口奥题库 几何1
【精品】奥林匹克题解几何篇
【关键字】精品第三章、几何第一节平面几何证明(上)C1-001 已知线段MN的两个端点在一个等腰三角形的两腰上,MN的中点S作等腰三角形的底边的平行线,交两腰于点K 和L.证明:线段MN在三角形底边上的正投影等于线段KL.【题说】 1956年~1957年波兰数学奥林匹克三试题2.【证】设M、N在直线KL上的射影分别为D、E,由于MS=SN,所以MD=NE.由于AB=AC,KL∥BC,所以∠DKM=∠AKL=∠ALK,又∠MDK=∠NEL=90°,所以△MDK≌△NEL,DK=EL,从而DE=KL,即MN在BC上的正投影等于KL.C1-002 设四边形ABCD内接于圆O,其对边AD与BC的延长线交于圆O外一点E,自E引一直线平行于AC,交BD延长线于点M,自M引MT切圆O于T点,则MT=ME.【题说】 1957年南京市赛初赛5.利用切割线定理和相似三角形.【证】四边形ABCD内接于圆O,故∠1=∠2.由ME∥AC,得∠2=∠4,又∠1=∠3,所以∠3=∠4,又∠EMB=∠DME,所以△EMB∽△DME.从而有即ME2=MB·MD所以MT2=MB·MD=ME2即 MT=MEC1-003 若一直角三角形的外接圆半径为R,其内切圆半径为r,与斜边相切的旁切圆半径为t,若R为r及t的比例中项,证明这直角三角形为等腰直角三角形.【题说】 1957年北京市赛高二题4.【证】设直角△ABC的斜边长为c,两直角边长为a、b.易知R=c/2所以a=b.C1-004 任意四边形ABCD的对角线AC与BD相交于P,而BD与AC的中点是M与N,设Q是P关于直线MN的对称点,过P 作MN的平行线,分别交AB、CD于X、Y,又过Q作MN的平行线,顺次交AB、BD、AC、CD于E、F、G、H.试证:1.EF=GH;【题说】 1963年成都市赛高二二试题4.同本届高三二试题4.【证】 1.P、Q关于MN对称,所以MN平分PQ,又FG∥MN,所以MP=MF,从而BF=PD,BP=FD.同理,有AP=CG,AG=PC.比较(1)、(2)得EF=GH.C1-005 在内角都相等的凸n边形中,设a1,a2,…,an 依次为边的长度,而且满足不等式a1≥a2≥…≥an.证明:必有a1=a2=…=an.【题说】第五届(1963年)国际数学奥林匹克题3.本题由匈牙利提供.【证】当n为奇数时,设n=2k+1(k为正整数),∠A2A1An 的平分线A1B交Ak+1Ak+2于点B(如图).由于已知n边形的各角都相等,所以A1B⊥Ak+1Ak+2,因此折线A1A2…Ak+1与折线A1An…Ak+2在这条角平分线上的射影都等于A1B.另一方面,A1A2≥A1An,并且它们与A1B的交角相等,所以A1A2的射影≥A1An的射影.同理A2A3的射影≥AnAn-1的射影….所以上述各式中等号均应成立,即a1=a2=…=an.当n为偶数时,作A1A2的中垂线L.考虑各边在L上的射影,同样可得a1=a2=…=an.C1-006 在平面上取四点A、B、C、D,已知对任何点P都满足不等式PA+PD≥PB+PC.证明;点B和C在线段AD上,并且AB=CD.【题说】 1966年全俄数学奥林匹克九年级题2.【证】由于点P是任意的.可以取P=D,则应有AD≥BD+DC;若取P=A,则有AD≥AB+AC.将二式相加,得2AD≥AB+AC+BD+CD(1)然而另一方面,总有AD≤AC+CD及AD≤AB+BD.因此又得2AD≤AB+AC+BD+CD(2)由(1)、(2)知2AD=AB+AC+BD+CD从而其他4个不等式中皆取等号,亦即B、C两点一定在线段AD上,而且AB=CD.C1-007 凸多边形内一点O同每两个顶点都组成等腰三角形,证明:该点到多边形的各顶点等距.【题说】第六届(1972年)全苏数学奥林匹克九年级题6.【证】(1)如果凸多边形是△ABC,则结论显然成立.(2)对n(n>3)边形,设A、B、C为多边形的任意三个顶点,则C或在AO、BO的反向延长线组成的夹角内(图a),或C 在该角外,即该角与多边形的边DE相交(图b).在图a中,点O在△ABC内,由(1),AO=BO=CO.在图b中,点O在△BDE和△ADE内,故有AO=DO=EO=BO.C1-008 设有一圆,它与∠O两边相切,切点为A、B.从点A引OB的平行线,交圆于点C,线段OC与圆交于E,直线AE与OB 交于K.证明:OK=KB.【题说】第七届(1973年)全苏数学奥林匹克九年级题2.【证】设圆在点C的切线与∠O两边分别相交于P、Q.因为AP=PC,所以△APC和△OPQ皆为等腰三角形,从而AO=CQ=OB=BQ.又∠OAE=∠OCA=∠COQ,且∠AOB=∠CQB,从而△OAK∽△QOC.所以亦即 OK=KBC1-009 圆的内接四边形两条对角线互相笔直,则从对角线交点到一边中点的线段等于圆心到这一边的对边的距离.【题说】 1978年上海市赛二试题6.【证】如图,已知ABCD为⊙O的内接四边形,AC⊥BD于E,F为AB中点,OG⊥DC,G为垂足.因为 AF=FB=EF∠EAB=∠AEF又∠EAB=90°-∠EBA=90°-∠GCH=∠GHC所以∠AEF=∠GHC , EF∥GO同理可证,EG∥FO.所以EGOF是一个平行四边形,从而FE=OG.C1-010四边形两组对边延长后分别相交,且交点的连线与四边形的一条对角线平行,证明:另一条对角线的延长线平分对边交点连成的线段.【题说】 1978年全国联赛二试题1.【证】设四边形ABCD的对边交点为E、F,并且BD∥EF,AC交BD 于H,交EF于G.由于BD∥EF,所以GF=EGC1-011在平面上已知两相交圆O1和O2,点A为交点之一,有两动点M1和M2,从点A同时出发,分别以常速沿O1和O2同向运动,各绕行一周后恰好同时回到点A.证明:在平面上存在一定点P,P到点M1和M2的距离在每一时刻都相等.【题说】第二十一届(1979年)国际数学奥林匹克题3.本题由原苏联提供.【证】设O1和O2为已知圆的圆心,r1和r2分别为它们的半径.作线段O1O2的垂直平分线l及点A关于l的对称点P,则O1P=r2,O2P=r1(如图).由已知,∠AO1M1=∠AO2M2,由对称性,∠AO1P=∠AO2P.于是,∠M1O1P=∠M2O2P.又因为O1M1=O2P=r1,O2M2=O1P=r2,故△O1M1P≌O2M2P,M1P=M2P.[别证] 可以用复数来作.以O1为原点,O1O2为实轴建立复平面.C1-012二圆彼此外切于D,一直线切一圆于A,交另一圆于B、C两点.证明:A点到直线BD、CD的距离相等.【题说】第十三届(1987年)全俄数学奥林匹克十年级题3.【证】过切点D作二圆的公切线l,交AB于F.设E在CD的延长线上,则∠BDA=∠BDF+∠FDA=∠ACD+∠FAD=∠ADE,即DA平分∠BDE,所以,A到BD、CD的距离相等.C1-013在“筝形”ABCD中,AB=AD,BC=CD.经AC、BD的交点O任作两条直线,分别交AD于 E,交BC于F,交AB于G,交CD于H.GF、EH 分别交BD于I、J.求证:IO=OJ.【题说】 1990年全国冬令营选拔赛题3.本题宜用解析几何来证.本题是蝴蝶定理的一个推广.【证】易证AC⊥BD.如图,以O为原点,BD为x轴,CA为y轴,建立直角坐标系.设各点坐标为A(0,b),B(-a,0),C(0,c),D(a,0),EF 的方程为y=kx,GH的方程为y=lx,则AD的方程是EH的方程是比较常数项与y的系数有J的横坐标x满足及(1′)·l-(2′)·k得利用(3)得同样可得I的横坐标x应满足(将(4)中的k与l互换,a换成-a).由(4)、(5)立即看出I、J的横坐标互为相反数,即IO=OJ.C1-014如图,设△ABC的外接圆O的半径为R,内心为I,∠B=60°,∠A<∠C,∠A的外角平分线交⊙O于E.证明:(1)IO=AE;【题说】 1994年全国联赛二试题3.【证】(1)连AI,延交⊙O于F,则易知EF为⊙O直径.过E作ED∥IO交AF于D,则IO是△FDE的中位线,从而IO=因∠AOC=2∠ABC=120°故A、O、I、C共圆.从而(2)连CF,则∠IFC=∠AFC=∠B=60°∠ICF=∠ICB+∠BCF故IF=IC,又由(1)知IO=AE,从而IO+IA+IC=EA+AI+IF=EA+AF≥EF=2R令α=∠OAI,则(因∠A<∠C)又 AE+AF=2Rsinα+2Rcosα当α∈(0,45°)时,sin(45°+α)为增函数,故AE+AF<2R(sin30°+cos30°)C1-015设△ABC是锐角三角形,在△ABC外分别作等腰Rt△BCD、△ABE、△CAF.在这三个三角形中,∠BDC、∠BAE、∠CFA是直角.又在四边形BCFE外作等腰Rt△EFG,∠EFG是直角.求证:(2)∠GAD=135°.【题说】 1994年上海市赛高三二试题2.【证】以点A为原点建立直角坐标系,与B相应的复数记为Z B,等等.C1-016设M、N为三角形ABC的边BC上的两点,且满足BM=MN=NC.一平行AC的直线分别交AB、AM、AN于D,E和F,求证:EF=3DE.【题说】 1994年澳大利亚数学奥林匹克一试题1.【证】如图,过N、M分别作AC的平行线交AB于H、G点.NH交AM于K点.则BG=GH=HA.HK∶KN=1∶3又由于DF∥HN,于是DE∶EF=HK∶KN=1∶3故EF=3DE.C1-017 ABCD是一个平行四边形,E是AB上的一点,F为CD上一点.AF 交ED于G,EC交FB于H.连接G,H并延长交AD于L,交BC于M,求证:DL=BM【题说】 1994年澳大利亚数学奥林匹克二试题4.【证】如图,过E、F分别作EK∥AD,FQ∥AD,则所以AL·DL=QF·EK.同理,CM·MB=QF·EK.故AL·DL=CM·MB又由于 AL+DL=CM+MB,所以DL=BMC1-018 在梯形ABCD(AB∥DC)中,两腰AD、BC上分别有点P、Q 满足∠APB=∠CPD,∠AQB=∠CQD.证明:点P和Q到梯形对角线交点O的距离相等.【题说】第二十届(1994年)全俄数学奥林匹克九年级(决赛)题7.【证】如图,设B′是B点关于AD的对称点,则P点就是B′C与AD的交点.在△APB和△DPC中,∠APB=∠DPC,∠PAB=180°-∠PDC,由正弦定理知△COP∽△CAB′C1-019从△ABC的顶点A引3条线段,∠A的平分线AM,∠A的外角平分线AN,三角形外接圆的切线AK,点M、N、K依次排列在直线BC上.证明:MK=KN.【题说】 1995年城市数学联赛低年级普通水平题4.【证】由于∠KAM=∠KAB+∠BAM=∠ACB+∠CAM=∠AMK所以,KA=KM.另一方面,∠NAM=90°,且∠ANM=90°-∠AMN=90°-∠KAM=∠NAK故KN=AK=KM.C1-020△ABC具有下面性质:存在一个内部的点P使∠PAB=10°,∠PBA=20°,∠PCA=30°,∠PAC=40°.证明:△ABC是等腰三角形.【题说】第25届(1996年)美国数学奥林匹克题5.[解] 作AC边上的高BD,又作AQ使∠QAD=30°,AQ交BD于Q,连PQ.设直线PQ交AC于C′.因为∠BAD=10°+40°=50°,所以∠ABD=90°-50°=40°,∠PBQ=40°-∠PBA=20°=∠PBA,∠PAQ=∠PAC-∠QAD=10°=∠PAB,从而P是△ABQ的内心,∠PQA=∠PQB=而∠PCA=30°,所以C′与C重合.从而QA=QC,QD平分AC,BA=BC.C1-021半径相等的三个互不相交的圆的圆心O1、O2、O3位于三角形的顶点处.分别从点O1、O2、O3引已知圆的切线,如图所示,已知这些切线相交成凸六边形,而六边形相邻的边分别涂成红色和蓝色.证明:红色线段长度之和等于蓝色线段长度之和.【题说】第二十二届(1996年)全俄数学奥林匹克九年级题2.【证】如图所示,X1、X2、Y1、Y2、Z1、Z2分别为切点.切线围成的六边形为ABCDEF.因⊙O1,⊙O2,⊙O3的半径相等,易得X1O2=O1Y2,Y1O3=O2Z2,Z1O1=O3X2.即X1A+AB+BO2=O1B+BC+CY2Y1C+CD+DO3=O2D+DE+EZ2Z1E+EF+FO1=O3F+FA+AX2以上三式两边相加,并利用X1A=AX2,Y1C=CY2,Z1E=EZ2,及BO2=O1B,DO3=O2D,FO1=O3F,得AB+CD+EF=BC+DE+FAC1-022 在等腰△ABC中(AB=BC),CD是角平分线.过△ABC的外心作直线垂直于CD,交BC于E点,再过E点作CD的平行线交AB于F,证明:BE=FD.【题说】第二十二届(1996年)全俄数学奥林匹克十一年级题6.【证】设O是△ABC的外心,K是直线BO和CD的交点.先设O在B、K之间(图a),∠BOE=90°-∠DKO=∠DCA,所以,点K、O、E、C四点共圆.∠OKE=∠OCE因为OB=OC,所以∠OCE=∠OBE.于是∠BKE=∠OCE=∠KBE所以BE=KE又∠BKE=∠KBE=∠KBA所以KE∥AB.从而KEFD为平行四边形,则DF=KE=BEK在O、B之间(图b)或K、O重合的情况可用类似方法证明.C1-023直角三角形ABC中,C为直角,证明:在△ABC中至少有一点P,使∠PAB=∠PBC=∠PCA.【题说】 1963年合肥市赛高二二试题2.【证】我们证明结论对任意△ABC成立.不妨设∠A、∠B为锐角,过A作AB的垂线,与边AC的中垂线相交于点O B.过B作BC的垂线交AB的中垂线于点O C,分别以O B、O C为心,过A点作圆.设P为这两个圆的另一个公共点,则AP⊥O B O C.连PB、PC.设O为△ABC的外心,则OO C∥AO B,四边形OO B AO C为梯形,对角线O B O C 在梯形内,∠AO B O C<∠AO B O,所以∠PAO B=90°-∠AO B O C>90°-∠AO B O=∠CAO B.同样∠PAO C>∠BAO C,所以射线AP在∠CAB内,P是AP与的交点,与A在BC的同侧,所以P在△ABC内.由于BC与⊙O C相切,所以∠PBC=∠PAB.同理∠PAB=∠PCA.因此,P合乎要求.C1-024在矩形ABCD内,M是AD的中点,N是BC的中点,在线段CD的延长线上取一点P,用Q表示直线PM和AC的交点.证明:∠QNM=∠MNP.【题说】第六届(1972年)全苏数学奥林匹克八年级题1.【证】设R是直线QN和CD的交点,O是矩形ABCD的中心,由OM=ON 得:PC=CR.因此三角形PNR是等腰三角形(NC是该三角形的中线和高,也就是△PQN的外角∠PNR的平分线,又NC⊥MN),问题的结论由此即得.C1-025已知正方形ABCD,点P和Q分别在AB和BC上,且BP=BQ,BH⊥PC于H.证明:∠DHQ是直角.【题说】第八届(1974年)全苏数学奥林匹克十年级题2.【证】延长BH交AD于E,则Rt△ABE≌Rt△BCP,于是AE=BP=BQ,因此,QC=ED,从而得矩形CDEQ.这个矩形的外接圆直径就是其对角线CE与DQ,而∠CHE=90°,所以H点在矩形的外接圆上,即C、D、E、H、Q五点共圆.对着直径DQ的圆周角:∠DHQ=∠DCQ=90°即∠DHQ是直角.C1-026设ABCD是矩形,BC=3AB,证明:如果P、Q是BC边上的点,BP=PQ=QC,那么∠DBC+∠DPC=∠DQC.【题说】第六届(1974年)加拿大数学奥林匹克题2.【证】如图所示,即证β+γ=α或tan(β+γ)=tanα=1△BRD∽△PQD.