空间向量的坐标表示

合集下载

高二数学空间向量运算的坐标表示

高二数学空间向量运算的坐标表示
3.1.5空间向量运算的坐标表示
一、向量的直角坐标运算
设a (a1, a2 , a3 ),b (b1 , b2 , b3 )则
a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a (a1 , a2 , a3 ),( R) ;
F A1 B1 E D1 C1
D
C
A
B
练习三:
如图:直三棱柱ABC A1 B1C1 , 底面ABC 中, CA=CB=1,BCA=90o,棱AA1=2,M、 N分别为A1B1、AA1的中点, 1)求BN的长; 2)求 cos BA1 , CB1 的值; 3)求证:A1B C1M。
(3)当cos a , b 0 时,a b 。 思考:当 0 cos a , b 1 及 1 cos a , b 0时, 的夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1, 0 , 0) ;
解:设正方体的棱长为1,如图建
C1
z
D1 A1
F1 E1 B1
立空间直角坐标系 O xyz ,则
3 B(1,1, 0) , E1 1, ,1 , 4
C
D
O
B
y
1 D(0 , 0 , 0) , F1 0 , ,1 . 4
A
x
1 3 BE1 1, ,1 (1,1, 0) 0 , ,1 , 4 4
(1)线段 AB 的中点坐标和长度; 解:设 M ( x , y , z ) 是 AB 的中点,则

3.1.4空间向量的正交分解及其坐标表示

3.1.4空间向量的正交分解及其坐标表示
a,b, c都叫做基向量
空间任何三个不共面的向量 都可构成空间的一个基底
c 共面
推论:设点O、A、B、C是不共面的四点,则对 空间任一点P,都存在唯一的有序实数组 x、y、 z ,使
OP xOA yOB zOC
O
PC APBFra bibliotekP红对勾 5.若向量M→A,M→B,M→C的起点与终点互不重合且无三 点共线,则下列关系(O 是空间任一点)中,能使向量M→A,M→B,M→C 成为空间的一个基底的是( C )
[分析] 若向量 a 可以用基向量 e1、 e2、e3 表示为 a=xe1+ye2+ze3,则(x,y, z)就是 a 在基底{e1,e2,e3}下的坐标.
[= AA=解=AA=→→→→[=AA=解→→解GFGFGFA(:A(→→=A(=析= 12=1→=析=12DD,D,,AA]+ A+A→A→]+A→→A1→1ABB(→A1B12,112,′′+12,1+1(′+1A)A(1A))A1)→.+A→.→+)ABB.+A→→)→BAE→→′A′G→G′G=EAAAE=== ′==′==′=A→→→→AA→AD→D((DA→→AD(0→0BB0DB′+′,D,′+,1+1+1++,,D++,→+121212DE→AD12A12D→→→DA12D→E=))DDE)→D,→′,′→,=′===A=→FFAFD→(A(=→=(1D1=+1D,,,+AA+12A12A→A→12,DA→1212,12′′,D′→DD0D→ 0+)′+D→0+,)′),′A,A→→A→DDD+++12112AAA→→A→BBBB, AD, AA
∴∴∴ zxxxxz= + - xxz= + -=+ -3yy3yy3.= = yy.= =.= =121212, ,, ,, ,

课件1:1.3.2 空间向量运算的坐标表示

课件1:1.3.2 空间向量运算的坐标表示
[探究问题] 1.已知 A(x1,y1,z1),B(x2,y2,z2),则线段 AB 的中点 P 的坐标是多少? [提示] Px1+2 x2,y1+2 y2,z1+2 z2.
2.类比平面向量,空间向量共线的充要条件是什么? [提示] 若 a=(a1,a2,a3),b=(b1,b2,b3),
a1=λb1, 则 a∥b⇔a=λb⇔a2=λb2,
a·b=(2,-1,-2)·(0,-1,4) =2×0+(-1)×(-1)+(-2)×4=-7; (2a)·(-b)=-2(a·b)=-2×(-7)=14; (a+b)·(a-b)=(2,-2,2)·(2,0,-6) =2×2-2×0+2×(-6)=-8.
规律方法 进行空间向量的数量积坐标运算的技巧 利用向量坐标运算解决问题的关键是熟记向量坐标运算 的法则,同时掌握下列技巧. (1)在运算中注意相关公式的灵活运用,如(a+b)·(a-b) =a2-b2=|a|2-|b|2,(a+b)·(a+b)=(a+b)2 等.
(2)设 Q(x,y,z),则P→Q=(x+1,y-2,z+3),M→N=(1,1,1),
∴x+x1+=1y2-+2=y-z+232+,z+32=3 12+12+12,
x=-4,
解得y=-1 z=-6
x=2,
,或y=5, z=0,
∴Q 点的坐标为(-4,-1,-6)或(2,5,0).]
类型二 空间向量的平行与垂直
(2)正方体 ABCD-A1B1C1D1 中,E 是棱 D1D 的中点,P、Q 分别为线段 B1D1,BD 上的点,且 3B→1P=P→D1,若 PQ⊥AE, B→D=λD→Q,求 λ 的值.
(2)[解] 如图所示,以 D 为原点,D→A,D→C,D→D1的方向分别为 x 轴,y 轴,z 轴的正方向建立空间直角坐标系,设正方体棱长为 1, 则 A(1,0,0),E0,0,12,B(1,1,0),B1(1,1,1),D1(0,0,1),

