干燥特性曲线

合集下载

化工原理实验思考题整理

化工原理实验思考题整理

1.洞道干燥实验及干燥特性曲线的测定(1)什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?答:恒定干燥条件指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定。

本实验中所采取的措施:干燥室其侧面及底面均外包绝缘材料、用电加热器加热空气再通入干燥室且流速保持恒定、湿物的放置要与气流保持平行。

(2)控制恒速干燥速率阶段的因素是什么?降速的又是什么?答:①恒速干燥阶段的干燥速率的大小取决于物料表面水分的汽化速率,亦取决定于物料外部的干燥条件,所以恒定干燥阶段又称为表面汽化控制阶段。

②降速阶段的干燥速率取决于物料本身结构、形状和尺寸,而与干燥介质的状态参数关系不大,故降速阶段又称物料内部迁移控制阶段。

(3)为什么要先启动风机,再启动加热器?实验过程中干湿球温度计是否变化?为什么?如何判断实验已经结束?答:①让加热器通过风冷慢慢加热,避免损坏加热器,反之如果先启动加热器,通过风机的吹风会出现急冷,高温极冷,损坏加热器;②理论上干、湿球温度是不变的,但实验过程中干球温度不变,但湿球温度缓慢上升,估计是因为干燥的速率不断降低,使得气体湿度降低,从而温度变化。

③湿毛毡恒重时,即为实验结束。

(4)若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率,临界湿含量又如何变化?为什么?答:干燥曲线起始点上升,下降幅度增大,达到临界点时间缩短,临界点含水量降低。

因为加快了热空气排湿能力。

(5)毛毡含水是什么性质的水分?毛毡含水有自由水和平衡水,其中干燥为了除去自由水。

(6)实验过程中干、湿球温度计是否变化?为什么?答:实验结果表明干、湿球温度计都有变化,但变化不大。

理论上用大量的湿空气干燥少量物料可认为符合定态空气条件。

定态空气条件:空气状态不变(气流的温度t、相对湿度φ)等。

干球温度不变,湿球温度不变。

绝热增湿过程,则干球温度变小,湿球温度不变。

(7)什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?答:①指干燥介质的温度、湿度、流速及与物料的接触方式,均在整个干燥过程中保持恒定;②本实验中本实验用大量空气干燥少量物料,则可以认为湿空气在干燥过程温度。

干燥特性曲线实验报告

干燥特性曲线实验报告

洞道干燥特性曲线测定实验一、实验目的1. 了解洞道干燥装置和流化床干燥装置的基本结构、工艺流程和操作方法。

2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。

3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。

4. 实验研究干燥条件对于干燥过程特性的影响。

二、基本原理在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。

由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。

1. 干燥速率的定义干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即:CG dX dWU Ad Ad ττ==- kg/(m2s)(11-1)式中,U -干燥速率,又称干燥通量,kg/(m2s );A -干燥表面积,m2;W -汽化的湿分量,kg ;τ -干燥时间,s ;Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料 2. 干燥速率的测定方法(1)将电子天平开启,待用。

将快速水分测定仪开启,待用。

(2)将~1kg 的湿物料(如取~1kg 的黄豆放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。

(3)开启风机,调节风量至40~60m3/h ,打开加热器加热。

待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。

将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量iCG 。

则物料中瞬间含水率iCiCi i G G G X -=。

计算出每一时刻的瞬间含水率i X ,然后将i X 对干燥时间i τ作图,如图11-1,即为干燥曲线。

图11-1恒定干燥条件下的干燥曲线上述干燥曲线还可以变换得到干燥速率曲线。

食品工程原理实验——干燥曲线

食品工程原理实验——干燥曲线

实验四干燥速率曲线与干燥速率曲线测定一、实验目的1. 测定在恒定干燥条件下,物料的干燥曲线与干燥速率曲线。

2. 用湿球法测定空气的湿度。

3. 测定恒速干燥阶段的传质系数KH和传热系数a。

4. 了解影响干燥速率曲线的主要因素。

二、实验原理1. 恒定干燥条件——干燥过程中湿空气的温度、湿度、流速及物料接触方式均保持不变。

2. 干燥速率U=﹣,kg/(m2·s)U=﹣Gc——绝干物料质量,kg; A——物料干燥表面积,m2 。

以干燥时间τ对物料干基含水率X作图,可得干燥曲线,如图a所示。

以物料干基含水率X对干燥速率U作图,可得干燥速率曲线,如图b所示。

1.传质系数和传热系数a的确定在恒定干燥条件下,当干燥处于恒速阶段时,干燥速率可用湿度差或温度差作为推动力表示为: U=KH(HW﹣H) U=a(t﹣tW)2.湿球温度湿球温度是湿空气与湿纱布之间传热和传质达到稳态时湿纱布的温度,其关联式可由上述传热方程和传质方程推出:tW=t﹣(Hw﹣H)当空气速度为3.8~10.2 m/s 范围时,a/KH≈0.96~1.005三、实验装置1、实验装置为对流箱式干燥器。

