包裹体的分类
流体包裹体概念及其分类
后有关地质事件的次序和后期构造事件的物理化学条件等问题。
流体包裹体的分类
(3)次生包裹体
流体包裹体的分类 2、按成因分类
( 4 )变生包裹体:变质作用过程中新形成的矿物或
重结晶矿物中捕获变质流体而形成的包裹体。
变生包裹体对其主矿物而言就相当于原生包裹体,所 以很多人提出的包裹体分类方案中未将其单独作为一 类列出。
流体包裹体的分类
(2)水溶液包裹体——纯气相包裹体
流体包裹体的分类
(2)水溶液包裹体——富液相包裹体 富气相包裹体
流体包裹体的分类
3、按室温下的包裹体的物理相态分类
(2)水溶液包裹体
⑤含子矿物多相包裹体:室温下一般为三相或以上,主要
由液相、气相和固体子矿物相组成。常见的子矿物相有石 盐、钾盐、石膏、萤石、方解石、赤铁矿、 碳酸盐、硫酸盐等,偶见硅酸盐及金属矿物。
流体包裹体的分类
(2)水溶液包裹体——纯液相包裹体
流体包裹体的分类
3、按室温下的包裹体的物理相态分类
(2)水溶液包裹体
②纯气相包裹体:指室温下主要为单一气相构成的包裹体。
在火山喷气、伟晶岩、矽卡岩、气成热液、沸腾等环境 条件下常见。
③富液相包裹体:室温下由液 + 气( L+V)两相组成,但液 相总体积大于气相总体积(L/L+V>50%)。 ④富气相包裹体:室温下由液 +气(L+V)两相组成,但液 相总体积小于气相总体积(V/L+V>50%)。
4、 王可勇等,流体包裹体研究及应用,2007。吉林
大学出版社
理论课 第一篇 流体包裹体研究基础理论
主 要 内 容
第二篇 流体包裹体研究方法 第三篇 地质应用
2 包裹体研究方法
FN2-3-10,2124m,长4+5,油层
FN2-3-8(荧光), 2124m,长4+5,油层
早期油气包裹体(峰2井,水层)
10 μm
35 μm
FN2-4-8,2129m,长4+5,水层
10 μm
FN2-4-7(偏光), 2129m,长4+5,水层
35 μm
FN2-4-3,2129m,长4+5,水层
椭圆型, 随机分布, 串珠状分 布
油气有机质含量 高,早期油气运 移成藏流体的含 油饱和度高
晚期
椭圆型, 不规则状, 串珠状分 布,加大 边。
油气有机质含量 低,晚期油气运 移成藏流体的含 油饱和度低
五、油气包裹体与油气聚集成藏期次
6. 油、水井(层)的油气包裹体特征
油/ 水层 包体 类型 GOI (%) 荧光 产状 包裹类型组合
包体放射性同位素年代分析 含油气包体脉体年代分析 包 体 测 试 均一温度 油气成藏年代学研究
油气包裹体油气成分、成熟度、油源、 运移、期次等研究
冰点温 度
共结点温度
包裹体形成时流体环境条件 (温度\深度\盐度)
包 裹 体 显 微 镜 研 究 流 体 包 裹 体 分 类:
1. 按相态分类: (1) 固体包裹体 (2) 液态包裹体 (3) 气态包裹体 (4) 多相包裹体 2. 按照形成时间分类: (1) 原生包裹体 : 与主矿物同时形成; (2) 次生包裹体 :在矿物形成后,沿裂隙充填 分布,裂隙切穿矿物边缘和多个矿物边界; (3) 假次生包裹体: 在矿物形成后,沿裂隙充 填分布, 裂隙限在矿物内部, 没有穿透矿物边缘,是 早期裂隙,之后矿物又生长裂隙愈合。 3. 按照包裹体形态特征分类
包裹的分类
包裹的分类包裹是我们日常生活中经常遇到的物品,它们以各种形式和尺寸出现,用于运输和保护商品。
根据不同的特点和用途,包裹可以被分为以下几类。
1. 信封类包裹信封类包裹通常用于发送文件、信件等小型物品。
它们一般由纸质材料制成,可以折叠或密封,方便携带和邮寄。
信封类包裹常见的有信封、纸袋等,适用于一些轻便、不易破损的物品。
2. 纸箱类包裹纸箱类包裹是我们最常见的一种包裹形式。
它们由厚纸板或纸浆制成,具有较强的承载能力和防护性能。
纸箱包裹通常用于运输各种商品,如电子产品、书籍、衣物等。
它们通常具有不同的尺寸和形状,以适应不同物品的包装需求。
3. 塑料袋类包裹塑料袋类包裹是一种轻便且具有一定防水性能的包装形式。
它们通常由聚乙烯、聚氯乙烯等塑料材料制成,具有较高的柔韧性。
塑料袋包裹适合包装一些轻小的物品,如食品、日用品等。
它们具有良好的透明度,方便查看包裹内物品。
4. 铁箱类包裹铁箱类包裹是一种较为坚固和耐用的包装形式。
它们通常由钢铁材料制成,具有较强的抗压性和抗冲击性能。
铁箱包裹适合用于运输一些重型或易碎的物品,如机械设备、陶瓷制品等。
它们通常具有可靠的密封性能,能够有效保护包裹内的物品。
5. 木箱类包裹木箱类包裹是一种传统的包装形式,也是一种较为坚固和耐用的包装形式。
它们通常由木材制成,具有较高的承载能力和防护性能。
木箱包裹适合用于运输一些重型或特殊形状的物品,如机床设备、艺术品等。
它们通常具有可调节的内部结构,以适应不同物品的包装需求。
6. 气泡袋类包裹气泡袋类包裹是一种具有一定缓冲性能的包装形式。
它们通常由塑料薄膜制成,内部充满了小气泡。
气泡袋包裹适合用于包装一些易碎的物品,如玻璃制品、陶瓷制品等。
气泡袋可以在一定程度上减少外力对包裹内物品的冲击,保护物品不受损坏。
7. 快递袋类包裹快递袋类包裹是一种轻便且具有防水性能的包装形式。
它们通常由塑料薄膜制成,具有较高的柔韧性。
快递袋包裹适合用于寄送文件、小型商品等,常见于快递行业。
1包体的基本知识
包裹体的是是非非
包裹体之美丽(直接与间接) 直接美——指有美丽图案的包裹体 间接美——包裹体规则排列形成特殊光学效应, 如猫眼,星光宝石等 包裹体之缺陷(直接与间接) 直接——黑点、瑕疵等 间接——导致透明度、光泽降低等
水晶之包裹体 (From Photoatlas of Inclusions in Gemstone, Gübelin & Koivula, 2004)
Zircon growth patterns revealed by cathodeluminescence (Shi et al., 2008)
Jadeite growth patterns revealed by cathodeluminescence (Shi et al., 2005)
补充材料:人工合成宝石法
3、矿物包裹体和宝石包裹体的研究差别
矿物ቤተ መጻሕፍቲ ባይዱ裹体
宝石包裹体
a、 可以是有损研究
无损
b、超显微(X千 - 万倍)
光学显微(10 - 40X)
c、研究成因,指导找矿
质量评价、成因、种类、 鉴定宝石真假
二、包裹体的分类
1、按形成的先后顺序分类(先成、同期、后 生)
a先成包裹体(protogenetic inclusions)
其它分类
有机与无机 地内与地外 等等
三、研究宝石包裹体的意义
(一)包裹体的地质意义
