五年级数学培优:盈亏问题

合集下载

小学五年级奥数盈亏问题

小学五年级奥数盈亏问题

第一讲盈亏问题知识要点:盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。

盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次刚好够分;4.不足适足:一次分配不够,一次分配正好。

一些非标准盈亏问题都是由标准的盈亏问题演变过来的。

解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配的对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配的对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配的对象总数。

例一、饲养员将一堆桃子分给一群猴子,如果每只猴子分10个桃子,则缺24个桃子,如果每只猴子分8个桃子,则缺2个桃子。

求有多少只猴子?多少个桃子?分析:这是一道“两亏”题。

练一练、老师给学生发奖品,如果每人7支铅笔少13支;每人6支铅笔少5支。

问学生有几人?铅笔有多少支?例二、五年级给优秀学生发奖品书。

如果每个学生发5册还剩32册;如果其中10个学生每人发4册,其余每人发8册,就恰好发完。

那么优秀学生有多少人?奖品书有多少册?分析:每人发5册,多32册;每人发()册,(多/少)()册;练一练、小明买了一本《五年级奥数》,他计划:若每天做3道题,则剩16道题;若每天坐5道题,则最后一天只要做1道题。

那么这本书共有几道题?小国计划做几天?例三、某校乒乓球队有若干名学生。

如果少一个女生,增加一个男生,则男生为总数的一半;如果少一个男生,增加一个女生,则男生为女生人数的一半,乒乓球队共有多少个学生?分析:“少一个女生,增加一个男生,则男生为总人数的一半”可知,女生比男生多2人。

小学数学盈亏问题公式及例题讲解

小学数学盈亏问题公式及例题讲解

小学数学盈亏问题公式及例题讲解数学表达上准确简洁、逻辑上抽象普适、形式上灵活多变,是宇宙交际的理想工具.下面是为大家收集的数学盈亏问题公式及例题讲解,供大家参考。

盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?”解(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?”解(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?”解(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。

(例略)观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

盈亏问题(五年级教师版)

盈亏问题(五年级教师版)

第8讲盈亏问题盈亏问题又叫盈不足问题,是指把固定数量的物品平均分给固定的对象,因为两种不同的分配标准,导致两种不同的分配结果:一种标准分配后有剩余(盈);另一种标准分配后不够分(亏或不足)。

此类问题,要求通过两种分配结果的比较,求出物品总数量和固定对象的个数。

标准的盈亏问题就是两次分配的结果一盈一亏,所以就叫盈亏问题。

基本的数量关系是:(盈+亏)三两种分配标准的数量之差=固定对象数量。

广义的盈亏问题一般还包括以下四种情况:一、两次分配都有余(两盈);二、两次分配都不够分(两亏);三、一次有余,一次刚好够分(盈适足);四、一次分配不够分,一次刚好够分(亏适足)。

解决盈亏问题常用比较的解题策略:通过两次分配盈亏总额与分配数量的比较,先求出固定对象的个数,再求出分配物品的总数量。

此类问题基本数量关系有:①盈适足问题:盈余部分三两种分配标准的数量之差=固定对象数量。

②亏适足问题:亏欠部分三两种分配标准的数量之差=固定对象数量。

③两盈问题:(盈多一盈少)三两种分配标准的数量之差=固定对象数量。

④两亏问题:(亏多一亏少)三两种分配标准的数量之差=固定对象数量。

⑤盈亏问题:(盈+亏)三两种分配标准的数量之差=固定对象数量。

比较常规的盈亏问题,一般可以直接套用上面的数量关系,解决问题。

较复杂的盈亏问题,一般需要先对题中的条件进行适当的转化,将相关问题先转化成典型的盈亏问题,再求解。

【例1】“雏鹰小队”的同学们参加植树活动,如果每人栽5棵树,还剩12棵树;如果每人栽7棵,就缺4棵。

问这个小队有多少人一共要栽多少棵树解析】:可以画出线段图帮助理解题意,如下图:观察上图,比较每人栽7棵与每人栽5棵的两种情况,雏鹰小队总人数是不变的。

雏鹰小队栽树总棵数多出:12+4=16(棵);而每个人多栽:7-5=2(棵);所以小队人数为:(12+4)三(7—5)=8(人)。

由小队人数和任意一种栽法,可以求出栽树总棵数:5X8+12=52(棵)或7X8—4=52(棵)。

小学数学5年级培优奥数讲义 第11讲-盈亏问题(含解析)

