠->-x x x x ,且342lg 1))7((+=-f f .3、解:令t x =ln ,即te x =,则ttee tf )1ln()(+=,∴ee xx x f )1ln()(+=.4、解:11)()(9333+=+=x x x f , 12)1()]([36232++=+=x x x x f .5、证明:∵)(loglogloglog)()1()1(1)1()1)(1()1)((222222x f x f x x ax x ax x x x x x ax x a-=-====-++++++++-++-+-∴)(x f 为奇函数.6、解:由题知:⎪⎩⎪⎨⎧>-=<=⎪⎪⎩⎪⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=0100011110111)(11)(01)(1)]([x x x ee e x g x g x g x gf xx x , ⎪⎩⎪⎨⎧>=<=⎪⎩⎪⎨⎧>=<==--1||1||11||1||1||1||)]([1101)(x e x x e x e x e x e ex f g x f .第二章 极限与连续习题二1、(1)3231,1615,87,43,21 (2)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛564534235432,,,,2(3)5sin 51,82,63,21,0π(4),!3)2)(1(,!2)1(,---m m m m m m !4)3)(2)(1(---m m m m ,!5)4)(3)(2)(1(----m m m m m2、(1)收敛 (2)收敛 (3)发散 (4)收敛3、(1)证明:对0>∀ε,]1[ε=∃N ,当Nn >时,ε<+=-+1111n n n ,则11lim =+∞→n n n ;(2)证明:对0>∀ε,]11[2+=∃εN ,当N n >时,ε<=-nn111,则01l i m=∞→nn .4、(1)2 (2)∞+ (3)∞- (4)∞ (5)∞+ (6)0 (7)∞ (8)0(9)不存在 (10)∞- (11)不存在 (12)不存在 (13)0 (14)∞ 5、提示:用左右极限来证. 证明:∵1lim lim==++→→x x x xx x ,1lim lim 0-=-=--→→xx x x x x∴xx xxx x -+→→≠0lim lim,即xx x 0lim →不存在.6、解: 1lim )(lim ,3)2(lim )(lim 1111-===-=++---→-→-→-→x x f x x f x x x x ,,3)(lim ,1)(lim 11==+-→→x f x f x x∵)(lim )(lim 11x f x f x x +-→→≠,∴)(lim 1x f x →不存在.7、(1)证明:对0>∀ε,01>=∃εM ,当M x >时,ε<=-xx101,则01lim=∞→xx ;(2)证明:对0>∀ε,0>=∃εδ,当δ<--)2(x 时,ε<+=--+-2)4(242x x x 成立则424lim22-=+--→x x x .8、(1)(2)(4)是无穷小. 9、(1)xsinx 是无穷小,x25是无穷大 (2)10,52x x-是无穷小,xex ),2lg(+是无穷大.10、当∞→→x x 或0时,f(x)是无穷大量,当21→x 时,f(x)是无穷小量.11、(1)∵1sin ≤n 为有界变量,且011lim =+∞→n n ,∴01sin lim=+∞→n n n .(2)∵2arctan π≤x 为有界变量,且01lim2=∞→xx ,∴0arctan lim2=∞→xx x .(3)∵当0→x 时,11cos ≤x为有界变量,且0lim 0=→x x ,∴01coslim 0=→x x x .(4)∵011lim1=+-→x x x ,∴∞=-+→11lim1x x x .12、(1)原式75342452=+⨯-⨯=; (2)原式213)1(4)1(212=--⨯+---=;(3)∵0123lim23=+-+-→x x x x ,∴原式∞=; (4)原式1lim 1)1(lim1221==--=→→t t t t t t ;(5)原式42221lim)22(lim)22()22)(22(lim-=+--=+--=+-+---=→→→t t t t t t t t t t t ;(6)原式=0; (7)原式=21;(8)原式=)23)(4(23lim)23)(4()23)(23(lim22222-+-+-=-+--+--→→x x x x x x x x x x x x x x161)23)(2()1(lim)23)(2)(2()1)(2(lim22=-++-=-++---=→→x x x x x x x x x x x x ;(9)原式323)131(lim)131)(131()131(lim=++=++-+++=→→x x x x x x x x x ;*(10)原式21)11(11lim)11(1)11)(11(lim-=+++-=++++++-=→→t t t t t t t t t .13、解:∵+∞==--→→21lim)(lim xx f x x ,0)2(lim )(lim 20=-=++→→x x x f x x∴0→x 时,f(x)极限不存在.又∵0)2(lim )(lim 222=-=--→→x x x f x x ,0)63(lim )(lim 22=-=++→→x x f x x∴2→x 时极限存在. 由题知,01lim)(lim 2==-∞→-∞→xx f x x ,)(lim x f x +∞→不存在.14、解:由题知,当3→x 时,→+-k x x 22k= -3.*15、解:∵左边011)()1(lim11lim222=+-++--=+----+=∞→∞→x bx b a x a x bax bx axx x x ,∴⎩⎨⎧-==⇒⎩⎨⎧=+=-11001b a b a a . 16、(1)原式2211211lim=--=∞→nn ;(2)原式21)221(lim =-+=∞→n n n .*17、证明:(1)∵1)22(lim 21=++-→x x x ,11lim 1=-→x ,∴由夹逼定理有1)(lim 1=-→x f x .(2)∵2222212111nn nnn n nnn<++⋅⋅⋅++++<+且1lim2=+∞→nn nn ,1lim2=∞→nn n ,∴由夹逼定理有,原式=1,得证.18、(1)原式1cos lim sin limcos sin lim===→→→x xx x xx x x x ;(2)原式2sin lim2sin sin 2lim2===→→xx xx xx x ;(3)原式xx xx n nn =⋅=∞→22sinlim; (4)原式353551sin513131sinlim=⋅⋅=∞→x x x x xxx .19、(1)原式222101)21(lim )21(lim ex x xx xx =+=+=⋅→→++; (2)原式22)11(lim e xx x =+=⋅∞→;(3)原式e x x x =++=-+∞→21212)1221(lim .20、(1)原式31111arccoslim arccoslim 2π=++=++=+∞→+∞→x xx x x x x ;(2)原式3ln 3113lnlim 313lnlim 2222=++=++=∞→∞→xxx x x x .21、(1)∵1lim )(lim 211==--→→x x f x x ,1)2(lim )(lim 11=-=++→→x x f x x ,∴1)(lim 1=→x f x .且==1)1(f )(lim 1x f x →,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数,即)(x f 在 ]1,0[和]2,1(上连续,及)(x f 在]2,0[上连续.(2)∵1lim )(lim 1)(lim 111-==≠=++--→-→-→x x f x f x x x ,∴-1为)(x f 的其间断点.又∵)(lim 1lim )(lim 111x f x x f x x x +--→→→===,且1)1(=f ,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数∴)(x f 在)1,(--∞与),1(+∞-内连续.22、解:∵22lim )(lim 11==--→→x x f x x ,d c d cx x f x x +=+=++→→)(lim )(lim 211且d c f +=)1(;dc d cxx f x x +=+=--→→4)(lim )(lim 222,84lim )(lim 22==++→→x x f x x 且d c f +=4)2(,又∵)(x f 在),(+∞-∞上连续,则⎩⎨⎧==⇒⎩⎨⎧=+=+02842d c d c d c .23、(1)∵)(x f 在1-=x 处无定义,∴1-=x 为)(x f 的间断点.(2)∵2)1(lim 11lim)(lim 1211-=-=+-=-→-→-→x x x x f x x x ,且)(lim 6)1(1x f f x -→≠=∴1-=x 是)(x f 的间断点. (3)∵-∞=--=→→))1(1lim()(lim 211x x f x x ,即极限不存在,∴1=x 为)(x f 的间断点.(4)∵1)1(lim )(lim 22-=-=--→→x x f x x ,0)2(lim )(lim 222=-=++→→x x x f x x ,∴)(lim 2x f x →不存在,即2=x 为)(x f 的间断点.24、(1)证明:令32)(45---=x x x x f . ∵075)3(,05)2(>=<-=f f ,∴由介值定理的推论,)(x f 在)3,2(中至少存在一个根. (2)证明:令1)(2+-=x x x f . ∵034)2(,021)1(>-=<-=f f∴. 由介值定理的推论,)(x f 在)2,1(中至少存在一个根.第二章 单元测验题1、(1)原式0cos 1sinlim lim sin lim 21cos sin 21sinlim0000=⋅⋅=⋅⋅=→→→→x xx x x x x x x x x x x x ;(2)原式211lim 2=++=+∞→xx x x ;(3)原式2121lim 1134322321lim=+=+⋅-⋅⋅⋅⋅⋅=∞→∞→n n n n n n n n . 2、解:∵55lim )(lim ,0lim )(lim 01a x a x f e x f x x x x x =+===++--→→→→∴由题知,要使)(x f 在整个数轴上连续,必须满足005=⇒=a a .3、解:∵01sin lim )(lim ,1ln )1ln(lim )(lim 01)1(1=-=-==-=++--→→--⋅-→→x x x f ex x f x x xx x∴)(lim 0x f x →不存在,0=x 是)(x f 的间断点.又∵∞=-=→→1sin lim)(lim 11x x x f x x ,即极限不存在,∴1=x 是)(x f 间断点.因此,)(x f 的连续区间为),1()1,0()0,(+∞⋃⋃-∞.4、解:∵111sinlim22=-+→axxx , ∴左边=aaxxx aaxaxx x x x 2)11(lim )sin (lim 1)11(sin lim220222=++⋅=++→→→,∴2=a .。

浙江大学城市学院微积分II(丙)练习册全部答案

浙江大学城市学院微积分II(丙)练习册全部答案

第八章 微分方程初步第一节 微分方程的概念1. 验证函数212y C x C x =+是否为微分方程2220yy y x x'''-+=的解.解:122y C C x y C '''=+=2, 2, 代入方程:()221212222222()0y y y C C C x C x C x x x x x'''-+=-⋅+++=22 因此是解。

2.验证由方程22x xy y C -+=所确定的函数为微分方程(2)2x y y x y '-=-的通解.解:对22x xy y C -+=两边求导,有2()20x y xy yy ''-++=,即有 (2)2x y y x y '-=-,是解有因为解中一个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

3.验证函数1212()(,xy C C x e C C -=+为任意常数)是微分方程20y y y '''++=的通解,并求满足初始条件004,2,x x y y =='==-的特解.解:2122122212212()(),()(2),x x x x x x y C e C C x e C C C x e y C e C C C x e C C C x e ------'=-+=--''=----=--- 将上式代入方程左边有:21221212(2)2()()0x x x C C C x e C C C x e C C x e ------+--++=,有因为解中2个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

由004,2,x x y y =='==-得: 124,2C C ==特解:(42)xy x e -=+第二节一阶微分方程1、求下列可分离变量微分方程的通解(或特解)(1)0 xydx=解:1,dyy= 11211,(1)ln, ln,,C Cdy x yyy Cy y e--=-=+==±⋅=⎰(20 +=解:,=,=()21,y=-arcsin,x C=即为通解(3)212,0x yxy xe y-='==解: 22,,x y y xdyxe e e dy xe dxdx-=⋅=()()22222222221,,211,,221111,ln,2224y x y xy x x y x xy x x x xe dy xe dx e xdee xe e dx e xe e dxe xe e C y xe e C===-=-⎛⎫⎛⎫=-+=-+⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰由12xy==,得1,C=211ln()122xy x e⎡⎤=-+⎢⎥⎣⎦(4)23(4),1xx x y y y='-==.解:22,,(4)(4)dy dx dy dxy x x y x x==--⎰⎰()411111ln,ln ln ln4,4441ln ln,,4444Cy dx y x x Cx xC xx xy C y ex x x=+=--+-=+=±⋅=---⎰ 由31xy==,得113C=,43(4)xyx=-。

