(完整版)集合与充要条件练习题

合集下载

高中数学 第一章 集合与常用逻辑用语 1.4.1 充分条件与必要条件精品练习(含解析)新人教A版必修

高中数学 第一章 集合与常用逻辑用语 1.4.1 充分条件与必要条件精品练习(含解析)新人教A版必修

1.4.1 充分条件与必要条件6.若“x>1”是“x>a”的充分条件,则a的取值X围是________.关键能力综合练一、选择题1.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( ) A.充分条件B.必要条件C.既是充分条件,也是必要条件D.既不充分又不必要条件2.设集合A={x|0≤x≤3},集合B={x|1≤x≤3},那么“m∈A”是“m∈B”的( ) A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不充分又不必要条件3.设a,b∈R,则“(a-b)·a2<0”是“a<b”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件4.设集合M={x|x≥2},P={x|x>1},则“x∈M∪P”是“x∈M∩P”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件5.设x∈R,则“|x|<1”是“x3<1”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件6.设x,y是两个实数,则“x,y中至少有一个大于1”的一个充分不必要条件是( ) A.x+y=2 B.x+y>21.4 充分条件与必要条件1.4.1 充分条件与必要条件必备知识基础练1.解析:(1)若α为锐角,α不一定等于45°,因此p 不是q 的充分条件;反之,若α=45°,则α为锐角,因此p 是q 的必要条件.(2)由x >1可以推出x 2>1,因此p 是q 的充分条件;由x 2>1,得x <-1,或x >1,不一定有x >1.因此,p 不是q 的必要条件.(3)由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3,因此p 不是q 的充分条件;由a =3可以得出(a -2)(a -3)=0.因此,p 是q 的必要条件.(4)二次函数y =ax 2+bx +c ,当Δ>0时,其图象与x 轴有交点,因此p 是q 的充分条件;反之若函数的图象与x 轴有交点,则Δ≥0,不一定是Δ>0,因此p 不是q 的必要条件.2.解析:当a =1时,|a |=1成立,但当|a |=1时,a =±1,所以a =1不一定成立,∴“a =1”是“|a |=1”的充分条件.故选A.答案:A3.解析:∵-2<x <1⇒x >1或x <-1,且x >1或x <-1⇒-2<x <1.∴“-2<x <1”是“x >1或x <-1”的既不充分条件,也不必要条件.答案:C4.解析:当x >1时,1x <1成立;当x <0时,也满足1x <1,故“x >1”是“1x<1”的充分不必要条件.答案:A5.解析:由于x =0⇒x 2=2x ,所以“x 2=2x ”是“x =0”的必要条件,“x =0”是“x2=2x”的充分条件.答案:必要充分6.解析:因为x>1⇒x>a,所以a≤1.答案:a≤1关键能力综合练1.解析:“便宜没好货”的意思是“好货”肯定“不便宜”,所以“不便宜”是“好货”的必要条件.答案:B2.解析:因为集合A={x|0≤x≤3},集合B={x|1≤x≤3},则由“m∈A”得不到“m∈B”,反之由“m∈B”可得到“m∈A”,故选B.答案:B3.解析:若(a-b)·a2<0,则必有a-b<0,即a<b;而当a<b时,不能推出(a-b)·a2<0,如a=0,b=1,所以“(a-b)·a2<0”是“a<b”的充分不必要条件.答案:A4.解析:因为M∪P={x|x>1},M∩P={x|x≥2},所以“x∈M∪P”是“x∈M∩P”的必要不充分条件.故选B.答案:B5.解析:由|x|<1,得-1<x<1,所以-1<x3<1;由x3<1,得x<1,不能推出-1<x<1.所以“|x|<1”是“x3<1”的充分不必要条件.故选A.答案:A6.解析:A项,x+y=2时,令x=y=1,不符合命题;而命题“x,y中至少有一个大于1”,令x=-1,y=2,x+y≠2,所以是非充分非必要条件;B项,x+y>2时,若x,y 都不大于1,则x+y≤2矛盾,可得x,y中至少有一个大于1;若“x,y中至少有一个大于1”,令x=-1,y=2,x+y<2,所以是充分不必要条件;C项,x2+y2>2时,令x=-2,y=0,不符合命题;若“x,y中至少有一个大于1”,令x=1.1,y=0,x2+y2<2,所以是非充分非必要条件;D项,xy>1时,令x=-1,y=-2,不符合命题;若“x,y中至少有一个大于1”,令x=-1,y=2,xy<1,所以是非充分非必要条件.答案:B7.解析:当a和b都是偶数时,则a+b也是偶数;当a+b为偶数时,a,b可以都为奇数.故填“充分不必要”.答案:充分不必要8.解析:令A={x|1≤x<4},B={x|x<m},因为p是q的充分条件,所以A⊆B.所以m≥4.答案:m≥49.解析:①ab=0即为a=0或b=0,即a,b中至少有一个为0;②a+b=0即a,b 互为相反数,则a,b可能均为0,也可能为一正一负;③由ab>0知a与b同号,即a,b都不为0.综上可知,“a,b都为0”能推出①②,③能推出“a,b都不为0”,所以使a,b都为0的必要条件是①②,使a,b都不为0的充分条件是③.答案:(1)①②(2)③10.解析:(1)数a能被6整除,则一定能被3整除,反之不一定成立.即p⇒q,q⇒p,∴p是q的充分不必要条件.(2)当a=-2,b=-1时,ab=2>1;当a=2,b=-1时,ab=-2<1,所以p既不是q的充分条件,也不是必要条件.(3)△ABC中,有两个角相等时为等腰三角形,不一定为正三角形,即p⇒q,且q⇒p,∴p是q的必要不充分条件.学科素养升级练1.解析:由x2-x-2<0,解得-1<x<2.又x2-x-2<0是-2<x<a的充分不必要条件,∴(-1,2)(-2,a),则a≥2.∴实数a的值可以是2,3,4.故选BCD.答案:BCD2.解析:因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙⇒丙,如图.综上,有丙⇒甲,但甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件. 答案:A3.解析:若a =-1,b =12,则Δ=a 2-4b <0,关于x 的方程x 2+ax +b =0无实根,故p⇒q .若关于x 的方程x 2+ax +b =0有两个小于1的不等正根,不妨设这两个根为x 1,x 2,且0<x 1<x 2<1,则x 1+x 2=-a ,x 1x 2=b .于是0<-a <2,0<b <1,即-2<a <0,0<b <1,故q ⇒p . 所以p 是q 的必要条件,但不是充分条件.。

充分条件与必要条件(习题作业)原卷版--2023年初升高暑假衔接之高一数学

充分条件与必要条件(习题作业)原卷版--2023年初升高暑假衔接之高一数学

1.4充分条件与必要条件一、单选题1.已知:02p x <<,:13q x -<<,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.设R a ∈,则“1a >”是“21a >”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3.“2x >且3y >”是“5x y +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知a 、b 、R c ∈,则“a b <”是“22ac bc <”的().A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件5.设,R x y ∈,则“0x y +>”是“0xy >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知集合M ,P ,则“x M ∈或x P ∈”是“()x M P ∈⋂”的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件7.设x ∈R ,则“2x =”是“24x =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若,R a b ∈,则“2()0a b a -<”是“a b <”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.若,,R a b c ∈,则“ac bc =”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10)A .0,0a b ≥≥B .0,0a b >>C .0,0a b ≤≤D .0,0a b ≤<11.已知a ,b 为非零实数,则“1b a ≥”是“b a ≥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.设命题121,: 1.x p x >⎧⎨>⎩命题12122,: 1.x x q x x +>⎧⎨>⎩则p 是q 的()A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件二、多选题13.有以下四种说法,其中说法正确的是()A .“m 是实数”是“m 是有理数”的必要不充分条件B .“0a b >>”是“22a b >”的充要条件C .“3x =”是“2230x x --=”的充分不必要条件D .“1a >”是“11a<”的必要不充分条件14.设全集为U ,在下列选项中,是B A ⊆的充要条件的是()A .A B B ⋃=B .()U A B Ç=ÆðC .()()U U A B Í痧D .()U A B U È=ð15.下列命题中叙述不正确...的是()A .“关于x 的方程()200ax bx c a ++=≠有实数根”的充要条件是“240b ac ∆=-≥”B .“三角形为正三角形”是“三角形为等腰三角形”的必要而不充分条件C .“4x >”的一个充分不必要条件可以是“3x >”D .若集合A B ⊆,则“x A ∈”是“x B ∈”的充分而不必要条件16.下列说法正确的是()A .a P Q ∈⋃是a P ∈的必要不充分条件B .U U P Q ⊆痧(U 是全集)是P Q ⊆的充分不必要条件C .a b <是22a b <的充分不必要条件D .a b <是33a b <的充要条件17.对任意实数,,a b c ,给出下列命题,其中假命题是()A .“a b =”是“ac bc =”的充要条件B .“5a <”是“3a <”的必要条件C .“a b >”是“22a b >”的充分条件D .“5a +是无理数”是“a 是无理数”的充要条件18.若关于x 的方程()2110x m x +-+=至多有一个实数根,则它成立的必要条件可以是()A .13m -<<B .24m -<<C .4m <D .12m -≤<19.已知集合{}|123|{ ,2A x a x a B x x =+<<-=≤-或7}x ≥,则A B ⋂=∅的必要不充分条件可能是()A .7a <B .6a <C .5a <D .4a <三、填空题20.已知集合{}3A x x =>,集合{}B x x a =>,若命题“x A ∈”是命题“x B ∈”的充分不必要条件,则实数a 的取值范围是______.21.设α:14x <≤,β:x >m ,α是β的充分条件,则实数m 的取值范围是________.22.已知:p x a <,:3q x <,p 是q 的必要不充分条件,则实数a 的取值范围为___________.23.:x α是2的倍数,:x β是6的倍数,则α是β的______条件.24.设甲、乙、丙、丁是四个命题,甲是乙的充分不必要条件,丙是乙的充要条件,丁是丙的必要不充分条件,那么丁是甲的______条件.四、解答题25.已知集合{}2126A x a x a =-≤≤+,{}04B x x =≤≤,全集U =R .(1)当1a =时,求()U A B ∩ð;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求实数a 的取值范围.26.已知集合{}310A x x =<<,{}29140B x x x =-+<,{}32C x x m =<<,(1)求A B ⋂,A B ⋃,()A B R ð;(2)若x C ∈是()x A B ∈ 的充分而不必要条件,求实数m 的取值范围.27.已知集合{}121,P x a x a a =+≤≤+∈R ,{}25Q x x =-≤≤.(1)若3a =,求()P Q ⋂R ð;(2)若“x P ∈”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.28.已知集合{}114A x x =≤-<,{}23B x x =-<≤,{}2121C x a x a =-<<+.(1)若x C ∈是“x A ∈”的充分条件,求实数a 的取值范围.(2)若()A B C ⊆ ,求实数a 的取值范围.29.已知{|1A x x =≤-或1}x ≥,{|21}B x a x a =<<+(B 为非空集合),记:p x A ∈,:q x B ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.30.已知集合{}{}121,24A xa x a B x x =-≤≤+=-≤≤∣∣.在①A B B ⋃=;②“x A ∈”是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第②问的横线处,求解下列问题.(1)当3a =时,求()R A B ⋂ð;(2)若______,求实数a 的取值范围.31.设U =R ,已知集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-.(1)当4B ∈时,求实数m 的范围;(2)设:p x A ∈;:q x B ∈,若p 是q 的必要不充分条件,求实数m 的范围.32.已知集合{}13A x x =<<,集合{}21B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题:p x A ∈,命题:q x B ∈,若p 是q 成立的充分不必要条件,求实数m 的取值范围.33.已知集合{}12A x x =<<,{}22B x m x m =-<<(1)当2m =时,求A B ⋂;(2)若______,求实数m 的取值范围.请从①x A ∀∈且x B ∉;②“x B ∈”是“x A ∈”的必要条件;这两个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)34.已知全集R U =,集合{}|11A x m x m =-<<+,{}|4B x x =<.(1)当4m =时,求A B ⋃和()R A B ⋂ð;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.。