小学数学5年级培优奥数讲义 第11讲-盈亏问题(含解析)

第11讲盈亏问题学习目标了解盈亏问题是什么,能够分辨出是属于盈亏问题类型掌握盈亏问题的几种基本情况,以及基本的解题方法熟悉复杂的盈亏问题,能用方法巧妙转化为基本盈亏问题知识梳理一、基本方法盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。

可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。

二、方法技巧注意1.条件转换2.关系互换典例分析考点一:直接计算型盈亏问题例1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?例2、明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4 元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?例3、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?例4、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多少只?考点二:条件关系转换型盈亏问题例1、一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?例2、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?例3、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?考点三:复杂的盈亏问题例1、国庆节快到了,学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?例2、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?例3、堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?例4、四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了多少元钱?➢课堂狙击实战演练1、有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?2、王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30 元,问儿童小提琴多少钱一把?王老师一共带了多少钱?3、工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?4、幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

五年级奥数盈亏问题

五年级奥数盈亏问题

盈亏问题把一定数量的物品平均分配给固定的对象,如果按某种标准分,则分配后有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量,此类题我们称它为余不足问题,也叫盈亏问题.对于盈亏问题,首先应分析两次分配的方法,比较分配结果的差异和产生差异的原因,在差异和原因之间找出正确的数量关系,即可求出人数或物品的个数。

盈亏问题基本类型和解法有三种:1.“一盈一亏“:(盈+亏)÷两次分得的差=参与分配对象总数;2.“两盈“:(大盈-小盈)÷两次分得的差=参与分配对象总数;3.“两亏“:(大亏 - 小亏)÷两次分得的差=参与分配对象总数。

