极限部分练习题答案

合集下载

第一章求极限练习题答案

第一章求极限练习题答案

n dAl l th i nb ea rgo1.求下列极限:(1) 解:原式===22221lim(1)n n n n →∞++-2221lim 21n n n n n →∞++-+22112lim 211n n n n n→∞++-+(2) 解:原式==(3) 解:原式20lim(1)x x x →+12lim[(1)]x x x →+2e 3x →==(4) 解:原式=3x →x →141lim (1)xx x e →∞-=1(5) 求.解:原式=1(1)lim1xx e x→∞-0x ≠当当当lim cos cos cos 242nn x x x→∞==cos cos (2cos sin )2422lim2sin 2n n n n x x x x x →∞ 1cos sin22lim 2sin 2n n nx xx →∞-sin lim 2sin 2n nn x x →∞ ==(6) 解:原式==sin 2lim()sin 2n n nx x x x →∞A sin x x limx lim x (7) limx lim x 22212lim(12n nn n n n n n n→∞+++++++++ 解:令 2221212n ny n n n n n n n =+++++++++ 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++ 而,,2(1)12lim 2n n n n n n →∞+=++2(1)12lim 12n n n n n →∞+=++故222121lim(122n n n n n n n n n →∞+++=++++++ (8)解:原式=n →∞Al th ng i nt hi n g2n n →∞→∞==1.3 函数的极限 作业1.根据函数极限的定义,验证下列极限:(1) 解: ,要使, 即,31lim0x x→∞=0ε∀>3311|0|||x x ε-=<||x >只要取,则当时,恒有 , 所以. X =||x X >31|0|xε-<31lim0x x→∞=(2) 解: ,要使,2x →=0ε∀>|4||2|2x ε-=<<还要使,即,或,只要取,0x ≥44x -≥-|4|4x -<min{2,4}δε=则当时,恒有 , 所以. 0|4|x δ<-<|2|ε-<42x →=2.求下列数列极限:(1) 22212lim(12n nn n n n n n n→∞+++++++++ 解:令2221212n ny n n n n n n n =+++++++++ 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++ 而,,2(1)12lim 2n n n n n n →∞+=++2(1)12lim 12n n n n n →∞+=++故222121lim(122n n n n n n n n n →∞+++=++++++ (2)解:原式=n →∞2n n →∞→∞==3.求下列函数极限:(1) 解:原式=-9(2) 解:原式==4225lim 3x x x →+-224lim 2x x x →--2lim(2)x x →+a re (3)解:原式=1x→11x x →→==(4) 解:原式=x →∞x =(5) 解:原式=2(21)(32)lim (21)x x x x →∞--+226723lim 4412x x x x x →∞-+=++(6) 解:原式=2121lim()11x x x →---211(1)11lim lim 112x x x x x →→---==--+4.设,分别讨论在,和23 2 0() 1 01 1 x>11x x f x x x x ⎧⎪+≤⎪=+<≤⎨⎪⎪-⎩()f x 0x →1x →时的极限是否存在.2x →解:,,故不存在.0lim ()2x f x -→=0lim ()1x f x +→=0lim ()x f x →,趋向无穷大,故不存在.1lim ()2x f x -→=1lim ()x f x +→1lim ()x f x →,,故.2lim ()1x f x -→=2lim ()1x f x +→=2lim ()1x f x →=1.43.求下列函数极限:(1) =-9(3) ==4225lim 3x x x →+-224lim 2x x x →--2lim(2)x x →+1x →1x x →→==(7) 00h h h →→→===(9) =x →∞x =ngsin(11) =2(21)(32)lim(21)xx xx→∞--+226723lim4412xx xx x→∞-+=++(13) lim lim0x x==(15) =2121lim(11x x x→---211(1)11lim lim112x xxx x→→---==--+2. 设,分别讨论在,时的左右1100()01112xxxf xx xx-⎧<⎪-⎪⎪==⎨⎪<<⎪≤<⎪⎩()f x0x→1x→极限,并说明这两点的极限是否存在.解:,,故001lim()lim11x xf xx--→→-==-00lim()lim0x xf x x++→→==00lim()lim()x xf x f x-+→→≠不存在.,lim()xf x→11lim()lim1x xf x x--→→==11lim()lim11x xf x++→→==.11lim()lim()x xf x f x-+→→=1lim()1xf x→=1.51.求下列极限:(1)00sin3sin3lim lim333x xx xx x→→=⋅=00tan333(3)lim limsin444x xx xx x→→==2220002sin22(5)24()2x x xxxxxx→→→⋅===注:在,.0(0,)Uδ2sin02x≥220002(5)4x x xxx→→→===Al ng snt he (7) 解: 原式=0x →0x →=202sin sin lim sin 2x x x x x x→→+==42021sin sin lim2()2x x x xx →+220sin sin 2lim ()x x x x x →=+注意: 代数和中的一部分不能用无穷小替换.错 原式=0x →0→ (8)1sin cos lim1sin cos x x xx xββ→+-+-解: 原式==2022sin cos 2sin 222lim2sin cos 2sin 222x x x x x x x βββ→++0sin (cos sin )222lim sin (cos sin )222x x x x x x x βββ→++===00sin cos sin 222limlim sin cos sin222x x x x x x x x βββ→→++A 02lim 12x x x β→A 1β注意: 代数和的一部分不能用无穷小替换.错 =01sin cos lim 1sin cos x x x x x ββ→+-+-202112lim 12x x xx x βββ→+=+33333(9)lim(1)lim[(1)]xx x x e x x →∞→∞+=+=244424(11)lim(lim[(1]22x x x x x e x x +---→∞→∞--=+=++113330(13)lim(13)lim[(13)]xx x x x x e →→+=+=4. 当时,下列函数中哪些是的高阶无穷小,哪些是的同阶0x →x x无穷小,哪些是的低阶无穷小?x32(1)1000x x+322001000lim lim(1000)0x xx xx xx→→+=+=解:因为321000()x x o x+=所以3(2)2sin x32002sin sinlim lim2sin0x xx xxx x→→=⋅=解:因为3sin()x o x=所以(3) 解:ln(1)x+100ln(1)lim lim ln(1)1xx xxxx→→+=+=因为ln(1)~x x+所以(4) 解: ,1cos x-20002sin sin1cos22lim lim lim(sin)022x x xx xx xxx x→→→-===A因为1cos()x o x-=所以(5) 解: 因为==2,故是的同sinx x+sinlimxx xx→+sinlim(1xxx→+sinx x+x阶无穷小.解: 因为==,x→131233sin11lim[()cosxxxx x→A A∞的低阶无穷小.或:因为=xx→0x→是的低阶无穷小.x→x思考题:1.==9=911331lim(39)lim9(13xxx x x xxx x→+∞→+∞+=+A A1331lim9[(1]3x xxxx→+∞+A0e2.,因为当时,.arccotlimxxx→=∞0x→arccot2xπ→习题2.2 1.求下列函数的导数:解:2(1)cosy x x=+'sin2y x x=-+(3) 解:(注:)sin cosy x x e=++'cos1y x=+(cos)'0e=(5) 解2cos2xy='2cos(cos)'22x xy=A==2cos(sin)('222x x x-A A2cos(sin)22x x-cos sin22x x-A解:(7)sin3y x='3cos3y x=解:2(9)sin(1)y x x=++2'(21)cos(1)y x x x=+++解:3(11)lny x=+1139'(ln)'(3ln)'222y x xx x x=+=+=(6) 解:=6(21)y x=+5'6(21)2y x=+A512(21)x+(10) 解:=ln(ln)y x=1'(ln)'lny xx=11ln x xA(11) 解:ln(sin)y x=1''(sin)'siny xx=+1cossinxx+A2.在下列方程中,求隐函数的导数:(1)解:cos()y x y=+'sin()(1')y x y y=-+⋅+(2)解:222333x y a+=113322'033x y y--+=3. 求反函数的导数:(1)解:lny x x=+1111dxdydydx x===+(2) 解:,故arcsin xy e=sin lnx y=1cos lndxydy y=⋅4. 求下列函数的导数(1) 解:2siny x x='y=22sin cosx x x x+(5) 解:3(3)lny x x=23221'3ln3lny x x x x x xx=+=+解:1ln1lnxyx-=+21ln1ln'(1ln)x xx xyx+---=+211lnyx=-++eanrb22212'0(1ln)(1ln)yx x x x=-⋅=-++(7) 解21cosy xx=1'2cosy xx=+2x1(sinx-12cosxx+2x1(sinx-(9)ln(y x=+''y x=+==解:(10) 解:12 (0)xy x e a=->112'2x xy xe x e=+A(ln(x xa a a--(11) arccos xyx=-arccosln(1lnxy xx=-+-解:1'yx=-+2arccos1xx x=+2arccos xx=-ln(13)xy x=2ln ln(ln)x x xy e e⋅==解:ln ln11'2ln2lnx xy x x x xx-=⋅⋅=⋅(14) cos(sin)xy x=解:,对该式两边求导数得ln cos ln siny x x=11'sin ln sin cos cossiny x x x xy x=-+cos'(sin)(sin ln sin cos tan)xy x x x x x∴=-+(15) 解:,对该式两边求导y x=11ln ln ln(1)ln(1)22y x x x=+--+数得1111'2(1)2(1)yy x x x=---+Al t he (10)解:arcsin lnx y x =-'[ln(1(ln )'y x =++-(1'1x+(2)x -1x +1x4. 求反函数的导数:(1)解:ln y x x =+1111dxdy dydx x===+arcsin xy e =解:,故求下列参数方程的导数:sin ln x y =1cos ln dx y dy y =⋅'y 211(1)(1)x t t y t ⎧=⎪+⎪⎨⎪=+⎪⎩242(1)2(1)'()1(1)1'()1(1)t t t dy y t t t dx x t t t +-⋅+-+===+-+解: (2) 解:3233131at x t at y t ⎧=⎪⎪+⎨⎪=⎪+⎩322332323326(1)333(2)(1)3(1)333(12)(1)at t at t dy dy at t t dt dxa x at t dx a t dt t +-⋅-+===+-⋅-+(3) 解:2ln(1)arctan x t y t t ⎧=+⎨=-⎩222111221dy dyt dt tdx t dx t dt t-+===+2.若在点连续,且。