充分条件与必要条件测试题(含答案)

充分条件与必要条件测试题(含答案)

充分条件与必要条件测试题(含答案)班级 姓名一、选择题1.“2x =”是“(1)(2)0x x --=”的 ( )(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件2.在ABC ∆中,:,:p a b q BAC ABC >∠>∠,则p 是q 的 ( )(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件3.“p 或q 是假命题”是“非p 为真命题”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.若非空集合M N ≠⊂,则“a M ∈或a N ∈”是“a M N ∈”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件B 提示:“a M ∈或a N ∈”不一定有“a M N ∈”。

5.对任意的实数,,a b c ,下列命题是真命题的是 ( )(A )“ac bc >”是“a b >”的必要条件(B )“ac bc =”是“a b =”的必要条件(C )“ac bc <”是“a b >”的充分条件(D )“ac bc =”是“a b =”的必要条件6.若条件:14p x +≤,条件:23q x <<,则q ⌝是p ⌝的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件7.若非空集合,,A B C 满足A B C =,且B 不是A 的子集,则 ( )A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件8.对于实数,x y ,满足:3,:2p x y q x +≠≠或1y ≠,则p 是q 的 ( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“40k -<<”是“函数2y x kx k =--的值恒为正值”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件10.已知条件:2p t ≠,条件2:4q t ≠,则p 是q 的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件11.“a =2”是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件12.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q是s 的必要条件。

高中数学命题与充要条件练习题附答案精选全文完整版

高中数学命题与充要条件练习题附答案精选全文完整版

可编辑修改精选全文完整版1.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0B.1C.2 D.3解析:选C.命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上3个命题中真命题的个数是2.故选C.2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B.命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.3.(2018·陕西质量检测(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a -b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,选A.4.在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2R sin A>2R sin B,即a>b;若a>b,则a2R>b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,故选C.5.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C .①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.6.(2018·石家庄模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A .由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x >8”的充分不必要条件,故选A .7.已知直线l ,m ,其中只有m 在平面α内,则“l ∥α”是“l ∥m ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B .当l ∥α时,直线l 与平面α内的直线m 平行、异面都有可能,所以l ∥m 不一定成立;当l ∥m 时,根据直线与平面平行的判定定理知直线l ∥α,即“l ∥α”是“l ∥m ”的必要不充分条件,故选B .8.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B .要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.9.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C .因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C .10.(2018·惠州第三次调研)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C .设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C .11.(2018·贵阳检测)设向量a =(1,x -1),b =(x +1,3),则“x =2”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .依题意,注意到a ∥b 的充要条件是1×3=(x -1)(x +1),即x =±2.因此,由x =2可得a ∥b ,“x =2”是“a ∥b ”的充分条件;由a ∥b 不能得到x =2,“x =2”不是“a ∥b ”的必要条件,故“x =2”是“a ∥b ”的充分不必要条件,选A .12.(2018·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A .命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有⎩⎪⎨⎪⎧a =01>0或⎩⎪⎨⎪⎧a >0a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件,故选A . 13.下列命题中为真命题的是________. ①命题“若x >1,则x 2>1”的否命题; ②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若x 2>1,则x >1”的逆否命题.解析:对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若x 2>1,则x >1”的逆否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故④为假命题.答案:②14.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________.解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.答案:115.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0. 答案:[-3,0]16.(2018·长沙模拟)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;②“x <0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x <0”,所以“x <0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f (x )=cos 2ax -sin 2ax =cos 2ax ,若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;④“平面向量a 与b 的夹角是钝角”可以推出“a·b <0”,但由“a·b <0”,得“平面向量a 与b 的夹角是钝角或平角”,所以“a·b <0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②1.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .因为⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,⎝⎛⎭⎫0,π6⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,所以“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 2.下列选项中,p 是q 的必要不充分条件的是( ) A .p :x =1,q :x 2=x B .p :|a |>|b |,q :a 2>b 2 C .p :x >a 2+b 2,q :x >2ab D .p :a +c >b +d ,q :a >b 且c >d解析:选D.A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1⇒/ x =1,故p 是q 的充分不必要条件;B 中,因为|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,因为a 2+b 2≥2ab ,由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但是a <b ,c >d ,反之,由同向不等式可加性得a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.综上所述,故选D.3.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:选B .由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B .4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.解析:因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.答案:m >25.已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,因为x ∈⎣⎡⎦⎤34,2,所以716≤y ≤2, 所以A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, 所以B ={x |x ≥1-m 2}.因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 6.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:因为mx 2-4x +4=0是一元二次方程,所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1, 所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.。

(完整版)充分条件与必要条件测试题(含答案)

(完整版)充分条件与必要条件测试题(含答案)

充分条件与必要条件测试题(含答案)班级 姓名一、选择题1.“”是“”的 ( )2x =(1)(2)0x x --=(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件2.在中,,则是的 ( )ABC ∆:,:p a b q BAC ABC >∠>∠p q (A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件3.“或是假命题”是“非为真命题”的( )p q p A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.若非空集合,则“或”是“”的( )M N ≠⊂a M ∈a N ∈a M N ∈ A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件B 提示:“或”不一定有“”。

a M ∈a N ∈a M N ∈ 5.对任意的实数,下列命题是真命题的是( ),,a b c (A )“”是“”的必要条件ac bc >a b >(B )“”是“”的必要条件ac bc =a b =(C )“”是“”的充分条件ac bc <a b >(D )“”是“”的必要条件ac bc =a b =6.若条件,条件,则是的( ):14p x +≤:23q x <<q ⌝p ⌝(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件7.若非空集合满足,且不是的子集,则( ),,A B C A B C = B A A. “”是“”的充分条件但不是必要条件x C ∈x A ∈B. “”是“”的必要条件但不是充分条件x C ∈x A ∈C. “”是“”的充要条件x C ∈x A ∈D. “”既不是“”的充分条件也不是“”必要条件x C ∈x A ∈x A ∈ 8.对于实数,满足或,则是的(),x y :3,:2p x y q x +≠≠1y ≠p q (A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“”是“函数的值恒为正值”的 ( )40k -<<2y x kx k =-- (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件10.已知条件,条件,则是的 ( ):2p t ≠2:4q t ≠p q (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件11.“a =2”是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件12.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,p r q r s r q 是 的必要条件。

202新数学复习第一章集合与常用逻辑用语2充分条件与必要条件含解析

202新数学复习第一章集合与常用逻辑用语2充分条件与必要条件含解析

课时作业2 充分条件与必要条件一、选择题1.“x=1”是“x2-3x+2=0”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:x=1成立,则x2-3x+2=0成立,反之不成立.2.“a3〉b3”是“ln a〉ln b"的(B)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:ln a>ln b⇒a>b>0⇒a3〉b3,所以必要性成立.a3>b3⇒a〉b>0或0〉a>b,则当0>a〉b时,充分性不成立.故选B。

3.已知a,b∈R,条件甲:a>b〉0;条件乙:错误!〈错误!。

则甲是乙的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a〉b>0时,不等式a〉b两边同时除以ab,得错误!>错误!;当错误!>错误!时,若b=1,a=-1,则有b>a。

所以条件甲是条件乙的充分不必要条件.4.p:(2-x)(x+1)〉0;q:0≤x≤1。

则p成立是q成立的(A)A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:若p成立,则x满足-1<x<2,则p成立是q成立的必要不充分条件,故选A.5.已知p:错误!〈1,q:2 019x〉2 019,则p是q的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由错误!〈1得,错误!<0,即错误!〉0,得x〈0或x〉1,故p:x〈0或x〉1;由2 019x〉2 019得x〉1,故q:x〉1。

所以p 是q的必要不充分条件.6.设A,B是两个集合,则“A∩B=A”是“A⊆B”的(C) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由A∩B=A可得A⊆B,由A⊆B可得A∩B=A。