1、流体包体对研究热液成矿流体的性质、起源和演化,矿床 的成因具有重要意义; 2、地质温度计和压力计; 3、沉积岩中成岩矿物中碳氢化合物或富气包体的丰度和分布 情况确定石油的迁移途径; 4、月岩和陨石中的结晶质及玻璃质熔融包体帮助研究地球及 太阳系的物质组成与演化过程。
宝石学包裹体概念及玉石包体分类
第37卷 增 刊1998年 6月中山大学学报(自然科学版)ACT A SCIEN T I AR U M N A T U R AL IU M U N IV ERSIT AT IS SU N Y AT SENI V o l.37 Suppl.Jun. 1998 收稿日期:1998-04-08 丘志力,男,35岁,副教授宝石学包裹体概念及玉石包体分类丘志力(中山大学地球科学系,广州510275)摘 要 通过对地质学与宝石学包裹体概念的对比,明确提出宝石学包裹体概念应与地质学包裹体概念有明显差别,宝石学包裹体概念应包括玉石的包体种类.提出玉石包体的概念及宝石包体的分类方案,认为玉石包体可分为实体包体、结构包体和颜色包体3类.玉石包体的确认有助于玉石种类的鉴定.关键词 玉石包体,分类,宝石包裹体分类号 P 619.28宝石包裹体的研究,在宝石学界是一项教育价值极高的课题.包裹体是宝石最广阔、最可靠、最确切的鉴定基础[1].1672年Robert Boyles 发表了第一篇有关包裹体的文献,19世纪初期许多研究者对包裹体成份的分析为地质学水成论提供了有力的支持;1858年英格兰的G Sorby 通过对合成及天然晶体中流体包裹体的开拓性研究,确立了包裹体理论研究的基础.1950年原苏联科学家耶尔马科夫等出版了《成矿溶液的研究》,促进了包裹体理论研究及应用技术的发展.1953年F G Smith 通过对前人发表的400多篇文献的总结,出版了《包裹体温度研究发展史》,并且改进了气液包裹体爆裂法的测试技术.1976年以后美国Ed-w in Roedder 等关于流体均一法、冷冻法及成分分析方面的研究及论述,完善了包裹体在地质学的应用理论,使包裹体研究成为地质学研究中不可或缺的现代分支,极大地促进了人们对矿物及矿床形成条件、岩石成因及演化等方面的认识[2~5].宝石中包裹体的研究起源与地质学中包裹体的研究应该是近于同时的.1823年布雷斯特描述了黄玉、绿宝石和橄榄石中的包裹体;1869年Sor by 报道了斯里兰卡蓝宝石中的含CO 2气液包裹体[5];1929年纽约GL 出版社出版的《珠宝商袖珍手册》强调了宝石包裹体的重要性,而1953年Gubelin 德文版的《宝石内含物鉴定法》的出版使宝石包裹体的研究成为了包裹体研究中的重要组成部分;随后,经过多次修订的Photo Atalas o f I nclusion in Gem stones 一书的出版很快便成为宝石包裹体研究的经典.地质学中包裹体的概念是一个较为特定的概念,它主要研究单晶矿物内的内含物.而宝石中的包裹体则除内含物外,还包括与宝石的内部特征、有关的结构或颜色方面的内容[6].据此,丘志力[7]概括了“宝石包裹体”的概念,认为在宝石内部与主体宝石有成分、结构或相态差异的内部缺陷及内含物质都可以称为包裹体.其后文献[8]将该概念进一步明确为“凡是与主体宝石和玉石有成份、相态、结构或颜色差异的内含物质或缺陷.”本文进一步说明归纳这一包裹体概念的理由及其使用意义.1 地质学中的包裹体在地质学的研究中,包裹体常常指的是矿物中的包裹体.这里所说的矿物,事实上指的也不是严格意义上的单晶,因为许多矿物形成时往往会有双晶存在,双晶内存在的包裹体实际上也包括在地质学包裹体的概念之内,其中石英的包裹体便是很好的例子.目前地质学关于包裹体的形成机理主要有如下几种解释.其一是认为包裹体是由于矿物结晶过程并不是在完全理想的状态下进行的,当矿物中出现晶体缺陷(点缺陷、线缺陷或面缺陷)时,成矿物质在缺陷中滞留并被封闭,便形成了包裹体,这是流体包裹体形成的主要方式,也是原生包裹体形成的主要机制.其二是重结晶的原理,认为包裹体是在矿物形成后的过程中,由于缺陷包含的成矿溶液发生重结晶而形成次生或假次生的包裹体.其三是矿物形成过程中遭受应力发生形成错位形变时形成的包裹体.根据这些原理,利用包裹体可以重塑矿物形成时的地质地球化学过程.因此,地质学家最关心的问题是“包裹体的代表性”,或者说是包裹体的“封闭性”,研究最多的便是流体包裹体.而研究的方法是将矿物磨成很薄的双面光的包裹体片,利用高倍的显微镜、加热冷冻设备及各种成分分析手段进行研究.这种研究取向,从地质学家对包裹体概念的说明上可以获得反映.“矿物中的流体包裹体是矿物晶体在其生长过程中捕获的部分液体、气体和熔融体的代表,而且可以用来确定某种岩石或矿物形成的环境”[9].Sorby [4]认为包裹体是保留在主矿物中的相对封闭系统,包裹体物质被圈闭后,一般不发生遗漏和外来物质渗入,体腔体积基本不变;广义的包裹体是指矿物中包含的物质,而确切地说则是指矿物中与主矿物具有相界线,由一相、二相或多相物质组成的封闭的地球化学系统[10];矿物在生长过程中所捕获的,包裹在晶体内的外来物质,其大小和形状不一,固、液和气态都有.气液包裹体对研究矿物形成时的物理化学条件有重要意义[11].根据这种理解,地质学中包裹体的分类最主要是从包裹体的形成与主矿物形成过程的关系,并结合包裹体的物相组成进行划分[2,3].综上所述,我们可以看到地质学上包裹体的定义也是不断发展的,Grig oriev (1948)对变质岩的研究已表明在几个自由生长的晶体之间界面上可形成包裹体.而Sella 和Deicha 通过电子显微镜的放大,也发现在细晶岩和金矿脉石英中存在大量非常微小的负晶形包裹体,Ro edder E 称这种包裹体为晶(粒)间包裹体,归入到原包裹体中,而另一种由于出溶作用形成的包裹体的出现(W ilkins and Barkas,1978)也使它们对地质学包裹体的认识更为深入,亦表明包裹体的形成方式是多种多样的.2 宝石学中的包裹体从宝石学的角度,广义的宝石包括单晶宝石和集合体宝石两类,或者说广义的宝石包含玉石材料[12~14].宝石中的包裹体实际上应包括玉石中的包裹体种类;但玉石中的包裹体和地质学上的包裹体的概念含义明显不同.美国前宝石学院院长Liddico at R T Jr 在1975年出版的第10版《宝石鉴定手册》中,对宝石包裹体的概念作如下说明:“广义的包裹体包括表面和内部裂纹和解理,封闭在宝石内部的气体和液体、晶体和其它固体[15]”.在英国宝石协会的宝石学教程中,包裹体包括:105增 刊 丘志力:宝石学包裹体概念及玉石包体分类106中山大学学报(自然科学版) 第37卷 宝石内部的固相、液相和气相物质; 分带,包括颜色色带;双晶;!