2019版 2微积分练习题(下) 第二章 答案

2019版 2微积分练习题(下) 第二章 答案

dx f (x, y)dy
1
1
x
13
33
dy f (x, y)dx dy f (x, y)dx
1
1
3
y
1y
12
练习题 7
班级
学号
姓名
1. 把下列二重积分化为累次积分.
(1) f (x, y)d ,其中 D 是由 y x ,
D
x 2 及 x 轴所围成的闭区域;
解:原式= 2 x f (x, y)dydx . 00
2. 交换下列二次积分的积分次序(要求画出积 分区域的图形):
1
y
(1) dy f (x, y)dx ;
0
y
1x
解:原式= dx f (x, y)dy . 0 x2
1x
2 2x
(3) dx f (x, y)dy + dx f (x, y)dy .
00
1
0
1 2 y
解:原式= dy f (x, y)dx .
积函数关于 x 轴、 y 轴不对称,所以该式不
成立.
2.计算二重积分:
(| x | y)dxdy , D : x y 1;
D
解:积分区域 D 关于 x 轴、 y 轴都对称, y 关于
y 是奇函数, ydxdy 0
D
1 1x
x dxdy 2 xdxdy 2 dx xdy
D
D1
0 x1
2
2
cos
原式=
2
0
f ( cos , sin )dd
2
2.利用极坐标计算下列各题:
(1) e x2 y2 dxdy , D : x 2 y 2 4 ; D
解:设 x r cos , y r sin .则

微积分(二)综合练习题2答案

微积分(二)综合练习题2答案

《微积分》下册 综合练习题2参考答案一、填空题(每小题2分,共10分): 1.函数z =2{(,)|0,0,}D x y x y x y =≥≥≥。

2. 设()()2222,x y f x y x y e x y ++-=-,则f =22e 。

3.设y x z =,则1y z yx x -∂=∂,ln y zx x y∂=∂。

4. 设()22,f xy x y x y xy +=++,则(),f x y x∂=∂ - 1。

5. 函数z 是由方程0=-xyz e x 所确定的二元函数,则全微分edy dz -=)1,1(|.6. 若级数11(1)n n α∞=+∑α发散,则的取值范围是1α≤。

7.级数∑∞=-0)3(n nx 的和函数是01()(3)4nn S x x x∞==-=-∑,且收敛域是 (2,4) 。

8.设D 为1x y +≤, 则Ddxdy =⎰⎰___2__。

9. 若交换积分次序,则二重积分⎰-1010),(dy y x f dx x=110(,)ydy f x y dx -⎰⎰。

10.方程y dxdy x2-=的通解为 2Cy x =。

二、单项选择(每小题2分,共10分):1.已知a a n n =∞→lim ,则)(11-∞=-∑n n n a a ( C )。

(A )收敛于0 (B )收敛于a(C )收敛于0a a - (D )发散2.设生产函数为32313K L Q =,其中Q 为产品的产量,K 为资本投入,L 为劳动投入。

则当L = 27, K = 8时,资本投入K 的边际生产率为( D )。

(A )94 (B )836(C )3 (D )27363.设D 是圆122=+y x 所包围的在第一象限的区域,则在极坐标变换下,二重积分=⎰⎰Ddxdy y x f ),(( B )。

(A )⎰⎰100)sin ,cos (rdr r r f d θθθπ (B )⎰⎰1020)sin ,cos (rdr r r f d θθθπ(C )⎰⎰202)sin ,cos (rdr r r f d θθθπ (D )⎰⎰200)sin ,cos (rdr r r f d θθθπ 4.设D 由x 轴,e x x y ==,ln 围成,则=⎰⎰Ddxdy y x f ),(( A )。

微积分第二章习题参考答案

微积分第二章习题参考答案
2 a 1, a 1.
f ( 0 )
lim
x 0
(2e x
1) x
1
2,
f ( 0 )
lim
x 0
(x2
bx x
1)
1
b ,
b
2.
当 a 1,b 2时 , f ( x )在 x 0处 可 导 .
5.设 t时 刻 水 面 的 高 度 为 h , 液 面 半 径 为 r ,则 r R h , H
2.当 0时 ,函 数 在 x 0处 连 续 ,
当 0时 ,函 数 在 x 0处 不 连 续 ;
当 1时 ,函 数 在 x 0处 可 导 ,
当 1时 ,函 数 在 x 0处 不 可 导 .
五 .证 明.
设 切 点 为( x0, y0 ),
y( x0 )
a2
x
2 0
y0 x0
y
x
y y( y x ln y) . x( x y ln x)
3.解 : y ln(1 t) ln(1 t),
y(n)
(1)n1 [(1 t)n
1 (1 t)n
](n 1)!.
4.解 : f (0 0 ) lim (2e x a ) 2 a , x 0 f (0 0) lim ( x 2 bx 1) 1, x 0
,
切线方程为
:
y
y0
y0 x0
(x
x0 ),其 截 距 式 为
xy 1,
2 x0 2 y0
切线与两坐标轴构成的三角形面积
S
1 2
| 2x0
|
| 2 y0
|
2a 2为 常 数 ,与 切 点 无 关 .
§2.2求导法则(21-22)

微积分II课程微积分2答案

微积分II课程微积分2答案

I 10.令 x = asect第四章 不定积分答案2 24. I = sin x sinxdx = - 1-cosxdcosx 、填空题 2.F x |亠 C 3.1 二-cosx — \ 3 1 31 3 cos x J ■ C cos x-cosx C3 3x C 5.4. -C In 2 」x 335.一丄Cxxe (e x ) +1dx 二一de _2 二 arctang XC ’1+(e x ) 6. 6e x C 7.-3sin x C I 二 t 2—1 t 2tdt =2 t 4 -t 2 dt8. 3x x arcta n x C 39.x r 2 C1-In 3x + 2x +C 2 1 2 10. In 2x C 2 -cos2x C 12. le 7x C7114. 丄 In 1+2x+C 2 13. 7. 令 t = 6x11.15.1—2x C 1 316. 「cosx cos x C 3 8. 17. e" 1 x C 18. 6"dt t 123t 2—6t +6ln t +1 +C1 13x^ -6x® +6 In x令 x= si nt3I =1 - sin 2t 2costdt - I i cost dt二、 单项选择题 1 . C 2 . A 3 . D 4 7 . D 8 . D 9 . 12.B 三、 计算题 1 .A10.A.B11.Bx二 sec 2 tdt 二 tant CCTT79 .令 x =ta ntseC tdt (1+tan 2t j2 .■sec 4-dt二 costdt sec t2 -.2 -x 2d 2 -x2 -x 2 C2. 1 x 2 = l n 1 x 2 C-exd ;1 111 cos2t dt t —sin2t C2 2 4 11 1x t sintcost C arctanx 2 C 2 2 21 x 23.1-e" C.a2 sect -1 asectantdt =a tarn tdtasec=a lise^t -1 dt =a tant -t Cf'-2—2 、x -a aarccos a x4C=Jx2 217. a-a -aarccos Cx2x 2 _xI = - x de = x e_ 2xe*dx-x2e» -2 xde^-x2e» -2xe" 2 e^dx_x2 _2x_2 e」C11. I =dx2、厂1_ 1 sect tant3 ta nt22令x^sect secttantdt 18.=1J322Jsec t -1dt^1sectdt31=Tn sect +tant 3 C = 】ln33x站4219.12.1 d 3x-1 _J(3X-12+6 3=]| n j9x2-6x+7+3x-1+C13. 2 2I =xln 1 X - xdln 1 x2 =xln 1 x2 =xln 1 x -x^dx;_2x 2arctanx C20.14.xde x = xe x - e x dx =xe x-e x C15.I = x arccosx - xd arccosxx arccosx dx1-x21「1 ,2 .= xarccosx-—J ;2d(1-x )21.16.x arccosx - 1 - x2 CI = lnxdl 」一hx ^dx — Sx」C x x x x x4 4二(ln x)2d£4(ln x)2-4 41 3x ln xdx = — (ln x)21 4| 1x ln x8 81 4 1 4--x ln x x C8 324x 2(ln x)44=—(ln x)24x4 (ln x)4=sin xde xx41(2ln x)—dx44 x4、4 1 .x dxx=e x sin x - e x cosxdx=e x sin x - cosxde xX ・x x .=e sin x -e cosx e dcosx= e x(sin x-cosx) - ' e x sin xdxe x sin xdx = - e x(sin x -cosx) C2I = sec x secxdx = secxd tan x=secxtanx- 'tanx tanx secxdx=secxtanx- '(sec x-1)secxdx=secxtan x- sef xdx亠i secxdx3=secxtanx- Jsec xdx + In secx +31[sec xdx = —(secxtanx + ln secx +2x-8 ln xdx4tanxtanx C令t=, xI二.eStdt = 2 tdd =2td -2 ddt= 2td -2& C =2 =e x-2e x C22. l=Jlnlnxdlnx =(lnlnx)nx —J Inxd(lnlnx) 21.=lnlnx lnx- lnx —-dxlnx x =lnlnx lnx-lnx C 23.24.F b —F a1e --e22.5ln623.d cos2x = 4 xcos2x sin2xC4 825.1 26. JI227. e-2 28.4 29. 2,3-2arctan f 3 - arctan f 124. l = ln xd3 1 3x lnx x ——■C3 9第五章定积分及其应用答案32.5633.e 34. _135.<36. 1 37. 38. 12 2 3兀 139. 一2 _2二单项选择题30.0 31.0、填空题[f (x pxb a4.2.03.5.负6.正7. l1>l28. 1. A 2 . D 3 . B 4 . C 5 . A 6 . C7. C 8 . B9 . A 10.C 11.C 12.D 13.C 14.C 15.B 16.C17.A 18.B 19.B 20.A 21.B22.C 23.B 24.A 25.C 26.A三、证明题1冃2 9. l1>l2 证:令u=a, b-a,则10.- 11. 12. baf x dx du 二b-a dx,所以13. 2xe x14. sin xb - a ] I f || a b - a x dx =1 1f u du = 0 f x dx-x sin3fi x 16.10,1 2x1 cos2 x215.2.证:令u)]17.1 18.fx3f (x2=x2,则du = 2xdx ,所以1 a2.d^=- 0 uf udu=? 0 1 a220xf x dx19. f 12f0=03 20. 3.证:令u -二-x,则du - -dx,则IT- -2:xf sinxdx 二:】灵-u f sin u du 二負「x f sinx dx 23x2sin 1 x3 31 u 2所以 o xf sinx dx 二 o 2xf sinx dx - xf sin0 0 5fnxdx 飞2x -3-2x x-1x-2 e , x 二 = 二 02xf sinx ck 02 二-x f sinxck v 02得fin^dx 一1:: 0, f 2 二 e* 0, e JI 4.证:x 4令,有。

微积分2答案完整版

微积分2答案完整版
, , 狭义积分收敛。
知识点:积分收敛性,中。
4.
答案:C
学霸解析:
可微
可微
可微
知识点:二元函数可微性,中。
5.
答案:C
学霸解析
知识点:求原函数,中。
三、计算题(共8题,每题6分,满分48分)
1.答案:
学霸解析:令

知识点:求定积分,中。
2.答案:
学霸解析:
3.
解:
知识点:二重积分,中。
4.
答案:
学霸解析:
二 、
1答案:A
学霸解析: 为偶函数, 为奇函数,且 有意义,则 是偶函数。
知识点:组合函数,易。
2、
答案:B
学霸解析:若函数 在 处不可导,则 在 处一定不可微。
知识点:可导和可微积,易。
3、
答案:D
学霸解析:收益与成本的情况下,获得最大利润的必要条件是 .
知识点:二重求导,中。
4、
答案:B
学霸解析:
考查知识点:敛散性
(2)答案:
学霸解析:
考查知识点:级数收敛的函数
六、
答案:480
学霸解析:
考查知识点:求导运用
七、
答案:2/15
学霸解析:
考查知识点:双边求导
八、
1.答案:
右式
=左式
2.答案:
① 在(a,b)上恒成立
由于f(x)-x在(a,b)上连续
可知
故只能有f(x)=0
② 在(a,b)上恒成立
考查知识点:间断点
3.答案:B
学霸解析:可微的定义
考查知识点:可微的定义
4.答案:D
学霸解析:R(Q)导数减去C(Q)导数为0点为题目所求点