极限练习题及答案

极限练习题及答案

极限练习题及答案一. 选择题1.设F是连续函数f的一个原函数,”M?N”表示“M 的充分必要条件是N”,则必有.F是偶函数?f)是奇函数.F是奇函数?f是偶函数. F是周期函数?f是周期函数. F是单调函数?f是单调函数.设函数f?1x,则ex?1?1x?0,x x?0,x?1都是f?1都是f的第一类间断点. 的第二类间断点x?0是f的第一类间断点,x?1是f的第二类间断点. x?0是f的第二类间断点,x3.设f?x??x?1x?1是f的第一类间断点.1,则f[,x?0、,1f]?1A) 1?xB) 1?x4.下列各式正确的是 C)XD) x1+ )?exx11lim??elimC) D)?exxA) limx?0?1x?1B)limx?01x?x?xx??x??5.已知lim?9,则a?。

A.1;B.?;C.ln3;D.2ln3。

.极限:lim x??2A.1;B.?;C.e7.极限:lim; D.e。

2x??x3?2= x3A.1;B.?;C.0;D.2.8.极限:limx?0x?1?1x=A.0;B.?;C 1; D.2.29. 极限:lim=x???A.0;B.?;C.2;D. 1.2sinx10.极限: limtanx?=x?0sin2xA.0;B.?;C.二. 填空题 11.极限limxsinx??116; D.16.2xx?12= ; 12. limarctanx= ;x?0x13. 若y?f在点x0连续,则lim[f?f]= ; x?x?14. limsin5xxx?0?;15. limn?;16. 若函数y?x?1x?3x?222,则它的间断点是17. 绝对值函数?x,x?0;?f?x??0,x?0;??x,x?0.?其定义域是,值域是。

?1,x?0;?18.符号函数 f?sgnx??0,x?0;其定义域是,值域是三个点的集合。

??1,x?0.?19无穷小量是。

20. 函数y?f在点x0连续,要求函数y?f满足的三个条件是。

数学—极限练习题及详细答案

数学—极限练习题及详细答案

一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。

A.sin ||xB.ln(1)x -C.11.【答案】D 。

2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。

4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。

5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。

高数练习册答案

高数练习册答案

第一章 函数与极限部分习题答案§1 映射与函数一、填空题:1、224>-<<-x x 或2、)01(1ln>>-=x x x y 3、奇函数 4、41 §2 数列的极限一、填空题:1、不存在 2、必要 3、1二、计算题:1、0 2、1 3、21§3 函数的极限一、填空题:1、 充要 2、1 3、1;不存在 二、计算题:1、 6 2、21 3、62- 4、(1):1;(2):-1;(3):不存在§4 无穷小和无穷大二、计算题:1、0 2、1 3、2§5 极限的运算法则一、计算题:1、-11 2、32 3、214、-15、236、17、528、1二、计算:a=2; b=-8 三、计算;a=1; b=-1§6 极限存在准则 两个重要极限一、填空题:1、0;1;1;0 2、1-e ;2e ;3e ;2e ;二、计算题:1、0; 2、2; 3、2; 4、2e ; 5、 3-e ; 6、6-e ;三、计算:1§7无穷小的比较一、 计算题:1、2; 2、32; 3、0; 4、1 二、 计算题;3=α§8函数的连续性与间断点一、 填空题:1、充要; 2、可去;二、不连续,跳跃间断点 三、跳跃间断点 四、41=a §9连续函数的运算与初等函数的连续性一、计算题;∞,21,31;二、1、2ln π2、1;3、0;4、1三、计算a=1; b=-1第一章自测题一、填空题:1、0≠x,1,-1; 2、0; 3、0; 4、2; 5、21三、计算题:1、2 x ; 2、1; 3、1; 4、3e ; 5、; 6、41; 7、1; 8、1四、计算;a=1; 23-=b§ 2.1 二、 )(a φ;三、 4311;33x ---;四、460;470x y x y --=++=;五、连续且可导。

§2.2 二、2,e e ππ--; 三、(1; (2);(3)1tan 221111(cos sin sec )x e x x x x-+;(4)22sin 2[(sin )(cos )]x f x f x -。