此外,还有一些非标准的盈亏问题:盈适足(一次分配有余,一次分配正好);亏适足(一次分配不够,一次分配正好)。

它们都是由标准的盈亏问题演变而来的。

【例题1】老师将一叠练习本奖励给数学竞赛获奖的同学,如果每人奖3本,还多6本:如果每人奖5本,则少4本。

问一共有几名同学获奖?这叠练习本有多少本?五(1)班同学参加植树劳动,如果每人植树4棵,还多20棵;如果每人植树5棵,则少10棵。

五(1)班有多少同学参加植树劳动?有多少棵树?【例题2】妈妈拿钱去买大米,如果买25千克多11元;如果买30千克仍多6元。

每千克大米多少元?妈妈带了多少钱?数学兴趣小组同学研究数学题目,如果每人做7题,则少27题;如果每人做5题,则少7题。

问有多少学生?几道数学题?【例题3】一堆桃子分给一群猴子,如果每只猴子分10个桃子,则有3只猴子没有分到;如果每只猴子分8个桃子,则刚好分完。

求有多少只猴子?多少个桃子?学校有若干间宿舍,每间住12人,则空余1间;每间住10人,刚好住满。

问学校有几间宿舍?住多少人?【例题4】五(2)班同学去划船,如果增加一条船,那么每条船只要坐6人;如果减少一条船,那么每条船就坐8人。

这个班有多少名同学去划船?某班同学去划船,如果减少一条船,正好每条船坐9人;如果增加一条船,正好每条船坐7人。

小学数学盈亏问题

小学数学盈亏问题

小学数学盈亏问题专题一、盈亏问题公式:(盈+亏)÷两次分配量之差=参加分配的份数的量:被分配的量的总数和参加分配的量的总数是不变的.同样多的"盈亏问题有两个不变..物"平均分给同样多的"人",由于两次分配的方法不同,两次分配的结果就产生一个总差额,每个人在两次分配的数量也不同,即两次分配数的差,则:总差额(盈﹢亏;大盈-小盈;大亏-小亏)÷(一个人)分配数的差=共有多少人(参加分配的份数).理解:所有(人)的差或和÷一个(人)的差=共有多少(人)注:每个人在两次分配的差都相等.二、数学运算:盈亏问题计算公式教育专家建议考生应重点掌握盈亏问题的基本公式,在掌握基本公式的基础上熟悉直接计算型问题、条件转换型盈亏问题、关系互换型盈亏问题。

把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,就叫亏。

凡是研究盈和亏这一类算法的应用题就叫盈亏问题。

盈亏问题的常见题型为给出*物体的两种分配标准和结果,来求物体数量和参与分配的对象数量。

由于每次分配都可能出现刚好分完、多余或不足这三种情况,则就会有多种结果的组合,这里以一道典型的盈亏问题对三种情况的几种组合加以说明。

一、基础盈亏问题1. 一盈一亏如果每人分9 个苹果,就剩下10 个苹果;如果每人分12 个苹果,就少20 个苹果。

2. 两次皆盈如果每人分8 个苹果,就剩下20 个苹果;如果每人分7 个苹果,就剩下30 个苹果。

3. 两次皆亏如果每人分11 个苹果,就少10 个苹果;如果每人分13 个苹果,就少30 个苹果。

4. 一盈一尽如果每人分6 个苹果,就剩下40 个苹果;如果每人分10 个苹果,就刚好分完。

5. 一亏一尽如果每人分14 个苹果,就少40 个苹果;如果每人分10 个苹果,就刚好分完。

经验分享:我想跟大家说的是自己在整个考试的过程中的经验的以及自己能够成功的考上的捷径。

五年级奥数之盈亏问题

五年级奥数之盈亏问题

盈亏问题1,某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。

乒乓球队共有多少名学生?2,学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。

学校买来两种粉笔各多少盒?3,操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。

两堆货物一共有多少吨?4,五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半。

这些优秀学生中男、女生各多少人?5,幼儿园老师拿出苹果发给小朋友。

如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。

有多少个小朋友?共有多少个苹果?6,给小朋友分梨,如果每人分4个,则多9个;如果每人分5个,则少6个。

有多少个小朋友?有多少个梨?7,老把一些铅笔奖给三好学生。

每人5支则多4支,每人7支则少4支。

老师有多少支铅笔?奖给多少个三好学生?8,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每船坐6人;如果减少一条船,正好每条船上坐9人。

这个班一共有多少个同学?9,幼儿园老师将一筐苹果分给小朋友。

如果分给大班的学生每人5个余10个;如果分给小班的学生每人8个缺2个。

已知大班比小班多3人,这筐苹果有多少个?10,一些学生搬一批砖,每人搬4块,其中5人要搬两次;如果每人搬5块,就有两人没有砖可搬。

这些学生有多少人?这批砖有多少块?11,老师给幼儿园小朋友分糖,每人3块还多10块;如果减少2个小朋友再分,每人4块还多7块。

原来有多少个小朋友?有多少块糖?12,筑路队计划每天筑路720米,正好按期筑完。

实际每天多筑80米,这样,比原计划提前3天完成了筑路任务。

五年级上册数学培优奥数讲义-第20讲盈亏问题

五年级上册数学培优奥数讲义-第20讲盈亏问题

第20讲盈亏问题2知识与方法过去我们已经学会了比较简单的盈亏问题。

现在继续学习较复杂的盈亏问题,复杂的盈亏问题常用方程解决。

初级挑战1老师给一班小朋友分玩具,每人分5个则缺12个,每人分2个则还多24个,问有多少个小朋友?多少个玩具?思维点拨:由题可知,小朋友的人数和玩具的总数是不变的,可设小朋友为x人,再找出等量关系,列出方程求解即可。

