图像增强—灰度变换增强

合集下载

图像增强实验报告

图像增强实验报告

图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。

本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。

一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。

二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。

2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。

3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。

4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。

5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。

三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。

首先,我们对该图像进行了直方图均衡化处理。

结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。

然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。

接下来,我们采用了拉普拉斯算子增强方法。

通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。

然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。

最后,我们尝试了灰度变换方法。

通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。

与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。

综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。

图像增强技术—灰度变换及应用实例

图像增强技术—灰度变换及应用实例
• 2.1 线性灰度度变换
就是按照线性函数的映射关系对灰度进行变换,图 像取反、增加或者减小对比度、增加或者减小亮度都是 灰度线性变换的一种。
下图是用halcon做的图像取反的灰度变换。
原 图
灰 度 直



反Байду номын сангаас



化 后
后 的 灰







2.2 非线性灰度变换
非线性灰度变换就是构造一种非线性映射函数常见的变换有 :对数变换、指数变换等。比如说:对数变换主要就是低灰度区扩展, 高灰度区压缩;灰度变换除了线性变换,非线性变换,还有分段线 性变换:这个主要是为了突出感兴趣的部位。下图为以10为底的对 数变换图像。
乳腺原图
去除部分背景后的图
采用了分段线性灰度变换突出乳腺信息。第二个峰值为乳腺信息,选取 两个转折点(80,20)(150,240),把乳腺的灰度值范围扩大, 实现了突出兴趣部位信息需求。
4 总结
灰度变换主要就是把原像素的值做了一个重新分 配来提高对比度,灰度变换很重要的一部分就是参 数的选择,可以在原有的算法的基础上进行改进, 得到自己更加需要的图像。
图像增强技 术—灰度变换
1 灰度变换的简单介绍

灰度变换是图像处理中的一个基本最基本技术技术之一,它
进行的是点运算,就是直接对像素点的值进行运算。灰度变换也是
图像增强技术中一种非常基础直接的空间域图像处理方式,根据自
的需要对图像进行灰度变换增强,增加对比度、突出感兴趣的区域
都是可以的。
2 常见的灰度变换
原 图
灰 度 直


指 数

4-1、图像增强之灰度变换和彩色增强

4-1、图像增强之灰度变换和彩色增强

g=9*log(f+1)
作用:将暗的部分扩展,而将亮的部分抑制。(示例)
4、直方图均衡化
直方图均衡方法的基本思想是对 在图像中像素个数多的灰度级进行展 宽,而对像素个数少的灰度级进行缩 减。从而达到清晰图像的目的。 用以改变图像整体偏暗或整体偏亮, 灰度层次不丰富的情况,将直方图的 分布变成均匀分布
2、 对比度展宽(灰度线性变换)
一、对比度展宽的目的:
是一点对一点的灰度级的影射。设新、旧图的 灰度级分别为g和f,g和f 均在[0,255]间变化。 实质是旧图到新图的灰度级的逐点映射。 g=G(f) 目的:将人所关心的部分强调出来。 特点:变换前后像素个数不变,但不同像素之间的 灰度差变大,对比度加大,视觉效果增强gγຫໍສະໝຸດ 255gbβ
ga
β
α
a b 255
f
a
b 255
f
2、对比度展宽 三、灰级窗切片:
只保留感兴趣的部分,其余部分置为 0。如: 0
g
255
a
b
255
f
2、对比度展宽
四、二值化图像: 可将多灰度的图像转换成黑白二值 图像;方法是对图像取一阈值,大 于该阈值的像素赋予灰度1,小于该 阈值的像素赋予灰度0
I ( x, y) e( x, y) g ( x, y)
g ( x, y) e ( x, y) I ( x, y)
1
1、灰度级的修正
灰度级修正的方法: (1)先用该系统对一已知亮度均匀的图像进行 记录,得到一个实际的“非均匀曝光”的图像, 求得是图像发生畸变的比例因子 (2)当用同一系统对其他图像进行记录时,便 可通过该比例因子求出理想图像
51