苏大--高数下--练习答案

苏大--高数下--练习答案

M 1M 2 = (0, −4, −4) , −3M 1M 2 = (0,12,12)
一、试证明以三点 A (10, −1, 6 ) 、B ( 4,1,9 ) 、C ( 2, 4,3) 为顶点的三角形是等腰直角三角形. §8.1 向量及其线性运算(5) §8.2 数量积 向量积
AB = 7 , BC = 7 , AC = 7 2
OA × OB = (5,5, −5) , S Δห้องสมุดไป่ตู้BC =
1 5 3 OA × OB = 2 2
1
微积分(二)同步练习答案
一、一动点与两定点 (1, 2,3) 和 ( 3, 0, 7 ) 等距离,求这动点的轨迹方程.
§8.3 曲面及其方程
x − y + 2 z − 11 = 0 2 2 2 二、方程 x + y + z − 2 x + 4 y − 6 z = 0 表示什么曲面?
二、选择题:
⎧ x2 y2 =1 ⎪ + 在空间解析几何中表示( B ) . 1.方程 ⎨ 4 9 ⎪y = z ⎩
(A) 、椭圆柱面 (B) 、椭圆曲线 (C) 、两个平行平面 (D) 、两条平行直线
2
微积分(二)同步练习答案
⎧ x = a cos θ ⎪ 2.参数方程 ⎨ y = a sin θ 的一般方程是( D ) . ⎪ z = bθ ⎩
4.两平行线 x = t + 1, y = 2t + 1, z = t 与 的方程. 设交点为 (t , 2t ,3t ) ,则 s = (t − 1, 2t − 1,3t − 1) ⊥ (2,1, 4) ,得 t =
7 16 9 2 5 1 x −1 y −1 z −1 = = s = (− , − , ) = − (9, 2, −5) , L 的方程: 9 2 −5 16 16 16 16