答案:解:设一共有x个小朋友。

5x-12=2x+245x-12-2x=2x-2x+243x-12=243x-12+12=24+123x=363x÷3=36÷3x=12玩具:5×12-12=48(个)或2×12+24=48(个)能力探索11、一个班的小朋友一起去植树,每人5棵刚好种完;每人6棵则还差14棵。

问:有多少个小朋友?一共要种多少棵树?2、士兵背子弹行军训练,若每人背45发,则还多600发;若每人背50发,则少200发。

问:有士兵多少人?一共有多少发子弹?答案:1、解:设有x个小朋友。

5x=6x-14解之,得:x=14树: 5×14=70(棵)或6×14-14=70(棵)2、解:设有士兵x个人。

45x+600=50x-20045x+600-45x=50x-200-45x600=5x-200600+200=5x-200+200800=5x5x÷5=800÷5x=160子弹:45×160+600=7800(发)或50×160-200=7800(发)初级挑战2一些小朋友分香蕉,每个小朋友分40根,则还缺30根;每个小朋友分45根,则还缺50根。

问:有多少个小朋友?一共有多少根香蕉?思维点拨:解:设有x个小朋友,可列方程为=。

答案:解:设有x个小朋友。

40 x-30=45 x-50解之,得x=4香蕉:40×4-30=130(根)或45×4-50=130(根)能力探索2六(2)班同学带了一些苹果去小区敬老院慰问老人,如果给每个老人分11个苹果,则剩下39个苹果;如果给每个老人分14个苹果,则剩下12个苹果。

(完整版)五年级奥数盈亏问题

(完整版)五年级奥数盈亏问题

盈亏问题一、方法讲解在日常生活中有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。

盈亏问题就是在盈亏的情况下确定物品总数和参加分配的人数。

解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。

盈亏问题的数量关系是:〔1〕〔盈+亏〕÷两次分配差=份数〔大盈-小盈〕÷两次分配差=份数〔大亏-小亏〕÷两次分配差=份数2〕每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量二、例题讲解例1.学校将一批铅笔奖给三好学生。

如果每人奖9支,那么缺35支;如果每人奖7支,那么缺7支。

三好学生有多少人?铅笔有多少支?例2.学校给一批新入学的学生分配宿舍。

如果每个房间住12人,那么34人没有位置;如果每个房间住14人,那么空出4个房间。

求学生宿舍有多少间?住宿学生有多少人?例例3.三〔1〕班学生去公园划船,如果每条船坐4人,那么少1条船;如果每例条船坐6人,那么多出4条船。

公园里有多少条船?三〔1〕班有多少个学生?例例 4.在桥上用绳子测桥离水面的高度。

假设把绳子对折垂到水面,那么余8米;假设把绳例子三折垂到水面,那么余2米。

问:桥有多高?绳子有多长?例例 5.一个学生从家到学校,如以每分钟50米的速度行走,就要迟到8分钟;如果以每分钟60米的速度行走,就可以提前5分钟到校。

这个学生出发时离上学时间有多少分钟?1/36.少先队员植树,如果每人挖5个坑,那么还有3个坑无人挖;如果其2人各挖4个坑,其余每人挖6个坑,那么恰好将坑挖完。

问:一共要挖几个坑?例7.有假设干个苹果和假设干个梨。

如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨。

问:苹果和梨各有多少个?三.达标练习1.将月季花插入一些花瓶中。

如果每瓶插8朵,那么缺少15朵;如果每瓶改为插6朵,那么缺少1朵。

【精品】五年级奥数培优教程讲义第11讲-盈亏问题(学生版)

【精品】五年级奥数培优教程讲义第11讲-盈亏问题(学生版)