如何进行高效的图像增强和降噪

如何进行高效的图像增强和降噪

如何进行高效的图像增强和降噪图像增强和降噪是数字图像处理中的重要任务之一。

它们的目的是改善图像的视觉质量和可视化细节,并消除图像中的不必要的噪声。

在本文中,我将介绍一些常用的图像增强和降噪技术,以及一些实现这些技术的高效算法。

一、图像增强技术1.灰度变换:灰度变换是一种调整图像亮度和对比度的常用技术。

它可以通过改变灰度级来增加图像的对比度和动态范围,提高图像的视觉效果。

2.直方图均衡化:直方图均衡化是通过重新分配图像灰度级来增加图像对比度的一种方法。

它通过改变图像的直方图来增强图像的细节和对比度。

3.双边滤波:双边滤波是一种能够保留图像边缘信息,同时消除噪声的滤波技术。

它能够通过平滑图像来改善图像的质量,同时保持图像的细节。

4.锐化增强:锐化增强是一种通过增加图像的高频分量来提高图像的清晰度和细节感的方法。

它可以通过增加图像的边缘强度来突出图像的边缘。

5.多尺度增强:多尺度增强是一种通过在多个尺度上对图像进行增强来提高图像视觉质量的方法。

它可以通过提取图像的不同频率分量来增强图像的细节和对比度。

二、图像降噪技术1.均值滤波:均值滤波是一种常见的降噪方法,它通过将像素值替换为其周围像素的均值来减少噪声。

然而,它可能会导致图像的模糊,特别是在对边缘等细节进行处理时。

2.中值滤波:中值滤波是一种基于排序统计理论的降噪方法,它通过将像素值替换为其周围像素的中值来消除噪声。

相比于均值滤波,中值滤波能够在去除噪声的同时保留图像的边缘细节。

3.小波降噪:小波降噪是一种利用小波变换的降噪方法,它在时频域上对图像进行分析和处理。

它能够通过消除噪声的高频分量来降低图像的噪声水平。

4.非局部均值降噪:非局部均值降噪是一种通过将像素值替换为与其相似的像素均值来减少噪声的方法。

它能够通过比较像素的相似性来区分图像中的噪声和细节,并有选择地进行降噪。

三、高效实现图像增强和降噪的算法1.并行计算:利用并行计算技术,如GPU加速、多线程等,在处理图像增强和降噪算法时,可以提高计算效率和算法的实时性。

基于灰度变换的图像增强方法研究

基于灰度变换的图像增强方法研究

基于灰度变换的图像增强方法研究
摘要:鉴于灰度变换在图像处理过程中的广泛应用,本文主要从灰度级校正、灰度线性变换、灰度均衡化三个方面探讨一下图像增强的方法。

并借助matlab7.0作为实验平台,通过实验结果直观展示灰度变换在图像增强中的强大功能。

关键词:灰度变换图像增强
在获得信息的各种渠道中,图像信息无疑是最直观的。

然而,光照度不均匀会造成图像灰度过于集中;由摄像头获得的图像经过A/D转换、线路传送都会产生噪声污染,种种因素影响图像的的清晰程度,降低了图像质量。

因此,在对图像进行分析处理之前,有必要对图像质量进行改善。

2 实验结果
2.1 灰度线性变换的实现
本次实验以matlab7.0为实验平台,利用其自带函数imhist、
imadjust和imshow对灰度线性变换进行了演示,其程序运行结果如下(图形从左至右依次为原图、原图直方图、线性输出图、线性输出图的直方图)(如图1、2、3、4)。

2.2 灰度直方图变换的实现
本次实验以matlab7.0为实验平台,利用其自带函数histeq、subplot、imlist和imshow对灰度直方图变换进行了演示,其程序运行结果如下图形从左至右依次为原图、原图直方图、均衡结果图、均衡结果图的直方图)(如图5、6、7、8)。

3 结语
由以上实验可以看出,图像经过变换后,像素的动态范围增加,图像对比度扩展,使用图像变得清晰、细腻,容易识别,提高了图像的相对质量,便于图像信息的提取。

数字图像处理-第04章-图像增强教案资料

数字图像处理-第04章-图像增强教案资料

【例4.3】对图像进行直方图均衡化。
假定有一幅总像素为n = 64×64的图像,灰度 级数为8,各灰度级分布列于表4.1中。
(1)按式(4.14)求变换函数Sk’ (2)计算Sk’’ (3) Sk的确定 (4)计算对应每个sk的nsk (5)计算ps(sk)
Slide 30
表4.1 一幅图像的灰度级分布
标定系统失真系数的方法
可得比例因子: ei,jgci,jC1
可得实际图像g(i, j)经校正后所恢复的原始图像。 注意:乘了一个系数C/ gc(i,j) ,校正后可能出现
“溢出”现象 灰度级值可能超过某些记录器件或显示设备输
入信号的动态可范围 需再作适当的灰度变换,最后对变换后的图像
进行量化。
f (x, y)是待增强的原始图像, g(x, y)是已增强的图像, h(x, y)是空间运算函数。
Slide 4
空间域增强模型
对点操作(如灰度变换、直方图变换等)有
g(x,y) = f(x,y) ·h(x,y) (4.1)
对于区域操作(如平滑、锐化等)有
g(x,y) = f(x,y)*h(x,y) (4.2)
Slide 22
4.8 对数变换后的Couple图像
Slide 23
4.2.3 灰度直方图变换
1.直方图的概念 对于连续图像,其灰度分布的统计特性用概率密度函
数(PDF)刻画。 离散图像直方图:指图像中各种不同灰度级像素出现
的相对频率 。 在数字图像处理中,灰度直方图是简单且实用的工具,
Slide 8
点运算:
指原始图像的像素灰度值通过运算后产生新图 像的对应的灰度值。
➢ 像素值通过运算改变之后,可以改善图像的显示效果。