于是∠RBD=∠DPC=β,从而有β+γ=∠RBC=α.C1-027在任一△ABC的边上,向外作△BPC、△CQA和△ARB,使得2.QR=RP.【题说】第十七届(1975年)国际数学奥林匹克题3.本题由荷兰提供.【证】建立一个复平面,令A和B的坐标分别为-1和1,C的因而,于是RQ⊥RP,RQ=RP.C1-028如图,两圆O1、O2相交于A、B,圆O1的弦BC交圆O2于E,圆O2的弦BD交圆O1于F,证明:1.若∠DBA=∠CBA,则DF=CE;2.若DF=CE,则∠DBA=∠CBA.【题说】 1979年全国联赛二试题6.【证】 1.连AD、AE、AF、AC,则∠DFA=∠ECA.又∠DBA=∠CBA以AD=AE,AC=AF所以△DAF≌△EACDF=CE2.由于∠DFA=∠ACE,∠AEC=∠ADF,DF=CE,所以△DAF≌△EAC,AD=AE.从而∠DBA=∠EBA.C1-029两圆相切(内切或外切)于P点,一条直线切一个圆于A,交另一圆于B、C.证明:直线PA是∠BPC的平分线(如果两圆内切)或∠BPC的补角的平分线(如果两圆外切).【题说】 1980年五国国际数学竞赛题4.本题由比利时提供.【证】设两圆外切(图a),作公切线PT,则∠APB=∠APT+∠TPB=∠BAP+∠BCP=∠BPC的补角-∠APB即AP是∠BPC的补角的平分线.若两圆内切(图b),设公切线与BC相交于T.因为∠CPT、∠APT、∠TAP都是弦切角,故∠BPA=∠APC,因此,PA是∠BPC的平分线.C1-030已知A为平面上两条半径不等的圆O1和O2的一个交点,两外公切线P1P2、Q1Q2分别切两圆于P1、P2、Q1、Q2,M1、M2分别为P1Q1、P2Q2的中点,求证:∠O1AO2=∠M1AM2.【题说】第二十四届(1983年)国际数学奥林匹克题2.本题由原苏联提供.【证】设B是两圆的另一交点,T、M分别是P1P2、O1O2与AB的交点.又P1M1∥TM∥P2M2所以MM1=MM2为AB⊥O1O2所以TM是M1M2的中垂线.在O1O2上,取MO3=MO2,则∠O3AM1=∠O2AM2.因为O1P1∥O2P2,O1M1∥O2M2,P1M1∥P2M2△O1P1M1∽△O2P2M2由此可知,AM1是∠O1AO3的角平分线.所以∠O1AM1=∠O3AM1=∠O2AM2故有∠O1AO2=∠O1AM1+∠M1AO2=∠O2AM2+∠M1AO2=∠M1AM2C1-031 如图,延长线段AB至D,以AD为直径作半圆,圆心为H.G 是半圆上一点,∠ABG为锐角.E在线段BH上,Z在半圆【题说】 1992年澳大利亚数学奥林匹克题5.【证】由EH·ED=EZ2知△HEZ∽△ZED,所以∠EZH=∠EDZ=∠DZH.于是∠AEZ=3∠EZHC1-032 在正方形ABCD的AB、AD边各取点K、N,使得AK·AN=2BK·DN.线段CK、CN各交对角线BD于L、M.试证:∠BLK=∠DNC=∠BAM.【题说】第三届(1993年)澳门数学奥林匹克第二轮题4.【证】令AB=a,BK=b,DN=c,则(a-b)(a-c)=2bc即a2-bc=a(b+c)所以∠BCK+∠DCN=45°∠BLK=∠BCK+45°=90°-∠DCN=∠DNC再由△ABM≌△CBM,得∠BAM=∠BCM=∠BCK+∠LCM=∠BCK+(90°-45°)=∠BLKC1-033如图,⊙O1与⊙O2外切于点P,Q是过P的公切线上任一点,QAB和QDC分别是⊙O1与⊙O2的割线,P在AB、AD和DC上的射影分别为E、F、G.求证:(1)∠BPC=∠EFG;(2)△EFG∽△PBC.【题说】 1994年四川省赛题3.【证】(1)因PQ切⊙O1与⊙O2于P,所以∠QPA=∠PBA (1)因为∠AEP=∠AFP=90°所以A、E、P、F四点共圆.故有∠FEP=∠FAP=∠DAP (2)同理,F、D、G、P四点共圆.且∠BPC=∠BAP+∠PDC=∠EFP+∠PFG=∠EFG(3)(2)因为∠PEQ=∠PGQ=90°所以Q、E、P、G四点共圆,于是∠GEP=∠GQP=∠DQP (4)由(2)、(4)与∠DAP+∠QPA=∠QDA+∠DQP得∠FEG=∠FEP-∠GEP=∠DAP-∠DQP=∠QDA-∠QPA(5)又A、B、C、D四点共圆,有∠QDA=∠QBC.于是由(1)、(5)得∠FEG=∠QBC-∠PBA=∠PBC(6)由(3)、(6)得△EFG∽△PBC.C1-034 D、E、F分别为△ABC的边BC、CA、AB上的点,且∠FDE=∠A,∠DEF=∠B,又设△AFE、△BDF、△CED均为锐角三角形,它们的垂心依次为H1、H2、H3,求证:(1)∠H2DH3=∠FH1E;(2)△H1H2H3≌△DEF.【题说】 1994年江苏省赛题5.【证】如图,(1)∠H2DB=90°-∠B,∠H3DC=90°-∠C,所以∠H2DH3=180°-∠H2DB-∠H3DC=∠B+∠C.而∠EH1F=180°-∠H1EF-∠H1FE=180°-(90°-∠AFE)-(90°-∠AEF)=180°-∠A=∠B+∠C.所以∠H2DH3=∠FH1E(2)由(1)知∠FH1E+∠EDF=180°,所以,H1在△DEF的外接圆上.同理H2、H3也在此圆上,因此D、E、F、H1、H2、H3六点共圆.又由(1)知∠EH1F=∠H2DH3,所以EF=H2H3.同理DF=H1H3,DE=H1H2,故△DEF≌△H1H2H3.C1-035 △ABC为锐角三角形.AD为BC边的高,H为AD内一点.直线BH、CH分别交AC、AB于E、F.证明:∠EDH=∠FDH.【题说】第26届(1994年)加拿大数学奥林匹克题5.又见第3届(1993年)澳门数学奥林匹克题3.[解] 过A作直线l平行于BC.延长DE、EF,分别交l于Q、P.由相似三角形,AP=AQ于是△DPQ的高DA平分PQ,所以△DPQ是等腰三角形,并且∠EDH=∠FDH.C1-036 在直角KLM内取一点P.以O1点为圆心的圆ω1分别切∠KLP 的两边LK和LP于A、D两点;以O2点为圆心半径与圆ω1半径相等的圆ω2分别切∠MLP的两边LP、LM于B、E两点.点O1在线段AB上.设O2D的延长线与KL交于C点.证明:BC是∠ABD的平分线.【题说】第二十届(1994年)全俄数学奥林匹克九年级题6.【证】连结O1D及O2B,则O1D=BO2.因为O1D⊥LP,O2B⊥LP,所以O1D∥BO2,O1BO2D为平行四边形,从而CO2∥AB,∠LDC=∠O1BD.∠LCD=∠LAB=90°(1)因为O2E⊥LM,所以O2ELC是矩形.因此CL=O2E=O2B=DO1(2)由(1)、(2)得Rt△LCD≌Rt△O1DB,所以CD=DB.于是∠ABC=∠BCD=∠CBD,即BC是∠ABD的平分线.C1-037设AK、BL、CM是△ABC的角平分线,K在BC上,令P、Q 分别是BL,CM上的点,使得AP=PK,AQ=QK.证明:【题说】 1995年城市数学联赛低年级较高水平题3.【证】如图,设BL交△ABK的外接圆于点D.则∠DAK=∠DBK=∠DBA=∠DKA所以,DA=DK,从而D与P重合.即有C1-038设△ABC是锐角三角形,且BC>CA,O是它的外心,H是它的垂心,F是高CH的垂足,过F作OF的垂线交边CA于P.证明:∠FHP=∠BAC.【题说】第三十七届(1996年)IMO预选题.【证】延长CF交⊙O于D点,连BD、BH.由于∠BHF=∠CAF=∠D且BF⊥HD,所以F为HD的中点.设FP所在直线交⊙O于M、N两点,交BD于T点.由OF⊥MN知F为MN的中点.由蝴蝶定理即得F为PT的中点.又因F 为HD的中点,故HP∥TD,所以,∠FHP=∠D=∠BAC.C1-039在凸凹边形ABCD的BC边上取E和F(点E比F更靠近点B).已知∠BAE=∠CDF及∠EAF=∠FDE.证明:∠FAC=∠EDB.【题说】第二十二届(1996年)全俄数学奥林匹克十年级题1.【证】因为∠EAF=∠FDE,所以A、E、F、D共圆,∠AEF+∠FDA=180°,又∠BAE=∠CDF,所以∠ADC+∠ABC=∠FDA+∠CDF+∠AEF-∠BAE=180°因此A、B、C、D共圆,∠BAC=∠BDC,由此得∠FAC=∠EDB.C1-040 在平行四边形ABCD中有一点O,使得∠AOB+∠COD=180°.证明:∠OBC=∠ODC.【题说】第二十九届(1997年)加拿大数学奥林匹克题4.[解] 过O作OE BA,连EC、ED,则四边形EOAD、EOBC都是平行四边形,所以CE∥BO,ED∥OA,∠CED+∠COD=∠AOB+∠COD=180°O、C、E、D四点共圆,从而∠ODC=∠OEC=∠OBCC1-041已知一个等腰三角形,外接圆半径为R,内切圆半径为r.证明:外接圆和内切圆的圆心距离d为【题说】第四届(1962年)国际数学奥林匹克题6.本题由原东德提供.【证】本题结论(即欧拉公式)对任意三角形(不限于等腰三角形)均成立.设M为BC的中点,O与I分别为外接圆和内切圆的圆心,外接圆直径MN交BC于D.连IB、BM、AM必过I.又设IE⊥BCIK⊥MNE、K为垂足.=∠IBM所以MI=MB又 IO2=MI2+MO2-2MO·MK而MB2=MD·MN=2R·MD所以d2=2R·MD+R2-2R·MK=R2-2R×DK=R2-2RrC1-042设过三角形的内心和重心的直线平行于一边.求证:其它二边长的和等于这一边长的两倍.【题说】 1963年西安市赛高二题3.【证】设△ABC的三边为a、b、c、M为BC之中点,G、I分别为△ABC的重心和内心,且IG∥BC.因为IG∥BC所以G到BC的距离GE=r(内切圆半径)BC边上的高h=3GE=3r,而ha=r(a+b+c)(=2S△ABC)所以3a=a+b+c即b+c=2aC1-043 1.在凸六边形ABCDEF中,所有角都相等.证明:AB-DE=EF-BC=CD-FA2.反之,若六条边a1,a2,a3,a4,a5,a6满足等式a1-a4=a5-a2=a3-a6.证明:它们可以组成各内角相等的凸六边形.【题说】 1964年全俄数学奥林匹克八年级题5(1)、十年级题3(2).【证】 1.直线AB、CD、EF构成△GHI.由已知六边形各角相等知,每个角都是120°,从而△GHI的每个角都是60°,因此它是正三角形.并且AF、BC、DE分别与边GI、GH、HI平行.AB+AC=AB+BI=AI=GF=GE+EF=DE+EF所以 AB-DE=EF=BC同理 EF-BC=CD-FA2.以a1+a2+a6为边作正三角形GHI,然后在各边取A、B、C、D、E、F,使BI=IC=a2,DG=GE=a4,FH=HA=a6,则BC∥GH,DE∥HI,AF∥GI,所以六边形ABCDEF各角相等,并且AB=a1,BC=BI=a2,AF=AH=a6,DE=DG=a4,CD=(a1+a2+a6)-a2-a4=a3.EF=(a1+a2+a6)-a4-a6=a5.C1-044 已知ABCD为一圆外切梯形,E是对角线AC和BD的交点,r1、r2、r3、r4分别是△ABE、△BCE、△CDE和△DAE的内切圆半径.证明:【题说】 1964年全俄数学奥林匹克十一年级题2.【证】设△ABE、△BCE、△CDE、△DAE的面积和周长分别为S1、S2、S3、S4;l1、l2、l3、l4.由于 AB+C D=AD+BC所以 l1+l3 =l2+l4(2)因为 AB∥CD所以 S2=S4记之为S.则从而相加并利用(2)得即(1)成立.C1-045 设点M是△ABC的AB边上的任一内点,r1、r2、r分别是△AMC、△BMC、△ABC的内切圆半径;q1、q2、q分别是这些三角形在∠ACM、∠BCM、∠ACB内的旁切圆半径.试证:【题说】第十二届(1970年)国际数学奥林匹克题1.本题由波兰提供.【证】设∠CAB=α,∠ABC=β,∠BCA=γ,∠AMC=δ;又设△ABC的内切圆的圆心为R,且与AB切于P(如图).于是从而有由于三角形的角的内、外分角线互相垂直,因而类似地有由(1)和(2)可得类似的结论对于△AMC和△BMC也成立,故有将(4)、(5)相乘,并利用(3)得C1-046 考虑如图a、图b所示的△ABC和△PQR.在△ABC中,∠ADB=∠BDC=∠CDA=∠120°.试证:x=u+v+w.【题说】第三届(1974年)美国数学奥林匹克题5.【证】△BCD绕B逆时针方向旋转60°,至△BEF,如图c.这时易知A、D、F、E在一直线上,且AE=u+v+w.再将△EAC绕E顺时针方向旋转60°,至△EGB.则△AEG为正三角形且易证它与△PQR全等,其中B相当于O点.得证.【别证】(1)△PQR绕R逆时针旋转60°,至△SPR,如图d.这时作正△ROT外接圆,设交RP于D′.易证∠OD′T=∠TD′P=∠PD′O=120°.由△ABC中D点的唯一性及△ABC≌△TOP知PD′=w,OD′=v,TD′=u.又由托勒密定理,知RD′=u+v,故x=u+v+w.(2)过O作△PQR三边平行线,如图e,也可以得结论.C1-047 直径A0A5把圆O分成两个半圆,其中一个半圆分成五段等点M、N.证明:线段A2A3与MN之和等于圆的半径.【题说】第十九届(1985年)全苏数学奥林匹克八年级题6.【证】在圆上分别标出点A1、A2、A3、A4关于直径A0A5的对称点B1、B2、B3、B4,得圆的内接正十边形A0A1…A5B4B3…B1(如图).则A2B1∥A3B2,A2B1∥A1A0,OA2∥B2A1,A0A5∥A1A4∥A2A3.由对称性知A2B1和B2A1的交点K在A0A5上.又设A2B1和A1A4相交于点L.于是KA2A3O、A0A1LK、A1MOK、LNOK都是平行四边形.所以A2A3=KO=A1M=LN,从而MN=A1L=A0K.因此,A2A3+MN=A0O.C1-048 四边形ABCD内接于圆,另一圆的圆心O在边AB上且与其余三边相切.求证:AD+BC=AB.【题说】第二十六届(1985年)国际数学奥林匹克题1.本题由英国提供.【证】在AB上取点M,使MB=BC.连结OD、OC、MD和MC.所以C、D、M、O四点共圆.所以∠AMD=∠ADM,故AM=AD.从而AB=AM+MB=AD+BC【别证】设半圆半径为1,∠OAE=α,则AE=cotα.同理可证 BG+ED=BO故 AD+BC=ABC1-049 已知两圆相交于M和K,引两圆的公切线,切点为A和B.证明:∠AMB+∠AKB=180°.【题说】第十四届(1988年)全俄数学奥林匹克八年级题2.【证】如图,连结MK,则∠AMK=∠KAB∠BMK=∠KBA两式相加得∠AMB=∠KAB+∠KBA因此∠AMB+∠AKB=∠KAB+∠KBA+∠AKB=180°C1-050 在一个三角形中,以h a、h b、h c表示它的三条高,以r表示它的内切圆半径.证明:当且仅当三角形为等边三角形时,h a+h b+h c=9r.【题说】 1988年原联邦德国数学奥林匹克(第一轮)题2.【证】设三角形三边为a、b、c,周长为p,面积为S,则2S=rp=ah a=bh b=ch c当且仅当a=b=c,即三角形为等边三角形时取等号,即h a+h b+h c=9rC1-051 设点D、E、F分别在△ABC的三边BC、CA、AB上,且△AEF、△BFD、△CDE的内切圆有相等的半径r,又以r0和R分别表示△DEF和△ABC 的内切圆半径.求证:r+r0=R【题说】第四届(1989年)全国冬令营赛题4.【证】设p为△ABC的半周长,q为△DEF的半周长.