所以“A∩B=A"是“A⊆B"的充要条件.故选C.7.设θ∈R,则“0〈θ〈错误!”是“0<sinθ<错误!"的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:当0<θ〈错误!时,利用正弦函数y=sin x的单调性知0〈sinθ〈错误!;当0<sinθ〈错误!时,2kπ<θ<2kπ+错误!(k∈Z)或2kπ+错误!<θ〈2kπ+π(k∈Z).综上可知“0〈θ〈错误!"是“0<sinθ〈错误!"的充分不必要条件,故选A.8.在等比数列{a n}中,“a1,a3是方程x2+3x+1=0的两根"是“a2=±1"的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在等比数列{a n}中,a1·a3=a2,2.由a1,a3是方程x2+3x+1=0的两根可得a1·a3=1,所以a2,2=1,所以a2=±1,所以“a1,a3是方程x2+3x+1=0的两根”是“a2=±1”的充分条件;由a2=±1得a1·a3=1,满足此条件的一元二次方程不止一个.所以“a1,a3是方程x2+3x+1=0的两根”是“a2=±1"的充分不必要条件,故选A.9.“不等式x2-x+m〉0在R上恒成立”的一个必要不充分条件是(C)A.m>错误!B.0〈m<1C.m>0 D.m〉1解析:若不等式x2-x+m〉0在R上恒成立,则Δ=(-1)2-4m<0,解得m〉错误!,因此当不等式x2-x+m〉0在R上恒成立时,必有m>0,但当m>0时,不一定推出不等式在R上恒成立,故所求的必要不充分条件可以是m〉0。

充要条件练习题

充要条件练习题

课时作业(三)[学业水平层次]一、选择题1.(2013·福建高考)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 ∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.【答案】 A2.(2014·镇海高二检测)已知命题甲:“a ,b ,c 成等差数列”,命题乙:“a b +c b =2”,则命题甲是命题乙的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件【解析】 若a b +c b =2,则a +c =2b ,由此可得a ,b ,c 成等差数列;当a ,b ,c 成等差数列时,可得a +c =2b ,但不一定得出a b +c b=2,如a =-1,b =0,c =1.所以命题甲是命题乙的必要而不充分条件.【答案】 A3.(2014·湖南省株洲二中期中考试)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若φ=0,则f(x)=cos(x+φ)=cos x为偶函数,充分性成立;反之,若f(x)=cos(x+φ)为偶函数,则φ=kπ(k∈Z),必要性不成立,故选A.【答案】 A4.(2014·山东省实验中学月考)“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】本题综合考查函数零点与充要条件的判断.当a=-1时,函数f(x)=ax2+2x-1=-x2+2x-1只有一个零点1;但若函数f(x)=ax2+2x-1只有一个零点,则a=-1或a=0.所以“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的充分不必要条件,故选B.【答案】 B二、填空题5.“b2=ac”是“a、b、c成等比数列”的________条件.【解析】“b2=ac”“a,b,c成等比数列”,如b2=ac =0;而“a,b,c成等比数列”⇒“b2=ac”.【答案】必要不充分6.“a=-1”是“l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行”的________条件.【解析】 若直线l 1:x +ay +6=0与l 2:(3-a )x +2(a -1)y +6=0平行,则需满足1×2(a -1)-a ×(3-a )=0,化简整理得a 2-a -2=0,解得a =-1或a =2,经验证得当a =-1时,两直线平行,当a =2时,两直线重合,故“a =-1”是“l 1:x +ay +6=0与l 2:(3-a )x +2(a -1)y +6=0平行”的充要条件.【答案】 充要7.在下列各项中选择一项填空:①充分不必要条件;②必要不充分条件;③充要条件;④既不充分也不必要条件.(1)记集合A ={-1,p,2},B ={2,3},则“p =3”是“A ∩B =B ”的________;(2)“a =1”是“函数f (x )=|2x -a |在区间[12,+∞)上是增函数”的________.【解析】 本题考查命题的充要条件的判断.(1)当p =3时,A ={-1,2,3},此时A ∩B =B ;若A ∩B =B ,则必有p =3.因此“p =3”是“A ∩B =B ”的充要条件.(2)当a =1时,f (x )=|2x -a |=|2x -1|在[12,+∞)上是增函数;但由f (x )=|2x -a |在区间[12,+∞)上是增函数不能得到a =1,如当a =0时,函数f (x )=|2x -a |=|2x |在区间[12,+∞)上是增函数.因此“a =1”是“函数f (x )=|2x -a |在区间[12,+∞)上是增函数”的充分不必要条件.【答案】 (1)③ (2)①三、解答题8.(2014·陕西省西工大附中月考)下列各题中,p 是q 的什么条件,q 是p 的什么条件,并说明理由.(1)p :|x |=|y |,q :x =y ;(2)在△ABC ,p :sin A >12,q :A >π6.【解】 (1)因为|x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |, 所以p 是q 的必要不充分条件,q 是p 的充分不必要条件.(2)因为A ∈(0,π)时,sin A ∈(0,1],且A ∈⎝ ⎛⎦⎥⎤0,π2时,y =sin A 单调递增,A ∈⎣⎢⎡⎭⎪⎫π2,π时,y =sin A 单调递减,所以sin A >12⇒A >π6,但A >π6 sin A >12.所以p 是q 的充分不必要条件,q 是p 的必要不充分条件.9.设a ,b ,c 分别是△ABC 的三个内角A 、B 、C 所对的边,证明:“a 2=b (b +c )”是“A =2B ”的充要条件.【证明】 充分性:由a 2=b (b +c )=b 2+c 2-2bc cos A 可得1+2cos A =c b =sin C sin B .即sin B +2sin B cos A =sin(A +B ).化简,得sin B =sin(A -B ).由于sin B >0且在三角形中,故B =A -B ,即A =2B .必要性:若A =2B ,则A-B=B,sin(A-B)=sin B,sin(A+B)=sin A cos B+cos A sin B,sin(A-B)=sin A cos B-cos A sin B. ∴sin(A+B)=sin B(1+2cos A).∵A、B、C为△ABC的内角,∴sin(A+B)=sin C,即sin C=sin B(1+2cos A).∴sin Csin B=1+2cos A=1+b2+c2-a2bc=b2+c2-a2+bcbc,即cb=b2+c2+bc-a2bc.化简得a2=b(b+c).∴“a2=b(b+c)”是“A=2B”的充要条件.[能力提升层次]1.如果A是B的必要不充分条件,B是C的充要条件,D是C 的充分不必要条件,那么A是D的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解析】由条件,知D⇒C⇔B⇒A,即D⇒A,但A D,故选A.【答案】 A2.(2014·马鞍山四校联考)设有如下命题:甲:相交两直线l、m 在平面α内,且都不在平面β内.乙:l、m中至少有一条与β相交.丙:α与β相交.那么当甲成立时()A.乙是丙的充分不必要条件B.乙是丙的必要不充分条件C .乙是丙的充分必要条件D .乙既不是丙的充分条件,又不是丙的必要条件【解析】 当l 、m 中至少有一条与β相交时,α与β有公共点,则α与β相交,即乙⇒丙,反之,当α与β相交时,l 、m 中也至少有一条与β相交,否则若l 、m 都不与β相交,又都不在β内,则l ∥β,m ∥β,从而α∥β,与α与β相交矛盾,即丙⇒乙,故选C.【答案】 C3.已知f (x )是R 上的增函数,且f (-1)=-4,f (2)=2,设P ={x |f (x +t )<2},Q ={x |f (x )<-4},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是________.【解析】 因为f (x )是R 上的增函数,f (-1)=-4,f (x )<-4,f (2)=2,f (x +t )<2,所以x <-1,x +t <2,x <2-t .又因为“x ∈P ”是“x ∈Q ”的充分不必要条件,所以2-t <-1,即t >3.【答案】 (3,+∞)4.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.【证明】 充分性:因为q =-1,所以a 1=S 1=p -1.当n ≥2时,a n =S n -S n -1=p n -1(p -1),显然,当n =1时,也成立.因为p ≠0,且p ≠1,所以a n +1a n=p n (p -1)p n -1(p -1)=p , 即数列{a n }为等比数列,必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1). 因为p ≠0,且p ≠1,所以a n +1a n=p n (p -1)p n -1(p -1)=p . 因为{a n }为等比数列,所以a 2a 1=a n +1a n=p ,即p 2-p p +q =p . 所以-p =pq ,即q =-1. 所以数列{a n }为等比数列的充要条件为q =-1.。

专题5 充要条件(解析版)

专题5 充要条件(解析版)

