集合的含义及其表示方法(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1集合的含义及其表示方法(1)

(预习案)

【使用说明及学法指导】

课前先预习新知,将预习中不能解决的问题或有疑问的问题用双色笔标识出来并填入表格中,以便和老师、同学进行讨论。

一、课前预习新知

(一)、预习目标:

初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法

(二)、预习内容:

阅读教材填空:

1 、集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(或)。构成集合的每个对象叫做这个集合的(或)。

2、集合与元素的表示:集合通常用来表示,它们的元素通常用来表示。

3、元素与集合的关系:

如果a是集合A的元素,就说,记作,读作。

如果a不是集合A的元素,就说,记作,读作。

4.常用的数集及其记号:

(1)自然数集:,记作。

(2)正整数集:,记作。

(3)整数集:,记作。

(4)有理数集:,记作。

(5)实数集:,记作。

(三)、提出疑惑:

(课堂探究案)

二、课内探究新知

(一)、学习目标

1. 知识与技能:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.

2、情感、态度、价值观:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.

【学习重、难点】

学习重点:集合的基本概念与表示方法.

学习难点:选择恰当的方法表示一些简单的集合.

(二)、学习过程

1、 核对预习学案中的答案

2、 思考下列问题

①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?” ②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?

③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.

④如果用A 表示高一(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一

(4)班的一位同学,那么a 、b 与集合A 分别有什么关系?由此看见元素与集合之间有什么关系? ⑤世界上最高的山能不能构成一个集合?

⑥世界上的高山能不能构成一个集合?

⑦问题⑥说明集合中的元素具有什么性质?

⑧由实数1、2、3、1组成的集合有几个元素?

⑨问题⑧说明集合中的元素具有什么性质?

⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?

3、集合元素的三要素是 、 、 。

4、例题

例题1.下列各组对象不能组成集合的是( )

A.大于6的所有整数

B.高中数学的所有难题

C.被3除余2的所有整数

D.函数y=x

1图象上所有的点 变式训练1

1.下列条件能形成集合的是( )

A.充分小的负数全体

B.爱好足球的人

C.中国的富翁

D.某公司的全体员工

例题2.下列结论中,不正确的是( )

A.若a ∈N ,则-a N

B.若a ∈Z ,则a 2∈Z

C.若a ∈Q ,则|a |∈Q

D.若a ∈R ,则R a ∈3

变式训练2判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”

(1)所有在N 中的元素都在N *中( )

(2)所有在N 中的元素都在Z中( )

(3)所有不在N *中的数都不在Z 中( )

(4)所有不在Q 中的实数都在R 中( )

(5)由既在R 中又在N *中的数组成的集合中一定包含数0( )

(6)不在N 中的数不能使方程4x =8成立( )

5、 课堂小结

三、当堂检测

1、你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。 你能否确定,你所在班级中,最高的3位同学构成的集合?

2、填空:或用符号∉∈

(1) -3 N ; (2)3.14 Q ; (3)

31 Q ; (4)0 Φ ;

(5; (6)2

1-

R ; (7)1 N +; (8)π R 。

训练案 课后练习巩固新知

1.下列对象能否组成集合:

(1)数组1、3、5、7;

(2)到两定点距离的和等于两定点间距离的点;

(3)满足3x-2>x+3的全体实数;

(4)所有直角三角形;

(5)美国NBA 的著名篮球明星;

(6)所有绝对值等于6的数;

(7)所有绝对值小于3的整数;

(8)中国男子足球队中技术很差的队员;

(9)参加2008年奥运会的中国代表团成员.

2.(口答)说出下面集合中的元素:

(1){大于3小于11的偶数};

(2){平方等于1的数};

(3){15的正约数}.

3.用符号∈或∉填空:

(1)1______N ,0______N ,-3______N ,0.5______N ,2______N ;

(2)1______Z,0______Z,-3______Z,0.5______Z,2______Z;

(3)1______Q,0______Q,-3______Q,0.5______Q,2______Q;

(4)1______R,0______R,-3______R,0.5______R,2______R.

4.判断正误:

(1)所有属于N的元素都属于N*. ( )

(2)所有属于N的元素都属于Z. ( )

(3)所有不属于N*的数都不属于Z. ( )

(4)所有不属于Q的实数都属于R. ( )

(5)不属于N的数不能使方程4x=8成立. ( )

相关文档
最新文档