(完整word版)数学分析—极限练习题及详细答案

(完整word版)数学分析—极限练习题及详细答案

一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。

A.sin ||xB.ln(1)x -C.11.【答案】D 。

2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。

4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。

5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。

高数极限习题及答案

高数极限习题及答案

练习题1. 极限xx x x x x x x xx x x x x x 1lim)4(11lim)3(15865lim )2(31lim )1(2312232---+-+-+++-∞→→→∞→(5) 已知011lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x , 求常数a , b .(6) x x x x sin 1sin lim 20→ (7) 211lim 22x x x x ⎪⎪⎭⎫⎝⎛+-∞→(8) xx x21lim 0-→ (9)x x x sin )31ln(lim 0-→(10)⎪⎪⎭⎫⎝⎛-∞→1lim 1xx e x2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x e x b x x f y x 在x =0点连续.(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.(3) 讨论以下函数的连续性, 并判断其间断点的类型.①x xx f sin )(=② ⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.(2) 假设),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x ex b x x f y x在x =0点连续.解:1)(lim )(lim )0(-→→====-+e x f b x f f x x(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.解:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=++-=-+<->==121121111)(2x b a x ba x bx ax x x x f yb a x f x f b a f x x -====-+=-+→→)(lim 1)(lim 21)1(11 b a x f x f b a f x x +==-==++-=--→-→-)(lim 1)(lim 21)1(_111,0-==b a(3) 讨论以下函数的连续性, 并判断其间断点的类型.①x x x f sin )(=解: x =0为可去间断点.②⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx解:1)(lim 1)(lim 0-=≠=-+→→x f x f x x , x =0为跳跃间断点.3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.解: 假设n=1, 则显然有解x =1. 假设n>1, 则01)1(,01)0(>-=<-=n f f , 由零点定理可知在(0, 1)内至少有一个根..(2) 假设),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.解: 由A x f x =∞→)(lim 可知: 0>∃X , 当X x >时, 1)(<-A x f , 故1)(+<A x f由),()(∞+-∞∈C x f 可知]1,1[)(+--∈X X C x f , 故01>∃M ,当1+<X x 时, 1)(M x f <取}1,max{1+=A M M 即可.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.证明: 假设A x f ≡)(, 则显然结论成立.设存在A x f >)(0, 则存在X >0, 当X x ≥时, 有2)()(0Ax f A x f -<- 于是: )(2)()(00x f A x f x f <+< 由],[)(X X C x f -∈, 可知存在],[X X -∈ξ{})(],[:)(max )(0x f X X x x f f ≥-∈=ξ从而),()(∞+-∞在x f 内有最大值)(ξf .对于任意的C , )(ξf C A <<, 存在X 1>0, 当1X x ≥时, 有 C AC x f <+<2)( 于是有CAC X f <+<±2)(1. 分别在闭区间],[],,[11X X ξξ-上使用介值定理即可得结论2º.。

极限基础练习题及答案

极限基础练习题及答案

极限基础练习题及答案极限是微积分中非常重要的一个概念,它在解决许多高阶数学和物理问题时起到了至关重要的作用。

针对极限的练习题有助于我们巩固和扩展对此概念的理解。

下面将为大家提供一些常见的极限基础练习题及答案。

1. 求极限(a) lim(x→0) sin(x)/x(b) lim(x→∞) (2x^2 + 3x)/(x^2 - 5x)解答:(a) 对于极限lim(x→0) sin(x)/x,我们可以利用泰勒展开式展开sin(x),得到sin(x)=x-1/6x^3+O(x^5),其中O(x^5)表示x^5阶无穷小。

将此结果代入极限式中,可以得到lim(x→0) sin(x)/x = lim(x→0) (x-1/6x^3+O(x^5))/x = lim(x→0) (1-1/6x^2+O(x^4)) = 1。

因此,该极限等于1。

(b) 对于极限lim(x→∞) (2x^2 + 3x)/(x^2 - 5x),我们可以将分子和分母都除以x^2,并取x趋近于无穷大,得到lim(x→∞) (2 + 3/x)/(1 - 5/x) = (2 + 0)/(1 - 0) = 2/1 = 2。

因此,该极限等于2。

2. 求极限(a) lim(x→∞) (e^x + 2)/(e^x - 3)解答:对于极限lim(x→∞) (e^x + 2)/(e^x - 3),我们可以将分子和分母同时除以e^x,并取x趋近于无穷大,得到lim(x→∞) (1 + 2/e^x)/(1 - 3/e^x)= (1 + 0)/(1 - 0) = 1。

因此,该极限等于1。

3. 求极限(a) lim(x→0) (sqrt(1 + 3x) - 1)/x(b) lim(x→∞) (3x^2 + 2x - 1)/(2x^2 - 5)解答:(a) 对于极限lim(x→0) (sqrt(1 + 3x) - 1)/x,我们可以将分子有理化,得到lim(x→0) ((sqrt(1 + 3x) - 1)(sqrt(1 + 3x) + 1))/(x(sqrt(1 + 3x) + 1))。

微积分综合练习试题和参考答案与解析

微积分综合练习试题和参考答案与解析

(1)函数 f(X)=•1 In(x - 2) 的定义域是(2)函数 f(x)=1 ln( x 2)的定义域是 ____________ •答案:(—2, —1)^(—1,2](4)若函数f(x T xs 「x 0在X 二0处连续,则k =x _ 0•答案:k = 1(1)设函数y 二-xe,则该函数是().A.奇函数B.偶函数C.非奇非偶函数 D .既奇又偶函数综合练习题1 (函数、极限与连续部分)1 •填空题(3)函数 f (x 2^ x 2 4x 7,贝U f(x)二 _______________________ •答案:f(x^ x 2 3(5) 函数 f(x-1) =x 2 -2x ,则 f(x)二 __________________ .答案:f(x) =x 2 -1x 2 _2x _3(6)函数y _________________________ 的间断点是.答案:x- -1x +1 1(7)lim xsin .答案:1X护 x sin 4x(8)若 lim _______________ 2,则 k = .答案:k = 2―0 sin kx2.单项选择题答案:B(2)下列函数中为奇函数是( ).答案:CA. xsin xln (x . 1 x 2) D . x x 2).D . x 卞 一5 且 x = -4x(3)函数y ln(x • 5)的定义域为(x +4A. x 占-5 B . x -4 C . x 占 一5 且 x = 0答案:D2(4)设 f(X * 1) = X 「1 ,则 f(X)二( )A. x(x 1)C. x=1,x=2, x=3D x 2 -3x 2(1)(2)解: limX —3x 2 -3x 2x 2 -4-9(x-2)(x-1) (x-2)(x 2)lim x =3 x-9(x-3)(x 3)-2x -3xB (x -3)(x 1)= lim 』^X —3 X 14 2答案:A3.计算题-4C. x(x _2)D . (x +2)(x —1)答案: Ce^2,x 式0亠 (5) 当k =()时,函数f f(x) =在x=0处连续..k,x = 0A. 0B. 1C .2D . 3答案:Dx +1,x 式0 (6) 当k =()时,函数f f(x)—w,在X = 0处连续、k,x = 0 A. 0 B. 1C .2D .-1答案:B(7) 函数f (x)x —3— 2 的间断点是()X 2 _3x +2A. x =1,x = 2B.x =3.无间断点解:WORD 格式整理版综合练习题2 (导数与微分部分)(3)解:lim "卫二 lim HX T x 2 -5x 4x —4 & -4)(x -1)二lim x j4x -2x —11 •填空题(1)曲线f(x) __________________________________ ・1在(1,2)点的切斜率是11答案:2(2)_______________________________________________________ 曲线f(x) =e x在(0,1)点的切线方程是 __________________________________________ •答案:y = x • 1(3)已知f (x^ x3 3x,则f (3) =答案: f (x) =3x23x ln3f (3) =27 (1 ln 3)(4)已知f(x) = In x ,贝U f (x) = _____________________ •1 1答案:f (x) , f (x) = 2x x(5)若f (x) _______________________________ ,贝y f (0)二答案:f (x)二「2e» xe」f (0) =「22.单项选择题(1)若f (x) = e^ cosx,贝U f (0)= ( ) •A. 2B. 1C. -1D. -2因f (x) = (e“ cosx) = (e“)cosx e^(cosx)-x X x=-e cosx -e sin x = -e (cosx sinx)所以f (0) - -e-0 (cos0 sin0) - -1答案:C(2)设y = lg2 x,则dy 二(1 1A. dx B dx2x xln 10答案:B(3)设y二f (x)是可微函数,则)•ln 10 1 C •dx D • 一dxx x df(cos2x)二( )•A • 2f (cos2x)dxB f (cos2x)sin 2xd2x(4)若 f(X) . 丄3=si nx a,其中a 是常数,则f (x) =().A2.cosx 3a B. sin x 6ac.-sin xD.cosx答案 :C3.计算题1e ,求八(1 )设 y = x 211 2 1 .1C . 2f (cos2x)sin 2xdxD . - f (cos2x)sin2xd2xx(2 )设 y = sin 4x cos 3 x ,求 y .2解: y = 4cos4x 3cos x(-sinx)2= 4cos4x 「3sinxcos x(3 )设 y = e % 12,求讨.x答案:D21 解: / = 2xe x x 2e x (-p)二 e x (2x-1)A.单调增加 B .单调减少C.先增后减 D •先减后增答案:D(2)满足方程f (x) =0的点一定是函数y二f (x)的( ).A极值点 B.最值点 C .驻点 D.间断点答案:C(3)下列结论中( )不正确.A . f (x)在X=X0处连续,则一定在X0处可微.B . f(X)在X = X0处不连续,则一定在X0处不可导•C •可导函数的极值点一定发生在其驻点上•D.函数的极值点一定发生在不可导点上•答案:B(4)下列函数在指定区间(-::,•::)上单调增加的是( ).A . sinxB . e XC . X10D . 3「x答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m i的长方体开口容器,怎样做法用料最省?解:设底边的边长为xm,高为h m容器的表面积为y m l。