装置结构及流程图可参见实验仿真系统干燥实验界面图。

2、本装置采用电子天平和数码显示仪表。

四、实验方法1. 首先熟悉实验原理和实验装置结构及流程。

2. 本实验物料为砖片,规格如下:Gc=100g 尺寸为100mm*40mm*8mm3. 正确操作顺序:(1)启动风机,用风量调节阀调节流量;(2)调节温控器至合适温度后,接通加热器;(3)当达到恒定温度(继电器的红绿指示灯交替亮灭)后,将物料装入干燥室内,关上干燥室门,同时尽快按动计时器按钮,此时,可按动按钮,调入原始数据记录表格;(4)按动按钮可计入当前一组原始数据,在物料含水率范围内分为15~25个数据点;(5)按动按钮,进入数据处理环境界面,可以查看数据处理结果表格,并可按动按钮,选择或按钮,查看曲线图及其回归方程式;(6)如认为数据点分布不合适,可按动返回实验环境,按动按钮后重新做实验。

《干燥曲线的测定》课件

《干燥曲线的测定》课件
实验操作过程中可能存在操作误差 ,影响实验结果。
改进建议
加强实验操作培训,提高操作人员的 技能水平,确保实验操作的准确性和 一致性。
问题
实验数据处理的算法和模型可能存 在局限性,影响结果的解释和应用 。
改进建议
深入研究干燥机理和数学模型,提 高数据处理和分析的准确性,为实 际应用提供更可靠的依据。
实验的未来发展与展望
04 实验结果分析
实验结果展示
干燥曲线图
展示不同干燥条件下,物料含水 率随时间的变化曲线,以便观察 干燥过程的变化趋势。
数据表格
列出各个时间点的物料含水率, 以便进行后续的数据分析和处理 。
结果分析方法
对比分析
将不同干燥条件下的干燥曲线进行对 比,分析各种条件对干燥过程的影响 。
数据处理
对实验数据进行处理,如计算干燥速 率、干燥时间和干燥效率等参数,以 便更深入地了解干燥过程。
干燥曲线测定的应用场景
01

03
04
农业领域
测定谷物、蔬菜、水果等农产 品的干燥曲线,优化农产品加 工和储存过程中的干燥工艺。
食品工业
测定食品原料和加工过程中的 含水量变化,控制食品质量和
安全。
纺织工业
测定纺织材料的含水量变化, 优化纺织品的生产和加工过程

环境监测
测定土壤、污泥等物料的含水 量变化,评估环境治理效果和
干燥曲线测定中的注意事项
实验前应充分了解被测物质的性 质和特点,选择合适的实验条件
和测量方法。
在实验过程中应严格控制实验条 件,如温度、湿度、压力等,以 保证实验结果的准确性和可靠性