第11讲盈亏问题学习目标了解盈亏问题是什么,能够分辨出是属于盈亏问题类型掌握盈亏问题的几种基本情况,以及基本的解题方法熟悉复杂的盈亏问题,能用方法巧妙转化为基本盈亏问题知识梳理一、基本方法盈亏问题知识点说明:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”。

可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”。

二、方法技巧注意1.条件转换 2.关系互换典例分析考点一:直接计算型盈亏问题例1、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?例2、明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4 元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?例3、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?例4、猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多少只?考点二:条件关系转换型盈亏问题例1、一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?例2、猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?例3、实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?考点三:复杂的盈亏问题例1、国庆节快到了,学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?例2、妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?例3、堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?例4、四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了多少元钱?实战演练?课堂狙击1、有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?2、王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30 元,问儿童小提琴多少钱一把?王老师一共带了多少钱?3、工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?4、幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。

盈亏问题五年级练习题

盈亏问题五年级练习题

盈亏问题五年级练习题盈亏问题是数学中常见的问题,通常涉及到分配物品或资源时的剩余或不足。

以下是一些适合五年级学生的盈亏问题练习题:1. 学校购买了一些篮球,如果每队分5个,会剩下3个;如果每队分6个,就会缺少2个。

请问学校一共买了多少个篮球?2. 小明有若干张邮票,如果每本集邮册放20张,会剩下4张;如果每本集邮册放25张,就会缺少3张。

小明一共有多少张邮票?3. 小红在班级里分发水果,如果每人分3个,会剩下4个;如果每人分4个,就会缺少2个。

班级里有多少名学生?4. 一个书架上可以放30本书,如果每层放5本,会剩下3本;如果每层放6本,就会缺少1本。

书架有多少层?5. 某班级有学生参加数学竞赛,如果每队4人,会剩下3人;如果每队5人,就会缺少2人。

这个班级有多少人?6. 一块布料可以做10件衣服,如果每件衣服用2米布料,会剩下1米;如果每件衣服用2.2米布料,就会缺少0.5米。

这块布料有多少米?7. 学校要为每个班级分配图书,如果每班分10本,会剩下8本;如果每班分12本,就会缺少4本。

学校有多少个班级?8. 小华有一些糖果,如果每袋装5颗,会剩下3颗;如果每袋装6颗,就会缺少1颗。

小华有多少颗糖果?9. 一个果园里有若干棵苹果树,如果每行种5棵,会剩下3棵;如果每行种6棵,就会缺少1棵。

果园里有多少棵苹果树?10. 一个班级要进行植树活动,如果每组种3棵树,会剩下2棵树;如果每组种4棵树,就会缺少1棵树。

这个班级有多少个小组?这些练习题可以帮助学生理解盈亏问题的基本解法,通过实际问题的解决,提高他们的数学思维和解题能力。

小学数学竞赛:盈亏问题(一).学生版解题技巧 培优 易错 难

小学数学竞赛:盈亏问题(一).学生版解题技巧 培优 易错 难
【例 16】妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?
【巩固】大猴采到一堆桃子,分给一群小猴吃。如果其中两只小猴各分得4个桃,其余每只小猴各分得2个桃,则最后剩4个桃;如果其中一只小猴分得6个桃,其余每只小猴各分得4个桃,那么还差12个桃,大猴共采到个桃,这群小猴共只。
【例 19】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?
【巩固】阳光小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?
【巩固】学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?
【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?
【例 12】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?
【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?
【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?
【巩固】幼儿园的老师给小朋友们发梨。每人 个就剩 个,每人 个便少 个。共有位小朋友个梨。
【巩固】幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有______个,小朋友共______组。

【精品】五年级(上)-数学应用题及解析-类型五--盈亏问题-人教新课标版(2014秋)

【精品】五年级(上)-数学应用题及解析-类型五--盈亏问题-人教新课标版(2014秋)