微积分综合练习题及参考答案精选全文完整版

微积分综合练习题及参考答案精选全文完整版

可编辑修改精选全文完整版综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

(完整word版)第一章求极限练习题答案

(完整word版)第一章求极限练习题答案

(完整word版)第⼀章求极限练习题答案1.求下列极限:(1) 2221lim (1)n n n n →∞++- 解:原式=2221lim 21n n n n n →∞++-+=22112lim 211n n n n n→∞++-+=2 (2) 20lim(1)x x x →+解:原式=12lim[(1)]x x x →+=2e(3) 32lim3x x →- 解:原式=3x →=x →=14(4) 1lim (1)x x x e →∞-解:原式=1(1)lim1xx e x→∞-=1(5) 0x ≠当时,求lim cos cos cos 242n n x x x→∞L .解:原式=cos cos (2cos sin )2422lim2sin 2n n n n x x x x x →∞L =1cos sin22lim 2sin 2n n nx x x →∞-=sin lim 2sin 2n nn x x →∞ =sin 2lim()sin 2n n n x x x x →∞g =sin x x(6) 21sinlim x x 解:原式=21limx x g=limx=limx=(7)22212lim()12n nn n n n n n n→∞+++++++++L 解:令2221212n ny n n n n n n n=+++++++++L 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++L L ⽽2(1)12lim 2n n n n n n →∞+=++, 2(1) 12lim 12n n n n n →∞+=++,故222121n n n n n n n n n →∞+++=++++++L(8) n →∞解:原式=2n n →∞→∞==1.3 函数的极限作业1. 根据函数极限的定义,验证下列极限: (1) 3 1lim0x x→∞= 解: 0ε?>,要使3311|0|||x x ε-=<,即||x >只要取X =,则当||x X >时,恒有 31|0|x ε-<, 所以31lim 0x x →∞=.(2) 42x →= 解: 0ε?>,要使|4||2|2x ε-=<<,则当0|4|x δ<-<时,恒有|2|ε<,所以42x →=. 2. 求下列数列极限:(1) 22212lim()12n nn n n n n n n→∞+++++++++L 解:令2221212n ny n n n n n n n =+++++++++L 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++L L ⽽2(1)12lim 2n n n n n n →∞+=++, 2(1) 12lim 12n n n n n →∞+=++,故222121lim()122n n n n n n n n n →∞+++=++++++L(2) n →∞解:原式=2n n →∞→∞==3.求下列函数极限:(1) 225lim 3x x x →+- 解:原式=-9(2) 224lim 2x x x →-- 解:原式=2 lim(2)x x →+=4(3) 21lim1x x →-解:原式=14x x →→==-(4) x →∞ 解:原式=0x =(5) 2(21)(32)lim (21)x x x x →∞--+ 解:原式=226723lim4412x x x x x →∞-+=++ (6) 2121lim()11x x x →--- 解:原式=211(1)11lim lim 112x x x x x →→---==--+ 4. 设23 2 0() 1 01 1 x>11x x f x x x x ?+≤=+<≤-? ,分别讨论()f x 在0x →,1x →和2x →时的极限是否存在.解:0lim ()2x f x -→=,0lim ()1x f x +lim ()x f x →不存在. 1lim ()2x f x -→=,1lim ()x f x +→趋向⽆穷⼤,故1lim ()x f x →不存在. 2lim ()1x f x -→=,2lim ()1x f x +→=,故2lim ()1x f x →=.1.43.求下列函数极限:(1) 225lim 3x x x →+-=-9(3) 224lim 2x x x →--=2lim(2)x x →+=4 1x →14x x →→==-(7) 000h h h →→→===(9) x →∞=0x =(11) 2(21)(32)lim (21)x x x x →∞--+=226723lim 4412x x x x x →∞-+=++(13) limlim0x x == (15) 2121lim()11x x x →---=211(1)11lim lim 112x x x x x →→---==--+ 2. 设10100()01112x x x f x x x x -?==<极限,并说明这两点的极限是否存在. 解:001lim ()lim11x x f x x --→→-==-,00lim ()lim 0x x f x x ++→→==,00lim ()lim ()x x f x f x -+→→≠ 故lim ()x f x →不存在.11lim ()lim 1x x f x x --→→==,11lim ()lim11x x f x ++→→== 11lim ()lim ()x x f x f x -+→→= 1lim ()1x f x →=. 1.51.求下列极限:(1) 0sin 3sin 3lim lim 333x x x xx x→→=?=00tan 333(3)limlim sin 444x x x x x x →→==222200022sin 222(5)lim 2sin 224()2x x x x x x x xx→→→?===? 注:在0(0,)U δ,2sin 02x ≥.222000222(5)lim 2sin24x x x x x x x →→→===(7) 02cos lim sin 2x x x →解: 原式=2021sin cos lim sin cos )2x x x x=2002sin sin lim sin 2x x x x x x →→+g =2021sin sin lim2()2x x x xx →+220sin sin 2lim ()x x x x x →=+=4 注意: 代数和中的⼀部分不能⽤⽆穷⼩替换. 错原式=0x →220212lim 1cos )4x x x x x →+ (8) 01sin cos lim1sin cos x x xx xββ→+-+-解: 原式=2022sin cos 2sin 222lim 2sin cos 2sin 222x x x x x x x βββ→++=0sin (cos sin ) 222lim sin (cos sin )222x x x x x x x βββ→++=00sin cos sin 222limlim sin cos sin222x x x x x x x x βββ→→++g =02lim 12x x x β→g =1β注意: 代数和的⼀部分不能⽤⽆穷⼩替换.错 01sin cos lim 1sin cos x x x x x ββ→+-+-=202112lim 12x x x x x βββ→+=+ 33333(9)lim(1)lim[(1)]xx x x e x x →∞→∞+=+=244424(11)lim()lim[(1)]22x x x x x e x x +---→∞→∞--=+=++330(13)lim(13)lim[(13)]x x x x x x e →→+=+=4. 当0x →时,下列函数中哪些是x 的⾼阶⽆穷⼩,哪些是x 的同阶⽆穷⼩,哪些是x的低阶⽆穷⼩?32(1)1000x x +322001000lim lim (1000)0x x x x x x x→→+=+=解:因为 321000()x x o x +=所以3(2)2sin x 32002sin sin lim lim 2sin 0x x x x x x x→→=?=解:因为 3sin ()x o x =所以(3) ln(1)x +解: 100ln(1)limlim ln(1)1x x x x x x→→+=+=因为ln(1)~x x +所以 (4) 1cos x -解: 2002sin sin1cos 22limlim lim(sin )022x x x x xxx xxx →→→-===g 因为,1cos ()x o x -=所以(5) sin x x + 解: 因为 0sin limx x x x →+=0sin lim(1)x xx→+=2,故sin x x +是x 的同阶⽆穷⼩.(6): 因为0x →=1312033sin 11lim[())cos x x xx x →g g =∞,故是x的低阶⽆穷⼩.或:因为0x →=0x →0x →x 的低阶⽆穷⼩. 思考题:1.11331lim (39)lim 9(1)3x x xx xx x x x →+∞→+∞+=+g g =1331lim 9[(1)]3x xx x x →+∞+g =90e =9 2.0arccot limx x x →=∞,因为当0x →时,arccot 2 x π→.习题2.2 1.求下列函数的导数:2(1)cos y x x =+解:'sin 2y x x =-+=2cos (sin )()'222x x x -g g =2cos (sin )22x x -gcos sin 22x x -g(7)sin 3y x =解:'3cos3y x =2(9)sin(1)y x x =++解:2'(21)cos(1)y x x x =+++3(11)ln y x =解:1139'(ln )'(3ln )'222y x x x x x=+=+=(6) 6(21)y x =+解:5'6(21)2y x =+g =512(21)x + (10) ln(ln )y x =解:1'(ln )'ln y x x ==11ln x x g(11)ln ln(sin )y x =解:1'(sin )'sin y x x =+1cos sin x x +g2.在下列⽅程中,求隐函数的导数: (1)cos()y x y =+解:'sin()(1')y x y y =-+?+(2)222333x y a +=解:113322x y y --+=3. 求反函数的导数:(1)ln y x x =+解:1111dx dy dy dx x==+(2) arcsin x y e =解:sin ln x y =,故1cos ln dx y dyy=?=4. 求下列函数的导数(1) 2sin y x x =解:'y =22sin cos x x x x + 3(3)ln y x x=23221'3ln 3ln y x x x x x x x=+=+解: (5) 1ln 1ln xy x-=+解:21ln 1ln '(1ln )x xx x y x +---=+211ln y x=-++ 22212'0(1ln )(1ln )y x x x x =-=-++ (7) 21cosy x x=解1'2cos y x x =+2x 1(sinx -12cos x x +2x 1(sin)x -(9)ln(y x ='y x =+==解:(10)12(0)xxy x e a =->解:112'2xxy xe x e =+g g(ln (x x a a a --(11) arccos ln x y x = -arccos ln(1ln xy x x=--解:1'y x=-+2arccos 1x x x =-+2arccos x x =- ln (13)x y x =2ln ln (ln )x x x y e e ?==解: ln ln 11'2ln 2ln x x y x x x x x-=??=? (14) cos (sin )xy x =解:ln cos lnsin y x x =Q ,对该式两边求导数得11'sin ln sin cos cos sin y x x x x y x=-+cos '(sin )(sin ln sin cos tan )x y x x x x x ∴=-+ (15) y x =11ln ln ln(1)ln(1)22y x x x =+--+Q ,对该式两边求导数得1111'2(1)2(1)y yxx x =---+arcsin lnx y x =-解:'[ln(1(ln )'y x =++(11x +(2)x -1x +1x4. 求反函数的导数:(1)ln y x x =+解:1111dx dy dydx x==+arcsin x y e =解:sin ln x y =,故=?=求下列参数⽅程的导数'y : 211(1)(1)x t t y t ?=?+?=+242(1)2(1)'()1(1)1'()1(1)t t t dy y t t t dx x t t t +-?+-+===+-+解:(2)3233131at x t at y t ?=??+??=?+? 解:322332323326(1)333(2)(1)3(1)333(12)(1)at t at t dydy at t t dt dx a x at t dxa t dt t +-?-+===+-?-+(3)2ln(1)arctan x t y t t ?=+?=-? 解:222111221dy dyt dt tdx t dx t dt t-+===+2.若()F x 在点a 连续,且()0F x ≠。