3.1.4 空间向量的坐标表示

3.1.4 空间向量的坐标表示
r rxr
与x轴、y轴、z轴方向相同的单位向量 i, rj, k
作为基向量,对于空间任意一个向量 a ,
根据空间向量基本定理,存在惟一的有序实数组
rrr r
(x,y,z ),使 a= xi+ yj+ zk. r 有序实数组(x,y,z )叫做向量 r a 在空间直角
坐标系O-xyz中的坐标,记 作 : a = (x , y , z) u u u r u u u r
对于空间任意一点A(x,y,z ),向 量 O A 坐 标 为 O A = ( x , y , z ) .
3.空间向量的坐标运算法则.
r
r
(1r )若ra = ( a 1 , a 2 , a 3 ) , b = ( b 1 , b 2 , b 3 ) ,
则 a + b = ( a 1 + b 1 , a 2 + b 2 , a 3 + b 3 ) ,
rr 解: a+b=(4, 7, 4) ,
rr a-b=(-2, -13, 12) ,
r 3a=(3, -9, 24)
例2 已知空间四点A(-2,3,1),B(2,-5,3),C(10,0, 10)和D(8,4,9),求证:四边形ABCD是梯形.
uuur uuur uuur
解: AB=OB- OA=(4, -8, 2) ,
rr a - b = ( a 1 - b 1 , a 2 - b 2 , a 3 - b 3 ) ,
r a = (a 1 , a 2 , a 3 ) (∈ R ) ,
r r
a b a 1 = b 1 , a 2 = b 2 , a 3 = b 3 ( ∈ R ) ,
数学应用
已知 a r = ( 1 , - 3 , 8 ) , b r = ( 3 , 1 0 , - 4 ) , 求 a r+ b r, a r+ b r, 3 a r.

空间向量的坐标表示

空间向量的坐标表示

D1 A1
[思 考2]
若E、F均 为 各 自 棱 上 的 动 点 ,
( x2 , y2 , z2 ) ( x1 , y1 , z1 )
( x2 x1 , y2 y1 , z2 z1 )
P 一个向量在直角坐标系中的坐
y
标等于表示这个向量的有向线 段的终点坐标减去起点的坐标 .
3、空间两点间的距离和夹角
1.两点之间的距离
设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点
zR
M1•
P o
d M1M2 ?
• M2
Q N
在直角M1 NM 2 及 直 角 M1 PN
中,使用勾股定
y 理知
x
d 2 M1P 2 PN 2 NM 2 2 ,
M1P x2 x1 , PN y2 y1 , NM 2 z2 z1 ,
zR
M1•
P
o x
d M1P 2 PN 2 NM2 2
(b1b2b3 0)
空间向量的坐标表示
A( x1 , y1 ) , B( x2 , y2 )
AB
( x2 x1 , y2 y1 )
A( x1 , y1 , z1 ) , B( x2 , y2 , z2 )
( x2 x1 , y2 y1 , z2 z1 )
z
A
O
x
a
B AB OB OA
;
| a || b |
a12 a22 a32 b12 b22 b32
注意:
rr
rr
(1)当 cos a , b 1 时,a 与 b 同向;
rr
rr
(2)当 cos a , b 1 时,a 与 b 反向;