专题5 充要条件题组1 充要条件的判断1.设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈(A∪B)”是“x∈C”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】A∪B={x∈R|x<0或x>2},C={x∈R|x<0或x>2},∵A∪B=C,∴x∈(A∪B)是x∈C的充要条件.2.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】C【解析】若φ(a,b)=0,即=a+b,两边平方得ab=0,故具备充分性.若a≥0,b≥0,ab=0,则不妨设a=0.φ(a,b)=-a-b=-b=0,故具备必要性.故选C.3.方程ax2+2x+1=0至少有一个负实根的充要条件是()A.0<a≤1B.a<1C.a≤1D.0<a≤1或a<0【答案】C【解析】方法一(直接法):当a=0时,x=-,符合题意;当a≠0时,若方程两根一正一负(没有零根),解得a<0; 若方程两根均负,解得0<a≤1.综上所述,充要条件是a≤1.方法二 (排除法):当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B.故选C.4.在下列三个结论中,正确的有( )①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件.A .①②B .②③C .①③D .①②③【答案】C【解析】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确.②,AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确.故选:C. 题组2 寻求充要条件5.设集合U ={(x ,y )|x ∈R ,y ∈R },若A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},则点P (2,3)∈A ∩(∁U B )的充要条件是( )A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >5【答案】A【解析】A ∩(∁U B )满足∵P (2,3)∈A ∩(∁U B ),则∴6.已知关于x 的一元二次方程mx 2-4x +4=0①,x 2-4mx +4m 2-4m -5=0②,求使方程①②都有实数根的充要条件.【答案】方程①有实数根的充要条件是即m ≤1且m ≠0.方程②有实数根的充要条件是Δ2=(-4m )2-4(4m 2-4m -5)≥0,即m ≥-.∴方程①②都有实数根的充要条件是-≤m ≤1,且m ≠0,即-≤m <0或0<m ≤1. 题组3 充要条件的证明7.求证:方程mx 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <.【答案】证明 (1)充分性:当0<m <时,Δ=4-12m >0,所以方程mx 2+2x +3=0有两个不相等的实根,设为x 1,x 2.由一元二次方程根与系数的关系可知,x 1x 2=>0,故方程mx 2-2x +3=0有两个同号且不相等的实根.即0<m <⇒方程mx 2-2x +3=0有两个同号且不相等的实根.(2)必要性:若方程mx 2-2x +3=0有两个同号且不相等的实根,则∴0<m <,即方程mx 2-2x +3=0有两个同号且不相等的实根⇒0<m <.综上可知,方程mx 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <.8.求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.【答案】见解析.【解析】充分性:若0ac <,则240b ac ->,且0c a<,∴方程20ax bx c ++=方程有一正根和一负根;必要性:若一元二次方程20ax bx c ++=有一正根和一负根,则240b ac ∆=->,12,0,0c x x ac a =<∴<,即可得结论.试题解析:(1)必要性:因为方程20ax bx c ++=有一正根和一负根,所以240b ac ∆=->为12120(,c x x x x a=<方程的两根),所以ac <0. (2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=<0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.9.已知,a b 是实数,求证:44221a b b --=成立的充分条件是221a b -=,该条件是否为必要条件?试证明你的结论.【答案】必要条件,证明见解析.【解析】由44221a b b --=,即442210a b b ---=由()()()()244242222221111a b b a b a b a b -++=-+=++--则由()()222222442111021a b a b a b a b b -=⇒++--=⇒--=所以44221a b b --=成立的充分条件是221a b -=另一方面如果()()442222221110a b b a b a b --=⇒++--=因为2210a b ++≠,故()()2222221101a b a b a b ++--=⇒-=,所以44221a b b --=成立的必要条件是221a b -=.题组4 由充分、必要条件求参数的范围10.已知p :<1,q :x 2+(a -1)x -a >0,若p 是q 的充分不必要条件,则实数a 的取值范围是() A.(-2,-1]B.[-2,-1]C.[-3,1]D.[-2,+∞)【答案】A 【解析】不等式<1等价于-1<0,即>0,解得x >2或x <1,所以p 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综上可知,a 的取值范围为(-2,-1].11.已知p :|x -4|>6,q :x 2-2x +1-a 2>0(a >0),若p 是q 的充分不必要条件,则实数a 的取值范围为________.【答案】0<a ≤3【解析】依题意,可得p :A ={x |x <-2或x >10},q :B ={x |x <1-a 或x >1+a ,a >0}.∵p 是q 的充分不必要条件,∴A ⊆B 且A ≠B ,⇒0<a ≤3,∴实数a 的取值范围是0<a ≤3.12.已知p :,q :{x |1-m ≤x ≤1+m ,m >0},若q 是p 的必要不充分条件,则实数m的取值范围是________.【答案】[9,+∞) 【解析】由已知,p ⇒q ,q ⇏p . 13.已知M ={x |(x +3)(x -5)>0},P ={x |x 2+(a -8)x -8a ≤0}.(1)求a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分不必要条件;(2)求a 的一个取值范围,使它成为M ∩P ={x |5<x ≤8}的一个必要不充分条件.【答案】M ={x |x <-3或x >5},P ={x |(x +a )(x -8)≤0}.(1)显然,当-3≤-a ≤5,即-5≤a ≤3时,M ∩P ={x |5<x ≤8}.取a =0,由M ∩P ={x |5<x ≤8}不能推出a =0.所以a =0是M ∩P ={x |5<x ≤8}的一个充分不必要条件.(2)当M ∩P ={x |5<x ≤8}时,-5≤a ≤3,此时有a ≤3,但当a ≤3时,推不出M ∩P ={x |5<x ≤8}.所以a ≤3是M ∩P ={x |5<x ≤8}的一个必要不充分条件.14.命题2:03x P x ->-;命题2:2210q x ax a b +++-> (1)若4b =时,22210x ax a b +++->在x R ∈上恒成立,求实数a 的取值范围;(2)若p 是q 的充分必要条件,求出实数a ,b 的值【答案】(1)(1,3)-;(2)52a =-,12b =. 【解析】(1)若22230x ax a +++>在x R ∈上恒成立,则()244230a a ∆=-+<, 所以有13a -<<,所以实数a 的范围为()1,3-;(2)()()2023033x x x x x ->⇔-->⇒>-或2x <, 根据条件22210x ax a b +++->的解集是()(),23,-∞⋃+∞,即方程22210x ax a b +++-=的二根为2和3, 根据韦达定理有525,221612a a ab b ⎧-==-⎧⎪⇒⎨⎨+-=⎩⎪=⎩, 所以52a =-,12b =. 15.已知{}2320P x x x =-+≤,{}11S x m x m =-≤≤+.(1)是否存在实数m ,使x P ∈是x S ∈的充要条件?若存在,求出m 的取值范围,若不存在,请说明理由;(2)是否存在实数m ,使x P ∈是x S ∈的必要条件?若存在,求出m 的取值范围,若不存在,请说明理由.【答案】(1)不存在实数m ,使x P ∈是x S ∈的充要条件(2)当实数0m ≤时,x P ∈是x S ∈的必要条件【解析】(1){}{}232012P x x x x x =-+≤=≤≤. 要使x P ∈是x S ∈的充要条件,则P S =,即11,12,m m -=⎧⎨+=⎩此方程组无解,则不存在实数m ,使x P ∈是x S ∈的充要条件;(2)要使x P ∈是x S ∈的必要条件,则S ⊆P ,当S =∅时,11m m ->+,解得0m <;当S ≠∅时,11m m -≤+,解得0m ≥要使S ⊆P ,则有11,1+2m m -≥⎧⎨≤⎩,解得0m ≤,所以0m =, 综上可得,当实数0m ≤时,x P ∈是x S ∈的必要条件.题组5 含有否定性语句的命题处理16.设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的必要不充分条件,求实数a的取值范围.【答案】设A={x|(4x-3)2≤1},B={x|x2-(2a+1)x+a(a+1)≤0},易知A=,B={x|a≤x≤a+1}.由p是q的必要不充分条件,从而p是q的充分不必要条件,即AB,∴或故所求实数a的取值范围是.17.已知p:2x2-9x+a<0,q:且p是q的充分条件,求实数a的取值范围.【答案】由得即2<x<3.∴q:2<x<3.设A={x|2x2-9x+a<0},B={x|2<x<3},∵p⇒q,∴q⇒p.∴B⊆A.∴2<x<3满足不等式2x2-9x+a<0.设f(x)=2x2-9x+a,要使2<x<3满足不等式2x2-9x+a<0,需即∴a≤9.故所求实数a的取值范围是(-∞,9].17.设p:实数x满足x2-4ax+3a2<0,其中a<0,q:实数x满足x2-x-6≤0或x2+2x-8>0,且p是q 的必要不充分条件,求a的取值范围.【答案】设A={x|x满足p}={x|x2-4ax+3a2<0,a<0}={x|3a<x<a,a<0},B={x|x满足q}={x|x2-x-6≤0或x2+2x-8>0}={x|x2-x-6≤0}∪{x|x2+2x-8>0}={x|-2≤x≤3}∪{x|x<-4或x>2}={x|x<-4或x≥-2}.∵p是q的必要不充分条件,∴q⇒p,且p⇏q.则{x|x满足q}{x|x满足p},而{x|x满足q}=∁R B={x|-4≤x<-2},{x|x满足p}=∁R A={x|x≤3a或x≥a(a<0)},∴{x|-4≤x<-2}{x|x≤3a或x≥a(a<0)},则或即-≤a<0或a≤-4.∴a的取值范围为.。