微积分(二)课后题答案,复旦大学出版社 第八章

微积分(二)课后题答案,复旦大学出版社 第八章

第八章习题8-1 1.求下列函数的定义域,并画出其示意图:(1)z=(2)1ln()zx y=-;(3)z=arcsin yx;(4)zarccos(x2+y2).解:(1)要使函数有意义,必须222210x ya b--≥即22221x ya b+≤,则函数的定义域为2222(,)|1x yx ya b⎧⎫+≤⎨⎬⎩⎭,如图8-1阴影所示.图8-1 图8-1(2)要使函数有意义,必须ln()0x yx y-≠⎧⎨->⎩即1x yx y-≠⎧⎨>⎩,则函数的定义域为{(,)|x y x y>且1}x y-≠,如图8-2所示为直线y x=的下方且除去1y x=-的点的阴影部分(不包含直线y x=上的点).(3)要使函数有意义,必须1yxx⎧≤⎪⎨⎪≠⎩,即11yxx⎧-≤≤⎪⎨⎪≠⎩,即x y xx-≤≤⎧⎨>⎩或x y xx≤≤-⎧⎨<⎩,所以函数的定义域为{(,)|0x y x>且}{(,)|0,}x y x x y x x y x-≤≤<≤≤-,如图8-3阴影所示.图8-3 图8-4(4)要使函数有意义,必须2200||1x y x y ⎧⎪≥⎨⎪+≤⎩即222001x y x y x y ≥⎧⎪≥⎪⎨≥⎪⎪+≤⎩, 所以函数的定义域为222{(,)|0,0,,1}x y x y x y x y ≥≥≥+≤,如图8-4阴影所示.2.设函数f (x ,y )=x 3-2xy +3y 2,求 (1) f (-2,3); (2) f 12,x y ⎛⎫⎪⎝⎭; (3)f (x +y ,x -y ). 解:(1)32(2,3)(2)2(2)33331f -=--⨯-⨯+⨯=;(2)23321211221412,23f x y x x y y x xy y ⎛⎫⎛⎫⎛⎫=-⋅⋅+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)32(,)()2()()3()f x y x y x y x y x y x y +-=+-+-+- 3222()2()3()x y x y x y =+--+-. 3.设F (x ,y )f,若当y =1时,F (x ,1)=x ,求f (x )及F (x ,y )的表达式. 解:由(,1)F x x =得1)x f =即1)1f x =-1t =则2(1)x t =+代入上式有2()(1)1(2)f t t t t =+-=+所以 ()(2)f x x x =+于是(,)1)1) 1F x y f x ===-4.指出下列集合A 的内点、边界点和聚点:(1){(,)01,0}A x y x y x =≤≤≤≤;(2){(,)31}A x y x y =+=; (3)A ={(x ,y )|x 2+y 2>0}; (4)(0,2]A =. 解:(1)内点{(,)|01,0}x y x y x <<<<边界点{(,)|01,0}{(,)|01,1}x y x y x y y x ≤≤=≤≤= {(,)|,01}x y y x x =≤≤ 聚点A (2)内点∅ 边界点A 聚点A (3)内点A边界点(0,0) 聚点A(4)内点∅ 边界点[0,2] 聚点[0,2]习题8-21.讨论下列函数在点(0,0)处的极限是否存在:(1) z =224xy x y+; (2) z =x y x y +-. 解:(1)当(,)P x y 沿曲线2x ky =趋于(0,0)时,有24244200lim (,)lim 1y y y kxky kf x y k y y k →→===++这个值随k 的不同而不同,所以函数224Z=xy x y+在(0,0)处的极限不存在. (2)当(,)P x y 沿直线(1)y kx k =≠趋于(0,0)时,有001lim (,)lim(1)1y x y kxx kx kf x y k x kx k→→=++==≠--,这个极限值随k 的不同而不同,所以函数Z=x yx y+-在(0,0)处的极限不存在. 2.求下列极限:(1) 00sin limx y xy x →→; (2)22011lim x y xyx y→→-+;(3)00x y →→ (4)22sin lim x y xy x y →∞→∞+.解:(1)0000sin sin()limlim 0x x y y xy xy y x xy →→→→=⋅=(2)222211101lim101x y xy x y →→--⨯==++(3)0000001)2x x x y y y →→→→→→=== (4)当,x y →∞→∞时,221x y+是无穷小量,而sin xy 是有界函数,所以它们的积为无穷小量,即22sin lim0x y xyx y →∞→∞=+.3.求函数z =2222y xy x+-的间断点.解:由于220y x -=时函数无定义,故在抛物线22y x =处函数间断,函数的间断点是2{(,)|2,R}x y y x x =∈.习题8-31.求下列各函数的偏导数:(1) z =(1+x )y ; (2) z =lntany x; (3) z =arctan yx; (4) u =zx y .解:(1)1(1)y zy x x-∂=+∂(1)ln(1)y zx x y∂=++∂; (2)22221sec cot sec ;tan z y y y y y yx x x x x x x∂-=⋅⋅=-∂ 22111sec cot sec ;tan z y y y yy x x x x xx∂=⋅⋅=∂ (3)22221;1zy yxx x yy x ∂--=⋅=∂+⎛⎫+ ⎪⎝⎭22211;1zx yx x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭(4)22ln ln ;z zx x u z z yy y y x x x∂-=⋅⋅=-⋅∂1;1ln ln .zxzz x xu z y y xu y y y y z x x-∂=∂∂=⋅⋅=⋅∂2.已知f (x ,y )=e -sin x (x +2y ),求x f '(0,1),y f '(0,1).解:sin sin sin (,)e (cos )(2)e e [cos (2)1]x x x x f x y x x y x x y ---'=⋅-++=-⋅++ s i ns i n(,)e22ex x y f x y --'=⋅= 所以sin0(0,1)e (cos0(021)1)1x f -'=-⋅+⨯+=- s i n 0(0,1)2e 2y f -'== 3.设z =x +y +(y -,求112811,x x y y z z x y====∂∂∂∂.解:1122112d (,1)d(1)1d d x x y x z f x x xx x====∂==+=∂又23211(3z x x y y y y-⎛⎫∂-=+-⋅ ⎪∂⎝⎭所以1811π11arcsin 126x y z y==∂=+=+=+∂. 4.验证z =11+ex y ⎛⎫- ⎪⎝⎭满足222z zxy z x y∂∂+=∂∂. 解:1111()()2211e ex yx y z x x x-+-+∂-=⋅-=∂ 1111()()2211e ex yx yz y y y-+-+∂-=⋅-=∂所以1111()()22222211e ex yx y z z x y x y x y x y-+-+∂∂+=⋅+⋅∂∂ 11()2e 2x yz --+==5.设函数z =2222422,00,0xy x y x y x y ⎧+≠⎪+⎨⎪+=⎩,试判断它在点(0,0)处的偏导数是否存在?解:00(0,0)(0,0)00(0,0)lim lim 0y y y f y f z y y ∆→∆→+∆--'===∆∆ 00(0,0)(0,0)00(0,0)limlim 0x x x f x f z x x∆→∆→+∆--'===∆∆ 所以函数在(0,0)处的偏导数存在且(0,0)(0,0)0x y z z ''==.6.求曲线22(),4z x y y ⎧=+⎪⎨⎪=⎩14在点(2,4,5)处的切线与x 轴正向所成的倾角. 解:因为 242z x x x ∂==∂,故曲线221()44z x y y ⎧=+⎪⎨⎪=⎩在点(2,4,5)的切线斜率是(2,4,5)1z x ∂=∂,所以切线与x 轴正向所成的倾角πarctan14α==.7.求函数z =xy 在(2,3)处,当Δx =0.1与Δy =-0.2时的全增量Δz 与全微分d z . 解:,z zy x x y ∂∂==∂∂∴ d d d z zz x y x y∂∂=+∂∂ 而()()z x x y y xy x y y x x y ∆=+∆+∆-=∆+∆+∆∆ 当0.1,0.2,2,3x y x y ∆=∆=-==时,d 30.12(0.2)0.1z =⨯+⨯-=-2(0.2)30.10.1(0.2)0.12z ∆=⨯-+⨯+⨯-=-. 8.求下列函数的全微分:(1) 设u =()zx y,求d u |(1,1,1).(2) 设z,求d z .解:(1)1121(),()z z u x u x x z z x y y y y y --∂∂-=⋅⋅=⋅⋅∂∂;()ln ,z u x xz y y∂=∂ (1,1,1)(1,1,1)1,1,u u x y∂∂∴==-∂∂ (1,1,1)0u z∂=∂,于是(1,1,1)(1,1,1)(1,1,1)(1,1,1)d d d d d d z z z ux y z x y xyz∂∂∂=++=-∂∂∂(2)z x∂==∂2zy∂==∂ ∴22d d d d d z z z x y xyx y ∂∂=+=∂∂习题8-41.求下列各函数的全导数:(1) z =e 2x +3y , x =cos t , y =t 2; (2) z =tan(3t +2x 2+y 3), x =1t,y.解:(1)d d d d d d z z x z yt x t y t∂∂=+⋅∂∂ 22323232cos 3e 2(sin )e 32=2e(3sin )2e (3sin )x y x y x yt t t tt t t t ++++=⋅⋅-+⋅⋅-=-(2)d d d d d d z f f x f y t t x t y t∂∂∂=+⋅+⋅∂∂∂223223222321sec (32)3sec (32)4 sec (32)3t x y t x y xt t x y y -=++⋅+++⋅+++⋅3223242(3(3)t t t t=-++. 2.求下列各函数的偏导数:(1) z =x 2y -xy 2, x =u cos v , y =u sin v ;(2) z =e uv , u =, v =arctany x. 解:(1)z z x z yu x u y u∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 22222222222(2)cos (2)sin 2sin cos sin cos sin cos 2sin cos 3sin cos (cos sin )xy y v x xy vu v v u v v u v v u v v u v v v v =-+-=-+-=-z z x z y v x v y v∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 22323333323333(2)sin (2)cos 2sin cos sin cos 2sin cos 2sin cos (sin cos )(sin cos )xy y u v x xy u vu v v u v u v u v v u v v v v u v v =--+-=-++-=-+++(2)221e e 1()uv uv z z u z v y v u y x u x v x x x∂∂∂∂∂-=⋅+⋅=⋅⋅∂∂∂∂∂+arctan2222e e()(arctanyuvxyxv yu x y x y x y x=-=-++211e e 1()uv uv z z u z vv u y y u y v yxx∂∂∂∂∂=⋅+⋅=+⋅⋅∂∂∂∂∂+2222e e()(arctanln y uvxyyv xu x x x y x y x=+=+++ 3.求下列函数的一阶偏导数,其中f 可微: (1) u =f (,x yy z); (2) z =f (x 2+y 2); (3) u =f (x , xy , xyz ). 解:(1)121110u f f f x y y ∂'''=⋅+⋅=∂12212211u x x f f f f y y z z y ∂-''''=⋅+⋅=-∂122220u y y f f f z z z∂-'''=⋅+⋅=∂ (2)令22,u x y =+则()z f u =22d ()22()d z f u f u x xf x y x u x∂∂''=⋅=⋅=+∂∂22d ()22()d z f u f u y yf x y y u y∂∂''=⋅=⋅=+∂∂ (3)令,,t x v xy w xyz ===,则(,,)u f t v w =.123123d 1d u f t f v f w f f y f yz f yf yzf x t x v x w x∂∂∂∂∂∂''''''=⋅+⋅+⋅=⋅+⋅+⋅=++∂∂∂∂∂∂ 12323d 0d u f t f v f w f f x f xz xf xzf y t y v y w y∂∂∂∂∂∂'''''=⋅+⋅+⋅=⋅+⋅+⋅=+∂∂∂∂∂∂1233d 00d u f t f v f w f f f xy xyf z t z v z w z∂∂∂∂∂∂''''=⋅+⋅+⋅=⋅+⋅+⋅=∂∂∂∂∂∂ 4.设z =xy +x 2F(u ),u =yx,F(u )可导.证明:2z zxy z x y∂∂+=∂∂. 证:222()()2()()z yy xF u x F u y xF u yF u x x∂-''=++⋅=+-∂21()()z x x F u x xF u y x∂''=+⋅=+∂22()()()z zxy xy x F u xyF u xy xyF u x y∂∂''∴==+-++∂∂ 22[()]x y x F u z=+=∂ 5.利用全微分形式不变性求全微分:(1) z =(x 2+y 2)sin(2x +y ); (2) u =222()yf x y z --,f 可微. 解:(1)令22,sin(2)u x y v x y =+=+,则vz u =122d d d d()ln d sin(2)v v z zz u v vu x y u u x y u v-∂∂=+=++⋅+∂∂122sin(2)2222(2d 2d )ln cos(2)d(2)[2(d d )ln cos(2)(2d d )]2sin(2)()(d d )cos(2)ln()(2d d )v v v x y vu x x y y u u x y x y vu x x y y u x y x y ux y x y x x y y x y x y x y x y -+=++⋅++=⋅++⋅++⎡⎤+=++++++⎢⎥+⎣⎦(2)22222222111d d d d ()d()yu y y f y f x y z x y z f f f f-'=+⋅=-----222222222222221()d (2d 2d 2d )12()d (d d d )()()yf x y z y x x y y z z f f yf x y z y x x y y z z f x y z f x y z '--=---'--=-------6.求下列隐函数的导数:(1) 设e x +y +xyz =e x ,求x z ',y z '; (2)设x z =ln z y,求,z zx y ∂∂∂∂. 解:(1)设(,,)e e 0x yx F x y z xyz +=+-=,则ee ,e ,x yx x y x y z F yz F xz F xy ++'''=+-=+=故e e e ,x x y x yy x y z F Fx yz xzz z Fz xy F xy++'--+''=-==-=-(2)设(,,)ln 0x zF x y z z y=-=,则 2221111,,x y z y z x y x F F F z z y y z z y z z--'''==-⋅==-⋅=--故21x z F z z z xF x z z z '∂=-=-='∂+--2211()y z F z z yx yF y x z z z'∂=-=-='∂+-- 7.设x +z =yf (x 2-z 2),其中f 可微,证明:z zzy x x y∂∂+=∂∂. 证:设22(,,)()F x y z x z yf x z =+--则2212()x F xyf x z ''=--2222()12()y z F f x z F yzf x z '=--''=+-故22222()112()x z F zxyf x z x F yzf x z ''∂--=-=''∂+- 2222()12()y zF z f x y y yzf x z F '∂-=-='∂+-' 从而22222222()()12()12()z z xyzf x z z yf x y z y x y yzf x z yzf x z '∂∂∂---+=+''∂∂+-+- 222222222222222()()12()2()12()[2()1]12()xyzf x z z yf x y yzf x z xyzf x z z x zyzf x z x yzf x z x yzf x z '--+-='+-'--++='+-'-+=='+-8.设x =e u cos v , y =e u sin v , z =uv ,求z x ∂∂及z y∂∂. 解法一:由e cos ,e sin u ux v y v ==得221ln(),arctan ,2yu x y v z uv x=+== 故22(cos sin )e uz z u z v xv yu v v u v x u x v x x y-∂∂∂∂∂-=+==-∂∂∂∂∂+22(sin cos )e uz z u z v yv xu v v u v y u y v y x y-∂∂∂∂∂+=+==-∂∂∂∂∂+ 解法二:设方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩确定了函数(,),(,)u u x y v v x y ==,对方程组的两个方程关于x 求偏导得1e cos e sin 0e sin e cos uu u u u v v v x xu v v v x x ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩解方程组得e cos e sin u u uv xv v x --∂⎧=⎪⎪∂⎨∂⎪=-⎪∂⎩又方程组的两个方程关于y 求偏导得0e cos e sin 1e sin e cos uu u u u v v v y y u v v vy y ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解方程组得:e sin e cos uu u v y v v y--∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩ 从而e (cos sin )u z z u z vv v u v x u x v x-∂∂∂∂∂=⋅+=-∂∂∂∂∂e (s i n c o s )uz z u z v v v u v y u y v y-∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 9.设u =f (x ,y ,z )有连续偏导数,y =y (x )和z =z (x )分别由方程0xye y -=和e z -xz =0确定,求d d ux. 解:方程e 0xyy -=两边对x 求导得d de ()0d d xyy y y x x x +-=,解得2d e d 1e 1xy xy y y y x x xy==-- 方程e 0zxz -=两边对x 求导得d de 0d d zz z z x x x--= 解得d de z z z z x x xz x==-- 从而2d d d d d d 1y z x y z x y f zf u y zf f f f x x x xy xz x''''''=++=++--习题8-51.求下列函数的二阶偏导数: (1) z =x 4+y 4-4x 2y 2; (2) z =arctany x; (3) z =y x ; (4) z =x ln(xy ).解:(1)23222248, 128;z z x xy x y x x∂∂=-=-∂∂232222248, 128;1622z z y x y y x y y zxy x y∂∂=-=-∂∂∂=-(2)22221,1()z y y y x x x y x∂-=⋅=-∂++ 22222222222222222222222222222211,1()2(2),()()22()()()2()()z x y y x x y xz y xyx x x y x y z x xyy y x y x y z x y y y y x x y x y x y ∂=⋅=∂++∂-=-⋅=∂++∂--=⋅=∂++∂+-⋅-=-=∂∂++(3)1ln , ,x x z zy y xy x y-∂∂==∂∂222222211ln , (1),1ln (1ln )x x x x x z z y y x x y x y z xy y y y x y x y y---∂∂==-∂∂∂=+⋅=+∂∂(4)1ln()1ln(),z xy x y xy x xy∂=+⋅⋅=+∂22222211,1,11.z y x xy x z x x x y xy y z xy y z x x y xy y∂=⋅=∂∂=⋅⋅=∂∂=-∂∂=⋅=∂∂2.求下列函数的二阶偏导数,其中f (u ,v )可微: (1) z =f (x 2+y 2); (2) z =f (xy ,x +2y ).解:(1)2222, 22224z zxf f xf x f x f x x∂∂'''''''==+⋅=+∂∂ 2222, 22224z zyf f yf y f y f y y ∂∂'''''''==+⋅=+∂∂2224zxf y xyf x y∂''''=⋅=∂∂(2)1212, =+2 z zyf f xf f x y∂∂''''=+∂∂ 22111221221112222(1)12zy f y f f y f y f yf f x∂''''''''''''''=⋅+⋅+⋅+⋅=++∂ 22111221*********(2)2(2)44z x f x f f x f x f xf f y∂''''''''''''''=⋅+⋅+⋅+⋅=++∂ 21111221221111222(2)2 (2)2zf y f x f f x f x y f xyf x y f f ∂'''''''''=++⋅+⋅+⋅∂∂'''''''=++++3.求由e z -xyz =0所确定的z =f (x ,y )的所有二阶偏导数. 解:设(,,)e 0zF x y z xyz =-=,则,,e z x y z F yz F xz F xy '''=-=-=-于是,e x z z F z yz zx F xy xz x∂=-==∂--e z z xz zy xy yz y∂==∂-- 从而222()(1)()z z xz x z z x zx x xxz x ∂∂--+-∂∂∂=∂-232223(1)221.(1)(1)z z z z z z z z x z x z --+---==-- 223222223()(1)(1)221.()(1)(1)z zz yz y z z y z z z z z z z y y z y yz y y z y z ∂∂--+---+∂--∂∂-===∂--- 2222233()()(1)(1).()(1)(1)(1)z z z z xz x z x z z z z z y y y y z x y xz x x z xy z xy z ∂∂---∂---∂∂-====∂∂----习题8-61.求z =x 2+y 2在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.解:设(1,2),(2,2o p p ,则射线l的方向就是向量(1o p p =的方向,将o p p 单位化得:1(,),22||o o p p p p =于是1cos ,cos 2αβ==, 又2,2,f fx y x y ∂∂==∂∂ 于是(1,2)(1,2)2,4,f f x y∂∂==∂∂所以(1,2)124122f l∂=⨯+=+∂ 2.设u =xyz +x +y +z ,求u 在点(1,1,1)处沿该点到点(2,2,2)的方向的方向导数.解:设0(1,1,1),(2,2,2)p p ,则射线l 的方向就是向量0p p =(1,1,1)的方向,将0p p单位化得00||p p p p =⎝⎭,于是cos αβγ=== 又1,1,1f f f yz xz xy x y z ∂∂∂=+=++∂∂∂,于是(1,1,1)(1,1,1)(1,1,1)2,2,2fff xyz∂∂∂===∂∂∂,所以(1,1,1)222333f l∂=⨯+⨯+⨯=∂. 3.求函数z =x 2-xy +y 2在点M(1,1)处沿与Ox 轴的正方向所成角为α的方向l 上的方向导数.问在什么情况下,此方向导数取得最大值?最小值?等于零? 解:2,2f f x y x y x y ∂∂=-=-+∂∂, (1,1)(1,1)1,1f fx y∂∂==∂∂∴(1,1)π1c o s 1s i n 2s i n ()4f lααα∂=⋅+⋅+∂当πsin()4α+=1,时,即π4α=当πsin()14α+=-时,即5π4α=时,此方向导数有最小值当πsin()04α+=时,即3π4α=或7π4时,此方向导数为0.习题8-71.求下列函数的极值: (1) z=x 3-4x 2+2xy -y 2+3; (2) z =e 2x (x +2y +y 2); (3) z =xy (a -x -y ), a ≠0. 解:(1)由方程组:23820220xy z x x y z x y ⎧'=-+=⎪⎨'=-=⎪⎩ 得驻点(0,0),(2,2) 又68,2,2,xx xy yy z x z z ''''=-==-在点(0,0)处,2120B AC -=-<,又80A =-<,所以函数取得极大值(0,0)3;f = 在点(2,2)处,2120,B AC -=>该点不是极值点.(2)由方程组222e (2241)0e (22)0x xx y z x y y z y ⎧'=+++=⎪⎨'=+=⎪⎩ 得驻点1(,1)2-.又2222e (4484),e (44),2e xxxxx xy yy z x y y z y z ''''''=+++=+=,在点1(,1)2-处22202e 2e 4e 0,B AC -=-⋅=-<且2e 0A =>,所以函数取得极小值11(,1) e.22f -=- (3)由方程组(2)0(2)0xy z y a x y z x a y x ⎧'=--=⎪⎨'=--=⎪⎩ 得四个驻点(0,0),(0,),(,0),,.33a a a a ⎛⎫ ⎪⎝⎭又2,22,2xx xy yy z y z a x y z x ''''''=-=--=-.在点(0,0)处,220,B AC a -=>该点不是极值点. 在点(0,)a 处,220B AC a -=>,该点不是极值点. 在点(,0)a 处,220B AC a -=>,该点不是极值点.在点,33a a ⎛⎫ ⎪⎝⎭处,2203a B AC -=-<,所以函数在该点有极值,且极值为3,3327aa a f ⎛⎫= ⎪⎝⎭,由于23xx A z a ''==-故 当0a >时,(0)A <,函数有极大值327a ,当0a <时,(0)A >,函数有极小值327a .2.求函数z =x 3-4x 2+2xy -y 2在闭区域D :-1≤x ≤4,-1≤y ≤1上的最大值和最小值. [分析]由(,)f x y 在D 上连续,所以必有最大最小值,又由于(,)f x y 在D 内可导,所以(,)f x y 的最值在D 的内部驻点或在D 的边界上,由(,)f x y 在D 内部驻点上值与边界上函数比较可求出(,)f x y 的最大和最小值.解:由方程23820220xy z x x y z x y ⎧'=-+=⎪⎨'=-=⎪⎩得驻点(0,0),(2,2)(2,2)D ∈应该舍去,(0,0)0f =(可由充分条件判别知是极大值).D 的边界可分为四部分:12:1,11; :1,14;L x y L y x =--≤≤=--≤≤ 34:4,11; :1,1 4.L x y L y x =-≤≤=-≤≤在1L 上,2(1,)52(),1 1.f y y y y y ϕ-=---=-≤≤因为()2(1)0,y y ϕ'=-+≤所以()y ϕ单调递减,因而(1)4ϕ-=-最大,(1)8ϕ=-最小. 在2L 上,32(,1)421(),14f x x x x g x x -=---=-≤≤令()0g x '=得124433x x ==.而122227min{(1),(),(),(4)}()27g g x g x g g x --==,1214227m a x {(1),(),(),(4)}()27g g x g x g g x -==分别是(,)f x y 在2L 上的最小值与最大值.类似讨论可得:在3L 上(4,1)7,(4,1)9f f =-=-,分别是(,)f x y 的最大值与最小值;在4L 上(4,1)7,(1,1)f f =-=-8分别是(,)f x y 的最大值与最小值.比较(,)f x y 在内部驻点(0,0)与整个边界上函数值的情况得到(4,1)7f =是函数(,)f x y 在D 上的最大值,116.1f ⎫-=≈-⎪⎪⎝⎭. 3.求函数z =x +y 在条件111x y+= (x >0,y >0)下的条件极值. 解:构造拉格朗日函数11(,)1F x y x y x y λ⎛⎫=+++- ⎪⎝⎭解方程组221010111x y F x F y x yλλ⎧'=-=⎪⎪⎪'=-=⎨⎪⎪+=⎪⎩ 得2,2,4x y λ===,故得驻点(2,2)。