类型五盈亏问题【知识讲解】一、盈亏问题:把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。

凡是研究盈和亏这一类算法的应用题就叫盈亏问题。

二、盈亏问题类型:(一)盈盈或亏亏(1)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数例如:士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多280发。

问:有士兵多少人?有子弹多少发?士兵:(680-280)÷(50-45)=80(人)子弹:50×80+280=4280(发)答:有士兵80人,有子弹4280发。

(2)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数例如:将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?学生:(90-8)÷(10-8)=41(人)本:10×41-90=320(本)答:有41学生和320本本子。

(二)盈+亏(3)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数例如:小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?小朋友:(7+9)÷(10-8)=8(人)桃子:10×8-9=71(个)答:有8个小朋友和71个桃子。

(三)一次盈或亏(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数例如:老师将一些练习本发给班上的学生。

如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完。

有多少个学生?多少本练习本?学生:10×2÷(10-8)=10(个)练习本:8×10=80(本)(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数例如:某校在植树活动中,把一批树苗分给各班,如果每班分18棵,就会有余下24棵;如果每班分20棵,正好分完。

五年级数学 盈亏问题

五年级数学 盈亏问题

第12周盈亏问题专题简析:盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。

例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。

小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。

盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1,两盈:两次分配都有多余;2,两不足:两次分配都不够;3,盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。

一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。

解题时我们可以记住:1,“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2,“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3,“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。

例1 某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。

乒乓球队共有多少名学生?分析(1)由“少一个女生,增加一个男生,则男生为总人数的一半”可知:女生比男生多2人;(2)“少一个男生,增加一个女生”后,女生就比男生多2+2=4人,这时男生为女生人数的一半,即现在女生有4×2=8人。

原来女生有8-1=7人,男生有7-2=5人,共有7+5=12人。

练习一1,学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。

学校买来两种粉笔各多少盒?2,操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。

小学数学竞赛:盈亏问题(一).教师版解题技巧 培优 易错 难

小学数学竞赛:盈亏问题(一).教师版解题技巧 培优 易错 难

1. 熟练掌握盈亏问题的本质.2. 运用盈亏问题的解题方法解决一些生活实际问题.盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.可以得出盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种情况,都是属于按两个数的差求未知数的“盈亏问题”.注意:1.条件转换; 2.关系互换.模块一、利用盈亏公式直接计算(一)盈+亏型【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541-=(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729+=(块),每人相差1块,结果总数就相差9块,所以有少先队员919÷=(人).共有砖:49743⨯+=(块). 【答案】9人,搬43块【巩固】 把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有 人。

【考点】盈亏问题 【难度】1星 【题型】填空【关键词】希望杯,4年级,1试【解析】 盈亏问题:(12+2)÷(3-2)=14人【答案】14人【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【考点】盈亏问题 【难度】1星 【题型】解答【解析】 由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【答案】15位同学分69粒糖【巩固】 秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?知识精讲教学目标6-1-7.盈亏问题(一)【考点】盈亏问题【难度】1星【题型】解答【解析】题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或4×28+48=160(个).【答案】160个萝卜吃28天【巩固】幼儿园的老师给小朋友们发梨。