集合考点充分条件与必要条件教案以及练习

集合考点充分条件与必要条件教案以及练习

1.4集合充分条件与必要条件1.4.1充分条件与必要条件充分条件与必要条件命题真假“若p,则q”为真命题“若p,则q”为假命题推出关系指由p通过推理可以得出q,即由p可以推出q,记作p⇒q由条件p不能推出结论q,记作p⇏q续表命题真假“若p,则q”为真命题“若p,则q”为假命题条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件1.“x>0”是“x≠0”的()A.充分条件B.必要条件C.既不是充分也不是必要条件D.不确定A解析:x>0⇒x≠0;x≠0时,x可为正值或负值,故选A.2.“-12<x<3”的一个必要条件是()A.-12<x<3B.-12<x<0C .-3<x <12D .-1<x <6D 解析:因为-12<x <3⇒-1<x <6,但-1<x <6D ⇒/-12<x <3,所以“-12<x <3”的一个必要条件是“-1<x <6”.3.“角A =60°”是“三角形ABC 是等边三角形”的________条件. 必要 解析:角A =60°D ⇒/三角形ABC 是等边三角形,但三角形ABC 是等边三角形⇒角A =60°,所以“角A =60°”是“三角形ABC 是等边三角形”的必要条件.4.“△ABC 为直角三角形”是“其三边关系为a 2+b 2=c 2”的________条件.必要 解析:△ABC 为直角三角形,则三边符合勾股定理,但须知哪个角为直角,若a 2+b 2=c 2,则△ABC 为以C 为直角的三角形.5.“x <0”是“x >2或x <1”的________条件.充分 解析:因为x <0⇒ x >2或x <1,但x >2或x <1D ⇒/x <0,所以“x <0”是“x >2或x <1”的充分条件.【例1】给出下列四组命题:(1)p :两个三角形相似,q :两个三角形全等; (2)p :一个四边形是矩形,q :四边形的对角线相等; (3)p :A ⊆B ,q :A ∩B =A . 试分别指出p 是q 的什么条件.解:(1)∵两个三角形相似D ⇒/两个三角形全等,但两个三角形全等⇒两个三角形相似,∴p 是q 的必要条件. (2)∵矩形的对角线相等,∴p ⇒q ,而对角线相等的四边形不一定是矩形,∴qD⇒/p.∴p是q的充分条件.(3)∵p⇒q,且q⇒p,∴p既是q的充分条件,又是q的必要条件.充分条件、必要条件的判断方法在判定p是q的什么条件时,首先分清什么是p,什么是q,再分清谁推谁.例如p⇒q,则称p是q的充分条件,q是p的必要条件.下列哪些命题中,p是q的充分条件?(1)在△ABC中,p:∠A>∠B,q:BC >AC.(2)对于实数x,y,p:x=2且y=6,q:x+y=8.(3)已知x,y∈R,p:x=1,q:(x-1)(x-2)=0.解:(1)在△ABC中,由大角对大边知,∠A>∠B⇒BC>AC,所以p是q的充分条件.(2)对于实数x,y,因为x=2且y=6⇒x+y=8,所以p是q的充分条件.(3)由x=1⇒(x-1)(x-2)=0,故p是q的充分条件.故(1)(2)(3)命题中p是q的充分条件.【例2】是否存在实数p,使4x+p<0是x>2或x<-1的充分条件?若存在,求出p的取值范围;若不存在,说明理由.解:令A={x|x>2或x<-1};由4x+p<0,得x<-p4,令B=⎩⎨⎧⎭⎬⎫x⎪⎪⎪x<-p4,当B⊆A时,即-p4≤-1,即p≥4,此时x <-p4≤-1,∴当p ≥4时,4x +p <0是x >2或x <-1的充分条件.【例3】已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.{a |-1≤a ≤5} 解析:因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P , 所以⎩⎨⎧a -4≤1,a +4≥3,即⎩⎨⎧a ≤5,a ≥-1,所以-1≤a ≤5.集合法判断充分条件和必要条件的技巧设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有:(1)若A ⊆B ,则p 是q 的充分条件,若A⃘B ,则p 不是q 的充分条件. (2)若B ⊆A ,则p 是q 的必要条件,若B⃘A ,则p 不是q 的必要条件.已知M ={x | a -1<x <a +1},N ={x |-3<x <8},若M 是N 的充分条件,求a 的取值范围.解:∵M 是N 的充分条件,∴M ⊆N ,∴⎩⎨⎧a -1≥-3,a +1≤8,解得-2≤a ≤7.故a 的取值范围是{a |-2≤a ≤7}.课时分层作业(六)(25分钟50分)1.(5分)设x,y是两个实数,命题:“x,y中至少有一个数大于1”成立的充分条件是()A.x+y=2B.x+y>2C.x2+y2>2D.xy>1B解析:对于选项A,当x=1,y=1时,满足x+y=2,但命题不成立;对于选项C,D,当x=-2,y=-3时,满足x2+y2>2,xy>1,但命题不成立,也不符合題意.2.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不是充分条件也不是必要条件A解析:当x≥2且y≥2时,x2+y2≥4,但是x=0,y=4时,满足x2+y2≥4,但不满足x≥2且y≥2,所以“x≥2且y≥2”是“x2+y2≥4”的充分条件.3.(5分)设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不是充分条件也不是必要条件A解析:由(a-b)a2<0知,a2>0,a-b<0,即a<b成立;反之,当a<b时,由于a2可能为0,故(a-b)·a2≤0.因此“(a-b)a2<0”是“a<b”的充分条件,但不是必要条件.4.(5分)下列不等式:①x<1;②0<x <1; ③-1<x <0; ④-1<x <1.其中,可以为-1<x ≤1的充分条件的所有序号为________.②③④ 解析:由于-1<x ≤1,①显然不能使-1<x ≤1一定成立,②③④满足题意.5.(5分)设集合A ={x ∈R|x -2>0},B ={x ∈R|x <0},C ={x ∈R|x <0或x >5},则“x ∈A ∪B ”是“x ∈C ”的________条件.必要 解析:∵A ∪B ={x ∈R|x <0或x >2},C ={x ∈R|x <0或x >5}, ∴“x ∈A ∪B ”是“x ∈C ”的必要条件.6.(5分)若不等式a -1<x <a +1成立的充分条件是12<x <32,则实数a 的取值范围是________.12≤a ≤32 解析:因为不等式a -1<x <a +1成立的充分条件是12<x <32, ∴⎩⎪⎨⎪⎧12≥a -1,32≤a +1,∴12≤a ≤32. 7.(5分)若“x <m ”是“x >2或x <1”的充分不必要条件,则实数m 的取值范围是________.m ≤1 解析:由已知条件,知{x |x <m }{x |x >2或x <1},∴m ≤1.8.(5分)已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.-1≤a ≤5 解析:因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P , 所以⎩⎨⎧a -4≤1,a +4≥3,即⎩⎨⎧a ≤5,a ≥-1,所以-1≤a ≤5.9.(10分)已知条件p :x <1-a 或x >1+a 和条件q :x <12或x >1,求使p 是q 的充分条件的a 的取值范围.解:要使p 是q 的充分条件,应有⎩⎪⎨⎪⎧1-a ≤12,1+a ≥1, 解得a ≥12.∴p 是q 的充分条件的a 的取值范围是⎩⎨⎧⎭⎬⎫a |a ≥12.。

(完整版)广东高职高考集合与充要条件测试

(完整版)广东高职高考集合与充要条件测试

高职高考集合与充要条件1、①“全体著名文学家”构成一个集合;②集合{0}中不含元素;③{1,2},{2,1}是不同的集合;上面三个叙述中,正确的个数是( )A 、0B 、1C 、2D 、32、已知集合}12|{<<-=x x M ,则下列关系式正确的是() M A 、∈5 M B 、∉0 M C 、∈1 M D 、∈-2π3、在下列式子中,①}210{1,,∈ ②}210{}1{,,∈ ③}210{}210{,,,,⊆ ④{0,1,2}⊂∅≠ ⑤{0,1,2}={2,1,0},其中错误的个数是( )A 、1个B 、2个C 、3个D 、4个4、}3,2,1,0{}1,0{⊆⊆A ,则集合A 的个数有( )A 、2个B 、3个C 、4个D 、5个5、下列各式中,不正确的是( )A 、A A =B 、A A ⊆C 、A A ⊂≠D 、A A ⊇6、集合A={0,1,2,3,4,5},B={2,3,4},A B ⋃=( )A 、{0,1,2,3,4,5}B 、{2,3,4}C 、{0,1,2,2,3,3,4,4,5}D 、{1,2,3,4} 7、设全集{0,123456}U =,,,,,,集合{3456}A =,,,,则U C A =( ) A 、{0,3,4,5,6} B 、{3,4,5,6} C 、∅ D 、{0,1,2}8、225x =的充分必要条件是( )A 、55x x ==-且B 、55x x ==-或C 、5x =D 、5x =-9、设3{|23},{|},2A x xB x x =-≤<=≥则A B ⋃=( ) A 、{|2}x x <- B 、{|23}x x x <-≤或C 、{|23}x x x <->或D 、}2|{-≥x x 10、用适当的符号(,,,,⊂⊃∈∉=≠≠)填空:(1) a{,}a ba b(2) {a} {,}(3) {2,4,6,8} {4,6} (4) {2,3,4} {4,3,2}11、已知集合A={1,2,3,4},B={2,4,6},C={3,5,7},则A B⋂= 。

高中数学教师资格证笔试练题:充分条件和必要条件(练习)

高中数学教师资格证笔试练题:充分条件和必要条件(练习)