因为S△ABC=S△AEF=S△BFD+S△CDE+S△DEF所以R·p=r·p+(r0+r)·q(1)所以 R(p-q)=Pr(4)由(1)、(4)得Rq=(r0+r)q,即R=r0+r.C1-052 在圆内引弦AB和AC,∠BAC平分线交圆于D点.过D【题说】第十六届(1990年第三阶段)全俄数学奥林匹克九年级题8.【证】作DM⊥AC于M(如图).因为ABDC内接于圆,所以∠MCD=∠B若B与E重合,则∠B=90°=∠ACDRt△ABD≌Rt△ACD,结论显然成立.若B与E不重合,则∠B为锐角或钝角.不妨设∠B为锐角(钝角情形同样讨论),则∠ACD为钝角,M在AC延长线上,而E点在AB线段内.由于AD平分∠BAC,所以DE=DM,AE=AM.从而△BDE≌△CDM,则C1-053 四边形ABCD内接于半径为r的圆,对角线AC、BD相交于E.证明:若AC⊥BD,则EA2+EB2+EC2+ED2=4r2(1)若(1)成立,是否必有AC⊥BD?说明你的理由.【题说】 1991年英国数学奥林匹克题3.【解】若AC⊥BD,则EA2+EB2+EC2+ED2=AB2+CD2.由正弦定理AB2=4r2sin2∠ACBCD2=4r2sin2∠CBD=4r2cos2∠ACB所以EA2+EB2+EC2+ED2=4r2sin2∠ACB+4r2cos2∠ACB=4r2反之,若(1)成立,未必有AC⊥BD.例如AC、BD为任两条直径,则交点E即为圆心.(1)式显然成立.C1-054 设∠A是三角形ABC中最小的内角.点B和C将这个三角形的外接圆分成两段弧.设U是落在不含A的那段弧上且不等于B与C的一个点.线段AB和AC的垂直平分线分别交线段AU于V和W.直线BV和CW相交于T.证明:AU=TB+TC.【题说】第三十八届(1997年)国际数学奥林匹克题2.本题由英国提供.【证】如图所示,因为点V在线段AB的垂直平分线上,所以∠VAB=∠VBA.又因∠A是△ABC的最小内角,且∠VAB=∠UAB<∠CAB故∠VBA=∠VAB<∠CAB≤∠CBA即V在∠ABC内.同理W在∠ACB内.BV与CW的交点T在△ABC内.延长BT交外接圆于S.由于AU与BS关于弦AB的中垂线对称,所以AU=BS.因为∠TCS=∠TCA+∠ACS=∠WAC+∠ABS=∠WAC+∠VAB=∠BAC=∠BSC,所以TS=TC,从而AU=BT+TS=BT+TCC1-055 在圆上取六个点A、B、C、D、E、F,使弦AB与DE平行,弦DC与AF平行.证明:弦BC与弦EF平行.【题说】 1959年~1960年波兰数学奥林匹克三试题5.【证】圆上六点的顺序有种种情况.以图a、图b所示的两种为例,其他情况可仿此证明.在图a中,因AB∥DE,DC∥AF,故有所以BC∥EF所以,BC∥EF.C1-056 在平行四边形ABCD的两边AB、AD上,向外作两个正方形ABMX、ADNY.求证:CA⊥XY.【题说】 1963年武汉市赛高三一试题4.【证】如图,延长CA交XY于E,因∠ABC=180°-∠BAD=180°-(360°-∠BAX-∠XAY-∠YAD)=∠XAY又AY=AD=BC及AX=BA所以△XAY≌△ABC,从而∠XYA=∠ACB=∠CAD所以∠AEY=180°-∠EAY-∠EYA=180°-∠EAY-∠CAD=∠DAY=90°.亦即AC⊥XY.C1-057 作△ABC外接圆,连接AC中点与AB、BC中点的弦,分别交AB 于D,交BC于E.证明:DE∥AC且通过三角形的内心.【题说】 1965年全俄数学奥林匹克八年级题3.△ABC的内心,则AM、BN过O.又设LN与AC交于K,连结OK.LN⊥AM在△AON中,易知∠AON=∠NAO.从而ND平分AO.又AO平分∠A.从而AO平分DK.因此在四边形AKOD中二对角线AO、DK互相垂直平分,故AKOD 是菱形.于是DO∥AK.同理,四边形CEOJ是菱形,从而OE∥CJ,从而D、O、E在一条直线上,即DE∥AC,而且DE过△ABC内心O.C1-058 某个平面四边形,各边之长顺次为a,b,c,d,对角线互相垂直.试证:任何其它四边形,若其各边长顺次为a,b,c,d,则其对角线也互相垂直.【题说】 1975年~1976年波兰数学奥林匹克三试题4.【证】设四边形ABCD、A′B′C′D′的边长顺次为a,b,c,d,AC 与BD相交于O,并且AC⊥BD(如图).显然a2-b2=AO2-OC2=d2-c2设B′在A′C′上的射影为P,D′在A′C′上的射影为Q,则A′P2-PC′2=a2-b2=d2-c2=A′Q2-QC′2即 A′C′×(A′P-PC′)=A′C′×(A′Q-QC′)从而A′P-PC′=A′Q-QC′,又A′P+PC′=A′C′=A′Q+QC′,所以A′P=A′Q,P与Q重合,并且均在B′D′上.于是B′D′⊥A′C′.C1-059 已知平面上的三个正方形ABCD、A1B1C1D1和A2B2C2D2(正方形的顶点是沿逆时针方向标写的).并且顶点A1与A重合,而C2与C重合,试证:线段D1D2与BM(其中M为线段B1B2的中点)互相垂直并且|D1D2|=2|BM|.【题说】第六届(1981年)全俄数学奥林匹克十年级题5.【证】设B为原点,其它各点的复数表示仍用同样的字母,则由于M 是线段B1B2中点,2·M=B1+B2=(B1-A)+(B2-C)+A+C=(D1-A)·(-i)+(D2-C)·i+A+C=(D2-D1)i+A·(1+i)+C·(1-i)=(D2-D1)i+C·i(1+i)+C·(1-i)=(D2-D1)i因此线段D1D2⊥BM,并且|D1D2|=2|BM|.C1-060 如图,在凸四边形ABCD中,AB与CD不平行.圆O1过A、B且与边CD相切于P,圆O2过C、D且与边AB相切于Q,圆O1与圆O2相交于E、F.求证:EF平分线段PQ的充分必要条件是BC∥AD.【题说】第五届(1990年)全国冬令营赛题1.【证】首先证明:如图,分别延长CD与BA,记它们的交点为S.并记SC,SD,SP,SA,SB,SQ为c,d,p,a,b,q,则p2=ab,q2=cd.于是延长PQ分别交圆O1、O2于J、I,则由相交弦定理可知PD·PC=PI·PQ,QA·QB=QJ·PQ弦定理可知KP·KJ=KE·KF=KQ·KI即KP(KQ+QJ)=KQ(KP=PI)于是KP·QJ=KQ·PI综上所述,命题得证.C1-061 △ABC是直角三角形,以直角边AC和BC为边分别向外作两个菱形ACDE和CBFG,其中心分别为P和Q,且∠EAC=∠GCB<90°,如果M和N分别为AB和DG的中点.证明:PQ⊥MN.【题说】 1992年友谊杯国际数学竞赛八年级题2.【证】容易证明,△ACG≌△BCD,所以AG=BD.从而以四边形ADGB各边中点为顶点的四边形P,N,Q,M是菱形,故PQ⊥MN.C1-062 ABCDE是凸五边形,AB=BC,∠BCD=∠EAB=90°.X为此五边形内一点,使得AX⊥BE且CX⊥BD.证明:BX⊥DE.【题说】 1992年澳大利亚数学奥林匹克题3.【证】设AX交BE于Y,CX交BD于Z,BX交DE于F.则AB2=BY·BE=BZ·BD所以D,E,Y,Z四点共圆.又由于B,Y,X,Z四点共圆,所以∠BXZ=∠BYZ=∠ZDF故D,F,X,Z四点共圆,从而∠BFD=∠DZX=90°,即BX⊥DE.C1-063 已知△ABC以O1、O2、O3为旁切圆圆心.证明:△O1O2O3是锐角三角形.【题说】第三届(1993年)澳门数学奥林匹克第一轮题3.【证】易知△O1O2O3包含△ABC,△ABC三内角平分线是△O1O2O3三高,△ABC内心O是△O1O2O3垂心.O在△ABC内,更在△O1O2O3内,故△O1O2O3为锐角三角形.C1-064 在△ABC中,∠A的平分线交AB边中垂线于A′,∠B的平分线交BC边中垂线于B′,∠C的平分线交CA边中垂线于C′.求证:(1)若A′与B′重合,则△ABC为正三角形;【题说】 1993年德国数学奥林匹克(第二轮)题3.【证】(1)若A′与B′重合,则△ABC的内心与外心重合,从而△ABC为正三角形.(2)将△A′AC′绕A旋转,使A与B重合.设这时C′转到∠ABC-∠BAC+∠ACB)=∠B′CC′.所以△B′BK≌△B′CC′,B′K=B′C′.从而△B′A′K≌△B′A′C′,∠【注】设I为内心,AB的垂直平分线交BB′于J,则可以证明△A′C′I∽△A′B′J,从而导出结论,但需要稍多的计算.C1-065 ABC是一个等腰三角形,AB=AC,假如(i)M是BC的中点,O是直线AM上的点,使得OB垂直于AB;(ii)Q是线段BC上不同于B和C的一个任意点;(iii)E在直线AB上,F在直线AC上,使得E,Q,F是不同的和共线的.求证:OQ⊥EF当且仅当QE=QF.【题说】第三十五届(1994年)国际数学奥林匹克题2.本题由亚美尼亚-澳大利亚提供.【证】连线段OE、OF、OC.由对称性,OC⊥AC,∠OBQ=∠OCQ.若OQ ⊥EF,则O、Q、B、E四点共圆,O、Q、C、F四点共圆,故∠OEQ=∠OBQ,∠OFQ=∠OCQ (1)于是∠OEQ=∠OFQ,OE=OF又OQ⊥EF,故QE=QF.反之,若QE=QF,过E作EG∥BC交AC于G,则易知EB=GC=CF.又OB=OC,∠OBE=∠OCF=90°,所以△OBE≌△OCF,OE=OF.从而OQ⊥EF.C1-066 如图,菱形ABCD的内切圆O与各边分别切于E、F、G、CD于P,交DA于Q.求证:MQ∥NP.【题说】 1995年全国联赛二试题3.【证】连结AC,则O为AC中点,再连结MO、NO.则∠MON=180°-(∠OMN+∠MNO)因此△AMO∽△OMN∽△CON。
奥数几何题 经典例题
奥数几何题经典例题摘要:I.引言A.介绍奥数几何题B.阐述经典例题的重要性II.经典例题解析A.例题1:关于三角形的几何问题1.问题描述2.解题思路3.最终答案B.例题2:关于圆的几何问题1.问题描述2.解题思路3.最终答案C.例题3:关于多边形的几何问题1.问题描述2.解题思路3.最终答案III.解题技巧与方法A.观察与分析1.从题目中获取关键信息2.分析问题涉及的图形和关系B.运用相关定理和公式1.掌握基本几何定理2.熟练运用几何公式C.逻辑推理与证明1.严谨的推理过程2.证明结论的正确性IV.结论A.总结解题过程的关键点B.强调经典例题的重要性C.展望奥数几何题的发展趋势正文:奥数几何题一直是数学竞赛中的重要组成部分,它不仅能锻炼学生的思维能力,还能提高学生的空间想象力和解决问题的能力。
本文将通过对几道经典例题的解析,来探讨解题的技巧和方法。
例题1:在一个直角三角形中,已知直角边分别为3 和4,求斜边的长度。
解题思路:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
因此,我们可以通过计算3 的平方加4 的平方来得到斜边的长度。
最终答案:斜边的长度为5。
例题2:一个半径为5 的圆,求其面积。
解题思路:根据圆的面积公式,圆的面积等于π乘以半径的平方。
因此,我们可以通过计算π乘以5 的平方来得到圆的面积。
最终答案:圆的面积为78.54。
例题3:一个边长为6 的正六边形,求其面积。
解题思路:首先,我们将正六边形划分成六个等边三角形。
然后,计算一个等边三角形的面积,最后将六个等边三角形的面积相加得到正六边形的面积。
最终答案:正六边形的面积为93.53。
在解题过程中,观察与分析、运用相关定理和公式以及逻辑推理与证明是解题的三个关键步骤。
首先,从题目中获取关键信息,分析问题涉及的图形和关系;其次,掌握基本几何定理,熟练运用几何公式;最后,进行严谨的推理过程,证明结论的正确性。
总之,通过对经典例题的解析,我们可以发现解题的技巧和方法,这对于提高我们在奥数几何题方面的解题能力具有重要意义。
小学六年级奥数系列讲座几何综合(含答案解析)
几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28DEC ADC S S ∆∆== 连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5.同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPFCGPHIFP DGP EHP S SSSS S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712. 而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78. 所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用E横表示E部分横向的长度,E坚竖表示E部分竖向的长度,其他下标意义类似.有E横:D横=5:4,A横:B横=l:2.而E横+A横=D横+B横,所以有E横:D横:A横:B横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?( 取3.14)【分析与解】有AO=OB,所以△A OB 为等腰三角形,AO=OC,所以△A OC为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-几何综合(二)内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题.典型问题2.如图30-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 方法一:因为CEFG 的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG 的边长为x ,有:=1010=100,ABCD S ⨯正方形2=x ,S 正方形CEFG 21110x-x =DG GF=(10-x)x=,222DGF S ∆⨯又1=1010=50,2ABD S ∆⨯⨯2110x+x =(10+x)x=.22BEF S ∆ 阴影部分的面积为:DGF ABD BEF ABCD CEFG S S S S S ∆∆∆++--正方形正方形2221010100505022x x x x x -+=++--=(平方厘米).方法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB 、△DBC 共底DB ,等高,所以这两个三角形的面积相等,显然,△DBC 的面积11010502⨯⨯=(平方厘米).阴影部分△DFB的面积为50平方厘米.4.如图30-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?【分析与解】为了方便所述,如下图所示,标上数字,有∠I=1800-(∠1+∠2),而∠1=1800-∠3,∠2=1800-∠4,有∠I=∠3+∠4-1800同理,∠H=∠4+∠5-1800,∠G=∠5+∠6-1800,∠F=∠6+∠7-1800,∠E=∠7+∠8-1800, ∠D=∠8+∠9-1800,∠C=∠9+∠10-1800,∠B=∠10+∠11-1800,∠A=∠11+∠3-1800则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×1800而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×1800=12600.