五年级盈亏问题练习题

五年级盈亏问题练习题

五年级盈亏问题练习题盈亏问题是数学中常见的问题类型,它通常涉及到分配资源时的剩余或不足。

以下是一些适合五年级学生的盈亏问题练习题:1. 学校图书馆有一批新书,如果每班分5本,会剩下20本;如果每班分8本,就会缺少4本。

问学校一共有多少个班级,这批新书共有多少本?2. 班级里要分发水果,如果每人分4个,会剩下10个;如果每人分5个,就会缺少5个。

问班级里有多少名学生,水果总共有多少个?3. 一个工厂有一批零件,如果每箱装50个,会剩下20个;如果每箱装60个,会缺少40个。

问工厂有多少箱零件,这批零件总共有多少个?4. 学校组织春游,如果每辆车坐30人,会剩下20人;如果每辆车坐35人,刚好坐满。

问学校租了多少辆车,参加春游的学生总共有多少人?5. 一个农场主有一批鸡蛋,如果每箱装12个,会剩下10个;如果每箱装15个,会缺少10个。

问农场主有多少箱鸡蛋,这批鸡蛋总共有多少个?6. 学校运动会上,如果每队有8人,会缺少4人;如果每队有10人,会剩下6人。

问学校有多少个运动队,参加运动会的学生总共有多少人?7. 一个班级有一批文具,如果每人分3件,会剩下2件;如果每人分4件,会缺少1件。

问班级有多少名学生,这批文具总共有多少件?8. 一个水果店有一批苹果,如果每箱装25个,会剩下15个;如果每箱装30个,会缺少5个。

问水果店有多少箱苹果,这批苹果总共有多少个?9. 一个班级要进行植树活动,如果每组种5棵树,会剩下3棵树;如果每组种6棵树,会缺少2棵树。

问班级有多少个小组,需要种多少棵树?10. 一个班级要进行数学竞赛,如果每组有4人,会剩下2人;如果每组有5人,刚好分完。

问班级有多少个小组,参加数学竞赛的学生总共有多少人?解答这些问题时,学生需要掌握基本的数学运算技能,包括加法、减法、乘法和除法。

同时,他们也需要理解盈亏问题的基本概念,比如如何通过盈余和亏损来推算总数和单位数。

人教版数学五年级上册经典培优 盈亏问题

人教版数学五年级上册经典培优 盈亏问题
【点睛】
考查了盈亏问题。也可以用方程来解答。
2.24只;152个
【分析】
设出猴子的总数,表示出桃子的数量,根据两次分配桃子的数量不变,列方程求解。
【详解】
解:设猴ቤተ መጻሕፍቲ ባይዱ上有x只猴;
答:猴山上有24只猴;共买来152个桃。
【点睛】
本题是盈亏问题中较为复杂的类型,第二次分配,大猴和小猴所分到的数量不一样,用算术方法求解不是很方便,可以考虑列方程求解。
21.老师给幼儿园的小朋友分苹果,如果每位小朋友分2个,还多30个;如果其中的12位小朋友分3个,剩下的每人分4个,正好分完。一共有几位小朋友,有几个苹果?
22.学校给参加夏令营的同学租了几辆大轿车,如果每辆车乘28人,则有13名同学上不了车;如果每辆车乘32人,则还有3个空座。一共有同学几名?
23.学校给住宿的新生安排宿舍,如果按7人一间安排比按8人一间多用两间宿舍,有多少住宿的新生?
【详解】
解:设有x个班级;
答:买来篮球24个;排球48个。
【点睛】
对于盈亏问题,当两次分配时的总数不一致的时候,列方程求解比较简单。
14.大米70吨;面粉35吨
【分析】
把车的数量设成未知数,表示出面粉和大米的数量,根据2倍的关系列方程求解。
【详解】
解:设总共有x辆车运送;

答:面粉有35吨,大米有70吨。
5.208人
【分析】
两次站队时的总人数和列数是不变的,第二次相比第一次,每列多了3人,总共要多站57人,可先求出列数,再求出总人数。
【详解】
答:参加团体操的同学有208人。
【点睛】
对于盈亏问题,不论是“盈亏型”、“盈盈型”还是“亏亏型”,先要分辨出题目中是将什么东西分配给什么,找出“盈”和“亏”,判断具体的类型,选择合适的公式求解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级数学培优:盈亏问题
【专题导引】
盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。

例如:把一袋饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。

小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。

盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:
1.两盈:两次分配都有多余;
2.两不足:两次分配都不够;
3.盈适足:一次分配有余,一次刚好够分;
4.不足适足:一次分配不够,一次分配正好。