断口和解理;∀与内部结构有关的表面特征[6].这实际上已经肯定宝石学中包裹体与地质学中包裹体概念的内涵不同,前者含义更为广泛.这种差异存在的合理性也可以从两方面获得说明: 宝石学与地质学包裹体研究之间存在着明显的差异.从研究目的来说,虽然宝石中的包裹体也能为宝石的成因及形成条件提供重要的参数,但包裹体的研究更为直观,其主要目的是为宝石鉴定评估服务.宝石中包裹体的观察及鉴定,虽然也可以利用地质学中的方法,但由于宝石鉴定是无损鉴定,加上其厚度及透明性方面的限制,因此其方法上受到许多限制(例如一些小的包裹体在宝石内可能就无法确切鉴别).宝石中包裹体并不局限在一般意义上的流体包裹体,包裹体的封闭性对宝石鉴定的重要性也远没有在研究地质作用时重要. 研究的对象存在差别.地质学包裹体研究通常是以单矿物为主,而宝石学包裹体除研究单晶宝石外,还涉及集合体玉石中的包体.3 玉石包体虽然宝石学的一些经典著作,很少对玉石的包裹体有明确说明,我国也有人认为在玉石中使用包裹体的概念不妥当[14].但实际上这一概念却不断被使用在描述具体宝石的鉴别特征方面.例如文献[1]提到含水空晶或俗称为水胆的中空玛瑙;玉髓中褐铁矿包裹体图案及墨西哥火欧泊中球基状、葡萄串状、石笋状、钟乳石状的包裹体;组群集合体与又晶展示不同于单晶宝石内多晶集合包裹体,说明包裹体可以是共生或外延的附生物;如琥珀、玉髓的内含物;翡翠、软玉、青金岩、孔雀石和欧泊等集合体中的包裹体.文献[15]则分别描述了苔纹玛瑙中特殊图案的氧化锰包裹体、天然黑珍珠中的棒状包裹体、东陵玉中的铬云母包裹体.栾秉王敖指出过青金石与绿松石的包裹体.张倍莉等指出翡翠、软玉、欧泊、石英岩、蛇纹石玉等玉石集合体的包裹体.王福泉等提到青金石的包裹体;周国平则谈到松石、青金石、欧泊仿制品及玉髓等集合宝石的包裹体等.由此可见玉石中包裹体的概念实际上是包含于宝石包裹体概念之内的.实际的观察也表明,在一些玉石中既存在着分布在主要玉石单矿物中的流体及固体包裹体,同时也存在着矿物由于共生或伴生关系而形成的包体[8].后一种类型包体既可以部分或全部被主体矿物包裹而成为真正地质学意义上的包裹体,也可以与主体矿物形成交生而成为玉石结构中的一部分.而更多的时候,由于玉石往往半透明,玉石鉴定过程中无法准确判别两者真正的成因关系,而外观呈现次要的矿物(或某种结构缺陷)被主体玉石矿物包裹着.对我国各种宝石学文献的对比还可以发现,我国不同研究背景的学者对宝石中包裹体含义的理解明显不同,特别是涉及玉石或集合体宝石时其分歧就更为明显.对于同一特征,如翡翠中包含的黑色矿物包体有人用杂质、瑕庇、黑点来描述,也有人用共生矿物、伴生矿物来描述.这种情况既不利于与国外交流,也不利于规范教育.因此,作者认为理清宝石学中包裹体的概念,明确地质学上包裹体与宝石学的包裹体的差异是有重要意义的.英文文献中inclusion,enclosur e,inclosure,enclav e均可翻译成中文的包裹体或内含物、包体.但地质学中中矿物包裹体最常用的则是inclusion,而enclav e则常用来指岩石(集合体)中的包体.因此作者认为宝石中的包裹体可明确为“凡是与主体宝石和玉石有成分、相态、结构或颜色差异的内含物质或缺陷”外,还建议将狭义宝石(单晶)中的包裹体和玉石集合体中的包裹体分别用不同名称称呼.前者与地质学矿物包裹体的概念相对仍应用inclusio n (包裹体或内含物)表示,而后者则与岩石学中包体的概念相对应,称为包体(enclave).用玉石中的包体来表示那些对区分特定玉石与其它玉石或玉石仿制品有帮助的内含物或缺陷并不仅仅是文字上的统一,起码它还具有如下几个方面的意义: 明确了玉石中特定特征对鉴定的意义,并与狭义宝石中的包裹体相联系. 统一了各种特征的认识,并与国际宝石学领域的认识一致,使后来者更容易掌握,不致出现同说一物各执一词的现象. 由于许多集合体宝石,透明度往往较差,宝石学一般方法并不能确切说明其与主体矿物是共生还是伴生的关系,因此使用“包体”概念更符合宝石学研究的精度.!从工艺或者商品学的角度来说,用“包体”一词可以避名用如瑕疵、脏点、黑屎一类带有褒贬含义的描述,因此也有利于玉石业的推广.∀从概念上明确了宝石学中包裹体与地质学中包裹体的差异,同时也使宝石(狭义)与玉石中关于包裹体的含义有了区别,符合实际的情况.对于玉石中包体的分类和描述,笔者建议根据实际需要选择用成因分类或特征分类.4 玉石包体的分类(1)成因分类.成因分类和宝石(狭义)包裹体分类相一致,可分成为原生(先成包体)、同生包体和后生包体.原生包体如翡翠中所包含的一些锆石或铬铁矿矿物包体,它们可能是翡翠形成前就已存在的,在翡翠形成过程中保存在翡翠(可能有交代蚀变)内.同生包体,指和玉石同时或近于同时形成的包体,如东陵石中的铬云母,琥珀中的昆虫与气泡,岫玉中的云雾状包体等,它们一般是玉石主体矿物的共生或伴生矿物或一些结构缺陷.次生包体,指在玉石形成以后才形成或附加上去的,例如风景玛瑙中的褐铁矿图案,翡翠中次生铁质氧化物包体等.一些后期玉石加工中产生的与玉石结构有关的特征也可归入此类.包体成因分类的着眼点是以玉石主体矿物的形成为标准划分的.虽然这一方案更能反映出包体形成与玉石之间的本质联系,但由于常规鉴定时要明确这一关系有时并不容易,因而限制了这种分类的使用.(2)特征分类.玉石中包体的特征分类是以包体在玉石中的特征为着眼点的,或者说是根据包体对对玉石鉴定评估的意义划分的,据此可以分为实体包体、结构包体和颜色包体3类,实体包体又由矿物包体、流体包体和气体包体组成.其中矿物包体是指玉石中所包裹的与主体玉石具有明显的相差别的共生或伴生矿物,它们对说明玉石的性质(天然、合成及是否经过处理)及产地来源有明显帮助,例如青金石中的黄铁矿,软玉中的磁铁矿等;流体包体是指被玉石包裹的含流体相态物质的包体,明显的如玛瑙中的水胆(二相或多相,其中含明显的液相),欧泊中的流体包体(二相或三相);气体包体如琥珀中的气泡及一些玉石仿制品,如“料”中的气泡.结构包体主要是指玉石中的由于矿物结构、构造形成的一些内部缺陷或表面特征.如翡翠的蝇翅状闪光,是由硬玉的解理或矿物接触界面漫反射产生的特征.另外如青海玉的表面结构特征是由不同硬度矿物抛光产生的表面缺陷.颜色包体是指在玉石中一些特殊的颜色分带或分布,其产生原因可能是明确或不明确的.如萤石(紫水英,软水紫晶)中的颜色条带,玛瑙中的颜色条带,以及一些染色合成107增 刊 丘志力:宝石学包裹体概念及玉石包体分类108中山大学学报(自然科学版) 第37卷物中的特殊颜色区域,如合成绿松石中的颜色小块等,当这种颜色特征对鉴定有明显帮助时可作为包体处理.参考文献1 G ubelin E J,K oivula J.宝石内含物大图解.张瑜生译.