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×12600-9×1800=90006.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(a1,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.第一类情况:以为特征的有7组:第二类情况:以为特征的有6组:第三类情况有如下三组:共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5).(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25).(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,2.5,4.5),(1,2,5,6,12). 1020251,,2,,,999⎛⎫ ⎪⎝⎭(1,2,2.4,4.8,5), 131025147813101,,,,,1,,,,636333313⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.8.如图30-8,ABCD 是平行四边形,面积为72平方厘米,E ,F 分别为边AB,BC 的中点.则图形中阴影部分的面积为多少平方厘米?【分析与解】 如下图所示,连接EC ,并在某些点处标上字母,因为AE 平行于DC ,所以四边形AECD 为梯形,有AE:DC=1:2,所以:1:4AEG DCG S S ∆∆=, AGD ECG AEG DCG S S S S ∆∆∆∆⨯=⨯,且有AGD ECG S S ∆∆=,所以:1:2AEG ADG S S ∆∆=,而这两个三角形高相同,面积比为底的比,即EG :GD=1:2,同理FH :HD=1:2.有AED AEG AGD S S S ∆∆∆=+,而111822AED ABCD S S ∆=⨯⨯=(平方厘米) 有EG:GD=:AEG AGB S S ∆∆,所以1612AEG AED S S ∆∆=⨯=+(平方厘米) 21212AGD AED S S ∆∆=⨯=+(平方厘米) 同理可得6HFC S ∆=(平方厘米), 12DCH S ∆=(平方厘米),44624DCG AEG S S ∆∆==⨯=(平方厘米)又GHD DCG DCH S S S ∆∆∆=-=24-12=12(平方厘米)所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).10.图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【分析与解】 如下图所示,为了方便所叙,将某些点标上字母,并连接BG .设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,120101002ABF S ∆=⨯⨯=即1003x =,那么正方形内空白部分的面积为40043x =. 所以原题中阴影部分面积为400800202033⨯-= (平方厘米).12.如图30-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.【分析与解】 如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把左下图中的每一部分阴影称为A ,右下图中的每一部分阴影称为B .大半圆的面积为13332A B ++小圆的面积219322ππ=⨯⨯=而小圆的面积为π,则9133223A B πππ⎛⎫+=-÷= ⎪⎝⎭, 原题图中的阴影部分面积为小半圆面积与阴影A 、B 的面积和,即为5236πππ+=14.如图30-14,将长方形ABCD 绕顶点C 顺时针旋转90度,若AB=4,BC=3,AC=5,求AD 边扫过部分的面积.(π取3.14)【分析与解】 如下图所示,如下图所示,端点A 扫过的轨迹为AA A ''',端点D 扫过轨迹为DD D ''',而AD 之间的点,扫过的轨迹在以A 、D 轨迹,AD ,A D ''所形成的封闭图形内,且这个封闭图形的每一点都有线段AD 上某点扫过,所以AD 边扫过的图形为阴影部分.显然有阴影部分面积为A D C ACA ACD S S S S ''''∆∆+--直角扇形直角扇形CD D ,而直角三角形A D C ''、ACD 面积相等.所以=A D C ACA ACD ACA S S S S S S ''''''∆∆+---直角扇形直角扇形CD D 扇形扇形CD D222290909=(54)7.065()36036044AC CD ππππ-=-==平方厘米即AD 边扫过部分的面积为7.065平方厘米.。
【精品】奥林匹克题解几何篇
【关键字】精品第三章、几何第一节平面几何证明(上)C1-001 已知线段MN的两个端点在一个等腰三角形的两腰上,MN的中点S作等腰三角形的底边的平行线,交两腰于点K 和L.证明:线段MN在三角形底边上的正投影等于线段KL.【题说】 1956年~1957年波兰数学奥林匹克三试题2.【证】设M、N在直线KL上的射影分别为D、E,由于MS=SN,所以MD=NE.由于AB=AC,KL∥BC,所以∠DKM=∠AKL=∠ALK,又∠MDK=∠NEL=90°,所以△MDK≌△NEL,DK=EL,从而DE=KL,即MN在BC上的正投影等于KL.C1-002 设四边形ABCD内接于圆O,其对边AD与BC的延长线交于圆O外一点E,自E引一直线平行于AC,交BD延长线于点M,自M引MT切圆O于T点,则MT=ME.【题说】 1957年南京市赛初赛5.利用切割线定理和相似三角形.【证】四边形ABCD内接于圆O,故∠1=∠2.由ME∥AC,得∠2=∠4,又∠1=∠3,所以∠3=∠4,又∠EMB=∠DME,所以△EMB∽△DME.从而有即ME2=MB·MD所以MT2=MB·MD=ME2即 MT=MEC1-003 若一直角三角形的外接圆半径为R,其内切圆半径为r,与斜边相切的旁切圆半径为t,若R为r及t的比例中项,证明这直角三角形为等腰直角三角形.【题说】 1957年北京市赛高二题4.【证】设直角△ABC的斜边长为c,两直角边长为a、b.易知R=c/2所以a=b.C1-004 任意四边形ABCD的对角线AC与BD相交于P,而BD与AC的中点是M与N,设Q是P关于直线MN的对称点,过P 作MN的平行线,分别交AB、CD于X、Y,又过Q作MN的平行线,顺次交AB、BD、AC、CD于E、F、G、H.试证:1.EF=GH;【题说】 1963年成都市赛高二二试题4.同本届高三二试题4.【证】 1.P、Q关于MN对称,所以MN平分PQ,又FG∥MN,所以MP=MF,从而BF=PD,BP=FD.同理,有AP=CG,AG=PC.比较(1)、(2)得EF=GH.C1-005 在内角都相等的凸n边形中,设a1,a2,…,an 依次为边的长度,而且满足不等式a1≥a2≥…≥an.证明:必有a1=a2=…=an.【题说】第五届(1963年)国际数学奥林匹克题3.本题由匈牙利提供.【证】当n为奇数时,设n=2k+1(k为正整数),∠A2A1An 的平分线A1B交Ak+1Ak+2于点B(如图).由于已知n边形的各角都相等,所以A1B⊥Ak+1Ak+2,因此折线A1A2…Ak+1与折线A1An…Ak+2在这条角平分线上的射影都等于A1B.另一方面,A1A2≥A1An,并且它们与A1B的交角相等,所以A1A2的射影≥A1An的射影.同理A2A3的射影≥AnAn-1的射影….所以上述各式中等号均应成立,即a1=a2=…=an.当n为偶数时,作A1A2的中垂线L.考虑各边在L上的射影,同样可得a1=a2=…=an.C1-006 在平面上取四点A、B、C、D,已知对任何点P都满足不等式PA+PD≥PB+PC.证明;点B和C在线段AD上,并且AB=CD.【题说】 1966年全俄数学奥林匹克九年级题2.【证】由于点P是任意的.可以取P=D,则应有AD≥BD+DC;若取P=A,则有AD≥AB+AC.将二式相加,得2AD≥AB+AC+BD+CD(1)然而另一方面,总有AD≤AC+CD及AD≤AB+BD.因此又得2AD≤AB+AC+BD+CD(2)由(1)、(2)知2AD=AB+AC+BD+CD从而其他4个不等式中皆取等号,亦即B、C两点一定在线段AD上,而且AB=CD.C1-007 凸多边形内一点O同每两个顶点都组成等腰三角形,证明:该点到多边形的各顶点等距.【题说】第六届(1972年)全苏数学奥林匹克九年级题6.【证】(1)如果凸多边形是△ABC,则结论显然成立.(2)对n(n>3)边形,设A、B、C为多边形的任意三个顶点,则C或在AO、BO的反向延长线组成的夹角内(图a),或C 在该角外,即该角与多边形的边DE相交(图b).在图a中,点O在△ABC内,由(1),AO=BO=CO.在图b中,点O在△BDE和△ADE内,故有AO=DO=EO=BO.C1-008 设有一圆,它与∠O两边相切,切点为A、B.从点A引OB的平行线,交圆于点C,线段OC与圆交于E,直线AE与OB 交于K.证明:OK=KB.【题说】第七届(1973年)全苏数学奥林匹克九年级题2.【证】设圆在点C的切线与∠O两边分别相交于P、Q.因为AP=PC,所以△APC和△OPQ皆为等腰三角形,从而AO=CQ=OB=BQ.又∠OAE=∠OCA=∠COQ,且∠AOB=∠CQB,从而△OAK∽△QOC.所以亦即 OK=KBC1-009 圆的内接四边形两条对角线互相笔直,则从对角线交点到一边中点的线段等于圆心到这一边的对边的距离.【题说】 1978年上海市赛二试题6.【证】如图,已知ABCD为⊙O的内接四边形,AC⊥BD于E,F为AB中点,OG⊥DC,G为垂足.因为 AF=FB=EF∠EAB=∠AEF又∠EAB=90°-∠EBA=90°-∠GCH=∠GHC所以∠AEF=∠GHC , EF∥GO同理可证,EG∥FO.所以EGOF是一个平行四边形,从而FE=OG.C1-010四边形两组对边延长后分别相交,且交点的连线与四边形的一条对角线平行,证明:另一条对角线的延长线平分对边交点连成的线段.【题说】 1978年全国联赛二试题1.【证】设四边形ABCD的对边交点为E、F,并且BD∥EF,AC交BD 于H,交EF于G.由于BD∥EF,所以GF=EGC1-011在平面上已知两相交圆O1和O2,点A为交点之一,有两动点M1和M2,从点A同时出发,分别以常速沿O1和O2同向运动,各绕行一周后恰好同时回到点A.证明:在平面上存在一定点P,P到点M1和M2的距离在每一时刻都相等.【题说】第二十一届(1979年)国际数学奥林匹克题3.本题由原苏联提供.【证】设O1和O2为已知圆的圆心,r1和r2分别为它们的半径.作线段O1O2的垂直平分线l及点A关于l的对称点P,则O1P=r2,O2P=r1(如图).由已知,∠AO1M1=∠AO2M2,由对称性,∠AO1P=∠AO2P.于是,∠M1O1P=∠M2O2P.又因为O1M1=O2P=r1,O2M2=O1P=r2,故△O1M1P≌O2M2P,M1P=M2P.[别证] 可以用复数来作.以O1为原点,O1O2为实轴建立复平面.C1-012二圆彼此外切于D,一直线切一圆于A,交另一圆于B、C两点.证明:A点到直线BD、CD的距离相等.【题说】第十三届(1987年)全俄数学奥林匹克十年级题3.【证】过切点D作二圆的公切线l,交AB于F.设E在CD的延长线上,则∠BDA=∠BDF+∠FDA=∠ACD+∠FAD=∠ADE,即DA平分∠BDE,所以,A到BD、CD的距离相等.C1-013在“筝形”ABCD中,AB=AD,BC=CD.经AC、BD的交点O任作两条直线,分别交AD于 E,交BC于F,交AB于G,交CD于H.GF、EH 分别交BD于I、J.求证:IO=OJ.【题说】 1990年全国冬令营选拔赛题3.本题宜用解析几何来证.本题是蝴蝶定理的一个推广.【证】易证AC⊥BD.如图,以O为原点,BD为x轴,CA为y轴,建立直角坐标系.设各点坐标为A(0,b),B(-a,0),C(0,c),D(a,0),EF 的方程为y=kx,GH的方程为y=lx,则AD的方程是EH的方程是比较常数项与y的系数有J的横坐标x满足及(1′)·l-(2′)·k得利用(3)得同样可得I的横坐标x应满足(将(4)中的k与l互换,a换成-a).由(4)、(5)立即看出I、J的横坐标互为相反数,即IO=OJ.C1-014如图,设△ABC的外接圆O的半径为R,内心为I,∠B=60°,∠A<∠C,∠A的外角平分线交⊙O于E.证明:(1)IO=AE;【题说】 1994年全国联赛二试题3.【证】(1)连AI,延交⊙O于F,则易知EF为⊙O直径.过E作ED∥IO交AF于D,则IO是△FDE的中位线,从而IO=因∠AOC=2∠ABC=120°故A、O、I、C共圆.从而(2)连CF,则∠IFC=∠AFC=∠B=60°∠ICF=∠ICB+∠BCF故IF=IC,又由(1)知IO=AE,从而IO+IA+IC=EA+AI+IF=EA+AF≥EF=2R令α=∠OAI,则(因∠A<∠C)又 AE+AF=2Rsinα+2Rcosα当α∈(0,45°)时,sin(45°+α)为增函数,故AE+AF<2R(sin30°+cos30°)C1-015设△ABC是锐角三角形,在△ABC外分别作等腰Rt△BCD、△ABE、△CAF.在这三个三角形中,∠BDC、∠BAE、∠CFA是直角.又在四边形BCFE外作等腰Rt△EFG,∠EFG是直角.求证:(2)∠GAD=135°.【题说】 1994年上海市赛高三二试题2.【证】以点A为原点建立直角坐标系,与B相应的复数记为Z B,等等.C1-016设M、N为三角形ABC的边BC上的两点,且满足BM=MN=NC.一平行AC的直线分别交AB、AM、AN于D,E和F,求证:EF=3DE.【题说】 1994年澳大利亚数学奥林匹克一试题1.【证】如图,过N、M分别作AC的平行线交AB于H、G点.NH交AM于K点.则BG=GH=HA.HK∶KN=1∶3又由于DF∥HN,于是DE∶EF=HK∶KN=1∶3故EF=3DE.C1-017 ABCD是一个平行四边形,E是AB上的一点,F为CD上一点.AF 交ED于G,EC交FB于H.连接G,H并延长交AD于L,交BC于M,求证:DL=BM【题说】 1994年澳大利亚数学奥林匹克二试题4.【证】如图,过E、F分别作EK∥AD,FQ∥AD,则所以AL·DL=QF·EK.同理,CM·MB=QF·EK.故AL·DL=CM·MB又由于 AL+DL=CM+MB,所以DL=BMC1-018 在梯形ABCD(AB∥DC)中,两腰AD、BC上分别有点P、Q 满足∠APB=∠CPD,∠AQB=∠CQD.证明:点P和Q到梯形对角线交点O的距离相等.【题说】第二十届(1994年)全俄数学奥林匹克九年级(决赛)题7.【证】如图,设B′是B点关于AD的对称点,则P点就是B′C与AD的交点.在△APB和△DPC中,∠APB=∠DPC,∠PAB=180°-∠PDC,由正弦定理知△COP∽△CAB′C1-019从△ABC的顶点A引3条线段,∠A的平分线AM,∠A的外角平分线AN,三角形外接圆的切线AK,点M、N、K依次排列在直线BC上.证明:MK=KN.【题说】 1995年城市数学联赛低年级普通水平题4.