空间向量的坐标表示

空间向量的坐标表示
p
e3 Oe 2
分别为x,y,z轴正方向上的单位向量,由空间向量 ( x, y, z) 基本定理,存在唯一的有序实数组
给定一个空间直角坐标系和向量 p 且设 ,
i、 k j、
A(x,y,z) y
e1
(1)设a (a1, a2 , a3 ), b (b1, b2 , b3 )
即对应坐标成比例.
4.判断下列各组中的两个向量是否共线.
9 (1)a (2,3, 4, ), b (3, , 6) 2 (2)a (2,0, 4,), b (4,1, 8) (3)a (2,0, 4,), b (4,0, 8)
5.已知m (8,3, a), n (2b, 6,5) ,若m n 则a=_____,b=______.
则:
2、空间向量的直角坐标运算律:
a (a1 , a2 , a3 )
(2)若A(a1 , b1 , c1 ), B(a2 , b2 , c2 )则 AB (a2 a1 , b2 b1 , c2 c1 )
a b (a1 b1 , a2 b2 , a3 b3 ) a b (a1 b1 , a2 b2 , a3 b3 )
a b
a (a1, a2 )( R),
(a1 b1 , a2 b2 ),
(2)若A( x1 , y1 ), B( x2 , y2 )
则AB ( x2 x1 , y2 y1 )
1、空间向量的坐标表示:
使得 p xi y j zk 则有序实数组 ( x, y, z ) 叫做 p 在空间直角坐标系 O-xyz中的坐标,上式可简记作 p ( x, y, z) z

空间向量的坐标表示

空间向量的坐标表示


o x

y
AB OB OA ( x2 i y2 j z2 k ) ( x1 i y1 j z1 k )
( x2 x1 )k


AB的坐标是(x2 x1 , y2 y1 , z2 z1 )
一、新知探究
在空间直角坐标系中, i , j , k 分别是x轴,y轴,z轴正方 向上的单位向量, a 是空间任意向量,作 OP = a


a
过点P作坐标平面yoz,xoz,xoy的平行平面,分别
z 交x轴,y轴,z轴于A,B,C三点.
则OP = OA + OB + OC




应用举例
例1、如图,在直角坐标系中有长方体ABCD-A1 B1 C1 D1 , 且AB=3,BC=5,AA1 =7.

( 1)写出点C1的坐标,给出 AC1 关于 i , j ,k 的分解式;

(2)求 BD1 的坐标
D1
Z A1
C1
B1
A D X
B
O
Y
C
新知探究
设 a x i y j z k , 求 a i , a j , a k








我们把 a =x i y j z k 叫作 a 的标准正交分解, 把 i , j , k 叫作标准正交基.
( x, y, z )叫作空间向量 a 的坐标,记作 a ( x, y , z )

在空间直角坐标系中,点P的坐标为(x,y,z), 则向量 OP的坐标也是(x,y,z)

例2、在棱长为2的正方体中,求:

向量的坐标表示

向量的坐标表示

向量的坐标表示在数学中,向量是一个具有大小和方向的量。

为了方便计算和分析,我们常常使用向量的坐标表示方法。

向量的坐标表示可以帮助我们更直观地理解和操作向量。

一、二维对于二维空间中的向量,我们可以使用横纵坐标来表示。

假设有一个向量v,它在二维平面上的起点为原点(0,0),终点为点P(x,y),那么向量v的坐标表示就是(x,y)。

例如,有一个向量v,它在二维平面上的起点为原点,终点为点P(3,4)。

那么向量v的坐标表示为(3,4)。

二、三维对于三维空间中的向量,我们可以使用三个坐标轴来表示。

假设有一个向量u,它在三维空间中的起点为原点(0,0,0),终点为点Q(x,y,z),那么向量u的坐标表示就是(x,y,z)。

例如,有一个向量u,它在三维空间中的起点为原点,终点为点Q(1,2,3)。

那么向量u的坐标表示为(1,2,3)。

三、向量表示方法的应用向量的坐标表示方法在各个领域都有广泛应用。

以下是一些常见应用:1. 几何学:在几何学中,向量的坐标表示方法被用于描述线段、向量的长度和方向等概念。

通过向量的坐标表示,我们可以更方便地计算几何图形的属性。

2. 物理学:在物理学中,向量的坐标表示方法被用于描述物体的位移、速度、加速度等物理量。

通过向量的坐标表示,我们可以更精确地描述物体在空间中的运动状态。

3. 计算机图形学:在计算机图形学中,向量的坐标表示方法被广泛用于表示图像的位置、方向、形状等信息。

通过向量的坐标表示,我们可以实现计算机生成的三维图形和特效效果。

4. 统计学:在统计学中,向量的坐标表示方法被用于表示多维数据和样本。

通过向量的坐标表示,我们可以进行数据分析、模式识别等统计学方法。

总结:通过向量的坐标表示方法,我们可以更直观地理解和操作向量。

无论是二维向量还是三维向量,坐标表示都为我们提供了便利的计算和分析工具。

向量的坐标表示方法在几何学、物理学、计算机图形学和统计学等领域都有重要的应用。

掌握向量的坐标表示方法对于理解和应用相关概念都非常重要。

1.3.2 空间向量运算的坐标表示

1.3.2 空间向量运算的坐标表示
【答案】
【解析】如图所示,

故|

|2=|


=42+32+52+2




|2=
2+
2+
2 +2(
=85,故|
· +
·
|=
.