极限练习题含答案

极限练习题含答案

极限练习题含答案极限是数学分析中的一个重要概念,它描述了当自变量趋近于某个值时,函数值的行为。

下面是一些极限练习题及其答案,供同学们学习和练习。

练习题1:求极限\[ \lim_{x \to 0} \frac{\sin x}{x} \]答案1:根据洛必达法则或者直接使用三角函数的性质,我们可以知道:\[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \]练习题2:求极限\[ \lim_{x \to \infty} \frac{3x^2 + 2x + 1}{x^2 - 3x + 2} \]答案2:分子和分母同时除以\( x^2 \),得到:\[ \lim_{x \to \infty} \frac{3 + \frac{2}{x} +\frac{1}{x^2}}{1 - \frac{3}{x} + \frac{2}{x^2}} = 3 \]练习题3:求极限\[ \lim_{x \to 0} (1 + x)^{1/x} \]答案3:这是e的极限定义,即:\[ \lim_{x \to 0} (1 + x)^{1/x} = e \]练习题4:求极限\[ \lim_{x \to 1} \frac{1}{x - 1} \]答案4:这是一个无穷小量的倒数,当\( x \)趋近于1时,\( x - 1 \)趋近于0,所以:\[ \lim_{x \to 1} \frac{1}{x - 1} \text{ 不存在} \]练习题5:求极限\[ \lim_{x \to 0} \frac{\sin 2x}{\sin 3x} \]答案5:分子分母同时除以\( \sin x \),得到:\[ \lim_{x \to 0} \frac{2}{3} \cdot \frac{\sin x}{x} \cdot\frac{\sin 2x}{\sin 3x} = \frac{2}{3} \cdot 1 \cdot 1 =\frac{2}{3} \]练习题6:求极限\[ \lim_{x \to 0} x \cdot \tan x \]答案6:使用洛必达法则或者直接利用三角函数的性质,我们可以得到:\[ \lim_{x \to 0} x \cdot \tan x = \lim_{x \to 0} \frac{\sin x}{\cos x} = 0 \]练习题7:求极限\[ \lim_{x \to \infty} \frac{\sin x}{x} \]答案7:当\( x \)趋近于无穷大时,\( \sin x \)的值在-1和1之间波动,但相对于\( x \)来说,它趋近于0,所以:\[ \lim_{x \to \infty} \frac{\sin x}{x} = 0 \]练习题8:求极限\[ \lim_{x \to 0} \frac{e^x - 1}{x} \]答案8:这是e的导数的极限定义,即:\[ \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \]以上练习题和答案可以帮助同学们更好地理解和掌握极限的概念和求解方法。

厦门理工学院高数练习题答案第一章 函数与极限

厦门理工学院高数练习题答案第一章 函数与极限

高等数学练习题 第一章 函数与极限________系_______专业 班级 姓名______ ____学号_______第一节 映射与极限一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ] (A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y = 二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 2 2. 已知,1)1(2++=+x x x f 则)(x f 12+-x x3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f x -114. 求函数)2lg(1-+=x y 的反函数 1102-+=x y5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=: x s s v v u u y ====,ln ,tan ,2(2) 32arcsin lg x y =:__ 32x t t s s v v u u y =====,arcsin ,lg ,, _三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域解:)(2x f 的定义域为[11,-] )(s i n xf 的定义域为)()(,[Z k k k ∈+ππ1222.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.解:01=)(ϕ 2321=-)(ϕ 2123=)(ϕ ( 图略 )4.已知水渠的横断面为等腰梯形,斜角 40=ϕ(图1-22)。