微积分(二)课后题答案,复旦大学出版社 第九章

微积分(二)课后题答案,复旦大学出版社 第九章

第9章习题9 11. 判定下列级数的收敛性:(1) 115nn a ∞=⎛⎫⋅ ⎪⎝⎭∑(a >0); (2) ∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4)∑∞=-+12)1(2n nn; (5) ∑∞=+11ln n n n; (6)∑∞=-12)1(n n;(7) ∑∞=+11n nn ; (8)0(1)21n n nn ∞=-⋅+∑. 解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a <,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散.(2)n S =+++1= lim n n S →∞=∞∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n∞=∑发散,故原级数113n n ∞=+∑发散. (4) 1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2mnn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛.(5) lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln3)[ln ln(1)]n S n n =-+-+-+ ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞=-∞,所以级数1ln1n nn ∞=+∑发散. (6) 2210,2n n S S +==-∴lim n n S →∞不存在,从而级数1(1)2n n ∞=-∑发散.(7) 1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8) (1)(1)1, l i m 21212n n n n n n U n n →∞--==++∴ l i m 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2)∑∞=++1)2)(1(1n n n n ; (3) ∑∞=⋅12sin n n n π; (4)πcos2n n ∞=∑. 解: (1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32. (2)11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭∴121112111211121122322342345212n S n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-+++-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11112212n n ⎛⎫=-+ ⎪++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin 2n n n ∞=⋅∑发散.(4)πcos 2n n U =,而4lim lim cos 2π1k k k U k →∞→∞==,42lim lim cos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散. 3. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >= ,故存在0n ,使11n n k t k t S U A s ∞===<<∑∑又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim nn S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2)∑∞=+1n n n 1; (3) ∑∞=++1n n n n )2(2; (4)∑∞=+1n n n )5(12;(5) 111nn a∞=+∑ (a >0); (6) ∑∞=+1n nba 1(a , b >0);(7)()∑∞=--+1n a n a n 22 (a >0); (8)∑∞=-+1n nn 1214; (9) ∑∞=⋅1n nnn 23; (10) ∑∞=1n nn n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753 ; (12)∑∞=1n nn 3; (13)∑∞=1n n n 22)!(2; (14) ∑∞=⎪⎭⎫⎝⎛+1n nn n 12;(15)∑∞=1πn nn3sin2; (16) ∑∞=1πn nn n 2cos 32. 解:(1)因为211(1)(2)n n n <++而211n n∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim 10n n n U →∞==≠,故原级数发散. (3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散. (4)321n<=,而1n ∞=p -级数3(1)2p =>,由比较判别法知,级数1n ∞=.(5)因为111lim lim lim(1)111n n n n n n n a a a aa→∞→∞→∞+==-++ 11112001a a a >⎧⎪⎪==⎨⎪<<⎪⎩而当1a >时,11n n a ∞=∑收敛,故111nn a∞=+∑收敛; 当1a =时,11n n a∞=∑=11n ∞=∑发散,故111nn a ∞=+∑发散; 当01a <<时1lim101n n a →∞=≠+,故1lim 1nn a →∞+发散;综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛.(6)因为1lim lim lim(1)n n n nn n n nb a a b a b a b b →∞→∞→∞+==-++1111101b b a b >⎧⎪⎪==⎨+⎪<<⎪⎩ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为n n n→∞=0n a ==>而11n n∞=∑发散,故级数10)n a ∞=>∑发散.(8)因为434431121lim lim 212n n n n n n n n→∞→∞++-==-而311n n ∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132nnn n ∞=⋅∑发散. (10)因为11(1)!1lim lim lim(1)1(1)!n n n n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!nn n n ∞=∑发散.(11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+ 232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13nn n∞=∑收敛. (13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n nU n U ++→∞→∞+==<由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫⎪+⎝⎭∑收敛.(15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n nn ∞=∑收敛. (16)因为2πcos 322n n n n n ≤而与(12)题类似地可证级数12n n n ∞=∑收敛,由比较判别法知级数1πcos 32nn n n ∞=∑收敛. 2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n nn x ; (2)nn x n ∑∞=⎪⎭⎫ ⎝⎛123. 解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散;当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n ∞=∑,它是发散的. 综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散;当012x<<即02x <<时,原级收敛. 而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2nn x n ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2)11(1)2(1)2n n n n ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx; (4) 111π(1)sin πn n n n∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6)∑∞=+-1)1(n n xn ; (7) ∑∞=⋅1!)2sin(n n n x ; (8)∑∞=1sin n n nx(0<x <π). 解:(1)这是一个交错级数121n U n =-, 1lim lim021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21n n n ∞=--∑.又1111(1)2121n n n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛. (2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故 11111(1)21111(1)22(1)22(1)2n n n n n n n n n ------+--=+≤+-⋅-⋅-⋅ 1113222n n n-=+=而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n n n ∞-=-+-⋅∑绝对收敛. (3)因为22sin 1,nx n n ≤而级数211n n∞=∑收敛,由比较判别法知21sin n nx n ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛. (4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n ∞+=-∑收敛,从而级数11π(1)sin πn n n+-绝对收敛. (5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛.(7)因为sin(2)1!!n x n n ⋅≤ 由比值判别法知11!n n ∞=∑收敛( 1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛.(8)因为1n 单调下降趋于零,且部分和1sin Nn nx =∑有界(0π)x <<,故由迪里黑里判别法知级数1sin n nxn ∞=∑收敛. 又2sin sin 1cos 21cos 2222nx nx nx nxn n n n n -≥==-,由于112n n ∞=∑发散,因12n 单调趋于零,且1cos 2Nn nx =∑有界,故由迪里黑里判别法知1cos 22n nx n ∞=∑收敛,从而11cos 222n nx nn ∞=⎛⎫- ⎪⎝⎭∑发散,由比较判别法知,1sin n nx n ∞=∑发散,所以,原级数1sin n nxn ∞=∑ (0π)x <<条件收敛. 注:迪里黑里判别法,若级数1n nn u v∞=∑满足条件:(1)部分和1nn ii S u==∑是有界的;(2)当n →∞时,n v 单调地趋于零; 则级数1n nn u v∞=∑收敛.2. 讨论级数∑∞=--111)1(n p n n的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p p u u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n pn n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n∞∞-==-=∑∑发散,故此时,级数111(1)n pn n ∞-=-∑条件收敛. 综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n nn ba 及()∑∞=+12n n nb a也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n n n n a b ∞∞==∑∑,以及1n n n a b ∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n nn x (0!=1); (2)∑∞=0!n nnx nn ; (3) ∑∞=⋅022n n nnx ; (4)∑∞=++-01212)1(n n nn x . (5) ∑∞=⋅+02)2(n n nn x ; (6)∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!nn x n ∞=∑的收敛区间为(,)-∞+∞. (2)因为-111lim lim lim 1e 11n nn n n n na n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p ==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u eu n+=+,因为1(1)n n +是单调递增数列,且1(1)nn+<e 所以1n nu u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数!nn n n x n ∞=∑的收敛区间为(-e,e).(3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n n n n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而21(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛.综上所述,级数21(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为1(1)nn n∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n ∞=∑,它是发散的. 综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数12limlim 21n n n n a np a n +→∞→∞===+ 故收敛半径12r =. 于是当1|1|2x -<即1322x <<时,原级数绝对收敛.当1|1|2x ->即12x <或32x >时,原级数发散.当32x =时,原级数变为01n n ∞=∑是调和级数,发散.当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数. 综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭. 2. 求下列幂级数的和函数:(1) ∑∞=-1)1(n nnn x ; (2)∑∞=-1122n n nx;(3) n n x n n ∑∞=+1)1(1; (4)∑∞=+0)12(n nxn .解:(1)可求得所给幂级数的收敛半径r =1.设1()(1)nnn x S x n ∞==-∑,则1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ ∴001()()d d ln(1) (||1)1x x S x S x x x x x x-'===-+<+⎰⎰又当x =1时,原级数收敛,且()S x 在x =1处连续.∴1(1)l n (1) (11)nnn x xx n ∞=-=-+-<≤∑(2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有2121011()d 2d 2d xx xn n n n S x x nxx nx x ∞∞--====∑∑⎰⎰⎰22211nn x x x ∞===-∑ 于是22222()1(1)x xs x x x '⎛⎫== ⎪--⎝⎭ 又当1x =±时,原级数发散.故2122122 (||1)(1)n n xnx x x ∞-==<-∑(3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑01()d ()(0)d 1xxg x x g x g x x''''=-=-⎰⎰(0)0,()ln(1)g g x x ''==--()d ()(0)ln(1)d ,(0)0xxg x x g x g x x g '=-=--=⎰⎰所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰;所以1()11ln(1),||1,S x x x x ⎛⎫=+--<⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)nn n n ∞=-+∑,它们都收敛.且显然有(0)0S =.故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设1()n n S x nx∞-==∑,则1()d .1xn n s x x x x∞===-∑⎰于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以111(21)2nn n n n n n xx nxx ∞∞∞-===+=+∑∑∑221112(1)1(1)xx x x x +=⋅+=--- (||1)x <3. 求下列级数的和:(1) ∑∞=125n n n ; (2)∑∞=-12)12(1n nn ; (3) ∑∞=--112212n n n ; (4)1(1)2nn n n ∞=+∑. 解:(1)考察幂级数21nn n x ∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2n n u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21nn n x∞=∑的收敛区间为(-1,1).设21() (||1)nn S x n xx ∞==<∑,则211()n n S x x n x ∞-==∑令2111()n n S x n x∞-==∑,则11011()d xnn n n S x x nx x nx ∞∞-====∑∑⎰.再令121()n n S x nx∞-==∑,则201()d 1xn n xS x x x x∞===-∑⎰.故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰. 1231() (||1)(1)(1)x xS x x x x '⎛⎫+==< ⎪--⎝⎭ 于是 213()() (||1)(1)x x S x xS x x x +==<-取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 2211111() (||1)2121nn n n S x x x x x n n ∞∞-====<--∑∑令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 1200d 11()d ln 1-21xxx x S x x x x+'==-⎰⎰即 1111()(0)ln (,(0)0)21xS x S s x+-==-. 于是 111()ln,(||<1)21xS x x x+=-,从而 11()()ln (||1)21x xS x xS x x x+==<-取x =则11(21)21nn S n ∞===-∑=+ (3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑令2111()2n n S x nx∞-==∑,则22121()d 1xnn x S x x x x ∞===-∑⎰. 所以212222() (||1)1(1)x xS x x x x '⎛⎫==< ⎪--⎝⎭,于是212121111(21)2n n n n n n n xn xx ∞∞∞---===-=-∑∑∑3222222 (||1)(1)1(1)x x x x x x x x +=-=<--- 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭-⎪⎝⎭∑.(4)考察幂级数1(1)nn n n x∞=+∑,可求得其收敛半径r =1.设1()(1) (||1)nn S x n n xx ∞==+<∑则12111()d xn n n n S x x nxxnx∞∞+-====∑∑⎰.又设111()n n S x nx∞-==∑则101()d 1xn n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 2212()d ()(1)xx S x x x S x x ==-⎰2232() ||1(1)(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭取12x =,则31121(1)2822112n n n n S ∞=⨯+⎛⎫=== ⎪⎝⎭⎛⎫- ⎪⎝⎭∑ 习题9-51. 将下列函数展开成x 的幂级数: (1) 2cos2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!nn n x x x n ∞=+==+-∑ 211(1) (-)2(2)!nnn x x n ∞==+-∞<<+∞∑(2)2101sin (1) ()2(21)!2n nn x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑(3)22210011e()(1) ()!!x nn n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑(4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦002011(1)221[(1)]2 ||1n n n n n nn n n n n x x x x x x ∞∞==∞=∞==+-=+-=<∑∑∑∑(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭2210sin )(1) ()2(2)!(21)!n n n n x x x x x n n +∞==+⎡⎤=-+-∞<<+∞⎢⎥+⎣⎦2. 将下列函数在指定点处展开成幂级数,并求其收敛区间: (1)x -31在x 0=1; (2) cos x 在x 0=3π;(3)3412++x x 在x 0=1; (4) 21x 在x 0=3. 解:(1)因为11113212x x =⋅---,而 0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑. 收敛区间为:(-1,3). (2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦22100()()133(1)(1)2(2)!(21)!n n n n n n x x n n ππ+∞∞==--=-+-+∑221011(1)())2(2)!33nn n n x x n ππ∞+=⎡⎤=--+-⎢⎥⎣⎦∑ ()x -∞<<+∞ 收敛区间为(,)-∞+∞. (3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 001111(1)(1)4284n nn n n n x x ∞∞==--⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭∑∑223011(1)(1)22n n n n n x ∞++=⎛⎫=--- ⎪⎝⎭∑由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n nn x x x ∞=-=⋅=-⋅-+∑ 1(3)(1)3n nn n x ∞+=-=-∑而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑ 111(1)(3)3nn n n n x ∞-+=-=-⋅-∑1111(1)(3)3n n n n n x +∞-+=-=-∑ 2(1)(1)(3)3n n n n n x ∞+=-+=-∑ 由313x -<得06x <<. 故收敛区间为(0,6).3. 求下列各数的近似值,精确到104: (1) e ; (2) I =⎰+41031x x d .解:(1)2e 1 (-)2!!nxx x x x n =+++++∞<-<+∞ 令1x =得111e 112!3!!n =++++++ 取前1n +项作为e 的近似值,有111e 112!3!!n ≈+++++ . 其误差为 111(1)!(2)!n R n n +=++++1111(1)!2(2)(3)n n n n ⎡⎤=+++⎢⎥++++⎣⎦ 2311111(1)!1(1)(1)n n n n ⎡⎤<++++⎢⎥++++⎣⎦1111(1)!!11n n n n =⋅=+⋅-+ 要求误差不超过10-4,而4111066!4320-=>⋅, 54113101077!35230--=<⨯<⋅. 故取7n =,即取级数的前8项作近似值计算.11111111 2.718282!3!4!5!6!7!e ≈+++++++≈(2)由公式21 222(21)2(21)(21)(1)12 112!!nn x x x x x n ---++=+++++-<<有1336912211 1.3135(1)12242462468x x x x x ⋅⋅=+=+-+-+⋅⋅⋅⋅⋅⋅136912401113135(1)d 2242462468I x x x x x x ⋅⋅⋅=+-+-+⋅⋅⋅⋅⋅⋅⎰144710130111113113512424724610246813x x x x x ⋅⋅⋅⎡⎤=+⋅-⋅+⋅-⋅+⎢⎥⋅⋅⋅⋅⋅⋅⎣⎦4710131111131151484564480449924⎛⎫⎛⎫⎛⎫⎛⎫=+⋅-⋅+-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 因为74110.0000010910564-⎛⎫⋅=< ⎪⎝⎭.由交错级数的理论知,取前两项作为近似值,可保证误差74211||10564r -⎛⎫<⋅< ⎪⎝⎭ 所以41110.25049484I ⎛⎫=+⋅≈ ⎪⎝⎭.。