·
)
7.如图,四边形 ABCD 和 ADPQ 均为正方形,它们所在的平面互相垂直,M,E,F 分
别为 PQ,AB,BC 的中点,则异面直线 EM 与 AF 所成角的余弦值是________.
角为(
,若(a+b)·c=7,则 a 与 c 的夹
)
A. 30°
B. 60
°C. 120°
D. 150°
【答案】C
【解析】a+b=(-1,-2,-3)=-a,故(a+b)·c=-a·c=7,得 a·c=-7,
而|a|=

所以〈a,c〉=120°.
,所以 cos〈a,c〉=
=- ,
3.一束光线自点 P(1,1,1)出发,被 xOy 平面反射到达点 Q(3,3,6)被吸收,那么光线所经
【答案】
【解析】由正四面体的棱长为 a,知△BCD 的外接圆半径为
∴B,又正四面体的高为

a,
∴A,D,∴AD 的中点 N 的坐标为
AB 的中点 M 的坐标为



.

又 C,∴

∴|cos〈

.
〉|=
= ,
∴异面直线 CN 与 DM 所成角的余弦值为 .
a.
总结提升
利用空间向量的坐标运算的一般步骤
C. 14
【答案】A
【解析】∵l1∥l2,∴a∥b,

空间向量运算的坐标表示

空间向量运算的坐标表示
E,F分别是BB1,D1B1的中点, 求证: EF⊥DA1 略解:
1 1 1 E 1,1, , F , ,1 2 2 2 1 1 1 EF - , - , , DA1 1, 0,1 2 2 2
A1 z D1
F
C1
B1 E y
1 1 EF DA1 - 0 0 EF⊥DA1 2 2
x
x1 x2 x3 y1 y2 y3 z1 z2 z3 G , , 3 3 3
二、空间向量数量积的坐标表示及夹角公式
若 a (a1,a2,a3),b (b1,b2,b3),则
(1) a b = a1b1+a2b2+a3b3 ;
2 2 2 a + a + a (2)| a |= a a = 1 2 3 ; a1b1 a2 b2 a3 b3 ab (3)cos< a, b >= = 2 2 2 2 2 2 a a a b b b | a || b | 1 2 3 1 2 3
答案 a (1,1,0) , b (-1,0, 2)
ka b (k - 1, k , 2)
5 k- 或 k2 2
ka - 2b (k 2, k , -4)
例3.如图所示,在正方体ABCD-A1B1C1D1中,
点E1,F1分别是A1B1,C1D1的一个四等分
点,求BE1与DF1所成角的余弦值
空间向量运算的坐标表示
知识回顾: 空间向量基本定理: 如果三个向量 a, b, c 不共线,则对于空间任
一向量 p ,存在唯一有序实数组 { x, y, z },
使得 p xa yb zc 空间向量的坐标表示: 当以x 轴,y 轴,z 轴的正向单位向量 e1 , e2 , e3 为基向量时,若 p xe1 ye2 ze3 则向量 p