高数极限习题测验及答案

高数极限习题测验及答案

练习题1. 极限xx x x x x x x xx x x x x x 1lim)4(11lim)3(15865lim )2(31lim )1(2312232---+-+-+++-∞→→→∞→(5) 已知011lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x , 求常数a , b .(6) x x x x sin 1sin lim 20→ (7) 211lim 22x x x x ⎪⎪⎭⎫⎝⎛+-∞→(8) xx x21lim 0-→ (9)x x x sin )31ln(lim 0-→(10)⎪⎪⎭⎫⎝⎛-∞→1lim 1xx e x2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x e x b x x f y x 在x =0点连续.(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x xx f sin )(=② ⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.2. 函数的连续性(1) 确定b 的值, 使函数⎩⎨⎧<≥+==-002)(1x ex b x x f y x在x =0点连续.解:1)(lim )(lim )0(-→→====-+e x f b x f f x x(2) 确定a , b 的值, 使函数1lim)(2212+-+==-∞→nn n x bxax xx f y 在整个实数轴上连续.解:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=++-=-+<->==121121111)(2x b a x ba x bx ax x x x f yb a x f x f b a f x x -====-+=-+→→)(lim 1)(lim 21)1(11 b a x f x f b a f x x +==-==++-=--→-→-)(lim 1)(lim 21)1(_111,0-==b a(3) 讨论下列函数的连续性, 并判断其间断点的类型.①x x x f sin )(=解: x =0为可去间断点.②⎪⎪⎩⎪⎪⎨⎧=≠+-=0001212)(11x x x f xx解:1)(lim 1)(lim 0-=≠=-+→→x f x f x x , x =0为跳跃间断点.3. 连续函数的性质 (1) 设1)(1-+++=-x xx x f n n ,证明:)(x f 有一个不大于1的正根.解: 若n=1, 则显然有解x =1. 若n>1, 则01)1(,01)0(>-=<-=n f f , 由零点定理可知在(0, 1)内至少有一个根..(2) 若),()(∞+-∞∈C x f , 且A x f x =∞→)(lim , 证明: ),()(∞+-∞在x f 内有界.解: 由A x f x =∞→)(lim 可知: 0>∃X , 当X x >时, 1)(<-A x f , 故1)(+<A x f由),()(∞+-∞∈C x f 可知]1,1[)(+--∈X X C x f , 故01>∃M ,当1+<X x 时, 1)(M x f <取}1,max{1+=A M M 即可.提高1º),()(∞+-∞在x f 内至少有一个最值存在. 2º 对于最值与A 间的任意值C , 存在21,ξξ, 使得C f f ==)()(21ξξ.证明: 若A x f ≡)(, 则显然结论成立.设存在A x f >)(0, 则存在X >0, 当X x ≥时, 有2)()(0Ax f A x f -<- 于是: )(2)()(00x f A x f x f <+< 由],[)(X X C x f -∈, 可知存在],[X X -∈ξ{})(],[:)(max )(0x f X X x x f f ≥-∈=ξ从而),()(∞+-∞在x f 内有最大值)(ξf .对于任意的C , )(ξf C A <<, 存在X 1>0, 当1X x ≥时, 有 C AC x f <+<2)( 于是有CAC X f <+<±2)(1. 分别在闭区间],[],,[11X X ξξ-上使用介值定理即可得结论2º.。

高等数学课后练习题答案 作业4无穷小与无穷大

高等数学课后练习题答案 作业4无穷小与无穷大

1、根据无穷小的定义证明:1)当n →∞时,!n n n u n =是无穷小。

证明:0>∀ε!!10n n n n n n n-=< 取1N ε=,当n N >时恒有!0n n nε-< 所以当n →∞时,!n nn u n =是无穷小。

2)当0→x 时,221cos xx y =为无穷小 证明:0>∀ε 2221cos x xx ≤ 取εδ=,当δ<<x 0时,恒有ε<221cosx x 所以221cos xx y =当0→x 时为无穷小。

2、根据无穷大的定义证明:当0x →时,()12x f x x +=是无穷大。

证明:对于任给的0>M121122x x x x+=+>- 取12M δ=+,当00x δ<-<时,恒有12x M x+> 所以当0x →时,()12x f x x +=是无穷大。

3、当1x →时,将()223211x x f x x +-=+分解为一个常数于一个无穷小的和。

解:()()2222223212223321111x x x x x x f x x x x x +-+++-+===+-+++ ()213lim 101x x x x →+-=+4、求下列极限并说明理由1)()1lim 1x x x e →∞+ 解:因为()lim 1x x x e →∞+=∞,所以()1lim 01xx x e →∞=+ 2)101lim 1x x x e e →-+解:因为()0lim 10x x e →-=,1111x e <+,所以101lim 01x x x e e →-=+。

(有界量与无穷小的积还是无穷小)5、设0x x →时,()()A x g x f →∞→,,(A 为有限数)。

试证明下列各式: 1)()()()0lim x x g x f x →+=∞ 证明:对于任给0>M ,因为()∞=→x f x x 0lim ,所以存在01>δ,当100δ<-<x x 时, 恒有()23AM x f +>又因为()A x g x x =→0lim ,对于2A =ε,一定存在02>δ,当200δ<-<x x 时,恒有()()()2322A x g A A x g A A x g <⇒<-⇒<- 取{}21,min δδδ=,当δ<-<00x x 时()()()()3322A A g x f x f x g x M M +≥->+-= 所以()()()0lim x x g x f x →+=∞ 2)()()()1lim 0=+→x g x f x f x x 证明:因为()()()()()()x g x f x g x g x f x f +-+=+1,所以只需证明()()()0lim 0=+-→x g x f x g x x 由1)中证明,可得()()x g x f +为0x x →时的无穷大,由无穷大与无穷小的关系0x x →时,()()x g x f +1为无穷小,又因为()A x g x x =→0lim ,利用极限的性质,()x g 是局 部有界的,因此()x g -也是局部有界的。

数学分析上册练习题及答案第三章函数极限

数学分析上册练习题及答案第三章函数极限

第三章函数极限1. 函数极限概念1. 按定义证明下列极限:(1)65lim 6x x x→+∞+=;(2)22lim(610)2x x x →-+=;(3)225lim 11x x x →∞-=-;(4)2lim 0x -→=; (5)00lim cos cos x x x x →=.证明(1)任意给定0ε>,取5M ε=,则当x M >时有65556x x x Mε+-=<=.按函数极限定义有65lim6x x x→+∞+=.(2)当2x ≠时有,2(610)2(2)(4)24x x x x x x -+-=--=--.若限制021x <-<,则43x -<.于是,对任给的0ε>,只要取min{1,}3εδ=,则当02x δ<-<时,有2(610)2x x ε-+-<.故有定义得22lim(610)2x x x →-+=.(3)由于22254111x x x --=--.若限制1x >,则2211x x -=-,对任给的0ε>,取max M ⎧⎪=⎨⎪⎩,则当x M >时有22225441111x x M x ε--=<=---,所以225lim 11x x x →∞-=-.(4)0==若此时限制021x <-<,==<=0ε>,取2min{1,}4εδ=,当02x δ<-<022εε<≤⋅=,故由定义得2lim 0x -→=.(5)因为sin ,x x x R ≤∈,则0000000cos cos 2sinsin 2sin sin 222222x x x x x x x x x x x x x x -+-+--=-=≤⋅=-.对任给的0ε>,只要取δε=,当00x x δ<-<时,就有00cos cos x x x x δε-≤-<=,所以按定义有00lim cos cos x x x x →=.2. 叙述0lim ()x x f x A →≠。