对于具有危险性的物质或实验条 件,应在专业人员的指导下进行 实验,并采取必要的安全措施。

干燥特性曲线的测定

干燥特性曲线的测定

干燥特性曲线的测定干燥特性曲线是指在一定的干燥条件下,对于不同时间或干燥程度,样品质量的变化曲线。

干燥特性曲线对于了解干燥过程的特性、设计干燥设备、控制干燥过程具有重要意义。

本文将介绍干燥特性曲线的测定方法,包括制备样品、干燥设备和实验方法。

一、制备样品制备样品是干燥特性曲线测定的重要环节,不同的样品制备方法会影响到测定结果的准确性。

一般来说,要保证样品的一致性和代表性,将原料经过筛选、打碎、混合等方式制备成均匀的颗粒状,大小适中(通常在100~500μm之间),尽量减小样品层间不均匀性。

二、干燥设备在干燥实验中,需要选择合适的干燥设备。

常用的干燥设备包括普通干燥箱、微波干燥炉、真空干燥箱等。

在选择设备时,需要考虑样品性质、要求干燥的水分含量、干燥温度、干燥时间等因素。

三、实验方法(一)普通干燥箱1、根据样品性质,确定合适的干燥温度和时间。

将干燥箱调节到目标温度。

2、将匀称好的样品放入干燥箱中,测定并记录初始质量。

3、在规定的时间间隔内,取出样品测量质量,并记录干燥时间。

4、对测量结果进行处理,绘制出干燥特性曲线。

(二)微波干燥炉1、根据样品性质和要求的水分含量,确定干燥时间和微波功率。

2、在微波干燥炉中将制备好的样品置于盘中,在设定的微波功率下进行干燥。

1、将干燥样品放入真空干燥箱中,通过设定的真空度进行干燥。

总结干燥特性曲线的测定是干燥实验的重要组成部分,通过对不同干燥条件下样品质量的变化规律,可以了解干燥过程的特性和优化干燥工艺。

在实验中,要根据样品性质和要求的水分含量选择适合的干燥设备和实验方法,并严格按照操作规程进行实验,确保测定结果的准确性和可靠性。

工艺简答干燥曲线

工艺简答干燥曲线

结合干燥曲线说明食品的干燥过程(三条曲线分布,不同阶段怎么变化初期怎么变化及变化的原因是什么,恒速干燥水分极度下降)干制过程的特性1)干燥曲线:食品干制的特性可用干燥曲线反映,干燥曲线可由干燥过程中水分含量、干燥速率和食品温度变化组合在一起综合表达。

(1)水分含量曲线:表示湿物料中水分含量与干燥时间的关系。

首先湿物料被预热,食品表面受热或水分开始蒸发,但由于温度梯度的存在阻碍了水分的转移,水分含量下降较缓慢,A-B。

随着热量的传递,温度梯度减小或消失,食品中水分迅速下降,B-C,除去了绝大部分自由水,达到C点时,食品中主要为多层吸附水,水分下降缓慢C-D,并逐渐达到平衡D-E。

(2)干燥速率曲线:表示的是水分子从食品表面跑向干燥空气的速度与干燥时间的关系。

食品被加热,水分开始蒸发,干燥速率由小一直到最大A’’-B’’,此时水分从食品表面扩散到空气中的速率等于或小于水分从食品内部向表面转移的速率,造成干燥速率恒定不变B’’-C’’,达到第一水分临界点后,物料表面不再为水分湿润,干燥速率开始减慢,进入降速期C’’-D’’。

当干燥速率下降到“D”点后,物料表面水分已经全部变干,原来在表面进行的水分汽化则全部移入物料内部,汽化的水蒸气要穿过已干的固体层而传递到空气中,使阻力增加,因而干燥速率降低更快D’’-E’’,直到达到平衡水分,水分的迁移基本停止,干燥速率为零。

需要说明:干燥速率的转折点标志着干燥机理的转折,临界点是干燥有表面汽化控制到内部扩散控制的转变点,是物料由除去非结合水到除去结合水的转折点。

(3)食品温度曲线:表示食品的温度与干燥时间的关系干燥初期食品接触热空气,食品温度由室温逐渐上升A `-B `,达到B`点后,热空气提供的热量全部为食品表面水分蒸发所消耗,食品本身没有受到加热,温度不变B `-C `,达到C `点后,水分蒸发减小,热空气提供的热量大于水分汽化需要的潜热,物料表面温度开始不断升高C `-D `,干燥达到平衡水分时,食品温度等于热空气温度,为空气的干球温度E `. 2.)干燥阶段:典型的干燥阶段有恒率干燥期和降率干燥期两个阶段。

纸张干燥特性曲线影响因素实验研究

纸张干燥特性曲线影响因素实验研究

纸张干燥特性曲线影响因素实验研究陈晓彬;王宇航;何耀辉;董云渊;郑启富;李继庚;刘焕彬【摘要】采用控制变量法,研究了纤维原料种类、成纸定量、纸浆打浆度、压榨压力和干燥温度5个因素对纸张干燥特性曲线的影响.结果表明,纤维原料种类和纸浆打浆度对纸张干燥特性曲线影响较小,但纸浆打浆度会影响纸张干燥前初始含水率,打浆度越大,纸张干燥前初始含水率越高;纸张定量与厚度正相关,对纸张干燥特性曲线影响显著,定量越大,纸张越难干燥;压榨降低了纸张干燥初始含水率,加速了干燥过程,可能的原因是挤压后,纸张中部分难干燥的毛细管水转变成了容易干燥的游离水;由于纸张干燥是传热与传质同时发生的过程,干燥温度越高,传热动力大,促使蒸发传质发生,干燥越容易.【期刊名称】《中国造纸学报》【年(卷),期】2019(034)003【总页数】4页(P50-53)【关键词】纸张干燥;特性曲线;影响因素【作者】陈晓彬;王宇航;何耀辉;董云渊;郑启富;李继庚;刘焕彬【作者单位】衢州学院化学与材料工程学院,浙江衢州,324000;华南理工大学制浆造纸工程国家重点实验室,广东广州,510640;衢州学院化学与材料工程学院,浙江衢州,324000;衢州学院化学与材料工程学院,浙江衢州,324000;衢州学院化学与材料工程学院,浙江衢州,324000;衢州学院化学与材料工程学院,浙江衢州,324000;华南理工大学制浆造纸工程国家重点实验室,广东广州,510640;华南理工大学制浆造纸工程国家重点实验室,广东广州,510640【正文语种】中文【中图分类】TS755造纸过程本质是一个脱水过程,主要由纸机的3部分完成:成形部、压榨部和干燥部。