向量的三种表示方法

向量的三种表示方法

向量的三种表示方法
1.笛卡尔坐标表示法:在二维平面直角坐标系或三维空间直角坐标系中,向量可以用坐标表示。

例如,二维平面中的向量 a 可以表示为 (a1,a2),三维空间中的向量 b 可以表示为 (b1,b2,b3)。

2. 极坐标表示法:在平面直角坐标系中,向量可以用极坐标表示。

向量的极角是与 x 轴正半轴的夹角,向量的长度是向量的模。

例如,向量 c 的极角为θ,长度为 r,可以表示为 (r,θ)。

3. 分量表示法:向量在某个方向上的投影可以表示为向量在该方向上的分量。

例如,向量 d 在 x 方向上的分量可以表示为 dx,y 方向上的分量可以表示为 dy,向量可以表示为 (dx,dy)。

- 1 -。

空间向量的正交分解及其坐标表示

空间向量的正交分解及其坐标表示
[思路点拨] 结合已知和所求,画出图形,联想相关的 运算法则和公式等,再对照目标及基底,将所求向量反复 分拆,直到全部可以用基底表示为止.
[精解详析] 连接 BO,则 BF =12 BP =12(BO+OP )=12 ( BA+ AO+OP )=12(c-b-a)=-12a-12b+12c.
BE = BC +CE =-a+12CP =-a+12(CO+OP )=-a-12b+12c.
∵{e1,e2,e3}是空间的一个基底, ∴e1,e2,e3 不共面,
∴- x+3xy=+2y= ,1, 2x-y=-1.
此方程组无解,
即不存在实数 x,y 使OA=xOB+yOC .
∴OA,OB,OC 不共面.
故{OA,OB,OC }能作为空间的一个基底.
[例 2] 四棱锥 P-OABC 的底面为一矩形,PO⊥平面 OABC.设OA=a,OC =b,OP =c,E,F 分别是 PC 和 PB 的 中点,试用 a,b,c 表示BF ,BE , AE , EF .
空间向量的正交分解及其坐标表示
1.空间向量基 任一向量p,存在有序实数组{x,y,z},使得 p=xa+yb +zc,其中{a,b,c}叫做空间的一个基底,a,b,c 都叫
做基向量.
2.空间向量的正交分解及其坐标表示
(1)单位正交基底 三个有公共起点O的 两两垂直 的单位向量e1,e2, e3称为单位正交基底.
xe1+ye2+ze3 .把 x,y,z 称作向量p在单位正交基底e1,
e2,e3下的坐标,记作
p=(x,y,.z)
1.空间任意三个不共面的向量都可以作为空间向量 的一个基底.
2. 0与任意一个非零向量共线,与任意两个非零向 量共面,所以三个向量不共面,就隐含着它们都不是0.

数学习作 空间向量的坐标表示法

数学习作 空间向量的坐标表示法

空间矢量的坐标表示法一、中点公式坐标空间中,P (x 1 , y 1 , z 1),Q (x 2 , y 2 , z 2)两点连线段的中点M 的坐标为121212,,222x x y y z z ⎛⎫ ⎪⎝⎭+++。

二、距离公式坐标空间中,P (x 1 , y 1 , z 1),Q (x 2 , y 2 , z 2)两点的距离为PQ三、空间矢量的坐标表示法 1. 对于坐标空间中的任意一个矢量v v ,将始点放在原点,若其终点坐标为(a , b , c ),则 v v =(a , b , c ),称为v v 的坐标表示。

其中a 、b 、c 分别称为矢量v v 的x 分量、y 分量、z 分量。

2. 若A 、B 两点的坐标分别为A (x 1 , y 1 , z 1),B (x 2 , y 2 , z 2),则: AB uu u v =(x 2-x 1 , y 2-y 1 , z 2-z 1)。

四、空间矢量的加、减法与系数乘法 设a v =(x 1 , y 1 , z 1),b v =(x 2 , y 2 , z 2)为坐标空间中的两矢量,则: 1. a v +b v =(x 1+x 2 , y 1+y 2 , z 1+z 2)。

2. a v -b v =(x 1-x 2 , y 1-y 2 , z 1-z 2)。

3. r a v =(rx 1 , ry 1 , rz 1),其中r 为实数。

五、分点公式设A (x 1 , y 1 , z 1),B (x 2 , y 2 , z 2)是坐标空间中的相异两点,若P 点在线段AB 上,且PA :PB =m :n ,则P 点坐标为121212,,nx mx ny my nz mz m nm n m n ⎛⎫ ⎪⎝⎭++++++。

六、线性组合 1. 当O ,A ,B 三点不共线时,则对同平面上的任一点P ,OP uuv 都可写成OA uu v 和OB uuv 的线性 组合,而且表示法是唯一的,即存在唯一一组实数x ,y 使得OP uuv =x OA uu v +y OB uuv 。