大知出版社,1995.15~192 Edw in Roedder.流体包裹体(上).卢焕章译.长沙:中南工业大学出版社,19953 中科院地化所包裹体实验室.矿物中的包裹体及其在地质上的应用.北京:地质出版社,1977.4 4 T J谢佛德.流体包裹体研究——实验指南.张思世译.北京:中国地质大学出版社,1990. 6.5 武内寿久弥.矿物中的包裹体.陈安福编译.北京:科学出版社,1989.3186 英国宝石学会编著.宝石学教程.陈钟惠译.北京:中国地质大学出版社,1992.373~383 7 丘志力.宝石中的包裹体——宝石鉴定的关键.北京:冶金工业出版社,1995.78 丘志力.翡翠中的包体及其对鉴定A、B、C货的意义.中国宝石,1996,1:49~509 李兆麟主编.实验地球化学.北京:地质出版社,1991.1~1710 陈银汉.矿物包裹体相册.河北地制质学院.1981.111 地质词典(矿物岩石,地球化学手册).北京:地质出版社,1981.351~45812 栾秉王敖.宝石.北京:冶金工业出版社,1985.2~313 张蓓莉.国家珠宝玉石名称标准.地质出版社,1996.28~2914 奥岩.就《翡翠中的包体及其对鉴定A、B、C货的意义》一文与丘志力先生商榷.珠宝科技,1996(4):6015 利迪科特.宝石鉴定手册.范淑华译.北京:地质出版社,1988.41~180The Concept of Inclusion in Gemology and theCategory of Jade EnclaveQiu ZhiliAbstract Based on the com parison betw een the concepts of inclusion in geolo gy and gemo logy,the author proposes that the concept of inclusion in g em olog y be different from that in geolog y,and that the for mer include the categ ory of jade enclave.A schem e is pro-posed fo r classify ing the jade enclave into three types of shape enclav e,structure enclave and colour enclav e.T he jade enclav e can be used fo r identification of jades.Keywords jade enclav e,classification,inclusion in g em olog yDepar tment of Ear th Sciences,Z ho ngshan U niver sity,Guangzhou510275,China。
流体包裹体及应用
流体包裹体在其 他领域的应用
宝石鉴定与优化处理
添加标题
宝石鉴定:流体包裹体 可以作为宝石真伪的鉴 别依据通过观察包裹体 的形态、大小、颜色等 特征来判断宝石是否经
过人工处理或合成。
添加标题
优化处理:在宝石的优化 处理中流体包裹体也被广 泛应用。通过加热、加压 等方式改变流体包裹体的 状态可以使宝石的颜色、 透明度等外观特征得到改 善提高宝石的美观度和价
地球科学研究
流体包裹体在地球 科学研究中的应用
流体包裹体在石油 和天然气勘探中的 应用
流体包裹体在矿床 学研究中的应用
流体包裹体在地质 年代学研究中的应 用
地质灾害预警
监测地壳活动预测地震
识别地下水污染保护水资源
Байду номын сангаас
添加标题
添加标题
评估滑坡、泥石流等灾害风险
添加标题
添加标题
监测矿产资源开发中的环境问题
流体包裹体是地质 过程中岩石或矿物 中包含的流体相物 质
形成机理包括成岩 期、变质期和成矿 期等不同地质时期
流体包裹体的形成 与地下水、油气、 地热等流体活动密 切相关
形成机理的研究有 助于了解地质历史 和矿产资源形成过 程
流体包裹体的研 究方法
显微观察技术
显微观察技术: 通过显微镜观察 流体包裹体的形 态、大小、数量 和分布特征确定 其类型和成因。
农业地质调查:利用流体包裹体研究土壤和地下水形成历史 农业环境监测:通过流体包裹体分析土壤和水体的污染状况 农业资源利用:利用流体包裹体研究土壤肥力和植物生长状况 农业气候变化研究:通过流体包裹体分析气候变化对农业的影响
感谢您的观看
汇报人:
添加 标题
流体包裹体的特征:具有封闭性、原生性和不 可再生性是地质历史中流体活动的记录和证据。
包裹体的特征与认识
包裹体的特征与认识第一章包裹体的基本认识1.定义与概述2.分类按它与主矿物形成的时间关系,可分为原生、假次生和次生包裹体;按其含有物的物理状态,可分为岩浆包裹体和流体包裹体,后者又可按气液比分为气相包裹体(气液比>50%)和液相包裹体(气液比<50%);按相态数分为单相、两相和多相包裹体;按成分分为高盐度、低盐度、含二氧化碳、硫化氢以及含有机质包裹体等。
3.形成机制(1)矿物形成过程中,晶格有某些缺陷或窝穴,成矿的母液或硅酸盐熔融体充填在其中,随着矿物的生长被封闭包围而成包裹体,即所谓原生包裹体。
(2)矿脉固结后,许多小晶体之间的空隙中,可能仍封闭残留的成矿母液,最后以包裹体的形式保存下来。
它们也属于原生包裹体。
(3)矿物生长过程中,由于受到应力作用而产生一些微裂隙,矿液沿裂隙侵入后,溶蚀原生晶体而重结晶,在重结品过程中也可以形成包裹体,称为假次生包裹体。
矿物形成后,后期的热液侵入裂隙,对主品进行溶蚀和重结晶或由于裂隙收缩、愈合等因素使热液封闭在裂隙中而成的包裹体,称为次生包裹体。
(4)矿物形成过程中,生长较快的矿物把早先形成的其他矿物包围起来而成固体包裹体。
在火成岩矿物中,包裹了原生的未结晶硅酸盐熔体,冷却后成为玻璃包裹体。
第二章天然宝石包裹体特征1.祖母绿该类宝石以存在三相(固、液、气相)包裹体为特征。
世界著名产地哥伦比亚的契沃尔和木佐所产祖母绿其包裹体具有特殊意义(可反映产地),即呈正方形或长方形的三相包裹体及黄铁矿包裹体,还可见有方解石包裹体存在(多沿裂隙分布)。
山达瓦那床所产祖母绿还可见到针状透闪石包裹体。
2.红、蓝宝石该类宝石包裹体分布常与刚玉的生长面平行排列,宝石的聚片双晶常形成条纹状构造。
红、蓝宝石常见有细针一丝状金红石包裹体,呈三组排列的细针状金红石彼此以60°夹角相交。
红、蓝宝石中常有一种特殊的指纹状包裹体,这是因为在其晶体缺陷中充满了气体或液体,呈云雾状围绕固体包裹体而形成了一种似指纹状图案。
宝石中的包裹体.