成人高考《高等数学一》章节练习题答案及解析

成人高考《高等数学一》章节练习题答案及解析

成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。

求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。

21.函数f(x) =x 2 +1x−3的间断点是()。

22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。

4lnx在点(1,0)处的切线方程和法线方程。

5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。

《极限计算练习》的解答及其他

《极限计算练习》的解答及其他

《极限计算练习》课堂测验的题解及其他各位同学:11月23日下午进行了《高等数学(上册)》的第2次课堂练习,从教学计划来说,这是例行的测验,从学习的角度看,也是对大家大半个学期来学习情况的一次检验。

测验的结果很不理想,出乎我的预料。

看来有相当数量的同学,还没有进入大学学习的轨道,没有化起码的功夫。

当然,学习好的同学也不少,我教的两个班上,有近30-40位同学的成绩一直稳定在90分上下,可见他们已经具有的数学基础很不错。

我很欣赏他们。

希望他们走向成功的明天。

我这么说其实还包含了一层意思:学数学是没有底的,不要满足于目前《高等数学》的层面,因为这门课毕竟只是对一般的理工科学生开设的,要求并不高,不要满足于能做几个题。

不知这些同学有没有理解我的苦心。

另外,我一直不认为分数是衡量数学好坏的绝对标准,即使那些考了90分的同学,只表明你做这几个“死”题做的不错,不等于能应用数学解决实际问题,活的数学题你们还没有接触到。

所以,每个人都要保持“在科学面前要有敬畏之心,谦卑之心”。

那些老是不及格,或在40—60分上下浮动的同学,要提高警惕,不要在大一上学期就被拉下,这样被动下去,你的大学生涯恐怕是不会乐观的,你的心里也许会有变化。

你的这个大学上得没有意思了。

同学们的队伍由此拉开了距离——就像长跑一样,拉开了距离,一般是很难追上的。

为此,我这里对其中若干题目进行分析,提供几种思路,供大家思考和回味,特别对不会做的同学,你还是要努力学懂啊!不要放弃!放弃了,没有可能再抓回了,第二年重修的人,很少能够通过,这是历史的教训。

我再次强调,解数学题没有定规,解题的角度不是固定不变的,我这里的解法未必覆盖全部,只是提供一种思考的角度,大家没有必要照抄照搬,也没有必要用一种解法去否定另一种解法。

对大家而言,能从不同的角度来分析和求解,是一种最好的学习方式。

第1大题的6个小题,比较简单,这次没有要求大家去做,但对有些同学来讲,等助教把试题本发下后,也请独立做一遍。

极限练习题及答案

极限练习题及答案

极限练习题及答案一. 选择题1.设F是连续函数f的一个原函数,”M?N”表示“M 的充分必要条件是N”,则必有.F是偶函数?f)是奇函数.F是奇函数?f是偶函数. F是周期函数?f是周期函数. F是单调函数?f是单调函数.设函数f?1x,则ex?1?1x?0,x x?0,x?1都是f?1都是f的第一类间断点. 的第二类间断点x?0是f的第一类间断点,x?1是f的第二类间断点. x?0是f的第二类间断点,x3.设f?x??x?1x?1是f的第一类间断点.1,则f[,x?0、,1f]?1A) 1?xB) 1?x4.下列各式正确的是 C)XD) x1+ )?exx11lim??elimC) D)?exxA) limx?0?1x?1B)limx?01x?x?xx??x??5.已知lim?9,则a?。

A.1;B.?;C.ln3;D.2ln3。

.极限:lim x??2A.1;B.?;C.e7.极限:lim; D.e。

2x??x3?2= x3A.1;B.?;C.0;D.2.8.极限:limx?0x?1?1x=A.0;B.?;C 1; D.2.29. 极限:lim=x???A.0;B.?;C.2;D. 1.2sinx10.极限: limtanx?=x?0sin2xA.0;B.?;C.二. 填空题 11.极限limxsinx??116; D.16.2xx?12= ; 12. limarctanx= ;x?0x13. 若y?f在点x0连续,则lim[f?f]= ; x?x?14. limsin5xxx?0?;15. limn?;16. 若函数y?x?1x?3x?222,则它的间断点是17. 绝对值函数?x,x?0;?f?x??0,x?0;??x,x?0.?其定义域是,值域是。