空间向量的坐标表示

空间向量的坐标表示

B.(7,-10,-24)
C.(-6,8,24)
√D.(-5,6,24)
解析 ∵a=(-3,4,12),且A→B=2a, ∴A→B=(-6,8,24),
∵A(1,-2,0), ∴B(-5,6,24).
针对练习
3.与向量m=(0,1,-2)共线的向量坐标是
A.(2,0,-4)
典型例题
例 3 已知空间四点 A(-2,3,1),B(2,-5,3),C(10,0,10)和 D(8,4,9),O 是坐标原点, 求证:四边形 ABCD 是梯形.
【解析】 依题意,得O→A=(-2,3,1),O→B=(2,-5,3), 所以A→B=O→B-O→A=(2,-5,3)-(-2,3,1)=(4,-8,2). 同理D→C=(2,-4,1),A→D=(10,1,8),B→C=(8,5,7). 由A→B=2 D→C,得A→B∥D→C. 又不存在实数 t,使得A→D=tB→C,即A→D,B→C不共线,所以四边形 ABCD 是梯形.
探究新知
2. 探究空间直角坐标系中的坐标 如图给定空间直角坐标系和向量 a,i,j,k 作为基向量,则存在唯一的有序实数组 (x,y,z),使 a=xi+yj+zk,有序实数组(x,y,z)叫作向量 a 在空间直角坐标系 O-xyz 中的坐标,记作 a=(x,y,z).
探究新知
在空间直角坐标系 O-xyz 中,对于空间内任意一点 A(x,y,z),存在唯一的有序 实数组(x,y,z),使O→A=xi+yj+zk,所以向量O→A的坐标为O→A=(x,y,z),我们把与向 量O→A对应的有序实数组(x,y,z)叫作点 A 的坐标,记作 A(x,y,z),x 叫作横坐标,y 叫作纵坐标,z 叫作竖坐标.
B.A→B=(1,3,4)

空间向量的坐标表示法

空间向量的坐标表示法

2-3 空間向量的坐標表示法空間向量的坐標表示法要點整理要點整理甲、空間向量的坐標表示法1. 空間向量的表示法:設P (x 1 , y 1 , z 1) , Q (x 2 , y 2 , z 2)– y 1 , z 2 – z 1),||。

2. 方向角:= (a , b , c )為一向量,若從x 軸、y 軸、z 的有向角分別為α、β、γ(0 ≤ α , β , γ ≤ π),則α , β , γ3. 方向餘弦:若α , β , γ= (a , b , c )的方向角,則稱cos α =222c b a a ++,cos β =222c b a b ++,cos γ的方向餘弦。

【註】 (1)任意非零向量的方向餘弦必滿足cos 2α + cos 2β + cos 2γ = 1,且sin 2α + sin β + sin γ = 2α| cos β| cos γ)。

4. 分點公式:設P (a 1 , b 1 , c 1),Q (a 2 , b 2 , c 2),R 為直線PQ 上一點,滿足RQ PR := m : n 。

(1)若P −R −Q (R 為PQ 的內分點),則R 的坐標為),,(212121nm mc nc n m mb nb n m ma ma ++++++= 。

(2)若P −Q −R (R 為PQ 的外分點),則R 的坐標為,,(212121nm mc nc n m mb nb n m ma na −+−−+−−+−。

乙、空間向量的內積1. 內積:= (a 1 , a 2 , a 3)= (b 1 , b 2 , b 3),= || cos θ = a 1b 1 + a 2b 2 + a 3b 3。

2. 內積性質:(1)⋅ (2) ⋅+) =+⋅。

(3)⋅= || || cos0° = |2。

(4)⇔。

3. 向量的夾角: 若均非零向量,且其夾角為θ(0 ≤ θ < π),則cos θ= =232221232221332211b b b a a a b a b a b a ++⋅++++。

空间向量的坐标表示

空间向量的坐标表示

空间向量的坐标表示本次课课堂教学内容要点一、空间向量的基本定理1.空间向量的基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在唯一的有序实数组x、y、z,使p=x a+y b+z c.2.基底、基向量概念:由空间向量的基本定理知,若三个向量a、b、c不共面,那么所有空间向量所组成的集合就是{p|p=x a+y b+z c,x、y、z∈R},这个集合可看做是由向量a、b、c生成的,所以我们把{a、b、c}称为空间的一个基底.a、b、c叫做基向量,空间任意三个不共面的向量都可构成空间的一个基底.要点诠释:1.空间任意三个不共面的向量都可以作为空间向量的一个基底;2.由于0可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是0;3.一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.要点二、空间向量的坐标表示1.单位正交基底若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,常用{,,}i j k 表示;2.空间直角坐标系在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量,,i j k 都叫坐标向量。