宝石中的包裹体矿物包裹体:矿物中与寄主矿物具相分界的物质(狭义包裹体概念)宝石包裹体:指包裹在宝石内与宝石具相分界的物质及结构缺限等(广义包裹体概念)分类:(1)相态分类:固体包裹体(固相包裹体);液体包裹体(液相包裹体)气体包裹体(气相包裹体);两相包裹体;三相包裹体等(2)按形成相对时间a、原生包裹体(先生包裹体)宝石中的包裹体形成于宝石结晶之前如金刚石中的细小金刚石红宝石中的磷灰石祖母绿中的黄铁矿等b、同生包裹体包裹体与寄主宝石同时形成二者形成的物化条件相同,包裹体常沿宝石晶体的缺限部分有规律的定向分布。
如:红蓝宝石中的针状金红石包裹体,锆石包裹体尖晶石中的细小尖晶石包裹体黄玉中二相不混溶液相包体祖母绿中的三项包裹体某些宝石中的气、液包裹体,负晶包裹体等合成红宝石中的助溶剂残留物,气泡、弧形生长纹等c、后生包裹体(次生包裹体)该类包裹体形成于宝石结晶之后如外来气、液物质沿裂隙,解理的充填,或出溶作用而形成的金红石、以及放射性元素的破坏作用所形成。
如玛瑙中的树枝状包裹体,铁铝榴石中的锆石晕等。
(3)按形状划分:指纹状、飘纱状、钉头状等等研究宝石包裹体的意义(1)鉴别宝石种属:绿色石榴石:马尾状石棉包体为翠榴石糖浆状结晶质包体为钙铝榴石(2)确定天然与合成天然红宝石:矿物包体,平直或六边形色带指纹状气液包体等焰溶法合成红宝石:气泡、弧形生长纹等。
(3)判别是否经过优化、处理:红宝石热处理气液包体炸裂(优化)绿色翡翠具有丝网状绿(处理)(4)确定宝石的形成条件,成因:伟晶岩宝石常含丰富的气一液包体金刚石包裹体中的矿物成分,组合对探讨金刚石形成的温压条件,金刚石及金伯利岩的成因及金刚石的寻找都具有十分重要的作用。
(5)确定宝石产地具三项包体的祖母绿为哥伦比亚祖母绿的特征(6)评价宝石的质量如钻石的净度分级等。
包裹体方法及应用
Application of inclusions method
桂林工学院资源与环境工程系
Application of inclusions method
1.包裹体的概念
矿物生长时包裹在矿物的晶格缺陷、窝穴或浸入到矿物裂隙中的一部分成矿溶液
或硅酸盐熔融体,它们与主矿物有着相的界限。
桂林工学院资源与环境工程系
Application of inclusions method
2. 2 包裹体特征与断层活动性的关系
断层的活动性是评价区域稳定性和场区稳定性的重要指标。工程场地是否有
大断裂通过,是否坐落在活动性断裂之上,是关系到工程的安全性以至于能否营造
的问题。在一些工程项目地基勘察中根据包裹体的形态、大小和类型以及断层带
3)优缺点
(1)在显微镜下直接观察进行,比较直观可靠。 (2)仪器简单操作方便,有利于普及和推广。 (3)它能区分各种类型的包裹体,所以可根据不同的研究目的选择不同
类型的包裹体进行测定,这样的出的数据就能说明地质上的一些问题。 (4)它只适用于透明矿物和部分半透明矿物的测定。而与有用金属矿产
晶格缺陷少,包裹体个体大,数量少,形态规则,分布稀疏;如果一个地区的地壳活动
相对强烈,断层发生多期活动,则矿物晶格缺陷多,包裹体个体小、数量多、形态不
规则、分布密集,即使有少数个体大的包裹体形成,在后期构造活动作用下易被破
坏,很难保留。因此,我们可以根据矿物包裹体这一特征判别场区稳定性和断层的
活动性。
3)假次生包裹体:主矿物结晶过程中,由于应力和构造的作用,使已结晶的矿物发 生破碎和裂开,以致同一种母液又进入这些裂隙中,溶解裂隙两侧的主矿物,在主 矿物继续结晶生长时,使裂隙愈合,在窝穴内封存了母液,形成似次生的包裹体。
包裹体方法及应用.
桂林工学院资源与环境工程系
Application of inclusion观察与描述
1)气液比 N=V气/(V气+ V液) 2)颜色 颜色的不同表明了溶液的成分不同或离子阶态的差异。 3)形态 规则的为指与主矿物的晶形相近似的,表明主矿物结晶比较缓慢,环境 比较稳定。故,形态规则的包裹体是沿晶体生长带生长的,常具规则的定向排列, 成群出现,为原生包裹体的主要鉴别标志之一。 4)包裹体的大小 同形状一样,在一定程度上反映了矿物结晶时的物理化学条件。 5)包裹体的分布特征 杂乱无章的包裹体常在晶体的核部,而有规则的,沿晶体 生长面呈带状分布的包裹体,常位于晶体的向外部分,前者的形成温度高于后者。
桂林工学院资源与环境工程系
Application of inclusions method
(2)按照物理状态分类:气态、液态、多相和熔融体包裹体四种 1)气态包裹体:气液比大于50%的气液包裹体 2)液态包裹体:气液比小于50%的气液包裹体 3)多相包裹体:由气相、液相、固相等组成的包裹体 含液体CO2包裹体(气相、液体CO2 盐水溶液) 含子矿物包裹体(所包裹的溶液中由于过饱和而析出子矿物:石盐、钾盐、方解 石、石膏、磷灰石、萤石、赤铁矿等) 含有机物包裹体(有机液体有石油、甲烷、乙烷;固体沥青等,气态也为甲烷、 乙烷) 4)熔融体包裹体:在成岩过程中,有捕获岩浆或硅酸盐熔融体所形成的包裹体。 在迅速冷凝条件下,形成玻璃质的固态包裹物(玻璃包裹体),常见火山岩中。
桂林工学院资源与环境工程系
Application of inclusions method
3)优缺点
(1)在显微镜下直接观察进行,比较直观可靠。 (2)仪器简单操作方便,有利于普及和推广。 (3)它能区分各种类型的包裹体,所以可根据不同的研究目的选择不同 类型的包裹体进行测定,这样的出的数据就能说明地质上的一些问题。 (4)它只适用于透明矿物和部分半透明矿物的测定。而与有用金属矿产 有关的矿物大多数为不透明的,这就使本方法使用范围受到限制。
包裹体的分类
依据包体与宝石形成的相对时间,可将包体分为原生包体、同生包体和次生包体。
1.原生包体原生包体是指比宝石形成更早,在宝石形成之前就已结晶或存在的一些物质,在宝石晶体形成过程中被包裹到宝石内部。
原生包体的形成主要与介质环境(如成矿溶液成分和浓度的变化)及晶体的快速生长有关。
宝石中的原生包体都是固态的,它可以与寄主矿物同种,也可以不同(见图1-2-1)。
合成宝石一般不存在原生包体,但对于有种晶的一些合成方法,也可把合成宝石中的种晶视为一种原生包体。