【证】由于∠KAM=∠KAB+∠BAM=∠ACB+∠CAM=∠AMK所以,KA=KM.另一方面,∠NAM=90°,且∠ANM=90°-∠AMN=90°-∠KAM=∠NAK故KN=AK=KM.C1-020△ABC具有下面性质:存在一个内部的点P使∠PAB=10°,∠PBA=20°,∠PCA=30°,∠PAC=40°.证明:△ABC是等腰三角形.【题说】第25届(1996年)美国数学奥林匹克题5.[解] 作AC边上的高BD,又作AQ使∠QAD=30°,AQ交BD于Q,连PQ.设直线PQ交AC于C′.因为∠BAD=10°+40°=50°,所以∠ABD=90°-50°=40°,∠PBQ=40°-∠PBA=20°=∠PBA,∠PAQ=∠PAC-∠QAD=10°=∠PAB,从而P是△ABQ的内心,∠PQA=∠PQB=而∠PCA=30°,所以C′与C重合.从而QA=QC,QD平分AC,BA=BC.C1-021半径相等的三个互不相交的圆的圆心O1、O2、O3位于三角形的顶点处.分别从点O1、O2、O3引已知圆的切线,如图所示,已知这些切线相交成凸六边形,而六边形相邻的边分别涂成红色和蓝色.证明:红色线段长度之和等于蓝色线段长度之和.【题说】第二十二届(1996年)全俄数学奥林匹克九年级题2.【证】如图所示,X1、X2、Y1、Y2、Z1、Z2分别为切点.切线围成的六边形为ABCDEF.因⊙O1,⊙O2,⊙O3的半径相等,易得X1O2=O1Y2,Y1O3=O2Z2,Z1O1=O3X2.即X1A+AB+BO2=O1B+BC+CY2Y1C+CD+DO3=O2D+DE+EZ2Z1E+EF+FO1=O3F+FA+AX2以上三式两边相加,并利用X1A=AX2,Y1C=CY2,Z1E=EZ2,及BO2=O1B,DO3=O2D,FO1=O3F,得AB+CD+EF=BC+DE+FAC1-022 在等腰△ABC中(AB=BC),CD是角平分线.过△ABC的外心作直线垂直于CD,交BC于E点,再过E点作CD的平行线交AB于F,证明:BE=FD.【题说】第二十二届(1996年)全俄数学奥林匹克十一年级题6.【证】设O是△ABC的外心,K是直线BO和CD的交点.先设O在B、K之间(图a),∠BOE=90°-∠DKO=∠DCA,所以,点K、O、E、C四点共圆.∠OKE=∠OCE因为OB=OC,所以∠OCE=∠OBE.于是∠BKE=∠OCE=∠KBE所以BE=KE又∠BKE=∠KBE=∠KBA所以KE∥AB.从而KEFD为平行四边形,则DF=KE=BEK在O、B之间(图b)或K、O重合的情况可用类似方法证明.C1-023直角三角形ABC中,C为直角,证明:在△ABC中至少有一点P,使∠PAB=∠PBC=∠PCA.【题说】 1963年合肥市赛高二二试题2.【证】我们证明结论对任意△ABC成立.不妨设∠A、∠B为锐角,过A作AB的垂线,与边AC的中垂线相交于点O B.过B作BC的垂线交AB的中垂线于点O C,分别以O B、O C为心,过A点作圆.设P为这两个圆的另一个公共点,则AP⊥O B O C.连PB、PC.设O为△ABC的外心,则OO C∥AO B,四边形OO B AO C为梯形,对角线O B O C 在梯形内,∠AO B O C<∠AO B O,所以∠PAO B=90°-∠AO B O C>90°-∠AO B O=∠CAO B.同样∠PAO C>∠BAO C,所以射线AP在∠CAB内,P是AP与的交点,与A在BC的同侧,所以P在△ABC内.由于BC与⊙O C相切,所以∠PBC=∠PAB.同理∠PAB=∠PCA.因此,P合乎要求.C1-024在矩形ABCD内,M是AD的中点,N是BC的中点,在线段CD的延长线上取一点P,用Q表示直线PM和AC的交点.证明:∠QNM=∠MNP.【题说】第六届(1972年)全苏数学奥林匹克八年级题1.【证】设R是直线QN和CD的交点,O是矩形ABCD的中心,由OM=ON 得:PC=CR.因此三角形PNR是等腰三角形(NC是该三角形的中线和高,也就是△PQN的外角∠PNR的平分线,又NC⊥MN),问题的结论由此即得.C1-025已知正方形ABCD,点P和Q分别在AB和BC上,且BP=BQ,BH⊥PC于H.证明:∠DHQ是直角.【题说】第八届(1974年)全苏数学奥林匹克十年级题2.【证】延长BH交AD于E,则Rt△ABE≌Rt△BCP,于是AE=BP=BQ,因此,QC=ED,从而得矩形CDEQ.这个矩形的外接圆直径就是其对角线CE与DQ,而∠CHE=90°,所以H点在矩形的外接圆上,即C、D、E、H、Q五点共圆.对着直径DQ的圆周角:∠DHQ=∠DCQ=90°即∠DHQ是直角.C1-026设ABCD是矩形,BC=3AB,证明:如果P、Q是BC边上的点,BP=PQ=QC,那么∠DBC+∠DPC=∠DQC.【题说】第六届(1974年)加拿大数学奥林匹克题2.【证】如图所示,即证β+γ=α或tan(β+γ)=tanα=1△BRD∽△PQD.于是∠RBD=∠DPC=β,从而有β+γ=∠RBC=α.C1-027在任一△ABC的边上,向外作△BPC、△CQA和△ARB,使得2.QR=RP.【题说】第十七届(1975年)国际数学奥林匹克题3.本题由荷兰提供.【证】建立一个复平面,令A和B的坐标分别为-1和1,C的因而,于是RQ⊥RP,RQ=RP.C1-028如图,两圆O1、O2相交于A、B,圆O1的弦BC交圆O2于E,圆O2的弦BD交圆O1于F,证明:1.若∠DBA=∠CBA,则DF=CE;2.若DF=CE,则∠DBA=∠CBA.【题说】 1979年全国联赛二试题6.【证】 1.连AD、AE、AF、AC,则∠DFA=∠ECA.又∠DBA=∠CBA以AD=AE,AC=AF所以△DAF≌△EACDF=CE2.由于∠DFA=∠ACE,∠AEC=∠ADF,DF=CE,所以△DAF≌△EAC,AD=AE.从而∠DBA=∠EBA.C1-029两圆相切(内切或外切)于P点,一条直线切一个圆于A,交另一圆于B、C.证明:直线PA是∠BPC的平分线(如果两圆内切)或∠BPC的补角的平分线(如果两圆外切).【题说】 1980年五国国际数学竞赛题4.本题由比利时提供.【证】设两圆外切(图a),作公切线PT,则∠APB=∠APT+∠TPB=∠BAP+∠BCP=∠BPC的补角-∠APB即AP是∠BPC的补角的平分线.若两圆内切(图b),设公切线与BC相交于T.因为∠CPT、∠APT、∠TAP都是弦切角,故∠BPA=∠APC,因此,PA是∠BPC的平分线.C1-030已知A为平面上两条半径不等的圆O1和O2的一个交点,两外公切线P1P2、Q1Q2分别切两圆于P1、P2、Q1、Q2,M1、M2分别为P1Q1、P2Q2的中点,求证:∠O1AO2=∠M1AM2.【题说】第二十四届(1983年)国际数学奥林匹克题2.本题由原苏联提供.【证】设B是两圆的另一交点,T、M分别是P1P2、O1O2与AB的交点.又P1M1∥TM∥P2M2所以MM1=MM2为AB⊥O1O2所以TM是M1M2的中垂线.在O1O2上,取MO3=MO2,则∠O3AM1=∠O2AM2.因为O1P1∥O2P2,O1M1∥O2M2,P1M1∥P2M2△O1P1M1∽△O2P2M2由此可知,AM1是∠O1AO3的角平分线.所以∠O1AM1=∠O3AM1=∠O2AM2故有∠O1AO2=∠O1AM1+∠M1AO2=∠O2AM2+∠M1AO2=∠M1AM2C1-031 如图,延长线段AB至D,以AD为直径作半圆,圆心为H.G 是半圆上一点,∠ABG为锐角.E在线段BH上,Z在半圆【题说】 1992年澳大利亚数学奥林匹克题5.【证】由EH·ED=EZ2知△HEZ∽△ZED,所以∠EZH=∠EDZ=∠DZH.于是∠AEZ=3∠EZHC1-032 在正方形ABCD的AB、AD边各取点K、N,使得AK·AN=2BK·DN.线段CK、CN各交对角线BD于L、M.试证:∠BLK=∠DNC=∠BAM.【题说】第三届(1993年)澳门数学奥林匹克第二轮题4.【证】令AB=a,BK=b,DN=c,则(a-b)(a-c)=2bc即a2-bc=a(b+c)所以∠BCK+∠DCN=45°∠BLK=∠BCK+45°=90°-∠DCN=∠DNC再由△ABM≌△CBM,得∠BAM=∠BCM=∠BCK+∠LCM=∠BCK+(90°-45°)=∠BLKC1-033如图,⊙O1与⊙O2外切于点P,Q是过P的公切线上任一点,QAB和QDC分别是⊙O1与⊙O2的割线,P在AB、AD和DC上的射影分别为E、F、G.求证:(1)∠BPC=∠EFG;(2)△EFG∽△PBC.【题说】 1994年四川省赛题3.【证】(1)因PQ切⊙O1与⊙O2于P,所以∠QPA=∠PBA (1)因为∠AEP=∠AFP=90°所以A、E、P、F四点共圆.故有∠FEP=∠FAP=∠DAP (2)同理,F、D、G、P四点共圆.且∠BPC=∠BAP+∠PDC=∠EFP+∠PFG=∠EFG(3)(2)因为∠PEQ=∠PGQ=90°所以Q、E、P、G四点共圆,于是∠GEP=∠GQP=∠DQP (4)由(2)、(4)与∠DAP+∠QPA=∠QDA+∠DQP得∠FEG=∠FEP-∠GEP=∠DAP-∠DQP=∠QDA-∠QPA(5)又A、B、C、D四点共圆,有∠QDA=∠QBC.于是由(1)、(5)得∠FEG=∠QBC-∠PBA=∠PBC(6)由(3)、(6)得△EFG∽△PBC.C1-034 D、E、F分别为△ABC的边BC、CA、AB上的点,且∠FDE=∠A,∠DEF=∠B,又设△AFE、△BDF、△CED均为锐角三角形,它们的垂心依次为H1、H2、H3,求证:(1)∠H2DH3=∠FH1E;(2)△H1H2H3≌△DEF.【题说】 1994年江苏省赛题5.【证】如图,(1)∠H2DB=90°-∠B,∠H3DC=90°-∠C,所以∠H2DH3=180°-∠H2DB-∠H3DC=∠B+∠C.而∠EH1F=180°-∠H1EF-∠H1FE=180°-(90°-∠AFE)-(90°-∠AEF)=180°-∠A=∠B+∠C.所以∠H2DH3=∠FH1E(2)由(1)知∠FH1E+∠EDF=180°,所以,H1在△DEF的外接圆上.同理H2、H3也在此圆上,因此D、E、F、H1、H2、H3六点共圆.又由(1)知∠EH1F=∠H2DH3,所以EF=H2H3.同理DF=H1H3,DE=H1H2,故△DEF≌△H1H2H3.C1-035 △ABC为锐角三角形.AD为BC边的高,H为AD内一点.直线BH、CH分别交AC、AB于E、F.证明:∠EDH=∠FDH.【题说】第26届(1994年)加拿大数学奥林匹克题5.又见第3届(1993年)澳门数学奥林匹克题3.[解] 过A作直线l平行于BC.延长DE、EF,分别交l于Q、P.由相似三角形,AP=AQ于是△DPQ的高DA平分PQ,所以△DPQ是等腰三角形,并且∠EDH=∠FDH.C1-036 在直角KLM内取一点P.以O1点为圆心的圆ω1分别切∠KLP 的两边LK和LP于A、D两点;以O2点为圆心半径与圆ω1半径相等的圆ω2分别切∠MLP的两边LP、LM于B、E两点.点O1在线段AB上.设O2D的延长线与KL交于C点.证明:BC是∠ABD的平分线.【题说】第二十届(1994年)全俄数学奥林匹克九年级题6.【证】连结O1D及O2B,则O1D=BO2.因为O1D⊥LP,O2B⊥LP,所以O1D∥BO2,O1BO2D为平行四边形,从而CO2∥AB,∠LDC=∠O1BD.∠LCD=∠LAB=90°(1)因为O2E⊥LM,所以O2ELC是矩形.因此CL=O2E=O2B=DO1(2)由(1)、(2)得Rt△LCD≌Rt△O1DB,所以CD=DB.于是∠ABC=∠BCD=∠CBD,即BC是∠ABD的平分线.C1-037设AK、BL、CM是△ABC的角平分线,K在BC上,令P、Q 分别是BL,CM上的点,使得AP=PK,AQ=QK.证明:【题说】 1995年城市数学联赛低年级较高水平题3.【证】如图,设BL交△ABK的外接圆于点D.则∠DAK=∠DBK=∠DBA=∠DKA所以,DA=DK,从而D与P重合.即有C1-038设△ABC是锐角三角形,且BC>CA,O是它的外心,H是它的垂心,F是高CH的垂足,过F作OF的垂线交边CA于P.证明:∠FHP=∠BAC.【题说】第三十七届(1996年)IMO预选题.【证】延长CF交⊙O于D点,连BD、BH.由于∠BHF=∠CAF=∠D且BF⊥HD,所以F为HD的中点.设FP所在直线交⊙O于M、N两点,交BD于T点.由OF⊥MN知F为MN的中点.由蝴蝶定理即得F为PT的中点.又因F 为HD的中点,故HP∥TD,所以,∠FHP=∠D=∠BAC.C1-039在凸凹边形ABCD的BC边上取E和F(点E比F更靠近点B).已知∠BAE=∠CDF及∠EAF=∠FDE.证明:∠FAC=∠EDB.【题说】第二十二届(1996年)全俄数学奥林匹克十年级题1.【证】因为∠EAF=∠FDE,所以A、E、F、D共圆,∠AEF+∠FDA=180°,又∠BAE=∠CDF,所以∠ADC+∠ABC=∠FDA+∠CDF+∠AEF-∠BAE=180°因此A、B、C、D共圆,∠BAC=∠BDC,由此得∠FAC=∠EDB.C1-040 在平行四边形ABCD中有一点O,使得∠AOB+∠COD=180°.证明:∠OBC=∠ODC.【题说】第二十九届(1997年)加拿大数学奥林匹克题4.[解] 过O作OE BA,连EC、ED,则四边形EOAD、EOBC都是平行四边形,所以CE∥BO,ED∥OA,∠CED+∠COD=∠AOB+∠COD=180°O、C、E、D四点共圆,从而∠ODC=∠OEC=∠OBCC1-041已知一个等腰三角形,外接圆半径为R,内切圆半径为r.证明:外接圆和内切圆的圆心距离d为【题说】第四届(1962年)国际数学奥林匹克题6.本题由原东德提供.【证】本题结论(即欧拉公式)对任意三角形(不限于等腰三角形)均成立.设M为BC的中点,O与I分别为外接圆和内切圆的圆心,外接圆直径MN交BC于D.连IB、BM、AM必过I.又设IE⊥BCIK⊥MNE、K为垂足.=∠IBM所以MI=MB又 IO2=MI2+MO2-2MO·MK而MB2=MD·MN=2R·MD所以d2=2R·MD+R2-2R·MK=R2-2R×DK=R2-2RrC1-042设过三角形的内心和重心的直线平行于一边.求证:其它二边长的和等于这一边长的两倍.【题说】 1963年西安市赛高二题3.【证】设△ABC的三边为a、b、c、M为BC之中点,G、I分别为△ABC的重心和内心,且IG∥BC.因为IG∥BC所以G到BC的距离GE=r(内切圆半径)BC边上的高h=3GE=3r,而ha=r(a+b+c)(=2S△ABC)所以3a=a+b+c即b+c=2aC1-043 1.在凸六边形ABCDEF中,所有角都相等.证明:AB-DE=EF-BC=CD-FA2.反之,若六条边a1,a2,a3,a4,a5,a6满足等式a1-a4=a5-a2=a3-a6.证明:它们可以组成各内角相等的凸六边形.【题说】 1964年全俄数学奥林匹克八年级题5(1)、十年级题3(2).【证】 1.直线AB、CD、EF构成△GHI.由已知六边形各角相等知,每个角都是120°,从而△GHI的每个角都是60°,因此它是正三角形.并且AF、BC、DE分别与边GI、GH、HI平行.AB+AC=AB+BI=AI=GF=GE+EF=DE+EF所以 AB-DE=EF=BC同理 EF-BC=CD-FA2.