通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;3.空间直角坐标系中的坐标给定一个空间直角坐标系和向量a ,其坐标向量为i ,j ,k ,若a =a 1i+a 2j+a 3k ,则有序数组(a 1,a 2,a 3)叫做向量a 在此直角坐标系中的坐标,上式可简记作a =(a 1,a 2,a 3).在空间直角坐标系Oxyz 中,对于空间任一点A ,对应一个向量OA ,若OA xi yj zk =++ ,则有序数组(x ,y ,z )叫点A 在此空间直角坐标系中的坐标,记为A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫点A 的纵坐标,z 叫点A 的竖坐标.写点的坐标时,三个坐标之间的顺序不可颠倒.要点诠释:1.空间任一点P 的坐标的确定.过P 作面xOy 的垂线,垂足为P ',在面xOy 中,过P '分别作x 轴、y 轴的垂线,垂足分别为A 、C ,则x=|P 'C|,y=|AP '|,z=|PP '|.如图.2.空间相等向量的坐标是唯一的;另外,零向量记作0(0,0,0)= 。

空间向量的坐标表示

空间向量的坐标表示
点O叫做原点,向量i、j、k都叫做坐标向量.通 过每两个坐标轴的平面叫做坐标平面。
二、向量的直角坐标系
给定一个空间坐标系和向
量 a ,且设i、j、k为坐标向量,
由空间向量基本定理,存在唯
一的有序实数组( a1, a2, a3)使
a = a1i+a2j+a3k
z
a
k i Oj
有序数组(a1,a2,a3)叫做 a在空
例 4.在空间直角坐标系中, 已知 A(3,0,0),B(0,4,0), C(0,0,2),P( x, y, z )是平面 ABC 内任意一点, 试求 x, y, z 满足的方程
空间向量的坐标表示
一、空间直角坐标系
单位正交基底:如果空间的一个基底的 三个基向量互相垂直,且长都为1,则这个 基底叫做单位正交基底,常用来 i , j , k 表示
空间直角坐标系:在空间选定一点O和一 个单位正交基底 i、j、k 。以点O为原点, 分别以i、j、k的正方向建立三条数轴:x轴、 y轴、z轴,它们都叫做坐标轴.这样就建立了 一个空间直角坐标系O--xyz
间直角坐标系O--xyz中的坐标,
x
记作.x,y,z) y
在空间直角坐标系O--xyz中,对空间任一点 A,对应一个向量OA,于是存在唯一的有序实数 组x,y,z,使 OA=xi+yj+zk
在单位正交基底i, j, k中与向量OA对应的有 序实数组(x,y,z),叫做点A在此空间直角坐标系中 的坐标,记作A(x,y,z),其中x叫做点A的横坐标, y叫做点A的纵坐标,z叫做点A的竖坐标.
例1. 已知 a (1, 3,8) , b (3,10,4) , 求 a b , a b , 3a 。