纸张成形借助重力和真空作用脱水,将纸张干度提升至15%~25%;压榨依靠机械作用脱水,进一步将纸张干度提升至33%~55%;干燥通过蒸发作用脱水,使成品纸的干度达到要求,约90%~95%[1]。

干燥过程脱水量约为上网浆料含水总量的1%,是脱水量最少的工段,但脱水成本最大[2]。

干燥速率和干燥技术

干燥速率和干燥技术

湿基水分Xw与以干基水分Xd之间的关系:
100 X w X % 1 X w
d
不计干燥器内物料损失,即:
m0 m1 (1 X d1 ) m2 (1 X d 2 )
(2)预热器的热量衡算 以预热器为控制体,忽略热损失,热量衡算式为:
Vh0 Qp Vh1
(3)干燥器的热量衡算 以干燥器作为控制体进行热量衡算,得:
1) 干燥速率不随物料的含水量改变而变化;
2) 干燥速率由物料表面的水分汽化速率所控制(外扩散控制), 干燥速率取决于干燥条件。
4
5.3 干燥速率和干燥过程
(2)降速干燥阶段 分析:第一降速阶段,物料内部水分向表面扩散的速率已小于物料 表面水分的汽化速率,实际汽化面积减小,干燥速率下降。 第二降速阶段,水分的汽化面由物料表面移向内部,使传热 和传质途径加长,造成干燥速率下降。 降速干燥特点: 1)干燥速率取决于水分在物料 内部的扩散(内扩散)速率,与 物料本身的结构、形状和尺寸 等因素有关,受外部干燥介质 的条件影响较小。 2)水分迁移形式:主要以液态 形式扩散,少量以气态形式扩 散。
10
5.3 干燥速率和干燥过程
5.3.3 间歇干燥过程的干燥时间计算 5.3.3.1 恒速干燥阶段
若物料在干燥前的含水量(X1)大于临界含水量(XC),忽略物料 的预热阶段,恒速干燥阶段的干燥时间(τ1)可通过下式进行计算。
0 d
1
m0 X dX m (X X ) 恒速干燥 1 0 1 c X F jA F jA
恒定干燥条件下物料的干燥曲线
2
5.3 干燥速率和干燥过程
5.3.1.2 干燥速率曲线 物料的干燥速率 :
dmw m0 dX j Fd Fd

化工原理流化床干燥实验

化工原理流化床干燥实验

北京化工大学学生实验报告院(部):化学工程学院姓名:学号:专业:化工班级:同组人员:课程名称:化工原理实验实验名称:干燥实验实验日期: 2014-5-15 批阅日期:成绩:教师签名:流化床干燥实验摘要:本实验通过测定不同空气流量下的床侧压降及干湿物料的质量,从而确定流化床床层压降与气速的关系曲线及流化床的干燥特性曲线。

通过实验,了解流化床的使用方法及其工作原理。

关键词:干燥,干燥速率曲线,流化床床层压降一、目的及任务1.了解流化床干燥器的基本流程及操作方法。

2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。

3.测定物料含水量及床层温度随时间变化的关系曲线。

4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量及恒速阶段的传质细述及降速阶段的比例系数。

二、基本原理干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。

干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。

由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。

干燥实验的目的是用来测定干燥曲线和干燥速率曲线。

为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。

1、流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到的流化床床层压降与气速的关系曲线。

图1:流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。

当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,)。

便进入了气流输送阶段。

D点处流速即被称为带出速度(u在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。

若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。

干燥特性曲线测定实验

干燥特性曲线测定实验

干燥特性曲线测定实验一、实验目的:1、了解洞道式干燥装置的基本结构、工艺流程和操作方法2、学习测定物料在恒定干燥条件下的干燥特性的实验方法3、掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平衡含水量、传质系数和传热系数的实验分析方法4、实验研究干燥条件对干燥过程特性的影响二、实验原理:干燥速率定义为单位时间、单位干燥表面积所干燥除去的湿分重量,以U 代表之,故:U = -(Gc / A)*dX/dt式中: U-干燥速率 [kg/m^2*s];A-干燥面积 [m^2];Gc-物料绝干重量 [kg];X-物料干基湿含量 [kg水/kg 干物料]。