1.4 充分条件和必要条件一、单选题1.“23x -<<”的一个充分条件是( ) A .24x -<< B .03x << C .32x -<<D .33x -<<2.设x ∈R ,则x >2的一个必要而不充分条件是( ) A .x >1B .x <1C .x >3D .x <33.已知x ,y 为实数,则“3x ≥,2y ≥”是“6xy ≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.设x ,y ∈R ,x y x y +=+成立的充分不必要条件是( ) A .0xy > B .0xy ≥ C .0xy <D .0xy ≤5.“两个角是对顶角”是“这两个角相等”的( ) A .充分不必要条件B .必要不充分条件C .既是充分条件又是必要条件D .既不充分也不必要条件6.已知A 是B 的充分不必要条件,B 是C 的充要条件,则C 是A 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件7.已知p 是r 的充分不必要条件,s 是r 的必要不充分条件,q 是s 的必要条件,那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件C .既是充分条件又是必要条件D .既不充分也不必要条件8.设集合(){},,U x y x R y R =∈∈,若集合(){},20,A x y x y m m R =-+>∈,(){},0,B x y x y n n R =+-≤∈,则()()2,3U A B ∈⋂的充要条件是( )A .1m >-,5n <B .1m <-,5n <C .1m >-,5n >D .1m <-,5n >9.22530x x --<的必要不充分条件可以是( ) A .132x -<<B .14x -<<C .02x <<D .23x -<<10.(2020-2021学年山东省日照市五莲县高一上学期期中)一元二次方程()24300ax x a ++=≠有一个正根和一个负根的充分不必要条件是( )A .0a <B .2a <-C .1a <-D .1a <11.已知p ,q 都是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,则( ) A .p 是q 的充分条件 B .p 是s 的必要条件 C .r 是q 的必要不充分条件 D .s 是q 的充要条件12.下列叙述中正确的是( )A .若,,,a b c R ∈则“22ab cb >"的充要条件是“a c >”B .“1a <”是“方程20x x a ++=有一个正根和一个负根”的必要不充分条件C .若,,,a b c R ∈则“20ax bx c ++≥对x ∈R 恒成立"的充要条件是“240b ac -≤”D .“1a >”是“11a<”的充分不必要条件三、填空题13.已知△ABC ,△A 1B 1C 1,两三角形对应角相等是△ABC ≌△A 1B 1C 1的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 14.设p :2x >或23x <;q :2x >或1x <-,则p 是q 的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)15.已知:p 4x a -<;:q (2)(3)0x x --<,若q 是p 的充分条件,则a 的取值范围为_______.16.设集合{}20A x x =∈->R ,{}0B x x =∈<R ,(){}40C x x x =∈->R ,则“x A B ∈”是“x C ∈”的_______条件.(填:充分不必要、必要不充分、充要、既不充分也不必要)17.指出下列命题中,p 是q 的什么条件? (1)p :{6x x >或}3x <;q :2{|60}x x x --<; (2)p :a 与b 都是奇数;q :a b +是偶数;(3)p :103m <<;q :方程2230mx x -+=有两个同号且不相等的实根.18.设全集U =R ,集合A ={x |m ﹣2<x <m +2,m ∈R},集合B ={x |﹣4<x <4}. (1)当m =3时,求A ∩B ,A ∪B ;(2)若命题p :x ∈A ,命题q :x ∈B ,若p 是q 的充分不必要条件,求实数m 的取值范围.19.设集合{}1,2A =,(1)请写出一个集合B ,使“x A ∈”是“x B ∈”的充分条件,但“x A ∈”不是“x B ∈”的必要条件;(2)请写出一个集合B ,使“x A ∈”是“x B ∈”的必要条件,但“x A ∈”不是“x B ∈”的充分条件.20.已知集合{}}{22331,2,1,24A y y x x xB x x m ==-+≤≤=+≥:p x A ∈,q :x B ∈,并且p 是q 的充分条件,求m 的取值范围.21.已知:p 实数x 满足集合{}|11A x a x a =-≤≤+,q :实数x 满足集合{2B x x =≤-或}3x ≥.(1)若1a =-,求A B ;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.参考答案1.B解:“23x -<<”的一个充分条件就是集合{}|23x x -<<的一个子集即可, 所以 B 选项满足题意. 2.A因为2x >,一定有1x >成立,但是当1x >时,2x >不一定成立,即2x >的一个必要而不充分条件是1x >. 3.A因x ,y 为实数,且3x ≥,2y ≥,则由不等式性质知6xy ≥,命题“若3x ≥,2y ≥,则6xy ≥”是真命题,当6xy ≥成立时,“3x ≥,2y ≥”不一定成立,比如1x =,10y =,满“6xy ≥”,而不满足“3x ≥,2y ≥”,即命题“若6xy ≥,则3x ≥,2y ≥”是假命题, 所以“3x ≥,2y ≥”是“6xy ≥”的充分不必要条件. 4.A0x y x y xy +=+⇒≥,显然00xy xy >⇒≥,但00xy xy ≥>,易判断A 正确5.A先考虑充分性:因为两个角是对顶角,所以这两个角相等,所以“两个角是对顶角”是“这两个角相等”的充分条件; 再考虑必要性:两个角相等,但是这两个角不一定是对顶角,所以“两个角是对顶角”是“这两个角相等”的非必要条件; 所以“两个角是对顶角”是“这两个角相等”的充分不必要条件. 6.B因为A 是B 的充分不必要条件,所以A B ⇒且B 推不出A , 而B 是C 的充要条件,所以B C ⇔,所以,A C C ⇒推不出A , 所以C 是A 的必要不充分条件, 7.A根据充分条件的定义可知如果p 是r 的充分不必要条件p ⇒r , s 是r 的必要不充分条件,可知r s ⇒, , 同理q 是s 的必要条件,,s q ⇒所以p ⇒q , 且反之不成立,可知p 是q 成立的充分不必要条件,8.A由题意,可得()()20,0U x y m A B x y x y n ⎧⎫-+>⎧⎪⎪⋂=⎨⎨⎬+->⎩⎪⎪⎩⎭,因为()()2,3U A B ∈⋂,所以2230230m n ⨯-+>⎧⎨+->⎩,解得1,5m n >-<,反之亦成立,所以()()2,3U A B ∈⋂的充要条件是1,5m n >-<. 9.BD212530(21)(3)032x x x x x --<⇔+-<⇔-<<,即22530x x --<的充要条件是132x -<<,其必要不充分条件必须满足,其集合的一个真子集是充要条件的集合,观察选项发现132x x ⎧⎫-<<⎨⎬⎩⎭是{}23{|14}x x x x -<<-<<,的真子集, 10.BC若方程()24300ax x a ++=≠有一个正根1x 和一个负根2x ,则121612030a x x a ∆=->⎧⎪⎨=<⎪⎩,解得0a <, 则一元二次方程()24300ax x a ++=≠有一个正根和一个负根的充分不必要条件应为(),0-∞的真子集,故BC 正确,AD 错误.11.AD解:由已知得:p r s q ⇒⇒⇒;q r s ⇒⇒.p ∴是q 的充分条件;p 是s 的充分条件;r 是q 的充要条件;s 是q 的充要条件.12.BD对于A , 因为22ab cb >可得a c >,当a c >,0b =时,有22ab cb =,所以若,,,a b c R ∈则“22ab cb >"是“a c >”的充分不必要条件,故A 错;对于B ,方程20x x a ++=有一个正根和一个负根,则120140x x a a =<⎧⎨∆=->⎩ ,整理得0a <,所以“1a <”是“0a <”的必要不充分条件,故B 正确;对于C ,当0a >时,“20ax bx c ++≥对x ∈R 恒成立"的充要条件是“240b ac -≤”,故C 错; 对于D ,当“1a >”是“11a <”成立,当“11a <”得“1a >或0a <”,故“1a >”是“11a<”的充 分不必要条件,D 正确.13.必要不充分由两三角形对应角相等,对应边可能成任意的比例,不一定对应相等,所以△ABC ≌△A 1B 1C 1不一定成立,所以“两三角形对应角相等”是“△ABC ≌△A 1B 1C 1”不充分条件;由△ABC ≌△A 1B 1C 1必然有对应角相等,所以“两三角形对应角相等”是“△ABC ≌△A 1B 1C 1”必要条件;所以“两三角形对应角相等”是“△ABC ≌△A 1B 1C 1”必要不充分条件. 14.必要不充分由于{2x x 或}1x <-{2x x ⊆或23x ⎫<⎬⎭,故p 是q 的必要不充分条件.15.16a -≤≤记{}{}|||4|44A x x a x a x a =-<=-<<+,{}{}|(2)(3)0|23B x x x x x =--<=<<, 因为q 是p 的充分条件,所以B A ⊆,所以421643a a a -≤⎧⇒-≤≤⎨+≥⎩. 16.必要不充分因为集合{}{}202A x x x x =∈->=∈>R R ,{}0B x x =∈<R ,所以()(),02+A B ⋃=-∞∞,而(){}()()40,04+C x x x =∈->=-∞∞R ,因为C ()A B ,所以“x A B ∈”是“x C ∈”的必要不充分条件. 故答案为:必要不充分.17.(1)必要不充分条件;(2)充分不必要条件;(3)充要条件. (1)∵2{|60}{|23}x x x x x --<=-<<,∴{6x x >或}3x <不能推出{|23}x x -<<,而{|23}x x -<<能推出{6x x >或}3x <, ∴p 是q 的必要不充分条件;(2)∵a .b 都是奇数能推出a b +为偶数,而a b +为偶数不能推出a .b 都是奇数, ∴p 是q 的充分不必要条件;(3)∵2230mx x -+=有两个同号不等实根,∴030m ∆>⎧⎪⎨>⎪⎩,∴41200m m ->⎧⎨>⎩,∴103m <<,∴p 是q 的充要条件.18.(1)A ∩B ={x |1<x <4},A ∪B ={x |﹣4<x <5};(2)[﹣2,2].(1)当m =3时,A ={x |1<x <5};∴A ∩B ={x |1<x <4},A ∪B ={x |﹣4<x <5};(2)若p 是q 的充分不必要条件,则A 是B 的真子集;∴2424m m -≥-⎧⎨+≤⎩,解得:﹣2≤m ≤2,当2m =-时,40{|}A x x -=<<,当2m =时,04{|}A x x =<<,A 是B 的真子集都成立, 所以实数m 的取值范围是:[﹣2,2].19.(1){}1,2,3B =(答案不唯一);(2){}1B =(答案不唯一)(1)由于“x A ∈”是“x B ∈”的充分条件,但“x A ∈”不是“x B ∈”的必要条件,所以集合A 是集合B 的真子集,由此可得{}1,2,3B =符合题意.(2)由于于“x A ∈”是“x B ∈”的必要条件,但“x A ∈”不是“x B ∈”的充分条件,所以集合B 是集合A 的真子集,由此可知{}1B =符合题意.20.)33,,44⎛⎤⎡-∞-⋃+∞ ⎥⎢⎦⎣⎝.由题意,{}23371,222416A y y x x x yy ⎧⎫==-+≤≤=≤≤⎨⎬⎩⎭, }{}{221|1B x x m x x m =+≥=≥-,命题p 是命题q 的充分条件,27116A B m ∴⊆∴-≤,,解得34m ≥或34m ≤-,实数m 的取值范围是)33,,44⎛⎤⎡-∞-⋃+∞ ⎥⎢⎦⎣⎝21.(1){0x x ≤或}3x ≥;(2)3a ≤-或4a ≥. (1)因为1a =-,所以{}20A x x =-≤≤A B ={0x x ≤或}3x ≥;(2)因为p 是q 的充分不必要条件,所以A 是B 的真子集, 所以12a +≤-或13a -≥, 所以3a ≤-或4a ≥.故答案为:(1){0x x ≤或}3x ≥;(2)3a ≤-或4a ≥.。