第一章 空间向量运算的坐标表示

第一章 空间向量运算的坐标表示

问题 你能利用空间向量运算的坐标表示推导空间两点间的距离公 式吗?
提示 如图,建立空间直角坐标系Oxyz,
设P1(x1,y1,z1),P2(x2,y2,z2)是空间中任意两点, P—1→P2=O→P2-O→P1=(x2-x1,y2-y1,z2-z1),
于是|P—1→P2|=
—→ —→ P1P2·P1P2
(2)求证:CF⊥平面BDE.
证明 因为正方形ABCD和四边形ACEF所在的平面相
互垂直,且CE⊥AC,所以CE⊥平面ABCD.
如图,以C为原点,建立空间直角坐标系Cxyz.
则 C(0,0,0),A(
2, 2,0),B(0, 2,0),D(
2,0,0),E(0,0,1),F
22,
22,1.
所以C→F=
x1-6=3, 所以y1+4=-2,
z1-5=5,
x1=9, 解得y1=-6,
z1=10,
所以点C的坐标为(9,-6,10).
②求C→A·B→C; 解 因为C→A=(-7,1,-7),B→C=(3,-2,5), 所以C→A·B→C=-21-2-35=-58.
③若点 P 在 AC 上,且A→P=12P→C,求点 P 的坐标.
且GH∥BD1,
所以m--112=-n1=-112, 解得 m=1,n=12. 所以点 H 的坐标为1,12,0,
所以点H为线段AB的中点.
反思感悟 (1)判断两向量是否平行或垂直可直接利用向量平行或垂直 的充要条件;已知两向量平行或垂直求参数值,则利用平行、垂直的 充要条件,将位置关系转化为坐标关系,列方程(组)求解. (2)利用向量证明直线、平面平行或垂直,则要建立恰当的空间直角坐 标系,求出相关向量的坐标,利用向量平行、垂直的充要条件证明.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rr r r r r r r 所以 agb (a1i a2 j a3k)g(b1i b2 j b3k)
利用向量数量积的分配律及
rr r r r r r r r r r r
igi jgj kgk 1,igj jgk kgi o
得到:ar
r b
a1b1
a2b2
a3b3
r rr | a | a a a12 a22 a32
则:
rr a b (a1 b1, a2 b2 , a3 b3 )
rr a b (a1 b1, a2 b2 , a3 b3 )
r
a (a1, a2 , a3 )
rr a b a1b1 a2b2 a3b3
数量积运算的证明:
rr r 设i, j, k为单位正交基底,则
r r r rr r r r a a1i a2 j a3k,b b1i b2 j b3k
gF1
(0, 1 4
E1
,1) (1,
3 4
C
,1)
'
g B'
D(0,0,0) C o
A
Bቤተ መጻሕፍቲ ባይዱ
y
(1,1,0)
x
1、重点: (1)、熟练掌握空间向量坐标表示的各种运算律;
(2)、空间向量中的公式的形式与平面向量中相 关内容一致,因此可类比记忆;
2、难点:
确定空间几何体中顶点和向量的坐标;
作业:课本 P107第7题 预习课本 P104 例题5、例题6
ur r r r p xa yb zc
2、空间向量的坐标表示:
给定一个空间直角坐标系和向量
ur p,且设
ur uur ur e1、e2、e3
为单位坐标向量,由空间向量基ur本定理ur ,存u在ur 唯一ur
的有序实数组 (x, y, z) ,使u得rp xe1 ye2 ze3
则有序实数组(x, y, z) 叫做 p在ur 空间直角坐标系O-
uuur uuuur
ABgDC' 00 11 01 1 A '
C '(0,1,1) B ' (1,1,1)
A D o(0,0,0) (1,0,0) B
C (1,1,0)
y
x
若E1,F1分别是A'B'u和uuurC'uDuu'r
的一个四等分点,那么 又是多少呢?
DF1
gBE1
答案: 15 16
z D' A'
rar (a1, a2 )( R), ar b a1b1 a2b2 ,
| a | a12 a22
(2)若A(
uuur
x1
,
y1 ),
B( x2
,
y2
)
则AB (x2 x1, y2 y1)
uuur 2
AB (x2 x1)2 y2 y1 2
1、空r间向量的直角坐标r运算律:
设a (a1, a2, a3),b (b1,b2,b3)
若A(a1, b1, c1), B(a2 , b2 , c2 )则
uuur AB (a2 a1,b2 b1, c2 c1)
uuur 2
AB (a2 a1)2 b2 b1 2 (c2 c1)2
r
r
例1、已知a (2, 3, 5), b (3,1, 4)
r rr r r rr r

uuur uuuur ABgDC '
.
解:如图,以D为坐标原点,建立空间直角坐
标系O-xyz,则
所以 A(1, 0, 0), B(1,1, 0), D(0,0,0), C' (0,1,1)
uuur
AB (1,1,0) (1,0,0) (0,1, 0) z
uuuur
DC' (0,1,1) (0,0,0) (0,1,1) D '
xyz中的坐标,上式可简记作 p (x, y, z)
z
ur p
ur
e3
ur e1
Oeuur2
A(x,y,z) y
3、平面向量r的坐标表示及r运算律: (1)若ar r(a1, a2 ),b (b1,b2 )
则 ra br (a1 b1, a2 b2 ), a r b (a1 b1, a2 b2 ),
空间向量的坐标表示
2006-1-21
1、空间向量基本定理:
u如向r 果量三uprr个,向存量在rar唯、b一r、r的cr 不有共序面实,数那组么{x对,y空,z间},任使一得
p xa yb zc
rr ra c
ur p
b
ur P
rC p
Aarco
r bB
B'
A'
P’
uuur uuur uuur uuur uuur uuur uuur OP OA' OB' P'P xOA yOB zOC
求a b, a b,| a |,8a, a b
解:
rr
ra rb (2, 3,5) (3,1, 4) (1,2,1)
a b (2, 3,5) (3,1, 4) (5, 4,9)
r
| ar|
22 (3)2 52
38
8a 8(2, 3,5) (16, 24, 40)
rr
a b (2, 3,5) (3,1, 4)
2 (3) (3)1 5(4) 29
r
r
1、已知a (3, 2,5), b (1,5, 1)
rr 求(1)a b;
答案:(-2,7,4)
rr (2)3a b;
(-10,1,16)
r (3)6a;
(-18,12,30)
rr
(4)agb;
2
例2:如图,是棱长为1的正方体ABCD-A'B'C'D' ,
相关文档
最新文档