物料中所含湿分性质不同,反应在物料的干燥上,其过程的变化也必各异。

为了减少影响因数,我们将湿物料在恒定干燥条件下做干燥实验。

试验中,通过对湿物料在不同时间内失重的称量,即可得到干燥时间与物料湿含量的关系,将数据加以整理可得物料干燥的干燥速率 U~X 曲线。

对于任何一种干燥速率曲线,均有恒速干燥与?降速干燥阶段。

临界湿含量,即为恒速与降速阶段的分界点。

而临界湿含量对于干燥机理和干燥器的设计都是十分重要的。

在本实验中,即测出物料失重与时间的关系,得出曲线,进而求出 Xc 及 X* 。

1、湿度 H单位质量干气体中所含有的水蒸气质量的多少称为气体的湿度(Humidity), 也称气体的湿含量,以符号 H 表示。

湿空气中的蒸汽质量? mvH = ---------- = --- (Kg/Kg)?湿空气中的干空气质量 mg2、湿球温度tw用水保持湿润的纱布包裹温度计的感温部分(水银球),此种温度计称为湿球温度计.若将湿球温度计置于一定温度和湿度的湿空气中,达到平衡或稳定时的温度称为该空气的湿球温度 tw。

3、绝热饱和温度在外界不补充能量且无热省失时,当湿度为 H、温度为 t的不饱和空气与大量的循环水密切接触时,水分即不断地向空气中气化,气化所需的潜热只能来自空气,因此空气的温度随过程的进行逐渐下降,湿度则升高,但是空气的焓却保持不变。

干燥特性曲线测定实验_2

干燥特性曲线测定实验_2

干燥特性曲线测定实验一、实验目的1.了解洞道式干燥装置的结构及其操作方法;2.了解无纸记录仪及重量、温度、流量等传感器的使用方法;测定物料在恒定干燥条件下的干燥特性, 作出干燥特性曲线(X~τ, U~X), 并求出临界含水量Xc、平衡含水量X*及恒速阶段的干燥速度U恒速;改变气温或气速等操作条件, 测定不同空气参数下的干燥特性曲线, 求出各自的临界含水量、平衡含水量及恒速阶段的干燥速度。

二、实验装置与流程实验装置如图1所示, 由离心风机、孔板流量计、温度控制单元、干燥室、重量测量单元、空气流量组合调节阀和不锈钢进、出管道等组成。

1-离心风机;2-孔板流量计;3-孔板流量计处温度;4-预热室;5-干燥室;6-重量传感器;7-物料干燥盘;8-干燥室进口干球温度;9-干燥室进口湿球温度;10-干燥室出口干球温度;11-废气排放阀;12-废气循环阀;13-空气补充阀图1 干燥特性曲线测定实验装置流程示意图空气从离心风机1吸入, 经孔板流量计2计量、在预热室4处经电加热到设定温度T1后, 进入干燥室, 将热能供给干燥物料, 完成干燥过程, 然后一部分空气通过废气排放阀11直接排放至大气, 另一部分空气通过废气循环阀12作循环使用, 通过调节空气补充阀13可改变干燥介质空气中新鲜空气所占的比例。

在干燥室的进、出口处分别装有空气进口干球温度8、空气进口湿球温度9和空气出口干球温度10。

装在干燥室下方的重量传感器6和装在干燥室内的物料干燥盘7直接相连, 可以实时测定干燥物料在干燥过程中的重量变化;空气流量由孔板流量计2测量, 并通过废气排放阀11.循环空气控制阀12和新鲜空气补充阀13的组合调节来改变流量, 空气进口温度可通过手动的方式在温控仪上自行设定而由温度控制器自动控制。

实验装置的干燥室面积为0.17×0.1 m2, 待测的空气温度、流量和物料的重量均可在无纸记录仪或计算机上读取。

三、、原理和方法当湿物料与干燥介质相接触时, 物料表面的水分开始汽化, 并向周围介质传递。

化工基础实验部分思考题

化工基础实验部分思考题

干燥特性曲线测定实验思考题1.什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程?答:恒定干燥条件指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定。

本实验中本实验用大量空气干燥少量物料,则可以认为湿空气在干燥过程温度。

湿度均不变,再加上气流速度以及气流与物料的接触方式不变。

所以这个过程可视为实验在在恒定干燥条件下进行。

2.控制恒速干燥阶段速率的因素是什么?控制降速干燥阶段干燥速率的因素又是什么?答:恒速干燥阶段的干燥速率的大小取决于物料表面水分的汽化速率,亦取决定于物料外部的干燥条件,所以恒定干燥阶段又称为表面汽化控制阶段。

降速阶段的干燥速率取决于物料本身结构、形状和尺寸,而与干燥介质的状态参数关系不大,故降速阶段又称物料内部迁移控制阶段。

3.若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率、临界湿含量又如何变化?为什么?答:若加大热空气流量,干燥曲线的起始点将上升,下降幅度变大,并且到达临界点的时间缩短,临界湿含量降低。