以a1+a2+a6为边作正三角形GHI,然后在各边取A、B、C、D、E、F,使BI=IC=a2,DG=GE=a4,FH=HA=a6,则BC∥GH,DE∥HI,AF∥GI,所以六边形ABCDEF各角相等,并且AB=a1,BC=BI=a2,AF=AH=a6,DE=DG=a4,CD=(a1+a2+a6)-a2-a4=a3.EF=(a1+a2+a6)-a4-a6=a5.C1-044 已知ABCD为一圆外切梯形,E是对角线AC和BD的交点,r1、r2、r3、r4分别是△ABE、△BCE、△CDE和△DAE的内切圆半径.证明:【题说】 1964年全俄数学奥林匹克十一年级题2.【证】设△ABE、△BCE、△CDE、△DAE的面积和周长分别为S1、S2、S3、S4;l1、l2、l3、l4.由于 AB+C D=AD+BC所以 l1+l3 =l2+l4(2)因为 AB∥CD所以 S2=S4记之为S.则从而相加并利用(2)得即(1)成立.C1-045 设点M是△ABC的AB边上的任一内点,r1、r2、r分别是△AMC、△BMC、△ABC的内切圆半径;q1、q2、q分别是这些三角形在∠ACM、∠BCM、∠ACB内的旁切圆半径.试证:【题说】第十二届(1970年)国际数学奥林匹克题1.本题由波兰提供.【证】设∠CAB=α,∠ABC=β,∠BCA=γ,∠AMC=δ;又设△ABC的内切圆的圆心为R,且与AB切于P(如图).于是从而有由于三角形的角的内、外分角线互相垂直,因而类似地有由(1)和(2)可得类似的结论对于△AMC和△BMC也成立,故有将(4)、(5)相乘,并利用(3)得C1-046 考虑如图a、图b所示的△ABC和△PQR.在△ABC中,∠ADB=∠BDC=∠CDA=∠120°.试证:x=u+v+w.【题说】第三届(1974年)美国数学奥林匹克题5.【证】△BCD绕B逆时针方向旋转60°,至△BEF,如图c.这时易知A、D、F、E在一直线上,且AE=u+v+w.再将△EAC绕E顺时针方向旋转60°,至△EGB.则△AEG为正三角形且易证它与△PQR全等,其中B相当于O点.得证.【别证】(1)△PQR绕R逆时针旋转60°,至△SPR,如图d.这时作正△ROT外接圆,设交RP于D′.易证∠OD′T=∠TD′P=∠PD′O=120°.由△ABC中D点的唯一性及△ABC≌△TOP知PD′=w,OD′=v,TD′=u.又由托勒密定理,知RD′=u+v,故x=u+v+w.(2)过O作△PQR三边平行线,如图e,也可以得结论.C1-047 直径A0A5把圆O分成两个半圆,其中一个半圆分成五段等点M、N.证明:线段A2A3与MN之和等于圆的半径.【题说】第十九届(1985年)全苏数学奥林匹克八年级题6.【证】在圆上分别标出点A1、A2、A3、A4关于直径A0A5的对称点B1、B2、B3、B4,得圆的内接正十边形A0A1…A5B4B3…B1(如图).则A2B1∥A3B2,A2B1∥A1A0,OA2∥B2A1,A0A5∥A1A4∥A2A3.由对称性知A2B1和B2A1的交点K在A0A5上.又设A2B1和A1A4相交于点L.于是KA2A3O、A0A1LK、A1MOK、LNOK都是平行四边形.所以A2A3=KO=A1M=LN,从而MN=A1L=A0K.因此,A2A3+MN=A0O.C1-048 四边形ABCD内接于圆,另一圆的圆心O在边AB上且与其余三边相切.求证:AD+BC=AB.【题说】第二十六届(1985年)国际数学奥林匹克题1.本题由英国提供.【证】在AB上取点M,使MB=BC.连结OD、OC、MD和MC.所以C、D、M、O四点共圆.所以∠AMD=∠ADM,故AM=AD.从而AB=AM+MB=AD+BC【别证】设半圆半径为1,∠OAE=α,则AE=cotα.同理可证 BG+ED=BO故 AD+BC=ABC1-049 已知两圆相交于M和K,引两圆的公切线,切点为A和B.证明:∠AMB+∠AKB=180°.【题说】第十四届(1988年)全俄数学奥林匹克八年级题2.【证】如图,连结MK,则∠AMK=∠KAB∠BMK=∠KBA两式相加得∠AMB=∠KAB+∠KBA因此∠AMB+∠AKB=∠KAB+∠KBA+∠AKB=180°C1-050 在一个三角形中,以h a、h b、h c表示它的三条高,以r表示它的内切圆半径.证明:当且仅当三角形为等边三角形时,h a+h b+h c=9r.【题说】 1988年原联邦德国数学奥林匹克(第一轮)题2.【证】设三角形三边为a、b、c,周长为p,面积为S,则2S=rp=ah a=bh b=ch c当且仅当a=b=c,即三角形为等边三角形时取等号,即h a+h b+h c=9rC1-051 设点D、E、F分别在△ABC的三边BC、CA、AB上,且△AEF、△BFD、△CDE的内切圆有相等的半径r,又以r0和R分别表示△DEF和△ABC 的内切圆半径.求证:r+r0=R【题说】第四届(1989年)全国冬令营赛题4.【证】设p为△ABC的半周长,q为△DEF的半周长.因为S△ABC=S△AEF=S△BFD+S△CDE+S△DEF所以R·p=r·p+(r0+r)·q(1)所以 R(p-q)=Pr(4)由(1)、(4)得Rq=(r0+r)q,即R=r0+r.C1-052 在圆内引弦AB和AC,∠BAC平分线交圆于D点.过D【题说】第十六届(1990年第三阶段)全俄数学奥林匹克九年级题8.【证】作DM⊥AC于M(如图).因为ABDC内接于圆,所以∠MCD=∠B若B与E重合,则∠B=90°=∠ACDRt△ABD≌Rt△ACD,结论显然成立.若B与E不重合,则∠B为锐角或钝角.不妨设∠B为锐角(钝角情形同样讨论),则∠ACD为钝角,M在AC延长线上,而E点在AB线段内.由于AD平分∠BAC,所以DE=DM,AE=AM.从而△BDE≌△CDM,则C1-053 四边形ABCD内接于半径为r的圆,对角线AC、BD相交于E.证明:若AC⊥BD,则EA2+EB2+EC2+ED2=4r2(1)若(1)成立,是否必有AC⊥BD?说明你的理由.【题说】 1991年英国数学奥林匹克题3.【解】若AC⊥BD,则EA2+EB2+EC2+ED2=AB2+CD2.由正弦定理AB2=4r2sin2∠ACBCD2=4r2sin2∠CBD=4r2cos2∠ACB所以EA2+EB2+EC2+ED2=4r2sin2∠ACB+4r2cos2∠ACB=4r2反之,若(1)成立,未必有AC⊥BD.例如AC、BD为任两条直径,则交点E即为圆心.(1)式显然成立.C1-054 设∠A是三角形ABC中最小的内角.点B和C将这个三角形的外接圆分成两段弧.设U是落在不含A的那段弧上且不等于B与C的一个点.线段AB和AC的垂直平分线分别交线段AU于V和W.直线BV和CW相交于T.证明:AU=TB+TC.【题说】第三十八届(1997年)国际数学奥林匹克题2.本题由英国提供.【证】如图所示,因为点V在线段AB的垂直平分线上,所以∠VAB=∠VBA.又因∠A是△ABC的最小内角,且∠VAB=∠UAB<∠CAB故∠VBA=∠VAB<∠CAB≤∠CBA即V在∠ABC内.同理W在∠ACB内.BV与CW的交点T在△ABC内.延长BT交外接圆于S.由于AU与BS关于弦AB的中垂线对称,所以AU=BS.因为∠TCS=∠TCA+∠ACS=∠WAC+∠ABS=∠WAC+∠VAB=∠BAC=∠BSC,所以TS=TC,从而AU=BT+TS=BT+TCC1-055 在圆上取六个点A、B、C、D、E、F,使弦AB与DE平行,弦DC与AF平行.证明:弦BC与弦EF平行.【题说】 1959年~1960年波兰数学奥林匹克三试题5.【证】圆上六点的顺序有种种情况.以图a、图b所示的两种为例,其他情况可仿此证明.在图a中,因AB∥DE,DC∥AF,故有所以BC∥EF所以,BC∥EF.C1-056 在平行四边形ABCD的两边AB、AD上,向外作两个正方形ABMX、ADNY.求证:CA⊥XY.【题说】 1963年武汉市赛高三一试题4.【证】如图,延长CA交XY于E,因∠ABC=180°-∠BAD=180°-(360°-∠BAX-∠XAY-∠YAD)=∠XAY又AY=AD=BC及AX=BA所以△XAY≌△ABC,从而∠XYA=∠ACB=∠CAD所以∠AEY=180°-∠EAY-∠EYA=180°-∠EAY-∠CAD=∠DAY=90°.亦即AC⊥XY.C1-057 作△ABC外接圆,连接AC中点与AB、BC中点的弦,分别交AB 于D,交BC于E.证明:DE∥AC且通过三角形的内心.【题说】 1965年全俄数学奥林匹克八年级题3.△ABC的内心,则AM、BN过O.又设LN与AC交于K,连结OK.LN⊥AM在△AON中,易知∠AON=∠NAO.从而ND平分AO.又AO平分∠A.从而AO平分DK.因此在四边形AKOD中二对角线AO、DK互相垂直平分,故AKOD 是菱形.于是DO∥AK.同理,四边形CEOJ是菱形,从而OE∥CJ,从而D、O、E在一条直线上,即DE∥AC,而且DE过△ABC内心O.C1-058 某个平面四边形,各边之长顺次为a,b,c,d,对角线互相垂直.试证:任何其它四边形,若其各边长顺次为a,b,c,d,则其对角线也互相垂直.【题说】 1975年~1976年波兰数学奥林匹克三试题4.【证】设四边形ABCD、A′B′C′D′的边长顺次为a,b,c,d,AC 与BD相交于O,并且AC⊥BD(如图).显然a2-b2=AO2-OC2=d2-c2设B′在A′C′上的射影为P,D′在A′C′上的射影为Q,则A′P2-PC′2=a2-b2=d2-c2=A′Q2-QC′2即 A′C′×(A′P-PC′)=A′C′×(A′Q-QC′)从而A′P-PC′=A′Q-QC′,又A′P+PC′=A′C′=A′Q+QC′,所以A′P=A′Q,P与Q重合,并且均在B′D′上.于是B′D′⊥A′C′.C1-059 已知平面上的三个正方形ABCD、A1B1C1D1和A2B2C2D2(正方形的顶点是沿逆时针方向标写的).并且顶点A1与A重合,而C2与C重合,试证:线段D1D2与BM(其中M为线段B1B2的中点)互相垂直并且|D1D2|=2|BM|.【题说】第六届(1981年)全俄数学奥林匹克十年级题5.【证】设B为原点,其它各点的复数表示仍用同样的字母,则由于M 是线段B1B2中点,2·M=B1+B2=(B1-A)+(B2-C)+A+C=(D1-A)·(-i)+(D2-C)·i+A+C=(D2-D1)i+A·(1+i)+C·(1-i)=(D2-D1)i+C·i(1+i)+C·(1-i)=(D2-D1)i因此线段D1D2⊥BM,并且|D1D2|=2|BM|.C1-060 如图,在凸四边形ABCD中,AB与CD不平行.圆O1过A、B且与边CD相切于P,圆O2过C、D且与边AB相切于Q,圆O1与圆O2相交于E、F.求证:EF平分线段PQ的充分必要条件是BC∥AD.【题说】第五届(1990年)全国冬令营赛题1.【证】首先证明:如图,分别延长CD与BA,记它们的交点为S.并记SC,SD,SP,SA,SB,SQ为c,d,p,a,b,q,则p2=ab,q2=cd.于是延长PQ分别交圆O1、O2于J、I,则由相交弦定理可知PD·PC=PI·PQ,QA·QB=QJ·PQ弦定理可知KP·KJ=KE·KF=KQ·KI即KP(KQ+QJ)=KQ(KP=PI)于是KP·QJ=KQ·PI综上所述,命题得证.C1-061 △ABC是直角三角形,以直角边AC和BC为边分别向外作两个菱形ACDE和CBFG,其中心分别为P和Q,且∠EAC=∠GCB<90°,如果M和N分别为AB和DG的中点.证明:PQ⊥MN.【题说】 1992年友谊杯国际数学竞赛八年级题2.【证】容易证明,△ACG≌△BCD,所以AG=BD.从而以四边形ADGB各边中点为顶点的四边形P,N,Q,M是菱形,故PQ⊥MN.C1-062 ABCDE是凸五边形,AB=BC,∠BCD=∠EAB=90°.X为此五边形内一点,使得AX⊥BE且CX⊥BD.证明:BX⊥DE.【题说】 1992年澳大利亚数学奥林匹克题3.【证】设AX交BE于Y,CX交BD于Z,BX交DE于F.则AB2=BY·BE=BZ·BD所以D,E,Y,Z四点共圆.又由于B,Y,X,Z四点共圆,所以∠BXZ=∠BYZ=∠ZDF故D,F,X,Z四点共圆,从而∠BFD=∠DZX=90°,即BX⊥DE.C1-063 已知△ABC以O1、O2、O3为旁切圆圆心.证明:△O1O2O3是锐角三角形.【题说】第三届(1993年)澳门数学奥林匹克第一轮题3.【证】易知△O1O2O3包含△ABC,△ABC三内角平分线是△O1O2O3三高,△ABC内心O是△O1O2O3垂心.O在△ABC内,更在△O1O2O3内,故△O1O2O3为锐角三角形.C1-064 在△ABC中,∠A的平分线交AB边中垂线于A′,∠B的平分线交BC边中垂线于B′,∠C的平分线交CA边中垂线于C′.求证:(1)若A′与B′重合,则△ABC为正三角形;【题说】 1993年德国数学奥林匹克(第二轮)题3.【证】(1)若A′与B′重合,则△ABC的内心与外心重合,从而△ABC为正三角形.(2)将△A′AC′绕A旋转,使A与B重合.设这时C′转到∠ABC-∠BAC+∠ACB)=∠B′CC′.所以△B′BK≌△B′CC′,B′K=B′C′.从而△B′A′K≌△B′A′C′,∠【注】设I为内心,AB的垂直平分线交BB′于J,则可以证明△A′C′I∽△A′B′J,从而导出结论,但需要稍多的计算.C1-065 ABC是一个等腰三角形,AB=AC,假如(i)M是BC的中点,O是直线AM上的点,使得OB垂直于AB;(ii)Q是线段BC上不同于B和C的一个任意点;(iii)E在直线AB上,F在直线AC上,使得E,Q,F是不同的和共线的.求证:OQ⊥EF当且仅当QE=QF.【题说】第三十五届(1994年)国际数学奥林匹克题2.本题由亚美尼亚-澳大利亚提供.【证】连线段OE、OF、OC.由对称性,OC⊥AC,∠OBQ=∠OCQ.若OQ ⊥EF,则O、Q、B、E四点共圆,O、Q、C、F四点共圆,故∠OEQ=∠OBQ,∠OFQ=∠OCQ (1)于是∠OEQ=∠OFQ,OE=OF又OQ⊥EF,故QE=QF.反之,若QE=QF,过E作EG∥BC交AC于G,则易知EB=GC=CF.又OB=OC,∠OBE=∠OCF=90°,所以△OBE≌△OCF,OE=OF.从而OQ⊥EF.C1-066 如图,菱形ABCD的内切圆O与各边分别切于E、F、G、CD于P,交DA于Q.求证:MQ∥NP.【题说】 1995年全国联赛二试题3.【证】连结AC,则O为AC中点,再连结MO、NO.则∠MON=180°-(∠OMN+∠MNO)因此△AMO∽△OMN∽△CON。
口奥题库 - 几何(1)说课讲解
【四边形】【1】在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。
这本书的插图中正方形最多有_____个。
【答案】40个【最值】【剪拼】—个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的长方形纸条?【答案】12【剪拼】【2】图中由24个正方形组成,请通过P点画一条直线,把这个图形分割成面积相等的两部分。
P【答案】P【面积】【2】求出图中梯形ABCD的面积。
其中BC=10厘米。
B E【答案】50平方厘米【面积】【3】用4个相同的等腰直角三角形相互交叠拼成下图,阴影正方形的面积是平方厘米。
3【答案】18平方厘米3图中的阴影部分面积是正方形面积的14。
3×3÷2×4=18(㎝2)【周长】【面积】【1】判断:在周长都为8厘米的正方形和长方形中,面积较大的是正方形。