一些非标准的盈亏问题的数量关系是由标准的盈亏问题演变过来的。

解题时我们可以记住:
1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;
2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;
3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。

【典型例题】
【例1】某校乒乓球队有若干名学生。

如果少一个女生,增加一个男生则男生为总数的一半;如果少一个男生,增加一个女生,则男生为女生人数的一半,乒乓球队共有多少个学生?
【试一试】
1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒。

彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍,学校买来两种粉笔各多少盒?
2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重,若甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。

求这两堆货物一共有多少吨?
【例2】幼儿园老师给小朋友分梨子,如果每人分4个,则多9个;如果每人分5个,则少6个。

问有多少个小朋友?有多少个梨子?
【试一试】
1.小明去买练习本,他付给营业员的钱买4本多1元,买6本又差2元。

小明付给营业员多少元?每本练习本多少元?
2.老师把一些铅笔奖给三好学生。

每人5支则多4支;每人7支则少4支。

老师有多少支铅笔?奖给多少个三好学生?
【例3】小红把自己的一些连环画借给她的几位同学。

若每人借5本则差17本;若每人借3本,则差3本。

问小红的同学有几人?她一共有多少本连环画?
【试一试】
1.六(1)班第一小队的同学去栽树,如果每人栽8棵则少27棵;如果每人栽
6棵则少5棵。

六(1)班第一小队有多少个同学?她们要栽多少棵树?
2.学校将一批铅笔奖给三好学生,每人9支缺15枝;每人7支缺7枝。

问三好学生有多少人?铅笔有多少枝?
【例4】幼儿教师把一箱饼分给小班和中班的小朋友,平均每人分得6块;如果只分给中班的小朋友,平均每人可以多分得4块。

如果只分给小班的小朋友,平均每人分得多少块?
【试一试】
1.老师把一批书借给甲组同学,平均每人借4本,如果只借给甲组的女同学,每人可借6本。

如果只借给甲组的男生,平均每人借到几本?
2.甲、乙两组同学做红花,每人做8朵,正好送给五年级每个同学一朵。

如果把这些红花让甲组同学单独做,每人要多做4朵。

如果把这些红花让乙组同学单独做,每人要做几朵?
【﹡例5】全班同学去划船,如果减少一条船,每条船正好坐9个同学;如果增加一条船,每条船正好坐6个同学。

这个班有多少个同学?
【﹡试一试】
1.老师把一篮苹果分给小班的同学,如果减少一个同学,每个同学正好分得5个;如果增加一个同学,正好每人分得4个。

求这篮苹果一共有多少个?
2.五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人。

求这个年级共有多少个同学?
课外作业
家长签名:
1.老师把一袋糖分给小朋友。

如果只分给小班,每人可得12块,如果分给中班和小班,每人只能分到4块。

如果这袋糖只分给中班,每人可分到几块?
2.老师将一批铅笔将给三好学生,每人4支多10支;每人6支多2支。

问:三好学生有多少人?铅笔有多少支?
3.幼儿园老师将一筐苹果分给小朋友。

如果分给大班的学生每人5个余10个;如果分给小班的学生每人8个缺2个。

已知大班比小班多3个学生,这筐苹果有多少个?
4.五(1)班的优秀学生中,若增加2个男生,减少1个女生,则男、女生人数同样多,若减少1个男生,增加1个女生,则男生是女生人数的一半。

这些优秀学生中男、女生各多少人?
5.动物园饲养员把一堆桃子分给一群猴子。

如果每只猴子分10个桃子,则有两只猴子没有分到,如果每只猴子分8个桃子,正好分完。

一共有多少只猴子?
6.某小学190个学生外出参观,如果每辆车坐55人,就会余下30个座位;如果每辆车坐50人呢?
﹡7.一个旅游团去旅馆住宿,6人一间,多2个房间;若4人一间又少2个房间。

旅游团共有多少人?。

相关文档
最新文档