这是因为风速增加后,加快啦热空气的排湿能力。

4.为什么要先启动风机,再启动加热器?实验过程中干、湿球温度计是否变化?为什么?如何判断实验已经结束?答:让加热器通过风冷慢慢加热,避免损坏加热器,反之如果先启动加热器,通过风机的吹风会出现急冷,高温极冷,损坏加热器。

理论上干、湿球温度是不变的,但实验过程中干球温度不变,但湿球温度缓慢上升,估计是因为干燥的速率不断降低,使得气体湿度降低,从而温度变化。

湿毛毡恒重时,即为实验结束。

板框过滤1. 板框过滤机的优缺点是什么?适用于什么场合?答:优点:构造简单,过滤面积大,占地省,过滤压力高,便于用耐腐蚀材料制造,所得滤饼水分含量少又能较充分地洗涤。

缺点:操作不能连续、自动,劳动强度大。

适用场合:中小规模的生产及有特殊要求的场合。

2. 板框压滤机的操作分哪几个阶段?答:装合、过滤、洗涤、卸渣、整理。

3. 为什么过滤开始时,滤液常常有点浑浊,而过段时间后才变清?答:过滤开始时,固体颗粒会从滤布空隙中被挤出而使滤液浑浊,一旦滤布上形成一层滤饼后,滤饼就起到真正的过滤作用,此后滤液才变清。

洞道干燥实验实验报告

洞道干燥实验实验报告

一、实验目的1. 了解洞道干燥装置的基本结构、工艺流程和操作方法。

2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。

3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量等干燥特性数据的分析方法。

4. 研究干燥条件对干燥过程特性的影响。

二、实验原理洞道干燥是一种连续式干燥方式,适用于大批量物料的干燥。

干燥过程中,物料在洞道内连续移动,与干燥介质(热空气)进行热交换,从而实现水分的蒸发。

干燥过程分为三个阶段:1. 预热阶段:物料表面水分开始蒸发,温度逐渐升高。

2. 恒速干燥阶段:物料表面水分蒸发速度达到最大值,干燥速率基本保持恒定。

3. 降速干燥阶段:物料内部水分开始蒸发,干燥速率逐渐降低。

干燥特性曲线是指干燥过程中物料干基含水量与干燥时间的关系曲线。

干燥速率曲线是指干燥过程中物料干基含水量与干燥速率的关系曲线。

三、实验装置1. 洞道干燥装置:长1.10米、宽0.125米、高0.180米,加热功率500w—1500w,空气流量1-5m/min,干燥温度40--120℃,天平量程0-200g,最小秤量值0.1g,干、湿球温度计。

2. 风机:用于输送干燥介质。

3. 孔板流量计:用于测量空气流量。

4. 倾斜式压差计:用于测量空气压力。

5. 风速调节阀:用于调节空气流量。

6. 电加热器:用于加热干燥介质。

7. 干燥室:用于放置待干燥物料。

8. 试样架:用于放置待干燥物料。

9. 热重天平:用于测量物料重量。

10. 电流表:用于测量电加热器电流。

11. 干球温度计、湿球温度计、触点温度计:用于测量干燥介质温度。

四、实验步骤1. 准备实验材料:待干燥物料、洞道干燥装置、相关仪器设备。

2. 安装洞道干燥装置,连接相关管道和仪器。

3. 开启风机,调节空气流量至预定值。

4. 打开电加热器,调节加热功率至预定值,使干燥室温度达到恒定值。

5. 将待干燥物料放入干燥室,确保物料均匀分布。

6. 开启天平,记录物料初始重量。

化工原理实验复习

化工原理实验复习

干燥特性曲线测定实验一、问答题1. 干燥实验进行到试样重量不再变化时,此时试样中所含的水分是什么水分?实验过程中除去的又是什么水分?二者与哪些因素有关。

答:当干燥实验进行到试样重量不再变化时,此时试样中所含的水分为该干燥条件下的平衡水分,实验过程中除去的是自由水分。

二者与干燥介质的温度,湿度及物料的种类有关。

2. 对流干燥的特点?答:当温度较高的气体与湿物料接触时,气固两相间发生的是热质同时传递的过程。

3.湿球温度是指什么温度?跟什么有关?答:大量空气与少量水长期接触后水面的温度。

是空气湿度和干球温度的函数。

4. 什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?答:干燥介质的温度、湿度、流速及与物料的接触方式,在整个干燥过程中均保持恒定。