?1,x?0;?18.符号函数 f?sgnx??0,x?0;其定义域是,值域是三个点的集合。

??1,x?0.?19无穷小量是。

20. 函数y?f在点x0连续,要求函数y?f满足的三个条件是。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《极限部分练习题》参考答案1. 42lim416--→x x x解1 ()()()()()()84244x 48422lim 42lim4424344243416416++++-++++-=--→→x x x x x x x x x x x x x()()()()84216x 416lim4424316+++-+-=→x x x x x x 418888448424lim4424316=++++=++++=→x x x x x .解2 ()()4122121lim 222lim 42lim41644416416=+=+=+--=--→→→x x x x x x x x x . 【注】解1中是分子、分母同乘分子24-x 的共轭根式84244243+++x x x ,解2中是分子、分母同乘分母4-x 的共轭根式4+x ,显然解2比解1简单.2. 求a 的值,使得411lim =⎪⎭⎫ ⎝⎛-∞→xx x a解 a aa xx aa xx xx e x a x a x a ---∞→--∞→∞→=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-+=⎪⎭⎫ ⎝⎛-1lim 1lim 1lim Θ,41=∴-a e ,即4=ae ,取对数得2ln 24ln ==a . 3. ⎪⎭⎫ ⎝⎛+∞→x x x x x sin 11sinlim 解 101sin 1lim 11sinlim sin 1lim 1sin lim sin 11sin lim =+=⎪⎭⎫ ⎝⎛⋅+=+=⎪⎭⎫ ⎝⎛+∞→∞→∞→∞→∞→x x xx x x x x x x x x x x x x x .【注】解题中求极限xx x 1sin lim ∞→时应用了第一个重要极限,而求极限x x x sin 1lim ∞→时则应用了无穷小量的性质(无穷小量与有界变量的乘积仍为无穷小量).4. 当∞→n 时,n 1sin2与k n1等价,则=k ? 解 Θ当∞→n 时k n n 1~1sin 2,111sin lim2=∴∞→k n n n ,而111sin lim 11sin lim 11sin lim =⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛=∞→∞→∞→kn kn k k n n n n n n n ,2=∴k .5. xx x x ⎪⎭⎫ ⎝⎛-+∞→1212lim 解1 e e e x x x x x x x x x x xx x xx x x x x ==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+---∞→∞→--∞→∞→∞→2121212212212212211lim 211lim 211211lim 211211lim 1212lim . 解2 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛-+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-∞→∞→∞→2121212211221lim 1221lim 1212lim x x x x x x x xx xxe e x x x x x =⋅=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+=∞→-∞→11221lim 1221lim 21212. 6. ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞→22211311211lim n n Λ 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-∞→22211311211lim n n Λ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=∞→n n n 1111311311211211lim Λ 21121lim 1134322321lim =⎪⎭⎫ ⎝⎛+⋅=⎪⎭⎫ ⎝⎛+⋅-⋅⋅⋅=∞→∞→n n n n n n n n Λ. 7. 设()3222+-=+x x x f ,则()[]=2f f ?解 在()3222+-=+x x x f 中令0=x ,得()32=f ,从而()[]()32f f f =;再在()3222+-=+x x x f 中令1=x ,得()23=f ,即()[]22=f f .8. xxx 3sin 11lim0--→解1 ()()()()xx xx x x x x x x x x -+=-+-+--=--→→→113sin lim113sin 1111lim 3sin 11lim000 ()()616111131lim 3sin 3lim 11313sin 3lim 000=⨯=-+⋅=⎥⎦⎤⎢⎣⎡-+⋅=→→→x x x x x x x x x . 解2 注意,当0→x 时,x x 3~3sin ,且()2~1111xx x ---+=--,所以当0→x 时,()2~1111x x x ---=--,于是由无穷小量替换法得613lim 3sin 11lim 00==--→→x 2xx x x x .9. xx x x ⎪⎭⎫⎝⎛-+∞→12lim 解1 31212212211lim 21lim 1121lim 1121lim 12lim e e e x x x x x x x x x x xx x x x xx x x ==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+---∞→∞→--∞→∞→∞→. 解2 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛-+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-∞→∞→∞→131131lim 131lim 12lim 331x x x x x x x xx xx333311131lim 131lim e e x x x x x =⋅=⎪⎭⎫ ⎝⎛-+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∞→-∞→. 10. ⎪⎭⎫ ⎝⎛+→x x x x x sin 11sinlim 0解 110sin lim 1sin lim sin 11sinlim 000=+=+⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛+→→→x x x x x x x x x x x .【注】解题中求极限⎪⎭⎫⎝⎛⋅→x x x 1sin lim 0时应用了无穷小量的性质(无穷小量与有界变量的乘积仍为无穷小量).11. 623lim 2232--++-→x x xx x x解 ()()()()()5231lim 2321lim 623lim 222232-=-+=+-++=--++-→-→-→x x x x x x x x x x x x x x x x .12. hx h x h 330)(lim -+→解1 ()()2220322033333lim 33lim limx h xh x hh xh h x hx h x h h h =++=++=-+→→→. 解2 ()()()[]()()[]2220220333lim lim limx x x h x h x hx x h x h x h hx h x h h h =++++=++++=-+→→→.【注】解1中分子是直接将二项式()3h x +展开再减3x ,而解2中分子是直接对()33xh x -+应用立方差公式. 13. 321lim3--+→x x x解 ()()()()()()41211lim 2133lim 2132121lim 321lim3333=++=++--=++-++-+=--+→→→→x x x x x x x x x x x x x x . 14. ()x x x x -+++∞→)2)(1(lim解 ()()()[]()()[]()()xx xx x x x x x x x x x x ++++++-++=-+++∞→+∞→212121lim )2)(1(lim()()()()23123123lim2323lim 2121lim222=++++=++++=+++-++=+∞→+∞→+∞→x x x xx x x x x x x x x x x x . 【注】仿上步骤可知,()()()[]()()[]()()xx xx x x x x x x x x x x ++++++-++=-++-∞→-∞→212121lim )2)(1(lim()()()()+∞=+++-+=++++=+++-++=-∞→-∞→-∞→123123lim2323lim 2121lim222x x xxx x x x x x x x x x x x ,即极限()x x x x -++-∞→)2)(1(lim不存在,所以()x x x x -++∞→)2)(1(lim 也不存在,故将原题改为()x x x x -+++∞→)2)(1(lim .15. xx xx x e e e e 2223lim ++-+∞→解1 21231lim 23lim 322=++=++--+∞→-+∞→x x x x x x x x e e e e e e .解2 令xe u =,则当+∞→x 时,+∞→u ,故由无穷小量分出法,有212311lim 231lim23lim32222=++=++=+++∞→+∞→-+∞→uu u u u u e e e e u u x x xx x .16. xxx x 3sin sin 2tan 2lim+-+→ 解 ()()()xx x xx x x xxx x x sin 2tan 2sin sin 2tan 2sin 2tan 2lim sin sin 2tan 2lim3030+++++++-+=+-+→→ ()()xx x x x x x x x x x sin 2tan 2sin 1cos 1lim sin 2tan 2sin sin tan lim 2030+++-=+++-=→→ ⎪⎭⎫⎝⎛+++⋅⋅-=→x x x x x x sin 2tan 21cos 1sin cos 1lim 20(以下分3种作法) ① 原式⎪⎪⎪⎪⎭⎫ ⎝⎛+++⋅⋅=→x x x x x x sin 2tan 21cos 1sin 2sin 2lim 220 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++⋅⋅⋅⋅=→x x x x x x x xxx sin 2tan 21cos 1sin 242sinlim 2222220 241221111121sin 2tan 21lim cos 1lim sin lim 22sin lim21002020=⨯⨯⨯⨯=+++⋅⋅⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛⋅=→→→→x x x x x x x x x x x .② 原式⎪⎪⎭⎫ ⎝⎛+++⋅⋅+⋅-=→x x x x x x x sin 2tan 21cos 1cos 11sin cos 1lim 220 ⎪⎭⎫⎝⎛+++⋅⋅+=→x x x x x sin 2tan 21cos 1cos 11lim 0 2412211121sin 2tan 21lim cos 1lim cos 11lim000=⨯⨯⨯=+++⋅⋅+=→→→x x x x x x x .③ Θ当0→x 时,2~cos 12x x -,且22~sin x x ,∴由无穷小量替换法,原式⎪⎪⎪⎪⎭⎫ ⎝⎛+++⋅⋅=→x x x x x x sin 2tan 21cos 12lim 220⎪⎭⎫ ⎝⎛+++⋅⋅=→x x x x sin 2tan 21cos 121lim 0 2412211121sin 2tan 21lim cos 1lim 2100=⨯⨯⨯=+++⋅⋅=→→x x x x x . 17. xx x x⎪⎪⎭⎫⎝⎛-∞→1lim 22解 x x xx x x x ⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-∞→∞→222111lim 1lim xx x x x x x x x x ⎪⎭⎫ ⎝⎛+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛-=--∞→∞→11111lim 11111lim 1 1111lim 11lim 111=⋅=⎪⎭⎫⎝⎛+⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=-∞→--∞→ee x x xx xx . 18. ()xx x 3sin 21ln lim 0+→ 解1 ()()()xx x xx x x x x x x x x x x 33sin 21ln lim 32333sin 221ln 21lim 3sin 21ln lim 21000+=⋅⋅+=+→→→()x x x x xx 33sin lim 21ln lim 320210→→+= ()321ln 3233sin lim 21lim ln 320210=⋅=⎥⎦⎤⎢⎣⎡+=→→e x x x x x x . 解2 ()3232lim 3sin 21ln lim 00==+→→x x x x x x (Θ当0→x 时,x x 2~)21ln(+,且x x 3~3sin ).19. 9lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,求=a ?解 Θa a a a a x x aa xx a a x aa x x xx x x e e e x a x a x a x a x a x a a x a x 21lim 1lim 11lim 11lim lim ==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+---∞→∞→--∞→∞→∞→. ∴92=a e ,两边取对数,得3ln 29ln 2==a ,3ln =a .20. ()x x xx ++-∞→100lim2解 ()()()xx x xx xxx xx x x x x -+-+++=++-∞→-∞→100100100lim100lim 22225011001100lim100100lim100100lim2222-=-+-=-+=-+-+=-∞→-∞→-∞→xxx x x xx x x x x x x x .【注】解题过程中要特别注意的是,由于-∞→x ,故x <0,于是作到第3步骤后,分母中的根式x x x x x x 1001100110022+-=⎪⎭⎫⎝⎛+=+(同样的情况前面也有遇到,请参见第14题【注】的第4步骤).。

相关文档
最新文档