微积分II课后答案详解

微积分II课后答案详解
x
2 4 4 4 = + + = )1,1,1( | z u + y u + x u ∴ 3 3 2 1
3
z + y + x +1 = zu z3
2 2
3
z + y + x +1 = yu y2
2
3
z + y + x +1 = x u �解 1
2
z
u + y u + x u求处� � 1 � 11 �点在 ,) 3 z + 2 y + x + 1(nl = u 设�3
z2
) yx (nl y 2 yx 2 y∂ = x. . 2 ]) yx (nl[ = 1 1 1− 1 z∂ ) yx (nl x 2 yx 2 x∂ = y . . 2 ]) yx (nl[ = �解 1 1 1− 1 z∂ y∂ x∂ , 求 , ) yx (nl = z ② z∂ z∂
2
yx 3 − 3 x =
�y + x � )y + x ( 2 )y + x ( y + x � x∂ y∂ y∂x∂ 2 � y∂ + + = = + = y x = ) ( n l ) ( y x−0 z∂ ∂ z2 ∂ 1 � x � ∂
)y + x ( 2 )y + x ( y + x x∂ y +x x∂ x∂ x∂ 2 = + =) + ) y + x (nl( = ) ( = 2 y2 + x x−y +x x ∂ z∂ ∂ z2 ∂ 1 y +x x∂ .x + ) y + x (nl = �解 z∂ 1 y∂x∂ 2 x∂ 求 ,) y + x (nl x = z ③ , ∂ z2 ∂

微积分(二)课后题答案,复旦大学出版社_第七章

微积分(二)课后题答案,复旦大学出版社_第七章
3. 已知 a,b,c 为单位向量,且满足 a+b+c=0,计算 a·b+b·c+c·a. 解: 0 = ( a + b + c ) ⋅ (a + b + c )
= a ⋅ a + a ⋅b + a ⋅c + b ⋅a + b ⋅b + b ⋅c + c ⋅ a + c ⋅b + c ⋅c =| a |2 + | b |2 + | c |2 +2( a ⋅ b + b ⋅ c + c ⋅ a) = 3 + 2(a ⋅ b + b ⋅ c + c ⋅ a )
5. 在 yOz 面上,求与三个已知点 A(3,1,2),B(4,-2,2)和 C(0,5,1)等距离的点. 解:设所求点 P (0, b, c) ,则 | PA |=| PB |=| PC | 即 9 + (b − 1) 2 + (c − 2) 2 = 16 + (b + 2)2 + (c − 2)2 = 解得 b = − , c = −
x 2 + y 2 = 16 + 9 + 25 = 10 2 ,即 x 2 + y 2 = 200 .
得⎨
⎧4 x − 3 y = 0 ⎩ x + y = 200
2 2
⎧x = 6 2 ⎪ ⎪ ⎩y = 8 2
或⎨
⎧ x = −6 2 ⎪ ⎪ ⎩ y = −8 2
所以所求向量 a 为 (6 2,8 2, 0) 或 ( −6 2, −8 2, 0) . 5. 求以 A(1,2,3),B(3,4,5),C(2,4,7)为顶点的△ABC 的面积 S. 解: AB = (2, 2, 2), AC = (1, 2, 4)

微积分2习题答案

微积分2习题答案

微积分2习题答案⼀、填空题 1.2. 设P(x)是x 的多项式,且lim 凡门⼆6 '—= 2, lim — = 3 ,则P(x) = 0 X7Tlim (arcsin(vx 2+x ⼀ x))= .YT4-X 6A 3 + 2x 2 + 3x t3. lim 1 ⼀ — .V —4. x )设lim ⼀ "" ⼀ * + 4= A ,则有"=5. 6. 7. 8. 9. j X — 1 .? “ \ ? 2 sinx 设 / (A ) = xsm — d -----X X ? 3.1L +sin x-sin — lim ------------ ------ - = t 3*函数v = ⼀上]⼀的间断点是(x-l)(x + 2)为使函数/(x) = - ? tanx 在点x = 0处连续,应补充左义/(0)= x 3设函数y = ^-x )xK则 lim f (x)=X->X%⼯°在兀=0处连续,则参数K =x = 0 x + ae x +\⼆、单项选择题 1 ?设x n >Q,且lim x 存在,则 lim x HTX n->x @>0 ② no ③=0 2?极限 lim e 7^ = XT I ①8 ②1 10.函数f(x)= < x < 0 在点x = 0处连续,则“=x>0④<03. 4. ③不存在 lim(1 + x) x + lim xsiii —= -V — ②": Jx 3 4, -2③ €+1: ④』+ly =-——-——-的连续区间是_ (x + lXx + 2)①(-s,-2)u (- 2,-l)U (- 1,T ③(-oo,-2)U (-2,400) ②[3,T④ co ⼚i)u(_l,+oo)函数『⼆⼆2X-l .Y+1 ①2个②3个 6.下列函数中,?当XT0时,与⽆穷⼩量x 相⽐是髙阶⽆穷⼩咼的是. 价⽆穷⼩量的是 ______________ ① l-cosxx + X 25. ④4个以上④ sin 2x__ ■⽦有①,②=24.7. 8. 9. 当x->0-时,sin 仮与Ixl 相⽐是_ ①髙阶⽆穷⼩咼③同阶但不等价的⽆穷⼩量当XT O 时,l —cos2x 与/相⽐是①髙阶⽆穷⼩量③低阶⽆穷⼩量(sin 3x 设 f(x) = ] x x = 0 ②⼀3 ②低阶⽆穷⼩量④等价⽆穷⼩量②同阶但不等价的⽆穷⼩量④等价⽆穷⼩量为连续函数,则k = ①1 10?函数/(x)在点勺处有⽴义是f(x)当x ->⼼时极限存在的. ①充分但⾮必要条件③充分必要条件 11?当JVT 0时,① x + sinx12.当XT0时, ?x + sin — x 13?当XT 8时,①x + sin 丄 x ②必要但⾮充分条件④既⾮充分⼜⾮必要条件下列函数中⽐x 髙阶的⽆穷⼩量是 ________ ② x-siiix ③ ln(l + x)下列函数中为⽆穷⼩量的是 ________②x ?sin 丄③丄+ sinx X X 下列函数中为⽆穷⼩量的是 _____ _ ② x-sin — ③—+ sinxX X14. 15. 16. ②④ hi(l-x)②④—?sin x x ③④—-siiix x 设在某个极限过程中函数/(X )与g(x)均是⽆穷⼤量,则下列函数中哪⼀个也必是⽆穷⼤量___________ ③④爲设/(x (J = c lim f(x) = b t lim f(x) = c ,则函数/(x)在点⼈)处连续的充分必要 .v —>.rj XfY :① /(Q+g(x) ② /(x)-g(x) ③/(Q ?g ⑴②a = c v 2 -1 4------ C E X-l 0 ④a=b=c②跳跃间断点①连续点三、求下列极限 lim (Jx 2 +1 - x) = lim ________ ⼀⼀⼛? + 1lim (Jx 2 +1 - x) = +xlini (J+ 2x + 2 - J③可去间断点④⽆穷间断点1.2. 3. =lim ,( ?— = = lim ⼀ y/x 2+2x + 2 + J ,—2x + 2 —1 lim arctanx-arcsin — =0 x)L r (x + l)2 +(2x + l)2 +(3x + l)2 + …+ (10x + l)2 z 7、 5. lim -- ----------- ------------- ---------------------------- -- (=—) — (10x-l)(lLv-l) 2 n n 、tr +n [解]记⽿=G+t+…+⽃ ir +1 ir +2 n +ne .. n n n n n n 因为——+ —— + …+ —n +n ir +n n +n n ir即—< x /2 < 1,由于lim — = 1,所以由夹逼定理,得lim 兀=1 n +1〃―30n +1“a7?设辄⼚2叽求〃由于极限存在,故a = {3 — \°—=2006p = —, a : P 2006四、分析题1 .讨论极限lim " "[解]因为lim 1!巴丄1 = 1, Um ⼔巴⼝ = ⼀1,故原极限不存在。