2.同生包体同生包体是指在宝石生成的同时所形成的包体,它们的形成主要与晶体的差异性生长、晶体的不规则生长结构、晶体的生长间断、溶液过饱和度的变化、外来杂质的出现、体系温度或压力的突然变化等因素有关。
此类包体可以是固态的,也可以是含有呈各种组合关系的固体、液体和气体,甚至空洞或裂隙等,还可以是导致分带性的化学组分变化所形成的色带、幻晶等。
(1)同生固态包体在某些情况下,若包体矿物与宝石晶体沿结合面的原子结构相似,当宝石晶体停止生长时,包体矿物可聚集和生长在宝石晶体的表面;晶体的重新生长会覆盖这些生长在表面的矿物,使之成为包体。
纤维状矿物的生长速度比主体宝石的生长速度快,因而可以形成长丝状的包体,如水晶中呈针状的金红石、闪石包体(见图1-2-2)。
在高温下结晶均匀的固溶体矿物,当温度缓慢下降时,固溶体的溶解度减小达到过饱和状态,而出溶成为两个彼此不同的矿物,可使宝石晶体中含有片状或针状矿物晶体,而且它们的方向往往与寄主晶体的某个结构方向平行。
例如:从刚玉中出溶的金红石结晶成三组针状的晶体,相互的交角为120。
,而且均平行于刚玉的底轴面。
钛化合物如金红石、榍石和钛铁矿是宝石中最常见的出溶矿物。
这是由于Ti元素的丰度大,易于为寄主晶体所容纳并从寄主晶体晶格中出溶。
大量的出溶针状物可在刚玉、石榴石和尖晶石等宝石中产生猫眼和星光效应。
其他的出溶矿物有日光石、堇青石中的赤铁矿;月光石中的钠长石;拉长石中的针铁矿等。
论宝石包裹体的分类
第10卷 第2期2008年 6月宝石和宝石学杂志Journal of G ems and G emmologyVol 110 No 12J une 2008 收稿日期:2008203210 项目资助:教育部新世纪优秀人才支持计划(NCET 20720771) 作者简介:施光海(1968—),男,博士,副教授,主要从事地质动力学、年代学、显微组构及宝石学方向的研究工作。
论宝石包裹体的分类施光海(中国地质大学珠宝学院,北京100083)中图分类号:TS93 文献标识码:D 文章编号:10082214X (2008)022******* G übelin 等[1]按宝石包裹体形成的先后顺序分类时,用了英文词protogenetic inclusion ,syngenetic inclusion 和epigenetic inclusion 来修饰,其准确的翻译应分别为“先成包裹体”“同生(成)包裹体”和“后生(成)包裹体”。
然而,目前国内有些出版物甚至教科书中却将先于主体宝石形成的包裹体称为“原生包裹体”,后于主体宝石形成的包裹体称为“次生包裹体”。
词义上,“原生包裹体”对应的英文词为primary inclusion ,“次生包裹体”对应的英文词为secondary inclusion 。
笔者认为,用“次生包裹体”来表征后于主体宝石形成的包裹体有些不妥,因为宝石包裹体不仅包括物质型,还有结构型与颜色型,如对后生的裂隙就不能直接用“次生”来修饰;用“原生包裹体”一词表征先于主体宝石形成的包裹体则不妥当,如琥珀内的昆虫包裹体,祖母绿、欧泊等宝石内的岩屑,一些宝石内宇宙尘埃包裹体等都是先成包裹体,但它们却不是原生的。
地质学上,“原生包裹体”与“次生包裹体”指矿物包裹体成因分类中的两类包裹体。
目前,对矿物包裹体较全面和科学的定义为:矿物包裹体指成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长的过程中被包裹在矿物晶格缺陷或穴窝中的、至今尚在主矿物中封存并与主矿物有着相的界限的那一部分物质[2]。
“绿幽灵”水晶包裹体种类探究
“绿幽灵”水晶包裹体种类探究“绿幽灵”水晶包裹体是一种独特的水晶形态,它被认为是一种精神和心灵的治疗石,可以帮助人们平衡内在能量、发现自我、提升自我意识和提高直觉能力。
在这篇文章中,我们将探讨“绿幽灵”水晶包裹体的种类及其特点。
首先,让我们来了解一下“绿幽灵”水晶包裹体的定义。
绿幽灵是指水晶中含有绿色幽灵状包裹体的一种特殊形态。
这些包裹体通常被称为幽灵或魔鬼,它们被认为是水晶内部的另一个矿物晶体或氧化矿物。
这些包裹体可以有不同的形状和颜色,但它们通常呈现为绿色或蓝绿色。
在绿幽灵水晶包裹体中,包裹体通常会在水晶中形成垂直或水平的条纹或带状结构。
这些包裹体在水晶中形成的方式取决于水晶的生长条件和矿物组成。
它们可能是由绿幽灵矿物如绿云母,绿柱石或绿泥石构成,也可能是由其他矿物形成。
接下来,我们将详细介绍一些常见的绿幽灵水晶包裹体种类及其特点。
1.绿云母包裹体:绿云母是绿幽灵水晶中最常见的包裹体之一、它通常呈现为绿色或浅绿色的带状结构,具有丝状或羽毛状的外观。
绿云母包裹体被认为具有平衡能量、净化和保护的作用,可以帮助人们提升内在能量和精神成长。
2.绿柱石包裹体:绿柱石是另一种常见的绿幽灵水晶包裹体。
它通常呈现为绿色或蓝绿色的柱状结构,具有清晰的晶体形态。
绿柱石包裹体被认为具有治愈和平衡心灵、身体和精神的作用,可以帮助人们释放负面情绪和促进心灵成长。
3.绿泥石包裹体:绿泥石是绿幽灵水晶中较少见的包裹体之一、它通常呈现为绿色或黄绿色的块状结构,具有坚固和密实的外观。
绿泥石包裹体被认为具有地球能量和生命力的能量,可以帮助人们连接大地的能量、提升土地感和稳定情绪。
总的来说,“绿幽灵”水晶包裹体是一种独特的水晶形态,具有强大的能量和治疗作用。
不同种类的绿幽灵水晶包裹体在形态和功效上有所不同,但它们都可以帮助人们平衡内在能量、发现自我、提升自我意识和提高直觉能力。
如果你对绿幽灵水晶包裹体感兴趣,可以尝试选择适合你需求的种类,将其放置在家中或办公室,感受它们带来的能量和治疗作用。
包裹体
1.矿物包裹体与宝石包裹体的概念及研究异同(1)矿物包裹体:矿物在生长过程中由封闭系统组成的单相或多相体系的包裹体(2)宝石包裹体:在宝石内部与主体宝石在成分、结构、晶轴方位或物性上存在差异的内含物质及生长想象,还包括与内部结构有关的表面特征等。
宝石包裹体影响了宝石整体的均匀性。
(3)研究异同:①矿物包裹体:可以是有损研究;超显微(X千—万倍);研究成因,指导找矿②宝石包裹体:基本无损;光学显微(10—80X);鉴定、质量评价、成因等。