加热电压恒定,空气流量大,风机运行的功率不变。

5. 为什么要先启动风机,再启动加热器?答:先开风机,后开加热器,否则加热管可能会被烧坏。

6. 实验中如果湿球温度计指示温度升高了,可能的原因有:答:湿球温度计的棉纱球缺水。

7.本实验装置中三个蝶阀的作用?答:最下面的蝶阀,控制冷空气的流量,中间的用来调节热空气的循环量,最上面蝶阀控制热空气的排放量。

8. 实验过程中干、湿球温度计是否变化?为什么?如何判断实验已经结束?答:干、湿球温度计基本保持不变。

待毛毡恒重时,实验结束。

二、实验操作对相关管件、阀门及设备等提问;学生简述流程,实验原理,并模拟操作。

筛板塔精馏过程实验一、问答题1. 取样时应注意什么?分析时应注意什么?答:取样时,塔顶塔底同步进行;分析时,先分析塔顶,后分析塔底,避免塔顶乙醇大量挥发,带来偶然误差。

2. 实验过程中,如何判断操作已经稳定,可以取样分析?答:判断操作已经稳定的条件是:塔顶温度恒定。

温度恒定则塔顶组成恒定。

3. 加大回流比,其他操作条件不变,塔顶、塔底产品的浓度如何变化?答:x D上升,x w下降。

4. 如果在实验过程中实验室有较浓的乙醇气味,试分析原因?答:塔顶冷凝效果不好,可能是冷却水流量太小。

食品工程概论 第四章简答叙述题

食品工程概论 第四章简答叙述题

第四章简答题与叙述题1、试述食品干制过程的湿热传热规律。

食品干制过程的特性可以用干燥曲线、干燥速度曲线及温度曲线等来进行分析和描述。

(1)干燥曲线:水份变化的曲线在干燥开始后的很短时间内,食品的含水量几乎不变。

这个阶段持续的时间取决于食品的厚度。

随后,食品的含水量直线下降。

在某个含水量以下时,食品含水量的下降速度将放慢,最后达到其平衡含水量,干燥过程即停止。

(2)干燥速度曲线在食品含水量仅有较小变化时,干燥速度即由零增加到最大值,并在随后的干燥过程中保持不变。

这个阶段称作恒率干燥期。

当食品含水量降低到第Ⅰ临界点时,干燥速度开始下降,进入所谓的降率干燥期。

(3)食品温度曲线干燥过程一般划分为三个阶段:预热阶段、恒率阶段、降率阶段。

在干燥的起始阶段,食品的表面温度很快达到湿球温度。

在整个恒率干燥期内,食品的表面均保持该温度不变,此时食品吸收的全部热量都消耗于水分的蒸发。

从第Ⅰ临界点开始,由于水分扩散的速度低于水分蒸发速度,食品吸收的热量不仅用于水分蒸发,而且使食品的温度升高。

当食品含水量达到平衡含水量时,食品的温度等于加热空气的温度。

2、影响食品湿热传递的主要因素有哪些?干制过程中应如何控制?食品在干燥过程中湿热传递的速度除了受其比热、导热系数及导温系数等内在因素的影响以外,还要受食品表面积、干燥介质的温度、空气流速、空气的相对湿度和真空度等外部条件的影响。

(1)食品的表面积食品表面积的增大将使传热和传质的距离缩短,这也将使湿热传递的速度加快。

(2)干燥介质的温度食品的初温一定时,如果干燥介质温度越高,也就是传热温差越大,则传热速度越快。

(3)空气流速空气流速加快,不仅能使对流换热系数增大,而且能够增加干燥空气与食品接触的频率,从而能够吸收和带走更多的水分,防止在食品表面形成饱和空气层。

(4)空气的相对湿度空气的相对湿度越低,则食品表面与干燥空气之间的水蒸气压差越大,传热速度也就随之加快。

(5)真空度在保持温度恒定的同时提高真空度,就可以加快水分蒸发的速度。

干燥特性曲线测定实验的核心处理

干燥特性曲线测定实验的核心处理

干燥特性曲线测定实验的数据分析和思考题数据分析讨论:(1)从恒定条件下的干燥速率曲线U-X图可知,该曲线呈缓慢下降,没有出现明显的恒速干燥阶段,只能近似的描画出这个速率恒定的阶段,导致这种结果出现的可能原因有:①干燥器本身的系统误差;②实验时温度继电器的对温度的调节不稳定导致脱水速率的波动。

③物料是否均匀,也会对此产生影响。

(2)物料的干燥速率与固体物料的种类、性质及形状(厚度或颗粒大小等);空气的温度、湿度和流速;空气与固体物料间的相对运动方式等因素有关。

(3)干燥速率曲线的意义:干燥是一个传热传质同时进行的复杂过程,目前为止,干燥的计算仍需要以实验为基础。

不同的物料有不同的干燥特征,因此就有不同的干燥曲线。

通过干燥曲线可以计算干燥过程的时间,这就为干燥器的设计提供了重要的依据。

思考题1.什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?答:恒定干燥条件指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定。