高中数学(必修一)第一章 充要条件 练习题及答案

高中数学(必修一)第一章 充要条件 练习题及答案

高中数学(必修一)第一章 充要条件 练习题及答案学校:___________姓名:___________班级:_______________一、单选题1.若命题“若a M ∈,则b M ∉”为真命题,则下列命题中一定为真命题的是( )A .若a M ∉,则b M ∉B .若b M ∉,则a M ∈C .若a M ∉,则b M ∈D .若b M ∈,则a M ∉2.设x ∈R ,则“2x >”是“21x <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3.已知下列四组陈述句:①p :集合(){}**|3A x y x y x y =+=∈∈N N ,,,;q :集合{(1,2)}. ①p :集合A B C A ⊆⊆⊆;q :集合A B C ==.①p :{}21x x x n n ∈=+∈Z ,;q :{}61x x x n n ∈=-∈N ,.①p :某中学高一全体学生中的一员;q :某中学全体学生中的一员.其中p 是q 的必要而不充分条件的有( )A .①①B .①①C .①①D .①①4.已知,R a b ∈,则“1a >或1b >”是“2a b +>”的( )条件.A .充分非必要B .必要非充分C .充分必要D .既非充分又非必要 5. “2x π=”是“函数cos 2y x =取得最大值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则( ).A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件7.命题“2[1,3],20x x x a ∀∈---≤”为真命题的一个充分不必要条件可以是( )A .4a ≥B .3a ≥C .2a ≥D .1a ≥8.若α,β表示两个不同的平面,l 表示一条直线,且l α⊂,则“l β∥”是“αβ∥”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.已知集合{}{}22,1A xx x B x a x a =-≤=≤≤+∣∣,若B A ⊆,则实数a 的取值集合为( ) A .[]0,1 B .[]1,0- C .[]1,2- D .[]1,1-二、填空题10.下列说法错误的是_________________①若0xy ≥,则x y x y +>+①若220x y +≠,则0x ≠或0y ≠①“2a b x +>是x >的充分不必要条件 ①“0x ∀>,1x e x >+”的否定形式是“0x ∃≤,1x e x ≤+”11.直线mx +(2m -1)y +2=0与直线3x +my +3=0垂直的充要条件是__________.12.已知p :210x ≤≤,q :11a x a -<<+,R a ∈,且p 是q 成立的必要非充分条件,则实数a 的取值范围是________.三、多选题13.下列选项中,p 是q 的充要条件的是( )A .p :0xy >,q :0x >,0y >B .p :A B A ⋃=,q :B A ⊆C .p :三角形是等腰三角形,q :三角形存在两角相等D .p :四边形是正方形,q :四边形的对角线互相垂直平分四、解答题14.已知集合{|211}A x a x a =-≤≤+,{|03}B x x =≤≤.(1)若a =1,求A B ;(2)给出以下两个条件:①A ①B =B ;①“x A ∈“是“x B ∈”的充分不必要条件.在以上两个条件中任选一个,补充到横线处,求解下列问题:若_____________,求实数a 的取值范围.(如果选择多个条件分别解答,按第一个解答计分)参考答案与解析:1.D【分析】原命题与其逆否命题同真假,故找出题设命题的逆否命题即可.【详解】命题“若a M ∈,则b M ∉”的逆否命题为:“若b M ∈,则a M ∉”,因为原命题与其逆否命题同真假,故由原命题为真命题可知其逆否命题为真命题,故选:D【点睛】本题考查命题真假的判断,考查命题间的真假关系,属于基础题.2.A 【分析】根据分式不等式的解法求21x <的解集,结合充分必要性定义判断题设条件间的关系即可. 【详解】当21x<时,有0x <或2x >, 所以2x >是21x <的充分条件,但不是必要条件. 故选:A3.D【分析】逐个判断是否有q p ⇒且p q 即可.【详解】①若**3x y x y +=∈∈N N ,,,则12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,①{(1,2),(2,1)}A =,即p :{(1,2),(2,1)}A =;故q p⇒且p q ,即p 是q 的必要而不充分条件,符合题意;①若A B C A ⊆⊆⊆,则根据子集的性质可得A B C ==,即p :A B C ==;故p 是q 的充要条件,不符题意;①对于21x n n =+∈Z ,,当31n k k =-∈Z ,时,61x k k =-∈Z ,, 故{}61x x n n =-∈N , {}21x x n n =+∈Z ,,①p 是q 的必要而不充分条件,符合题意;①易知p q ⇒且q p ,即p 是q 的充分而不必要条件,不符合题意;综上,p 是q 的必要而不充分条件的有①①.4.B【分析】根据充分必要条件的定义判断. 【详解】当1a >或1b >时,如2a =,3b =-,此时1a b +=2<,因此不充分, 若1a ≤且1b ≤,则2a b a b +≤+≤,因此是必要的.即为必要不充分条件.故选:B .5.D【分析】根据余弦函数的性质,结合充分条件、必要条件的判定方法,即可求解. 【详解】当2x π=时,函数cos 2cos 1y x π===-,故充分性不成立;当函数cos 2y x =取得最大值时,22,Z x k k π=∈,即,Z x k k π=∈,故必要性也不成立,综上可得:“2x π=”是“函数cos 2y x =取得最大值”的既不充分也不必要条件. 故选:D .6.B【分析】利用等比数列的性质以及正负进行判断即可.【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足. 故选:B7.A【分析】充分不必要条件是指由结果不能推出条件,故放宽条件即可.【详解】由题知,命题“2[1,3],20x x x a ∀∈---≤”为真命题时,满足[1,3]x ∀∈-,22x x a -≤.则当[1,3]x ∈-时,222(1)13x x x -=--≤,所以命题“2[1,3],20x x x a ∀∈---≤”为真命题时,3a ≥.经验证,A 选项符合题意;8.C【分析】根据充分条件和必要条件的定义结合面面平行的判定分析判断即可.【详解】若l α⊂,l β∥,则平面α和平面β可能平行,也可能相交;若l α⊂,αβ∥,则l β∥,所以“l β∥”是“αβ∥”的必要不充分条件.故选:C .9.D【分析】根据二次不等式的求解,结合集合关系的区间端点大小关系求解即可【详解】{}()(){}[]222101,2A x x x x x x =-≤=-+≤=-∣∣,因为B A ⊆,故112a a ≥-⎧⎨+≤⎩,解得11a -≤≤ 故选:D10.①①①【分析】①当,x y 均为正数时结论是错误的;①220x y +≠出,x y 不同时为0,故正确;①只有0a ,0b 时,2a b x +>才可推出,x > ①命题的否定只否定结论,故错误.【详解】对于选项①:若0x ,0y ,则||||||x y x y +=+,故①错误;对于选项①:若0x =且0y =,则220x y +=,所以:若220x y +≠,则0x ≠或0y ≠,故①正确;对于选项①:当0a ,0b 时,若2a b x +>,则x >题中没有说明,a b 的范围,所以是不充分,当x >时,2a b x +>不一定成立,如:2,8,4a b x ==>=,2a b x +>为2852x +>=,不成立,故“2a b x +>是x >的即不充分也不必要条件,故①错误;对于选项①:“0x ∀>,1x e x >+”的否定形式是“0x ∃>,1x e x +”,故①错误.故答案为:①①①11.0m =或1m =-【分析】根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断【详解】当m=0时,两直线为y=2与x= -1,此时两直线垂直;当2m -1=0,即m=12时,两直线为x= -4与3x+12y+3=0,此时两直线相交不垂直;当m≠0且m ≠12时,两直线的斜截式方程为233,2121m y x y x m m m m -=-=----, 由两直线垂直可知3121m m m -⎛⎫⋅-=- ⎪-⎝⎭,解得m= -1, 故两直线垂直的充要条件是0m =或1m =-.【点睛】本题考查充分条件必要条件的判断及两直线垂直的条件,本题的关键是由两直线垂直得出参数m 的取值,易错点是忘记验证斜率不存在的情况,导致判断失误,12.[]3,9【分析】根据题意可得()1,1a a -+ []2,10,即可建立不等关系求解.【详解】因为p 是q 成立的必要非充分条件,所以()1,1a a -+ []2,10,所以12110a a -≥⎧⎨+≤⎩,解得39a ≤≤, 所以实数a 的取值范围是[]3,9.故答案为:[]3,9.13.BC【分析】根据充分条件、必要条件的定义判断即可;【详解】解:对于A :由0xy >,得0x >,0y >或0x <,0y <,故P 不是q 的充要条件,故A 错误; 对于B :由A B A ⋃=,则B A ⊆,若B A ⊆则A B A ⋃=,故P 是q 的充要条件,故B 正确;对于C :三角形是等腰三角形⇔三角形存在两角相等,故P 是q 的充要条件,故C 正确;对于D :四边形的对角线互相垂直且平分⇔四边形为菱形,故p 不是q 的充要条件,故D 错误; 故选:BC14.(1){|03}A B x x ⋃=≤≤ (2)1[,)2+∞【分析】(1)由并集定义计算;(2)若选择①,则由A ①B =B ,得A B ⊆,然后分类讨论:A =∅与A ≠∅两类求解;若选择①,得A 是B 的真子集,同样分类A =∅与A ≠∅求解.(1)当1a =时,集合{|12}A x x =≤≤,因为{|03}B x x =≤≤, 所以{|03}A B x x ⋃=≤≤;(2)若选择①,则由A ①B =B ,得A B ⊆.当A =∅时,即211a a ->+,解得2a >,此时A B ⊆,符合题意; 当A ≠∅时,即211a a -≤+,解得2a ≤,所以21013a a -≥⎧⎨+≤⎩,解得:122a ≤≤; 所以实数a 的取值范围是1[,)2+∞. 若选择①,则由“x A ∈“是“x B ∈”的充分不必要条件,得A ⫋B . 当A =∅时,211a a ->+,解得2a >,此时A ⫋B ,符合题意;当A ≠∅时,211a a -≤+,解得2a ≤,所以21013a a -≥⎧⎨+≤⎩且等号不同时取,解得122a ≤≤; 所以实数a 的取值范围是1[,)2+∞.。

高考数学一轮复习 第一章 集合与常用逻辑用语 1.3 充分条件、必要条件与命题的四种形式练习题(含解

高考数学一轮复习 第一章 集合与常用逻辑用语 1.3 充分条件、必要条件与命题的四种形式练习题(含解

高考数学一轮复习第一章集合与常用逻辑用语1.3 充分条件、必要条件与命题的四种形式练习题(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高考数学一轮复习第一章集合与常用逻辑用语1.3 充分条件、必要条件与命题的四种形式练习题(含解析)(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高考数学一轮复习第一章集合与常用逻辑用语1.3 充分条件、必要条件与命题的四种形式练习题(含解析)(1)的全部内容。

充分条件、必要条件与命题的四种形式一、选择题1.“a=2”是“直线(a2-a)x+y=0和直线2x+y+1=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析因为两直线平行,则(a2-a)×1-2×1=0,解得a=2或-1,所以选A.答案A2.已知命题p:∃n∈N,2n>1 000,则綈p为( ).A.∀n∈N,2n≤1 000 B.∀n∈N,2n>1 000C.∃n∈N,2n≤1 000 D.∃n∈N,2n<1 000解析特称命题的否定是全称命题.即p:∃x∈M,p(x),则綈p:∀x∈M,綈p(x).故选A。

答案A3.与命题”若a M∉"等价的命题是( )∈,则b MA。

若a M∉∉,则b MB。

若b M∈∉,则a MC.若a M∈∉,则b MD。

若b M∉∈,则a M解析因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D. 答案 D4.“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π"的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析函数y=cos2ax-sin2ax=cos2ax的最小正周期为π⇔a=1或a=-1,所以“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件.故选A。