2.包裹体有哪些分类方法,并简述其类别(1)按形成先后顺序分类(原生、同生、后生)原生:固态包裹体;同生:固态包裹体、流体(气液)包裹体、非物质性包裹体(包体分带:幻晶;颜色分带:色带;结构分带:生长纹、双晶纹;假次生包裹体);后生:裂隙充填的包裹体,变生包裹体(2)按物态分类:①固态包体:结晶质(自行晶,晶形完好);熔融结晶(多结晶相);绒绒玻璃(玻璃相,有气相相伴)②流体包体:气体、液体、气液、纯液③熔体包体:固相、气相发挥份、流体相(3)根据包裹体本身特征分类:①物质型:固、液、气态②结构型:双晶面、解理纹等③颜色型:色带、色团、色晕等(4)按包裹体大小及可见程度:宏观、微观、超显微(5)其他分类:①组成是否为有机物:有机、无机②源区:地内、地外③形成方式:天然、合成④是否具指示宝石种属意义:一般、特征3.举例说明先成、同生、后生包裹体的定义及如何区分(1)原生包裹体:在主宝石矿物的生长过程中所捕获的包裹体;它比宝石形成早,在主宝石形成前就已经形成;在宝石包裹体中主要指固态包裹体(2)同生包裹体:在主宝石矿物结晶过程中与主宝石同时生长形成的包裹体,主要指流体和熔体包体,以及宝石中的生长结构和现象,也可以是固相(如:红蓝宝石中定向排列的金红石)以及出熔体宝石生成时的环境变化:晶体缺陷—熔体、流体被捕获—结晶、冷凝(3)后生包裹体:①次生包裹体:指主宝石矿物结晶以后发生微裂隙,宝石周围的物质沿裂隙贯入宝石中形成的包裹体,为裂隙充填的包裹体,与主晶介质无关,而代表后期的某一次应力作用的介质②变生包裹体:由于变质作用,使晶体中的先成、同生或次生包裹体发生了改变(变质)所形成的包裹体。
矿物学基础包裹体定义与分类
地球的圈层结构
地球表 面是由岩石 构成的,也 就是说,岩 石组成地球 的外壳,覆 盖在地球的 表面,即岩 石圈。
2、按成因分类
(1)原生包裹体
指比主矿物先形成,后被主矿物生长时所包裹而成为 的包裹体。均为固态矿物包裹体,主要见于岩浆作用和变 质作用成因的宝石矿物中。如金刚石中的小八面体金刚石 包体;红宝石中的磷灰石包体。包体常具有其晶形棱角因 受熔蚀而变得圆滑的特征。
祖母绿中的黄铁矿包体
(2)同生包裹体 是在主矿物生长过程中同时形成的包裹体。主要是
玛瑙中的树枝状包裹体——铁锰氧化物花纹
铁铝榴石中的金红石和 锆石晕包体
蓝宝石热处理应力环
铁铝榴石中锆石包体周围 的“锆石晕”
原 生、 同 生、 次 生 包 裹 体 同生包裹体 的 区 分
次生包裹体 原生包裹体
不同相态宝石包裹体特征
包裹体类型
特征
光性表现 原 生
纯液 相
一般无色
与宝石折光率 相差大,界线 清
少 见
单 相
纯固 相
往往有晶形, 半透明不透明
与宝石折光率 相差大则界线 清;相差小则
常 见
模糊
纯气 相
往往呈弧形边 界
与宝石的接触 边界有黑边或 亮边
少 见
分布
同 生
次生
一 般
可见,往 往沿裂隙 分布
常见,多
常 为铁锰氧
见 化物呈树
枝状
常 见
较少见
不同相态宝石包裹体特征
包裹体类型
特征
光性表现 原 生
缅甸红宝石内的磷灰石晶体
水晶中的发晶
祖母绿中的三相包体
包裹体
1、包裹体:指宝石生长过程中被包裹在晶格缺陷中的外来物质。
宝石中的内含物指在宝石生长过程中,由于自身或外界因素使宝石内部含有一些物质、生长现象、缺陷等特征。
宝石中的内含物包括:包裹体(气、液、固相物质)、解理、裂隙、双晶、生长纹、色带、生长蚀象等包裹体的分类:按形成时间:原生包体、同生包体、次生包体原生包体:指包裹体在宝石的形成之前就已经存在的包体,后在宝石的生长过程中被包裹到宝石内部。
特征:均为固态包体,如阳起石、透闪石、云母、磷灰石、锆石、金红石、橄榄石等。
原生包体的成因:1) 晶体生长溶液过饱和度的变更2) 晶体的差异性生长3) 晶面上杂质的吸附作用4) 落在晶体生长面上的外来质点(矿物颗粒、气泡、油珠)等的影响。
b 同生包体:形成时间与宝石形成的同时形成的包体。
特征:有气、液、固态同生包体形成机制:1) 晶体生长过程中裂隙的愈合2) 浸蚀坑的充填3) 幻影晶体4) 负晶形次生包体:宝石形成以后形成的包体。
是宝石晶体形成后由于环境的变化而形成的。
次生包体特征:次生裂隙、充填裂隙、有特殊图案或具有熔融、溶蚀特征的固体包体。
次生包体的形成机制:1)裂隙结晶化,晶体形成后,因应力作用产生裂隙,裂隙不会愈合,外来物质渗入并沉淀.如风景玛瑙2)固熔体的出溶作用3)放射性元素的破坏作用多相包裹体的形成机制:包裹体形成时是液相,且介质流体中溶解了很多的矿物质,温度降低后有些矿物质结晶成固相,由于体积的收缩会形成气泡。
不同相态包体的特征:固态包体通常有一定的晶体形状;液态包体形态不规则,呈星点状或密集排列的管状。
常为无色透明液体;气态包体则呈球形或椭圆形,气泡边缘呈黑色,中心发亮。
三:优化处理宝石中的内含物:1. 加热处理:容易产生裂隙 2. 辐照处理:易产生辐照圈3. 染色和有色灌注处理:易产生染料在裂隙中聚集 4. 裂隙充填 5. 激光打孔四,合成宝石中的内含物:常见弧形生长纹、气泡、残余助熔剂、残留的种晶片等包裹体的形成机制: 宝石中包裹体形成与矿物包裹体形成一样,往往也和晶体形成过程中产生的晶体缺陷有关。
包裹体
1.矿物包裹体与宝石包裹体的概念及研究异同(1)矿物包裹体:矿物在生长过程中由封闭系统组成的单相或多相体系的包裹体(2)宝石包裹体:在宝石内部与主体宝石在成分、结构、晶轴方位或物性上存在差异的内含物质及生长想象,还包括与内部结构有关的表面特征等。
宝石包裹体影响了宝石整体的均匀性。
(3)研究异同:①矿物包裹体:可以是有损研究;超显微(X千—万倍);研究成因,指导找矿②宝石包裹体:基本无损;光学显微(10—80X);鉴定、质量评价、成因等。