【答案】√【周长面积】【2】由5个正方形组成的十字架图形的面积是180,求它的周长是多少?【答案】72【面积】【1】等腰梯形的对角线互相垂直,一条对角线的长是9厘米,求梯形的面积。
【答案】40.5平方厘米【面积】【差不变】【2】如图,有边长分别是16分米和24分米的两个正方形,一条直线把这两个相连的正方形分成四部分。
甲三角形的面积比乙三角形的面积多多少平方分米?【答案】96【面积】【格点多边形】【2】、在边长等于5厘米的正方形内有一个平行四边形,这个平行四边形面积是多少?【答案】14平方厘米【面积】【格点多边形】【2】如图,计算这个格点多边形的面积.(每一格为单位1)【答案】6.5【等高模型】【2】如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.【答案】223【等高模型】【2】As shown below, the area of the parallelogram ABCD is 54 cm 2, E, F trisect CA and BA, the areaof the shadow is _________.【答案】6cm 2【等高模型】【3】如图:正方形ABCD 的边长为12厘米,P 是AB 边上的任意一点,M 、N 、I 、H 分别是BC 、AD 上的三等分点(即BM=MN=NC ),E 、F 、G 是边CD 上的四等分点,图中阴影部分面积是多少平方厘米。
口奥题库-几何
【答案】40个【最值】【剪拼】—个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的长方形纸条?【答案】12【剪拼】【2】图中由24个正方形组成,请通过P点画一条直线,把这个图形分割成面积相等的两部分。
【答案】【面积】【2】求出图中梯形ABCD的面积。
其中BC=10厘米。
【答案】50平方厘米【面积】【3】用4个相同的等腰直角三角形相互交叠拼成下图,阴影正方形的面积是平方厘米。
【答案】18平方厘米图中的阴影部分面积是正方形面积的14。
3×3÷2×4=18(㎝2)【周长】【面积】【1】判断:在周长都为8厘米的正方形和长方形中,面积较大的是正方形。
【答案】√【周长面积】【2】由5个正方形组成的十字架图形的面积是180,求它的周长是多少?【答案】72【面积】【1】等腰梯形的对角线互相垂直,一条对角线的长是9厘米,求梯形的面积。
【答案】平方厘米【面积】【差不变】【2】如图,有边长分别是16分米和24分米的两个正方形,一条直线把这两个相连的正方形分成四部分。
甲三角形的面积比乙三角形的面积多多少平方分米?【答案】96【面积】【格点多边形】【2】、在边长等于5厘米的正方形内有一个平行四边形,这个平行四边形面积是多少?【答案】14平方厘米【面积】【格点多边形】【2】如图,计算这个格点多边形的面积.(每一格为单位1)【答案】【等高模型】【2】如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.【答案】2 2 3【等高模型】【2】As shown below, the area of the parallelogram ABCD is 54 cm2, E, F trisect CA and BA, the area of the shadow is _________.【答案】6cm2【等高模型】【3】如图:正方形ABCD的边长为12厘米,P是AB边上的任意一点,M、N、I、H分别是BC、AD上的三等分点(即BM=MN=NC),E、F、G是边CD上的四等分点,图中阴影部分面积是多少平方厘米。
小升初奥数试题之几何问题(附答案)
小升初奥数试题之几何问题(附答案)
2010-05-13 10:16:25来源:智康教育文章作者:匿名进入论坛
几何测试题
1.妇開侨乔.庄“占疋中,也门一E打迪乩仙、4<?d_, LL AH- inr>r皿也
監如网帧&j^sc中.<y-^ca<锂■訴]呃打血柏交皿”・柑抚
梆为“卿站血‘的面职养卩___ _•
■V 扣崗屎示.市両科甘划3, 5 . 7时托牛厲总忻威一$大二角舉"己知几即-2 ■ ^axic * 5 # §皿寸"7 1■7 ■* 劭¥、■* $*fF 四- -*
a c
i.帕怦爭盒民方形的K趾12 N1 X .宽M x讣三用両 g 的佃W 32平h hi轧UW =丿l!IL
5・如RL 四边形ABCD IW 面枳是16平方厘米,其中血> 二C0・DE“E ・血>2川!米.那 么四边
形BCDE 的面积建 ____________ 平方厘米•
6・ MCD 狂边长为12的正方形.户是内部任童一点.BUS BK=DN/・那么阴 影邮分的面枳塑 •
二・解答Sg (毎題13分,共52分)
7.在三角形/f 〃C •中・点E 兔BC 边上的中点,点F 是中找/仏上的点,^AE^AF,己 知延长BF 耳
AC 相交于D,如图所示.若三和形朋C 之而积为48,请问三幷形的 面积为多少?
E D。
几何形状口算练习题及答案2023
几何形状口算练习题及答案2023摘要:几何形状是数学中的重要概念,对于学生来说,熟练掌握不同几何形状的特征和计算方法是必要的。
为此,本文提供了一系列几何形状的口算练习题及答案,旨在帮助学生提高口算能力和对几何形状的认识。
1. 正方形 (Square)计算正方形的周长和面积。
例题:如果正方形的边长为4 cm,那么它的面积和周长分别是多少?解答:正方形的周长 = 边长 × 4正方形的面积 = 边长 ×边长给定正方形的边长为4 cm,代入公式得:正方形的周长 = 4 cm × 4 = 16 cm正方形的面积 = 4 cm × 4 cm = 16 cm²2. 长方形 (Rectangle)计算长方形的周长和面积。
例题:如果长方形的长为8 cm,宽为6 cm,那么它的面积和周长分别是多少?解答:长方形的周长 = (长 + 宽) × 2长方形的面积 = 长 ×宽给定长方形的长为8 cm,宽为6 cm,代入公式得:长方形的周长 = (8 cm + 6 cm) × 2 = 28 cm长方形的面积 = 8 cm × 6 cm = 48 cm²3. 圆形 (Circle)计算圆形的周长和面积,结果保留两位小数。
例题:如果圆形的半径为5 cm,那么它的面积和周长分别是多少?解答:圆形的周长= 2 × π × 半径(π取3.14)圆形的面积= π × 半径²给定圆形的半径为5 cm,代入公式得:圆形的周长≈ 2 × 3.14 × 5 = 31.4 cm圆形的面积≈ 3.14 × 5² = 78.5 cm²4. 三角形 (Triangle)计算三角形的周长和面积。
例题:已知三角形的三边分别为5 cm,8 cm,10 cm,求其周长和面积。
奥数几何计数题库及答案
奥数几何计数题库及答案1. 题目一:一个圆的半径为5厘米,求圆内接正六边形的边长。
答案:圆内接正六边形的边长等于圆的半径。
因此,边长为5厘米。
2. 题目二:一个正方体的棱长为10厘米,求其外接球的半径。
答案:正方体的体对角线等于外接球的直径。
体对角线的长度为\(\sqrt{3} \times 10\) 厘米,所以外接球的半径为\(\frac{\sqrt{3} \times 10}{2}\) 厘米。
3. 题目三:一个圆柱的底面半径为3厘米,高为10厘米,求其侧面积。
答案:圆柱的侧面积等于底面周长乘以高,公式为 \(2\pi r\times h\)。
代入数值得 \(2\pi \times 3 \times 10 = 60\pi\) 平方厘米。
4. 题目四:一个正四面体的棱长为a厘米,求其表面积。
答案:正四面体的表面积由四个等边三角形组成,每个三角形的面积为 \(\frac{\sqrt{3}}{4}a^2\)。
因此,总表面积为 \(4 \times \frac{\sqrt{3}}{4}a^2 = \sqrt{3}a^2\) 平方厘米。
5. 题目五:一个长方体的长、宽、高分别为a、b、c厘米,求其对角线的长度。
答案:长方体的对角线长度可以通过勾股定理求得,公式为\(\sqrt{a^2 + b^2 + c^2}\) 厘米。
6. 题目六:一个圆锥的底面半径为r厘米,高为h厘米,求其体积。
答案:圆锥的体积公式为 \(\frac{1}{3}\pi r^2 h\) 立方厘米。
7. 题目七:一个球的直径为d厘米,求其表面积。
答案:球的表面积公式为 \(4\pi r^2\),其中r为半径,即\(\frac{d}{2}\) 厘米。
代入得 \(4\pi\left(\frac{d}{2}\right)^2 = \pi d^2\) 平方厘米。
8. 题目八:一个圆环的内圆半径为r1厘米,外圆半径为r2厘米,求其面积。
答案:圆环的面积等于外圆面积减去内圆面积,公式为 \(\pir2^2 - \pi r1^2\) 平方厘米。
口奥题库几何
【四边形】【1】在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。
这本书的插图中正方形最多有_____个。
【答案】40个【最值】【剪拼】—个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的长方形纸条?【答案】12【剪拼】【2】图中由24个正方形组成,请通过P点画一条直线,把这个图形分割成面积相等的两部分。
P【答案】P【面积】【2】求出图中梯形ABCD的面积。
其中BC=10厘米。
B E【答案】50平方厘米【面积】【3】用4个相同的等腰直角三角形相互交叠拼成下图,阴影正方形的面积是平方厘米。
3【答案】18平方厘米3图中的阴影部分面积是正方形面积的14。
3×3÷2×4=18(㎝2)【周长】【面积】【1】判断:在周长都为8厘米的正方形和长方形中,面积较大的是正方形。
【答案】√【周长面积】【2】由5个正方形组成的十字架图形的面积是180,求它的周长是多少?【答案】72【面积】【1】等腰梯形的对角线互相垂直,一条对角线的长是9厘米,求梯形的面积。
【答案】平方厘米【面积】【差不变】【2】如图,有边长分别是16分米和24分米的两个正方形,一条直线把这两个相连的正方形分成四部分。
甲三角形的面积比乙三角形的面积多多少平方分米?【答案】96【面积】【格点多边形】【2】、在边长等于5厘米的正方形内有一个平行四边形,这个平行四边形面积是多少?【答案】14平方厘米【面积】【格点多边形】【2】如图,计算这个格点多边形的面积.(每一格为单位1)【答案】【等高模型】【2】如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.【答案】223【等高模型】【2】As shown below, the area of the parallelogram ABCD is 54 cm 2, E, F trisect CA andBA, the area of the shadow is _________.【答案】6cm 2【等高模型】【3】如图:正方形ABCD 的边长为12厘米,P 是AB 边上的任意一点,M 、N 、I 、H 分别是BC 、AD 上的三等分点(即BM=MN=NC ),E 、F 、G 是边CD 上的四等分点,图中阴影部分面积是多少平方厘米。
最新小学奥数几何专题训练附答案
最新小学奥数几何专题训练附答案奥数,即奥林匹克数学竞赛,是培养学生逻辑思维和解决问题能力的重要途径。
而几何作为奥数竞赛中的一个重要领域,对学生的几何直观和推理能力提出了较高的要求。
为此,我们特别准备了最新的小学奥数几何专题训练,并附上了详细的答案。
通过这个专题训练,相信学生们在几何方面的能力将得到有效提升。
1. 三角形的性质三角形是几何学中最基础的图形之一,具有诸多性质。
在本专题中,我们将针对三角形的内角和、外角和以及角平分线等性质进行训练。
在题目中,我们通过图形的给定或条件的陈述,要求学生运用已知的性质推导出未知的结果。
例如:题目:如图1所示,三角形ABC中,∠ABC=80°,∠ACB=50°。
求∠BAC的度数。
解答:由于三角形的内角和为180°,设∠BAC=x,则∠ACB=80°-x,∠ABC=50°。
将三角形的内角和代入等式中,得到:x + (80°-x) + 50° = 180°130° = 180°-xx = 180°-130°x = 50°因此,∠BAC的度数为50°。
2. 直线与平行线直线和平行线是几何学中的重要概念。
在这个专题中,我们将训练学生在应用直线与平行线性质解决问题时的能力。
例如:题目:如图2所示,AB、CD和EF是三条平行线。
若∠AGE=40°,求∠EDF的度数。
解答:由于AB和EF是平行线,所以∠AGE=∠EDF。
因此,∠EDF的度数为40°。
3. 三角形的相似性质相似三角形是指具有对应角相等且对应边成比例的三角形。
相似三角形在数学和实际生活中具有重要应用。
在这个专题中,我们将训练学生识别和应用相似三角形的能力。
例如:题目:如图3所示,△ABC与△DEF相似,且比例尺为1:2。
已知AC=4,求EF的长度。
解答:由于△ABC与△DEF相似,所以AB/DE = BC/EF = AC/DF。
数学奥数几何竞赛试题及答案
数学奥数几何竞赛试题及答案试题一:题目:在直角三角形ABC中,∠C=90°,AB是斜边,BC=6厘米,AC=8厘米。
求三角形ABC的面积。
答案:根据直角三角形的面积公式,面积S = (底× 高) / 2。
这里,底BC=6厘米,高AC=8厘米。
所以,S = (6 × 8) / 2 = 48 / 2 = 24平方厘米。
试题二:题目:一个圆的半径为5厘米,求这个圆的周长和面积。
答案:圆的周长公式为C = 2πr,其中r是圆的半径。
将半径r=5厘米代入公式,得C = 2 × π ×5 = 10π ≈ 31.4厘米。
圆的面积公式为A = πr²,将半径r=5厘米代入公式,得A = π × 5² = 25π ≈ 78.5平方厘米。
试题三:题目:一个正六边形的边长为a厘米,求这个正六边形的周长和面积。
答案:正六边形的周长等于6倍边长,所以周长P = 6a厘米。
正六边形可以被划分为6个等边三角形,每个等边三角形的面积为(√3/4)a²。
所以,正六边形的面积A = 6 × (√3/4)a² = (3√3/2)a²平方厘米。
试题四:题目:在一个长方体中,如果长、宽、高分别为l、w、h,求这个长方体的表面积和体积。
答案:长方体的表面积A = 2(lw + lh + wh)。
长方体的体积V = lwh。
试题五:题目:在一个等腰三角形中,如果底边长度为10厘米,两腰的长度相等,且底角为45°,求两腰的长度。
答案:由于底角为45°,我们可以知道这是一个等腰直角三角形。
在等腰直角三角形中,两腰相等,且是底边的√2倍。
所以,两腰的长度为10 × √2 ≈ 14.14厘米。
结束语:以上是本次数学奥数几何竞赛的试题及答案,希望同学们能够通过这些题目加深对几何知识的理解,并在竞赛中取得优异的成绩。
口奥题库几何
口奥题库几何文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]【四边形】【1】在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。
这本书的插图中正方形最多有_____个。