(完整版)集合与充要条件练习题

(完整版)集合与充要条件练习题

(完整版)集合与充要条件练习题一、选择题1.下列语句能确定一个集合的是()A 浙江公路技师学院高个子的男生B 电脑上的容量小的文件全体C 不大于3的实数全体D 与1接近的所有数的全体2.下列集合中,为无限集的是()A 比1大比5小的所有数的全体B 地球上的所有生物的全体C 超级电脑上所有文件全体D 能被百度搜索到的网页全体3.下列表示方法正确的是()2.0 (3)A NB QC RD Z Q π*∈-∈∈∈ 4.下列对象能组成集合的是()A.大于5的自然数B.一切很大的数C.路桥系优秀的学生D.班上考试得分很高的同学5.下列不能组成集合的是()A. 不大于8的自然数B. 很接近于2的数C.班上身高超过2米的同学D.班上数学考试得分在85分以上的同学6.下列语句不正确的是()A.由3,3,4,5构成一个集合,此集合共有3个元素B.所有平行四边形构成的集合是个有限集C.周长为20cm 的三角形构成的集合是无限集D.如果,,a Q b Q a b Q ∈∈+∈则7.下列集合中是有限集的是(){}{}{}{}2.|3..|2,.|10A x Z x B C x x n n Z D x R x ∈<=∈∈-=三角形8.下列4个集合中是空集的是() {}{}{}{}2222.|10.|.|0.|10A x R x B x x x C x x D x x ∈-=<-=+=9.下列关系正确的是().0.0.0.0A B C D ∈≠?10.用列举法表示集合{}2|560x x x -+=,结果是()A.3B.2C.{}3,2 D.3,211.绝对值等于3的所有整数组成的集合是()A.3B.{}3,3- C.{}3 D.3,-312.用列举法表示方程24x =的解集是(){}{}{}{}2.|4.2,2.2.2A x x B C D =--13.集合{}1,2,3,4,5也可表示成(){}{}{}{}.|5.|05.|05,.|05,A x x B x x C x x x N D x x x N <<<<<∈<≤∈14.下列不能表示偶数集的是(){}{}{}{}.|2,.|.,4,2,0,2,4,.|2,A x x k k Z B x x C D x x n n N =∈--=∈L L 是偶数15.下列表示集合{}1,1-不正确的是(){}{}{}{}22.|1.1.|1.|1A x x B x C x x D x ====16.对于集合{}{}2,6,2,4,6A B ==,则下列关系不正确的是()....A A B B A B C B A D A B ≠17.若,x A ∈则,x B ∈那么集合A,B 的关系可能是()....A A B B B A C A B D B A ∈∈??18.集合{},,a b c 的子集个数为().3.7.8.9A B C D 个个个个19.已知集合{}1,2,3,4,下列集合中,不是它的子集的是() {}{}{}.1234.3..012A B C D ?,,,,,20.已知{}{}24734,5(A B A B ==?=,,,,,则).{}{}{}{}.2,3.4.5,7.2,3,4,5A B C D21.若N={自然数},Z={整数},则()N Z ?=A.NB.Z C{0} D.{正整数}22.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()M N =I {}{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤< 23.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()M N =U {}{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤< 24.若全集U={整数},集合A={奇数},则()U A =eA.{偶数}B.{整数}C.{自然数} D{奇数}25.()21010x x -=-=是的 A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件26.()0"0b 0ab a ==="是“且”的A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件27.x>5是x>3的( )A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件二、填空题:1.自然数集用大写字母______表示;整数集用大写字母______表示;有理数集用大写字母______表示;实数集用大写字母______表示;自然数集内排除0的集合用______表示;2.用符号“∈”或“?”填空11)3.14__;3)__;4)2__;6)__2R R N N Q Q π- 3.不大于4的实数全体,用性质描述法可表示为____;4.所有奇数组成的集合________;所有被3除余1的数组成的集合_______;5.绝对值小于6的实数组成的集合_______________;6.大于0而小于10的奇数组成的集合__________________;7.小于7的正整数组成的集合__________________;8.不含任何元素的集合叫做__________;记做___________;它是任何的集合的___________.9.{}a 与a 是完全不同的,a 表示一个________;而{}a 表示一个__________.10.用适当的符号填空: {}{}{}{}{}{}{}{}__,,;,,__,,;__0;__0;______.a a b c a b c c a b ??正三角形等腰三角形;平行四边形梯形已知{,,,},{,,},A a b c d B c d e ==则_______,_______,A B A B ==I U 已知A={10以内的质数},B={偶数},则______.A B =I用“充分条件”,“必要条件”或“充要条件”填空:1)416________;x ==2是x 的2)240b ac ->是方程20(0)ax bx c a ++=≠有实根的 __________; 3)0b =是直线y kx b =+过原点的______________;4)24a b >是方程20x ax b ++=有实根的 __________;5)若,,a b R ∈则220a b +=是0a b +=的_____________;解答题写出{1,2,3}的所有子集,并指出哪些不是真子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.集合1,2,3,4,5也可表示成( )

B 电脑上的容量小的文件全体 D 与1接近的所有数的全体 )
B 地球上的所有生物的全体 D 能被百度搜索到的网页全体

R D.Z Q

B. 一切很大的数
D.班上考试得分很高的同学

B.很接近于2的数
D.班上数学考试得分在85分以上的同学
A.由3,3,4,5构成一个集合,此集合共有3个元素
B.所有平行四边形构成的集合是 个有限集
C.周长为20cm 的三角形构成的集合是无限集
D.如果a Q,b Q,则a b Q 7•下列集合中是有限集的是( )
A. x Z |x 3
B.三角形
2
C. x | x 2n, n Z
D. x R | x 1 0 8•下列4个集合中是空集的是(

A. x R|x 2 1 0
B. x|x 2 x
C. x|x 2
D. x|x 2 1
0 9•下列关系正确的是(

A.0
B.0
C.0
D.0
A.3
B.2
C. 3,2
D.3 , 2
11 .绝对值等于3的所有整数组成的集合是(

A.3
B. 3, 3
C. 3
D.3,—3
12 .用列举法表示方程x 2 4的解集是(

A. x|x 2
4 B. 2, 2 C. 2 D. 2
A. x|x5
B. x|0x5
、选择题
1 •下列语句能确定一个集合的是 A 浙江公路技师学院高个子的男生
C 不大于3的实数全体
2•下列集合中,为无限集的是( A 比1大比5小的所有数的全体 C 超级电脑上所有文件全体 3 •下列表示方法正确的是( A.0 N B. 2 Q C.
3
4 •下列对象能组成集合的是( A.大于5的自然数 C.路桥系优秀的学生
5•下列不能组成集合的是( A.不大于8的自然数
C.班上身高超过2米的同学 6 •下列语句不正确的是(
10 •用列举法表示集合 x|x 2 5x 6 0,结果是(
C. x 10 x 5,x N
D. x 10 x 5,x N
14. 下列不能表示偶数集的是()
A. x|x 2k,k Z
B. x|x是偶数
C. L , 4, 2,0, 2,4丄
D. x | x 2n,n N
1 1
15. 下列表示集合’ 不正确的是()
A. x| x 1
B. xh/x2 1
C. x|x2 1
D. x|(、.x)2 1
16. 对于集合A 2,6 ,B 2,4,6
,则下列关系不正确的是()
A.A B
B.A B
C.B A
D.A B
17. 若x A,则x B,那么集合A,B的关系可能是()
A.A B
B.B A
C.A B
D.B A
18. 集合a,b,C
的子集个数为()
A.3 个
B.7 个
C.8个
D.9 个
19. 已知集合1,2,3,4
,下列集合中,不是它的子集的是()
A. 1,2,3,4
B. 3
C.
D. 01,2
20
已知A 2,4,7 , B 3,4,5,则A B ().
A. 2,3
B. 4
C. 5,7
D. 2,3,4,5
21.若N={自然数}, Z={整数},则N Z ()
A.N
B.Z C{0} D.{正整数}
22. 设集合M x| 1 x 4 ,N x|0 x 5 ,则MIN ()
A. x|4x 5
B. x| 1x 0
C. x| 1x 5
D. x|0x 4
23
设集合M x| 1 x 4 ,N x|0 x 5 ,则M UN ()
A. x|4x5
B. x| 1 x 0
C. x|1x5
D. x 10 x 4
24.若全集U={整数},集合A={奇数},则'A
A.{偶数}
B.{整数}
C.{自然数}D{奇数}
25. x 1 0是x2 1 0的
A充分但非必要条件 B.必要但非充分条件
C.充要条件D既非充分条件也非必要条件
26. "ab 0"是“ a 0且b 0” 的
A充分但非必要条件 B.必要但非充分条件
C.充要条件D既非充分条件也非必要条件
27. x>5 是x>3 的( )
A充分但非必要条件 B.必要但非充分条件
C.充要条件D既非充分条件也非必要条件
二_ 填空题:
1. 自然数集用大写字母表示;整数集用大写字母表示;
有理数集用大写字母 ______ 示;实数集用大写字母 ______ 示;自然数集内排
除0的集合用______ 示;
2•用符号“ ”或“ ”填空
1) 3.14_R;2) R;3) - _N;4) 2_ N;5) T3_Q;6) _Q
——一 2 ————
3 •不大于4的实数全体,用性质描述法可表示为_______ ;
4 •所有奇数组成的集合______________ ;所有被3除余1的数组成的集合____
------------- 7
5.绝对值小于6的实数组成的集合__________________ ;
6 •大于0而小于10的奇数组成的集合 ___________________ ;
7 .小于7的正整数组成的集合____________________ ;
8. __________________________________ 不含任何元素的集合叫做记做它是任何的集合的
9. a
与a是完全不同的,a表示一个 ___________ 而a表示一个_____________
10. 用适当的符号填空:
a_ a,b,c ; a,b,c __ c,a,b ; __ 0 ; _0;
正三角形等腰三角形;平行四边形梯形.
已知 A {a,b,c,d},B {c,d,e},则AI B _________ , AU B ________ 已知A={10以内的质数}, B={偶数},则AI B ____ .
用“充分条件”,“必要条件”或“充要条件”填空:
1) x 4是x216的__________ ;
2) b24ac 0是方程ax2bx c 0(a 0) 有实根的___________________ ;
3) ________________________________________ b 0是直线y kx b过原点的;
4) a24b 是方程x2ax b 0 有实根的___________________ ;
5) 若a,b R,贝U a2b20 是a b 0 的________________ ;
解答题写出{1,2,3}的所有子集,并指出哪些不是真子集。

指出下列集合之间的关系,并用图表示:
A={三角形}; B={正三角形}; C={等腰三角形}D={直角三角形}已知U={1 , 2,3,4,5,6,7,8,9}, A={1,2,3,4,5}, B={2 , 4,6,8},求痧A, U B,痧
Al u B,?u(AI B).
已知U=R, A {x| 1 x 2}, B x|x 0 ,求AU B, AI B,Q A。

相关文档
最新文档