本实验中,固定蝶阀使流速固定在120m3/h;密封干燥厢并利用加热保持温度恒定在75℃;湿料铺平湿毛毡后,干燥介质与湿料的接触方式也恒定。

2.控制恒速干燥阶段速率的因素是什么?控制降速干燥阶段干燥速率的因素又是什么?答:恒速干燥阶段的干燥速率的大小取决于物料表面水分的汽化速率,亦取决定于物料外部的干燥条件,所以恒定干燥阶段又称为表面汽化控制阶段。

降速阶段的干燥速率取决于物料本身结构、形状和尺寸,而与干燥介质的状态参数关系不大,故降速阶段又称物料内部迁移控制阶段。

3.若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率、临界湿含量又如何变化?为什么?答:若加大热空气流量,干燥曲线的起始点将上升,下降幅度变大,并且到达临界点的时间缩短,临界湿含量降低。

这是因为风速增加后,加快啦热空气的排湿能力。

4.为什么要先启动风机,再启动加热器?实验过程中干、湿球温度计是否变化?为什么?如何判断实验已经结束?答:让加热器通过风冷慢慢加热,避免损坏加热器,反之如果先启动加热器,通过风机的吹风会出现急冷,高温极冷,损坏加热器。

labconco 冷冻干燥曲线

labconco 冷冻干燥曲线

Labconco 冷冻干燥曲线1. 引言Labconco 冷冻干燥曲线是实验室中常见的一种曲线,用于描述冷冻干燥过程中样品的温度和压力变化。

这个主题一直以来都备受关注,因为冷冻干燥是一种常用的样品处理方法,对于保留样品的结构和性质具有重要意义。

2. 深度评估Labconco 冷冻干燥曲线的深度评估需要从几个方面进行考察。

需要了解冷冻干燥的基本原理和过程,包括样品在冷冻、干燥和回温阶段的温度和压力变化。

还需要考虑到不同样品的特性和不同实验条件对于冷冻干燥曲线的影响,以及实验中可能出现的问题和解决方法。

3. 广度评估Labconco 冷冻干燥曲线的广度评估需要从多个角度进行探讨。

除了物理和化学角度的分析外,还需要考虑到冷冻干燥曲线在不同领域的应用,比如生物医药、食品加工、材料科学等领域的研究进展和实际应用情况。

另外,还需要考虑到不同实验设备和方法对于冷冻干燥曲线的影响,以及未来可能的发展方向和研究重点。

4. 文章撰写根据以上评估,我们可以按照从简到繁、由浅入深的方式来撰写文章。

可以从冷冻干燥的基本原理和过程开始,介绍样品在冷冻、干燥和回温阶段的温度和压力变化,以及冷冻干燥曲线的定义和意义。

可以探讨不同样品和不同实验条件对于冷冻干燥曲线的影响,介绍实验中可能出现的问题和解决方法。

可以从生物医药、食品加工、材料科学等领域的研究进展和实际应用情况来展开广度评估,同时考虑到不同实验设备和方法对于冷冻干燥曲线的影响,以及未来可能的发展方向和研究重点。

5. 个人观点和理解在文章中,我会共享我对冷冻干燥曲线的个人观点和理解,包括我对冷冻干燥原理的理解,以及我对冷冻干燥曲线在不同领域的应用和发展前景的看法。

总结与回顾文章将包含总结和回顾性的内容,以便读者能全面、深刻和灵活地理解 Labconco 冷冻干燥曲线的相关知识和应用。

通过以上方式撰写的文章,能够充分满足你提出的要求,帮助你更深入地理解 Labconco 冷冻干燥曲线的相关知识和应用。

北京化工大学干燥实验报告

北京化工大学干燥实验报告

北京化工大学干燥实验报告(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--北京化工大学-干燥实验报告————————————————————————————————作者: ————————————————————————————————日期:e北京化工大学实验报告?课程名称: 化工原理实验实验日期: 2012.5.9班级: 化工0903班姓名: 徐晗?同组人:高秋,高雯璐,梁海涛装置型号:FFRS-Ⅱ型流化干燥实验一、摘要本实验通过空气加热装置测定了空气的干、湿球温度,通过孔板流量计测定了空气的流量,并采用湿小麦为研究对象,对其进行干燥,分别记录了物料温度、床层压降、孔板压降等参数,测定了小麦的干燥曲线、干燥速率曲线,以及流化床干燥器中小麦的流化曲线。

实验中通过Excel作图并进行了实验结果分析。

关键词:流化床干燥含水量床层压降速率曲线二、实验目的1.了解流化床干燥器的基本流程及操作方法。

2.掌握流化床流化曲线的测定方法、测定流化床床层压降与气速的关系曲线。

3. 测定物料含水量及床层温度随时间变化的关系曲线。

4. 掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数Kx。

三、实验原理1.流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。

如图1所示。

图1 流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。

当气速逐渐增加(进入BC阶段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。

当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。

当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档