习题参考答案_经济数学——微积分(第2版)(微课版)_[共28页]

习题参考答案_经济数学——微积分(第2版)(微课版)_[共28页]

烆0.8653狓-1158, 狓 >4200
习题12
1. (1)4π ;
(2)56π;
(3)1 2 ; (4)3π .
2.(1)犳-1(狓)=1狓+-狓1,(- ∞,-1)∪ (-1,+ ∞);
(2)犳-1(狓)=
1 3
(狓3
+5),(-
∞,+
∞ );
(3)犳-1(狓)=1-e狓+1,(- ∞,+ ∞); (4)犳-1(狓)=log3(狓-1),(1,+ ∞);
5.犳[φ(狓)]=sin32狓-sin2狓 ;φ[犳(狓)]=sin(2狓3 -2狓). 习题13
1.3045;2859.3;2659.9.
2.(1)3狓+100,100元; (2)700元,3.5元.
3.(1)犘e =80,犙e =70; (2)图略;
(3)表示此时的价格为最低销售价格,市场上供给量为0.
(2)狔=e狌,狌=arctan狏,狏=狓2 ;狓 ∈犚 ;
(3)狔=狌3,狌=1+狏,狏=狊2,狊=ln狓 ;狓 ∈ {狓 狓 >0};
(4)狔 =log2狌,狌 =
槡狏,狏=cot狊,狊=
狓 2
,狓 ∈
{狓
2犽π<狓 <
(2犽+1)π,犽∈犣}.
经济数学———微积分(第2版)(微课版)
1.(1)犳(狓)在 (- ∞,-1)∪ (-1,+ ∞)上连续,图略 ; (2)犳(狓)在 [0,2]上连续,图略. 2.(1)犪=2; (2)犪=2,犫=-1. 3.(1)狓 =2为可去间断点,令犳(2)=-4;狓 =3为无穷间断点. (2)狓 =0为可去间断点,令犳(0)=1;
( ) 狓
4.(1)1; (2)1 2 .
5.(1)e-6 ; (2)2; (3)1 ; 槡2

《微积分(二)》同步练习册(最终使用版)

《微积分(二)》同步练习册(最终使用版)

1 / 63第五章 不定积分 §5.3 凑微分法和分部积分法(第5.1~5.2节的内容,请参见本练习册末尾、第五章“自测题”前的附加材料)1. 求下列不定积分:(1) ⎰-dx e x 2; (2)⎰dx x x ln 1;(3)⎰+x x dx 2; (4) ⎰-dx x x 21;(5)dx x x x ⎰-+-2211; (6)()⎰-dx x 21sin 2;)21(2112122x x d xx -+-+=⎰(7)⎰xdx x 32cos sin ; (8) ⎰dx x4sin 1; cctgx x ctg dctgx x ctg xdctgx+--=+-=-=⎰⎰32231)1(csc(9)⎰+dx xx 231; (10)2sin cos 23cos x x dx x-⎰;)1()111(21112222223x d xx xdx x x dx x x ++-+=+=+⎰⎰⎰c x xd x x d xdx xx x +-=--=--=-⎰⎰⎰222222cos 3231)cos 32(cos 32161cos cos 32121cos 32cos sin (11)⎰dx x x x cos sin 1; (12*)⎰+dx e x11;(13*)()⎰+dx x x x ln 1; (14*)()⎰+2cos 2sin x x dx.()ce x dx e dx x e x x x x x x +==+=⎰⎰ln ln ln ln ln 1()()ctgx tgx tgx d tgx dx x ++-=++=+=⎰⎰212)2(2cos 12222 / 633. 求下列不定积分: (1)[]⎰++dx x x )1ln(arcsin ; (2)⎰-dx e x x22;(3)⎰xdx e x2sin ; (4) ()dx e x x x 221⎰+;(5) ⎰xdx ln sin ; (6)⎰+dx x 21.c x x x x c tgt t ttgt dtgt t tdtdtgt t ttgt dt t t tg ttgt ttgtd ttgt tdtgt dx x +++++=+++=+-=-=-==+⎰⎰⎰⎰⎰⎰⎰]1ln 1[21]sec ln [sec 21sec sec sec sec sec sec sec sec sec 122224. 求下列有理函数的不定积分:(1) ⎰+dx x x )1(17; (2)⎰++dx x x x21. c x x dx x x dx x x ++=+-=+=⎰⎰777777771ln 71)111(71)1(171 c arctg x dx x x +-++=++-+=⎰33233])21(43ln[21)21(4321)21(225. 求下列不定积分: (1) 已知)(x f 是2x e-的一个原函数,求⎰'dx x f x )(;c e xde dx xe dx xf x e x f x x x x +-=--=='='----⎰⎰⎰22222121)(,)(2(2) 已知2x e-是)(x f 的一个原函数,求⎰'dx x f x )(.ce e x ce ex dxx f x xf x xdf dx x f x x x x x +--=+-'=-=='----⎰⎰⎰222222)()()()()(3 / 63§5.4 换元积分法1. 求下列不定积分: (1)⎰+dx x 1; (2)⎰+-dx x 3211;(3)231x dx x +⎰; (4)⎰-dx x x 211; ⎰⎰⎰⎰⎰-====+-=-+==tdctgttdt tdtttg ttgtx dt t dt tt t tx csc csc sec sec 21)1(11113232223原式)法原式)法cxx x c ctgt t tdt tdttt t x +---=+--====⎰⎰211ln csc ln csc cos cos sin 1sin 原式 (5)⎰dx x x cos ;(6)⎰-dx ex; (7)()⎰-dx x x 21012981()⎰⎰⎰==-tdtgt tg tdt tt dx x x 98101982101298cos cos sin 1(7) ⎰++dx xx)11ln(. ]11)1ln(11)1ln([2111)1ln(2))1(21141141()1)(1(1)1(21141141)1)(1(1)1)(1(11)1ln(11)1ln(11,1222222222++--+=-+=+-++-+-=+-+-++-+-=+-+---+=-+=-=+=⎰⎰⎰⎰⎰⎰⎰t d t t d t t d t dt t t t dt t t t t t t t dt t t t t t d t t x x x t )原式法原式4 / 632*. 求不定积分⎰-+dx x x xx cos sin cos sin 2.dtt t t t t dt t t t t dx x x x x x d x x dx x x x dx x x x x ⎰⎰⎰⎰⎰⎰+---++=+-+=---+-=-+]11121[)1)(12(4cos sin sin )cos (sin cos sin 1cos sin sin cos sin cos sin 222223*. 试求不定积分2ln 1(ln )x dx x -⎰.c te dt e t t e dt e t t d e dt e t dt e tdt e t dt e t t x t t t t t t t tt t +=-+=+=-=-==⎰⎰⎰⎰⎰⎰⎰11111111ln 22原式4*. 已知ln(1)(ln )x f x x +=,求()f x dx ⎰. ce x e e dx ee e de e dx e e dx xf e e t f e e x x t f x f e x x t x x x xx x xx x xtt tt t ++-++-=+++-=+-=+=+=+=+===---⎰⎰⎰⎰)1ln()1ln(11)1ln()1ln()1ln()()1ln()()1ln()1ln()()(ln ,ln5 / 63第六章 定积分 §6.1 定积分的概念与性质1. 利用定积分的几何意义,计算下列定积分: (1)⎰-201dx x ; (2)⎰-11sin xdx ;(3)⎰--22121dx x .2. 不计算积分,比较下列各积分值的大小(指出明确的“=<>,,”关系,并给出必要的理由). (1)⎰102dx x 与 ⎰10xdx ; (2)⎰212dx x 与 ⎰21xdx ;(3)⎰20sin πxdx 与 ⎰20πxdx ; (4)⎰40tan πxdx 与 ⎰40πxdx .3. 利用定积分的性质,估计⎰-=20dx xe I x 的大小.上的最大值和最小值。