【答案】40个【最值】【剪拼】—个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的长方形纸条【答案】12【剪拼】【2】图中由24个正方形组成,请通过P点画一条直线,把这个图形分割成面积相等的两部分。
【答案】P【面积】【2】求出图中梯形ABCD的面积。
其中BC=10厘米。
【答案】50平方厘米【面积】【3】用4个相同的等腰直角三角形相互交叠拼成下图,阴影正方形的面积是平方厘米。
【答案】18平方厘米图中的阴影部分面积是正方形面积的1。
43×3÷2×4=18(㎝2)【周长】【面积】【1】判断:在周长都为8厘米的正方形和长方形中,面积较大的是正方形。
【答案】√【周长面积】【2】由5个正方形组成的十字架图形的面积是180,求它的周长是多少【答案】72【面积】【1】等腰梯形的对角线互相垂直,一条对角线的长是9厘米,求梯形的面积。
【答案】平方厘米【面积】【差不变】【2】如图,有边长分别是16分米和24分米的两个正方形,一条直线把这两个相连的正方形分成四部分。
甲三角形的面积比乙三角形的面积多多少平方分米【答案】96【面积】【格点多边形】【2】、在边长等于5厘米的正方形内有一个平行四边形,这个平行四边形面积是多少【答案】14平方厘米【面积】【格点多边形】【2】如图,计算这个格点多边形的面积.(每一格为单位1)【答案】【等高模型】【2】如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.【答案】223【等高模型】【2】As shown below, the area of the parallelogram ABCD is 54 cm2, E, F trisect CA and BA, the area of the shadow is _________.【答案】6cm2【等高模型】【3】如图:正方形ABCD的边长为12厘米,P是AB边上的任意一点,M、N、I、H分别是BC、AD上的三等分点(即BM=MN=NC),E、F、G是边CD上的四等分点,图中阴影部分面积是多少平方厘米。
小奥专项练习--几何问题
几何问题1.由棱长为1的正方体搭成如的图示的图形,共用个方体,它的表面积是。
2.已知:平行四边形ABCE的面积是4,E是BC边上的中点,F是CD边上的中点,则图中面积是1的三角形共有个。
3.如图△ABC中,E是BC的中点,F在AE上,AE=3AF,BF延长这个交AC于D,若△ABC的面积是48,则△AFD的面积等于4.如图,边长为3cm与5cm的两个正方形并排放在一起,在大正方形中画一个以它的顶点B为圆心,边长为半径的圆弧,则阴影部分的面积是cm2(结果保留π)。
5.如图,把这个展开的图形折成一个长方体,(1)如果A面在底部,那么面在上面。
(2)如果Fdm在前面,从大面看B面,那么面在上面。
6.圆周率是指圆的周长与圆的直径的比值,数学家常利用圆的内接多边形来计算圆周率,其基本方法是用圆的内接正多边形的周长来近似的等于圆周长,再用这个近似的圆周长除以圆的直径得到圆周率,如图给出了圆内接正六边形,用这个圆内接正六边形可求得圆周率的近似值为,无论圆内接正多边形的边数怎样增加,但上述方法求得的圆周率一定精确值。
(大于、小于、等于)7.如图:ABCD和CDEF都是长方形,AB长是4厘米,BC的边长是3厘米,那么图中阴影部分的面积是平方厘米。
8.用12个边长5厘米,宽4厘米高3厘米的长方形码成一个表面积最小的长方体,码放后得到的这个长方体的表面积是平方厘米。
9.如图,是一长方形地,长AB=52m,宽AD=31m,从AB两处入口的小路都是1m,两小路汇合处路宽为2m,其余部分为草坪,问草坪部分面积m210.一个长方形的周长是28厘米,这个长方形的长减少1 厘米,宽增加2厘米,就可以成为一个正方形,则这个正方形的面积为厘米211.由若干个棱长为1的正方体堆成的立体图,其正视图、俯视图和左视图如下图所示,请问这个立方体图形的体积是。
12.正方形ABCD和正方形CEFG的边长分别为m、n,那么△AEG的面积()A、只与m的大小有关B、只与n的大小有关C、与m、n的大小都有关D、与m、n的大小都无关13.如图所示,正方形ABCD中,红凶、绿色正方形的面积分别是27和12 ,且红绿两个正方形有一个顶点生命。
口奥题库---几何
【四边形】【1】在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。
这本书的插图中正方形最多有_____个。
【答案】40个【最值】【剪拼】—个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的长方形纸条?【答案】12【剪拼】【2】图中由24个正方形组成,请通过P点画一条直线,把这个图形分割成面积相等的两部分。
P【答案】P【面积】【2】求出图中梯形ABCD的面积。
其中BC=10厘米。
B E【答案】50平方厘米【面积】【3】用4个相同的等腰直角三角形相互交叠拼成下图,阴影正方形的面积是平方厘米。
3【答案】18平方厘米3图中的阴影部分面积是正方形面积的14。
3×3÷2×4=18(㎝2)【周长】【面积】【1】判断:在周长都为8厘米的正方形和长方形中,面积较大的是正方形。
【答案】√【周长面积】【2】由5个正方形组成的十字架图形的面积是180,求它的周长是多少?【答案】72【面积】【1】等腰梯形的对角线互相垂直,一条对角线的长是9厘米,求梯形的面积。
【答案】40.5平方厘米【面积】【差不变】【2】如图,有边长分别是16分米和24分米的两个正方形,一条直线把这两个相连的正方形分成四部分。
甲三角形的面积比乙三角形的面积多多少平方分米?【答案】96【面积】【格点多边形】【2】、在边长等于5厘米的正方形内有一个平行四边形,这个平行四边形面积是多少?【答案】14平方厘米【面积】【格点多边形】【2】如图,计算这个格点多边形的面积.(每一格为单位1)【答案】6.5【等高模型】【2】如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.【答案】223【等高模型】【2】As shown below, the area of the parallelogram ABCD is 54 cm 2, E, F trisect CA and BA, the areaof the shadow is _________.【答案】6cm 2【等高模型】【3】如图:正方形ABCD 的边长为12厘米,P 是AB 边上的任意一点,M 、N 、I 、H 分别是BC 、AD 上的三等分点(即BM=MN=NC ),E 、F 、G 是边CD 上的四等分点,图中阴影部分面积是多少平方厘米。
口奥1
口奥13
1.“火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几
盏灯?”
2.点子图中小正方形的边长为1厘米,以图中各点为顶点,围成面积
是3平方厘米的三角形共个。
●●●●●
●●●●●
●●●●●
3.等腰梯形的对角线互相垂直,一条对角线的长是9厘米,求梯形的
面积。
4.姐妹两在同一环境中学习,妹妹勤学,学一知三,姐姐懒惰学三
忘二,请猜一下妹妹在6年间所学的知识,姐姐需要学年。
答案:
1.解:1+2+22+23+24+25+26=127
381÷127=3
所以第一层有3盏灯,第四层
3×33=24
2.解:围成的三角形共有28个。
3.梯形面积40.5平方厘米。
4.已知妹妹学一知三,她用由学一知一的人来学需要18年。
又已知姐姐学三忘二,于是妹妹6年学懂的知识,姐姐需要18×3=54年才能学懂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【四边形】【1】在一本数学书的插图中,有100个平行四边形,80个长方形,40个菱形。
这本书的插图中正方形最多有_____个。
【答案】40个
【最值】【剪拼】—个边长就是7厘米的正方形纸片,最多能裁出多少个长就是4厘米,宽就是1厘米的长方形纸条?
【答案】12
【剪拼】【2】图中由24个正方形组成,请通过P点画一条直线,把这个图形分割成面积相等的两部分。
P
【答案】
P
【面积】【2】求出图中梯形ABCD的面积。
其中BC=10厘米。
B E
【答案】50平方厘米
【面积】【3】用4个相同的等腰直角三角形相互交叠拼成下图,阴影正方形的面积就是平方厘米。
3
【答案】18平方厘米
3
图中的阴影部分面积就是正方形面积的1
4。
3×3÷2×4=18(㎝2)
【周长】【面积】【1】判断:在周长都为8厘米的正方形与长方形中,面积较大的就是正方形。
【答案】√
【周长面积】【2】由5个正方形组成的十字架图形的面积就是180,求它的周长就是多少?
【答案】72
【面积】【1】等腰梯形的对角线互相垂直,一条对角线的长就是9厘米,求梯形的面积。
【答案】40、5平方厘米
【面积】【差不变】【2】如图,有边长分别就是16分米与24分米的两个正方形,一条直线把这两个相连的正方形分成四部分。
甲三角形的面积比乙三角形的面积多多少平方分米?
【答案】96
【面积】【格点多边形】【2】、在边长等于5厘米的正方形内有一个平行四边形,这个平行四边形面积就是多少?
【答案】14平方厘米
【面积】【格点多边形】【2】如图,计算这个格点多边形的面积、(每一格为单位
1)
【答案】6、5
【等高模型】【2】如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米
.
【答案】223
【等高模型】【2】As shown below, the area of the parallelogram ABCD is 54 cm 2, E, F trisect CA and BA, the area of the shadow is _________、
【答案】6cm 2
【等高模型】【3】如图:正方形ABCD 的边长为12厘米,P 就是AB 边上的任意一点,M 、N 、I 、H 分别就是BC 、AD 上的三等分点(即BM=MN=NC),E 、F 、G 就是边CD 上的四等分点,图中阴影部分面积就是多少平方厘米。
F C
A M
N H I
【答案】60平方厘米
【等高模型】【3】如图:正方形ABCD 的边长为12厘米,P 就是AB 边上的任意一点,M 、N 、分别就是BC 、AD 上的三等分点,E 就是边CD 的中点,图中三角形APN 与三角形PMC 面积总与就是________平方厘米。
E
A D B
P M
N
【答案】48
【等高模型】【1】如图,已知AF=FC,BD=DE=EC,三角形ADF 的面积就是20,求三角形ABC 的面积就是多少?
A
C
B D E
【答案】60
【鸟头模型】【2】在三角形ABC 中,BD=2DC,AE=BE,已知三角形ABC 的面积就是18平方厘米,那么四边形AEDC 的面积等于多少平方厘米?
C
B
A
D
【答案】12平方厘米
【鸟头模型】【2】在三角形ABC 中,BD=2DC,AE=BE,已知三角形ABC 的面积就是36平方厘米,那么四边形AEDC 的面积等于多少平方厘米?
C
B
A
D
【答案】24平方厘米
【等高模型】【2】如图:一个长方形被分成A 、B 、C 、D 四个小长方形,已知A 的面积就是2平方厘米,B 的
面积就是3平方厘米,C的面积就是5平方厘米,那么原长方形的面积就是多少平方厘米?
【答案】17、5平方厘米
D=B×C÷A=3×5÷2=7、5(㎝2)
长方形面积:A+B+C+D=2+3+5+7、5=17、5(㎝2)
【等高模型】【2】如图:一个长方形被分成A、B、C、D四个小长方形,已知A的面积就是2平方厘米,B的面积就是4平方厘米,C的面积就是6平方厘米,那么原长方形的面积就是多少平方厘米?
【答案】24平方厘米
【等高模型】【2】图中的数据分别表示两个长方形与一个直角三角形的面积,另一个三角形的面积就是多少?
【答案】15
15×12÷4÷3=15
【一半模型】【3】已知:如图,在□ABCD中,E、F分别为AB与AD上的点,且△MBE的面积为13,△PFD的面积为35,四边形AENF的面积为49,求阴影部分的面积。
P
M
N
A
B
D
F
E
【答案】97
【一半模型】【2】如图:一个长方形被分成4个不同的三角形,如果绿色三角形的面积就是原长方形面积的
1
5
,黄色三角形面积就是15平方厘米,那么原长方形的面积就是多少平方厘米?
A C
B D
A C
B D
【答案】50平方厘米
15÷(0、5-0、2)=50(平方厘米)
【一半模型】【2】如图:一个长方形被分成4个不同的三角形,如果绿色三角形的面积就是原长方形面积的25,黄色三角形面积就是15平方厘米,那么原长方形的面积就是多少平方厘米?
【答案】150平方厘米
15÷(0、5-0、4)=150(平方厘米)
【等积变形】【2】梯形ABCD 中,AB 平行于CD,对角线AC,BD 交于O 点,OE 平行于AB 、CD,交腰BC 于E 点,如果三角形ADE 的面积就是90平方厘米,那么三角形BOC 的面积就是多少平方厘米?
D C
【答案】45平方厘米
【蝴蝶模型】【3】如图,已知阴影部分的面积就是40平方厘米,长方形ABCD 的长为20厘米,宽为12厘米,求三角形ABF 与三角形CEF 的面积之与。
C D A
E
【答案】100平方厘米
【勾股定理】【1】观察下列各组数,不能够构成直角三角形三边的有哪些?
(A)3,4,5;
(B)5,12,13;
(C)6,10,15;
(D)7,24,25
【答案】C
【立体几何】【2】一个零件形状大小如下图:算一算,它的体积就是多少立方厘米?
【答案】160立方厘米
【立体几何】【2】一个长方体,它的高与宽都相等,如果把它的长去掉3厘米,就成为表面积就是150平方厘米的正方体,原来长方体的体积就是多少立方厘米?
【答案】200立方厘米
正方体一个面的面积:150÷6=25(平方厘米)
因为25=5×5,所以正方体棱长就是5厘米
长方体体积:5×5×(5+3)=200(立方厘米)
【立体几何】【3】一根底面就是正方形的长方体木料,表面积为114平方厘米,锯去一个最大的正方体之后,余下的长方体的表面积为54平方厘米,那么,锯下的正方体的表面积为多少平方厘米?
【答案】90平方厘米
正方体的一个面:(114-54)÷4=15(平方厘米)
正方体的表面积:15×6=90(平方厘米)
【立体几何】【3】长方体的表面积就是74平方厘米,其中一个底面的面积就是10平方厘米,底面的周长就是9厘米。
这个长方体的体积就是多少立方厘米?
【答案】60立方厘米
侧面积:74-10×2=54(平方厘米)
高:54÷9=6(厘米)
长方体体积:10×6=60(立方厘米)
【立体几何】【2】把一个长、宽、高分别就是5厘米、4厘米、2厘米的长方体截成两个长方体,使这两个长方体的表面积之与最大,这时表面积之与就是多少?
【答案】116平方厘米
(5×4+5×2+4×2)×2+5×4×2=116(平方厘米)
【立体几何】【2】将一个棱长为4分米的正方体,从上、左、前3个方向各切1刀,切成8个相同的小正方体,这些小正方体的表面积之与就是________。
【答案】192平方分米
【立体几何】【2】在一个5×4×3的长方体表面涂成红色,然后将其切割成棱长就是1的小正方体。
那么其中一个面、两个面、三个面被涂成红色的小正方体各有多少块?
【答案】22,24,8。