2.包裹体有哪些分类方法,并简述其类别(1)按形成先后顺序分类(原生、同生、后生)原生:固态包裹体;同生:固态包裹体、流体(气液)包裹体、非物质性包裹体(包体分带:幻晶;颜色分带:色带;结构分带:生长纹、双晶纹;假次生包裹体);后生:裂隙充填的包裹体,变生包裹体(2)按物态分类:①固态包体:结晶质(自行晶,晶形完好);熔融结晶(多结晶相);绒绒玻璃(玻璃相,有气相相伴)②流体包体:气体、液体、气液、纯液③熔体包体:固相、气相发挥份、流体相(3)根据包裹体本身特征分类:①物质型:固、液、气态②结构型:双晶面、解理纹等③颜色型:色带、色团、色晕等(4)按包裹体大小及可见程度:宏观、微观、超显微(5)其他分类:①组成是否为有机物:有机、无机②源区:地内、地外③形成方式:天然、合成④是否具指示宝石种属意义:一般、特征3.举例说明先成、同生、后生包裹体的定义及如何区分(1)原生包裹体:在主宝石矿物的生长过程中所捕获的包裹体;它比宝石形成早,在主宝石形成前就已经形成;在宝石包裹体中主要指固态包裹体(2)同生包裹体:在主宝石矿物结晶过程中与主宝石同时生长形成的包裹体,主要指流体和熔体包体,以及宝石中的生长结构和现象,也可以是固相(如:红蓝宝石中定向排列的金红石)以及出熔体宝石生成时的环境变化:晶体缺陷—熔体、流体被捕获—结晶、冷凝(3)后生包裹体:①次生包裹体:指主宝石矿物结晶以后发生微裂隙,宝石周围的物质沿裂隙贯入宝石中形成的包裹体,为裂隙充填的包裹体,与主晶介质无关,而代表后期的某一次应力作用的介质②变生包裹体:由于变质作用,使晶体中的先成、同生或次生包裹体发生了改变(变质)所形成的包裹体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一) 依据包体与宝石形成的相对时间分类
依据包体与宝石形成的相对时间,可将包体分为原生包体、同生包体和次生包体。
1.原生包体
原生包体是指比宝石形成更早,在宝石形成之前
就已结晶或存在的一些物质,在宝石晶体形成过程中
被包裹到宝石内部。
原生包体的形成主要与介质环境
(如成矿溶液成分和浓度的变化)及晶体的快速生长有
关。
宝石中的原生包体都是固态的,它可以与寄主矿
物同种,也可以不同(见图1-2-1)。
合成宝石一般不存在原生包体,但对于有种晶的
一些合成方法,也可把合成宝石中的种晶视为一种原生
包体。
2.同生包体
同生包体是指在宝石生成的同时所形成的包体,它们的形成主要与晶体的差异性生长、晶体的不规则生长结构、晶体的生长间断、溶液过饱和度的变化、外来杂质的出现、体系温度或压力的突然变化等因素有关。
此类包体可以是固态的,也可以是含有呈各种组合关系的固体、液体和气体,甚至空洞或裂隙等,还可以是导致分带性的化学组分变化所形成的色带、幻晶等。
(1)同生固态包体
在某些情况下,若包体矿物与宝石晶体沿结合面的原子结构相似,当宝石晶体停止生长时,包体矿物可聚集和生长在宝石晶体的表面;晶体的重新生长会覆盖这些生长在表面的矿物,使之成为包体。
纤维状矿物的生长速度比主体宝石的生长速度快,因而可以形成长丝状的包体,如水晶中呈针状的金红石、闪石包体(见图1-2-2)。
在高温下结晶均匀的固溶体矿物,当温度缓慢下降时,固溶体的溶解度减小达到过饱和状态,而出溶成为两个彼此不同的矿物,可使宝石晶体中含有片状或针状矿物晶体,而且它们的方向往往与寄主晶体的某个结构方向平行。
例如:从刚玉中出溶的金红石结晶成三组针状的晶体,相互的交角为120。
,而且均平行于刚玉的底轴面。
钛化合物如金红石、榍石和钛铁矿是宝石中最常见的出溶矿物。
这是由于Ti元素的丰度大,易于为寄主晶体所容纳并从寄主晶体晶格中出溶。
大量的出溶针状物可在刚玉、石榴石和尖晶石等宝石中产生猫眼和星光效应。
其他的出溶矿物有日光石、堇青石中的赤铁矿;月光石中的钠长石;拉长石中的针铁矿等。
(2)同生流体(气液)包体
产于某些地质环境的宝石可含有大量的气液包体。
由于形成条件的制约,气液包体很少见于火成岩,常见于伟晶岩中。
这是因为伟晶岩形成于较低的温度,并含有大量的水溶液。
晶体在生长过程中可能破裂,成矿溶液可以进入其裂隙中,直到裂隙在适当部位愈合为止。
以这种方式形成的愈合裂隙在富含水溶液环境条件下生成的宝石中是常见的。
愈合裂隙
可以呈扁平状或弯曲状,常说的“指纹状包体”就属于此类(见图1-2-3)。
有的宝石内部可含有管状的孔道或具有规则形状的孔洞。
这是由于宝石晶体在生长的过程中生长阻断或生长速度过快造成的。
在生长过程中,孔道或孔洞的形状可能会发生改变或愈合。
如海蓝宝石中的“管状”包体可以呈断断续续的“雨丝状”。
很多情况下,经常见到液态包体与气态、固态包体共存。
(3)同生的非物质性包体
宝石晶体中常见同生不均匀性包体,主要表现为下述几种分带现象。
包体分带宝石晶体生长的暂时停顿使外来的晶体集结在寄主晶体的表面。
若寄主晶体重新生长,便可形成或多或少的呈面状分布的薄层包体,即所谓的“幻晶”。
颜色分带颜色分带通常取决于宝石中化学成分的变化,它反应了宝石生长环境和流体化学成分的变化,如红宝石、蓝宝石中的平直或角状色带。
结构分带结构分带通常是由宝石中的双晶造成的,如钻石、长石和红蓝宝石中的生长纹和双晶纹。
合成宝石的包体大都属于同生包体,它们可以是固态、气态或液态。
但它们往往从形态和组成上与天然宝石明显不同,可作为区分天然与合成宝石的主要或诊断性特征。
如助熔剂法合成红宝石中的助熔剂残留(见图1-2-4),水热法中合成祖母绿中的铂金片、合成祖母绿中由硅铍石和空洞构成的“钉头”状包体,焰熔法合成红宝石中的弧形生长纹和气泡(见图1-2-5)等。
3.次生包体
次生包体是指宝石形成后产生的包体,它是宝石晶体形成后由于环境的变化,如受应力作用产生裂隙,外来物质沿其渗入及裂隙充填所形成的包体,甚至可能是由于放射性元素的破坏作用所形成的包体。
(1)次生裂隙及外来物质充填胶结
宝石停止生长后产生的裂隙中可能会有外来物质进入并在其中沉淀。
常见的外来物质是铁和锰的氧化物,如水晶或玛瑙中的黑色树枝状包体(见图1-2-6)。
(2)放射性元素的破坏作用
有些宝石经常含有微量的放射性元素,如锆石常含有放射性元素u和Th,由于它们的存在不但可以破坏宝石本身的晶体结构,同时,当锆石作为包体出现在其他宝石矿物中时,放射性元素在破坏锆石晶格的同时,还会使锆石的体积增大,也可对主晶宝石晶格产生破坏,产生的应力可导致在锆石周围形成放射状的裂隙等痕迹,这就是我们所说的“锆石晕”(见图1-2-7)。
合成宝石往往不存在次生包体。
但对于优化处理的宝石,可含有一些次生包体。
如,红蓝宝石的热处理,往往会导致内部固态包体的体积发生变化,使之发生爆裂而在周围产生次生裂隙(见图1-2-8);也会使宝石中存在的Fe、Ti出溶,而形成金红石针;也可使同生的针状金红石包体熔蚀,形成呈点状排列的金红石。
这些也都可以作为宝石热处理的鉴定特征。
另外,宝石的染色处理、充填处理也可视为次生的包体;扩散处理造成的颜色在刻面宝石的
腰棱部位的颜色集中、激光打孔处理和KM处理钻石所留下的痕迹和裂隙也可视为次生包体。