微积分II课程习题五答案详解

微积分II课程习题五答案详解

习 题5.1 选择题(1)答案D ,令y=0,z=0得a=1,令x=0,z=0得b=2,令x=0,y=0得c= 12-. (2) 答案C ,由y=0,则点)3,0,4(在xOz 平面上.(3)答案B ,关于原点对称则相应的坐标值变为相反数,所以点)1,2,3(-关于原点的对称点是)1,2,3(--.(4)答案C ,把x=0,y=e 带入函数中,得),0(e f =ln(0)1e +=. (5) 答案D ,只有当00(,)(,)lim x x y y f x y f x y →→=时),(y x f 在点),(00y x 处连续.(6) 答案A ,求对函数求关于x 偏导,'(,)1x f x y y =+-,所以)1,('x f x =1.或者,求解x x f =)1,(,因而有1)1,(='x f x ,类似的题型可以考虑这一方法,解题简便不少.(7) 答案D ,求偏导有(1)xy zxy e x∂=+∂. (8) 答案A ,由222(,)()f xy x y x y xy x y xy +=++=+-,令xy u =,x y v +=得2(,)f x y y x=-,所以'(,)1x f x y =-,'(,)2y f x y y = (9)答案A ,由链式求导法则dx dz =dz du du dx +dz dv dvdx =ln sin x u v x e v-+=x x x sin cos - (10)答案D ,有微分公式直接求得有dz =21xdx dy x y y xy-++,则在点)1,1(处,dz =)(21dy dx -.(11)答案C ,分别令),('y x f x 与),('y x f y 为零,有'(,)4220x f x y x y =--=,'(,)220y f x y x y =-+=解得1,1x y ==,有唯一驻点.(12) 答案C ,令'2(,)0x a f x y y x=-=,'2(,)0y b f x y x y =-=,将5,2x y ==代入得50,20==b a .5.2填空题(1)充分;必要 (2) 必要;充分 (3)充分; (4)充分5.3 解 当220x y +=时,0,0x y ==.按定义(0,0)(0,0)0lim x f f x x x ∆→∂+∆==∂∆ 当220x y +≠时, 有3'2222(,)()xxy f x y x y =+.所以 ⎪⎩⎪⎨⎧=+≠++=0,0,0,)(2),(22222223'y x y x y x xy y x f x同理可求得⎪⎩⎪⎨⎧=+≠++-=0,0,0,)()(),(2222222222'y x y x y x y x x y x f y 5.4解(1),)()(2,)(2,)(1,2,122222222222222y x y x y z y x y y x z y x x z y x y y z y x x z +-=∂∂+-=∂∂∂+-=∂∂+=∂∂+=∂∂(2)212222122,ln ,(1),(1ln ),(ln )y yy y y z z z yx x x y y x x y x z z x y x x x x y y---∂∂∂===-∂∂∂∂∂=+=∂∂∂5.5 证明 由于22223/20,((,)(0,0))()x y x y x y ≤→→+ 所以22223/2(,)(0,0)(,)(0,0)(,)0(0,0)()lim lim x y x y x y f x y f x y →→===+即),(y x f 在点)0,0(处连续.220(0,0)0,(0,0)0x y x y f f ∆→∆→====所以函数),(y x f 在点)0,0(处可偏导. 但23222(0,0)(0,0)[(0,0)(0,0)]()(,)()x y f x y f f x f y x y f x y x y +∆+∆--∆+∆∆∆=∆∆=∆+∆222lim()()()x y x y ρρ→→∆⋅∆=∆+∆极限不存在,函数在点)0,0(处不可微. 5.6 解z z u z v u v v u x u x v x x x∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂ 令(,)cos uF x u x e v =-,由隐函数求导法则uv x u u x e vF F x v e v F F x u ---=-=∂∂=-=∂∂sin 1,cos 1 所以()cos sin u z v u e x v v-∂=-∂ 同理求解()cos sin u z u v e y v v-∂=+∂ 5.7 解 (1) 2222z z x ydz dx dy dx dy x y x y x y∂∂=+=+∂∂++ (2)cos()cos()dz y xy dx x xy dy =+(3)令11ln()ln ,x x x u y x y==则1ln()(,,)xuy x f x y z e e ==111222111(ln )(),()x x f x x f xx x y x y y y y-∂∂=-+=-∂∂ 代入数据得dy dx df -=)1,1( (4)由ln(1)21(1,1)(,),(1)[ln(1)]1(1)(1,1)(1,1)2ln 21,1|(2ln 21)x xy x x f xyf x y e xy xy x xyfx xy y f f x y dz dx dy+-∂==+++∂+∂=+∂∂∂=+=∂∂=++5.8解对角线L =m y m x m y m x 1.0,05.0,8,600-=∆=∆==myL x L L y x 05.0)1.0(10805.0106)8,6()8,6(-=-⋅+⋅=∆'+∆'≈∆5.9解 (1)两边同时对x 求导zz ze yz xy x x∂∂⋅=+∂∂,得zz yz x e xy ∂=∂- 同理得z z xzy e xy∂=∂-; (2) 令xyz z y x z y x F 22),,(-++='''''121x y z x zF F F F zz x F y ===-∂∂∴=-==∂∂5.10解 ''''0242,42,20x xyy z x z x z y y z ⎧==⎧⎪=-=--⎨⎨=-=⎩⎪⎩令解得'''2,2,0xx yy xy z z z =-=-=由多元函数极值的充分条件20,0AC B A -><,函数有极大值代入为8. 5.11解 此题为条件极值可以化为无条件极值来求,或者利用拉格朗日函数求令22(1)20,20,10x y L x y a bL L L x y x y x a y b a b λλλλ=+++-∂∂∂=+==+==+-=∂∂∂得22222222222,,a b ab ba x y a b a b a b λ=-==+++很显然z 有极大值,代入得极大值2222),(222222|b a b a Z ba b a b a ab +=++ 5.12解 此题可以采用构造拉格朗日函数求解,这里采用直接代入法求解设采购甲原材料xkg ,乙原材料ykg.依题意可得0.50.9x y +=,代入产量函数中得2230.01(0.90.5)0.90.005Q y y y y =-=-21.80.0150Qx y y y∂=-=∂对求导,令解得 x=30kg, y=120kg而实际问题必有最大值,所以最大值Q=4320kg . 5.13 证明 因为2)11(2)11(1,1ye yz xe xz yx yx ⋅=∂∂⋅=∂∂+-+-所以z ee yz y x z x yx yx 2)11()11(22=+=∂∂⋅+∂∂⋅+-+-5.14 证明xyz xy u xF xy yF xy yF u xF xy yz y x z x F x y zF x y u F y x z u u u u +=++='++'-+=∂∂⋅+∂∂⋅'+=∂∂'⋅-+=∂∂)()(,)( 5.15 解 (1) 对等式22()x y z x y z ϕ+-=++两端求微分得'22()xdx ydy dz dx dy dz ϕ+-=⋅++得 ''''2211x y dz dx dy ϕϕϕϕ--=+++ (2)由于ϕ'+=∂∂12x x z ,ϕ'+=∂∂12y y z代入得ϕ'+=12),(y x u 所以 32)1()12(2)1()1(2ϕϕϕϕ'+''+-=''∂∂+'+-=∂∂x x zx u5.16 解 设(1999数三,20分)设12112212(,,)(122)F x x p x p x x x αβλλ=++-令1112120F p x x x αβλα-∂=-=∂ ①1212220F p x x x αβλβ-∂=-=∂ ② 121220F x x αβλ∂=-=∂ ③由①和②得2112p x p x βα= 2121p x x p αβ= 将1x 带入③中得 1226()p x p αβα= 从而2116()p x p βαβ= 因驻点唯一,且实际问题有最小值,故2116()p x p βαβ=,1226()p x p αβα=时,投入总费用最小. 5.17 解 原式=22222222()(,)(0,0)sin[(1)()](1)()lim (1)()1y y y x y x y e x x y e x x y e x x y e +→++++⋅++- =2222()(,)(0,0)(1)lim1yxy x y x y e x e +→++⋅- (令222u y x =+)=220lim1u u u e →-=22lim2u u u ue→=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A = −3 B 或 A =
n = PQ × s = (3,15,3) = 3(1,5,1) 方程为 ( x − 2) + 5 y + ( z + 1) = 0 ,即 x + 5 y + z − 1 = 0 x y −1 z −1 = = 与平面π : (1)求证 L 与 π 相交,并求交点坐标; 六、设直线 L : 2x + y − z − 3 = 0 , −1 1 2 (3)求过 L 与 π 交点且与 L 垂直的平面方程; (4)求过 L 且与 π 垂直的 (2)求 L 与 π 交角; 平面方程; (5)求 L 在 π 上的投影直线方程. (1) L : x = −t , y = t + 1, z = 2t + 1 ,代入平面得 t = −1 ,交点为 (1, 0, −1) −2 + 1 − 2 1 π = ,θ = (2) sin θ = 2 6 6⋅ 6 (3) −( x − 1) + y + 2( z + 1) = 0 ,即 x − y − 2 z − 3 = 0
微积分(二)同步练习答案
§8.1 向量及其线性运算(1) 、 (2) 、 (3) 、 (4) 一、设 u = 2a − b + c , v = a + 2b + c ,试用 a , b , c 表示 2u − 4v .
2u − 4v = −10b − 2c 二、 a , b , c 为三个模为 1 的单位向量,且有 a + b + c = 0 成立,证明: a , b , c 可构成一个等边三角形.
2 2
§8.5 平面及其方程(1)
⎧ x2 + y 2 = 1 z2 = 0 与平面 z = 3 的交线圆的方程是( ⎨ ) ,其圆心坐标是 9 = z 3 ⎩ ( (0, 0,3) ) ,圆的半径为( 1 ) .
2.曲线 ⎨
⎧ x2 + y 2 = 1 ⎧2 y − ( z − 1) 2 = 1 ⎪ 在 yoz 面上的投影曲线为( ⎨ ) . 2 2 2 x = 0 x y z ( 1) ( 1) 1 + − + − = ⎪ ⎩ ⎩ z ⎧ ⎪ y = a sin . 3.螺旋线 x = a cos θ , y = a sin θ , z = bθ 在 yoz 面上的投影曲线为( ⎨ b ) ⎪ ⎩x = 0
(1) ( a ib ) c − ( a ic ) b = −2c − 5b = (−7,3,5)
(1) ( a ib ) c − ( a ic ) b ;
( 2) ( a + b ) × (b + c ) ;
( 3) ( a × b )ic .
( 3) ( a × b )ic = (−2,3, −5) ⋅ (1,1, 0) = 1 六、设 a = ( 2, −1,3) , b = ( −1, 2, −1) ,问 λ 和μ 满足何关系时,可使 λ a + μ b 与 z 轴垂直?
计算向量 M 1M 2 的模、 方向余弦和方向角, 并求与 M 1M 2 二、 设已知两点 M 1 5, 2, 2 和M 2 ( 4, 0,3) , 方向一致的单位向量.
(
)
1 2 1 M 1M 2 = (−1, − 2,1) , M 1M 2 = 2 , cos α = − , cos β = − , cos γ = 2 2 2 ° 2π 3π π 1 2 1 α= ,β = , γ = , M 1M 2 = (− , − , ) 2 2 2 3 3 4 三、设 m = 2i + 3 j + 4k , n = 4i − j + 2k及p = −i + 2 j + 3k ,求 a = 2m + 3n − 2 p 在 x 轴上的投影及在 z 轴上的分向量. a = (18, −1,8) , Pr jx a = 18 , az k = 8k
D
). (B) 、平行 oy 轴 (D) 、通过 oy 轴
4.下列平面中通过坐标原点的平面是( C ). (B)、 x + 2 y + 3 z + 4 = 0 (C)、 3( x − 1) − y + ( z + 3) = 0 (A) 、 x =1
(D)、 x + y + z = 1
三、化曲线 ⎨
⎧ x2 + y 2 + z 2 = 9 为参数方程. ⎩y = x
四、求通过 z 轴,且与平面 2 x + y − 5 z − 7 = 0 的夹角为 设所求平面为 Ax + By = 0 ,则
π
3
的平面方程.
2A + B 10 A + B
2 2
=
1 2 2 , 3 A + 8 AB − 3B = 0 2
B ,故 x + 3 y = 0 或 3 x − y = 0 3 x +1 y z−2 = = 的平面方程. 五、求通过点 P(2, 0, −1) ,且又通过直线 2 3 −1 取 Q( −1, 0, 2) , n ⊥ PQ = (−3, 0,3) , n ⊥ s = (2, −1,3)
M 1M 2 = (0, −4, −4) , −3M 1M 2 = (0,12,12)
一、试证明以三点 A (10, −1, 6 ) 、B ( 4,1,9 ) 、C ( 2, 4,3) 为顶点的三角形是等腰直角三角形. §8.1 向量及其线性运算(5) §8.2 数量积 向量积
AB = 7 , BC = 7 , AC = 7 2
( z + a)
2
= x 2 ,绕 z 轴;或 ( z + a ) = y 2 ,绕 z 轴
2 2 2
六、指出下列方程所表示的曲面:
1.x + 2 y − z = 2 ;
2 2 2
2.x − y − 3 z = 3
2
x2 y2 z 3. + = 3 4 5
椭圆抛物面
单叶双曲面;
双叶双曲面
§8.4 空间曲线及其方程 一、填空题: 1.曲面 x + y −
x+3 y+4 z = = 与平面 π : 4 x − 2 y − 2 z = 3 的关系是( A ). 3 −2 −7 (D)相交但不垂直 (A)平行 (B)垂直相交 (C) L 在 π 上
3.设直线 L1 : (A) π /6
x −1 5 − y z + 8 ⎧x − y = 6 = = 与 L2 : ⎨ ,则 L1 与 L2 的夹角为( C ). 1 2 1 ⎩2 y + z = 3 (B) π /4 (C) π /3 (D) π /2
(A) 、x + y =a
2 2 2
(B)、 x = a cos
z b
(C)、 y = a sin
z b
3.平面 x − 2 z = 0 的位置是( (A) 、平行 xoz 坐标面。 (C) 、垂直于 oy 轴
z ⎧ x = a cos ⎪ ⎪ b (D)、 ⎨ ⎪ y = a sin z ⎪ b ⎩
⎧ x2 + y 2 ≤ 1 x 2 + y 2 ( 0 ≤ z ≤ 1 )在 xoy 面上的投影为( ⎨ ) ,在 xoz 面上的投影 ⎩z = 0
4.上半锥面 z =
为( ⎨
⎧ ⎪ x ≤ z ≤1 ) ,在 yoz 面上的投影为( ⎪ ⎩y = 0
⎧ ⎪ y ≤ z ≤1 ) . ⎨ ⎪ ⎩x = 0
四、已知 a , b , c 为三个模为 1 的单位向量,且 a + b + c = 0 ,求 a ib + b ic + c ia 之值.
2π 3 , a ib + b ic + c i a = − 3 2 五、已知 a = 2i + 3 j + k , b = i − j − k 和c = i + j ,计算: (a, b) = (b, c) = (c, a) =
2 2 2 2 2 2
直线,平面 五、说明下列旋转曲面是怎样形成的?
1. y = 2 x + 4 ;
2.3 x 2 − 2 y 2 = 6 .
双曲线,双曲柱面
1.x 2 + 2 y 2 + 2 z 2 = 6 ;
2. ( z + a ) = x 2 + y 2 .
2
x 2 + 2 y 2 = 6 ,绕 x 轴;或 x 2 + 2 z 2 = 6 ,绕 x 轴
x=
3 2 3 2 cos θ , y = cos θ , z = 3sin θ 2 2
四、求通过三点 (1,1,1) 、 ( −2, −2, 2) 和 (1, −1, 2) 的平面方程.
x − 3y − 6z + 8 = 0
§8.5 平面及其方程(2)(3) 一、填空题: 1.过点 P (4, −1,3) 且平行于直线 §8.6 空间直线及其方程
二、选择题: 1.下列直线中平行与 xoy 坐标面的是( D ).
x −1 y + 2 z + 3 = = (A) 1 3 2
2.直线 L :
x +1 y −1 z (C) = = 0 0 1
⎧4 x − y − 4 = 0 (B)⎨ ⎩x − z − 4 = 0
⎧ x = 1 + 2t ⎪ (D)⎨ y = 3t ⎪z = 4 ⎩
a , b , c 可构成一个三角形 ⇔ a + b + c = 0 ,且 a , b , c 两两不共线 三 、 把 △ ABC 的 BC 边 四 等 分 , 设 分 点 依 次 为 D1、D2、D3 , 再 把 各 分 点 与 点 A 连 接 , 试 以
相关文档
最新文档