《图像的增强》课件

《图像的增强》课件

无人驾驶
图像增强可以提高无人驾驶汽车的感知能力, 增强道路和障碍物的识别。
艺术和娱乐
图像增强可以改善艺术作品和娱乐内容的视 觉效果,提供更好的观赏体验。
未来发展趋势1来自深度学习利用深度神经网络和人工智能技术,实现更准确、自动化的图像增强。
2
实时增强
通过优化算法和硬件性能,实现实时图像增强,满足实时应用的需求。
滤波器和增强方法的比较
滤波器
滤波器通过在空域或频域中对图像进行操作来 改变图像的特性。
增强方法
增强方法通过调整图像的亮度、对比度和细节 来改善图像质量和视觉效果。
图像增强的应用领域
医学图像
通过增强医学图像,可以更清晰地显示病变 和器官结构。
安防监控
通过增强监控图像,可以更容易识别和监视 潜在的安全威胁。
《图像的增强》PPT课件
通过图像增强,我们可以改善图像的质量和视觉效果,使其更加鲜明和引人 注目。
图像增强的定义
图像增强是一种技术,通过对图像的处理和改进,提高其质量、增强细节、改变光照和色彩等特性,使 图像更易于理解和分析。
常见的图像增强方法
1 灰度变换
2 直方图均衡化
通过调整图像的亮度和对比度来改变图像 的整体感观。
通过重新分布图像的像素强度,使整个亮 度范围更均衡,增强对比度和细节。
3 空域滤波
4 频域滤波
通过对图像进行平滑或增强,改变图像的 细节和纹理。
通过对图像进行傅里叶变换和反变换,改 变图像的频率特性和细节。
基于直方图的增强方法
直方图是显示图像像素强度分布的统计图。基于直方图的增强方法使用直方 图信息来调整图像的对比度和亮度。
3
自适应增强
根据不同图像的特点和应用需求,自动调整增强方法和参数,实现个性化的图像 增强。

利用基本灰度变换对图像进行增强

利用基本灰度变换对图像进行增强

3 利用基本灰度变换对图像进行增强灰度变换原理:灰度变换是一种空域处理方法,其本质是按一定的规则修改每个像素的灰度,从而改变图像的动态范围实现期望的增强效果。

灰度变换按映射函数可分为线性、分段线性和非线性等多种形式。

3.1 线性灰度变换线性灰度变换是将输入图像灰度值的动态范围按线性关系公式拉伸扩展至指定范围或整个动态范围。

可突出感兴趣目标,抑制不感兴趣的目标。

在实际运算中,原图像f(x,y)的灰度范围为[a,b],使变换后图像g(x,y)的灰度扩展为[c,d],则采用下述线性变换来实现:c a y x f ab cd y x g +---=]),([),(线性灰度变换对图像每个灰度范围作线性拉伸,将有效地改善图像视觉效果。

源代码如下:1、利用灰度调整函数变换图像A=imread('e:\7.tif','tif'); %读入图像 B=imadjust(A,[0.1,0.8],[0,1]); %灰度调整 imwrite(B,'E:\ 1.tif'); %图像保存subplot(2,2,1);imshow(A); %显示调整前后图像及其直方图 subplot(2,2,2);imhist(A); subplot(2,2,3);imshow(B); subplot(2,2,4);imhist(B);0100200500010020050010002、利用灰度调整算法变换图像clear;a=60; %图像变换参数设定b=180;c=0;d=255;A=imread('pout.tif','tif'); %读入图像[m,n]=size(A);A=double(A);for i=1:1:m %灰度调整for j=1:1:nif (A(i,j)>=a)&(A(i,j)<b)B(i,j)=(A(i,j)-a)*(d-c)/(b-a)+c;endendenduint8(A); uint8(B);imwrite(B,'E:\2.tif'); %图像保存subplot(2,2,1); imshow(A); %显示调整前后图像及其直方图subplot(2,2,2); imhist(A);subplot(2,2,3); imshow(B);subplot(2,2,4); imhist(B);0100200500010020020004000600080003.2 分段线性灰度变换为了突出图像中感兴趣的研究对象,常常要求局部拉伸某一范围的灰度值,或对不同范围的灰度值进行不同拉伸处理,即分段线性拉伸,数学表达式如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+---≤<+---≤≤=MfyxfbdbyxfbMfdMgbyxfacayxfabcdayxfyxfacyxg),(]),([),(]),([),(),(),(源代码如下:clear;a=80; %图像变换参数设定b=160;Mf=255;c=50;d=200;Mg=255;A=imread('pout.tif','tif'); %读入图像 [m,n]=size(A); A=double(A);for i=1:1:m %灰度调整 for j=1:1:n if A(i,j)<aB(i,j)=(c/a)*A(i,j);elseif (A(i,j)>=a)&(A(i,j)<b)B(i,j)=(A(i,j)-a)*(d-c)/(b-a)+c; elseB(i,j)=(A(i,j)-b)*(Mg-d)/(Mf-b)+d; end end enduint8(A); uint8(B);imwrite(B,'E:\3.tif'); %图像保存subplot(2,2,1); imshow(A); %显示调整前后图像及其直方图 subplot(2,2,2); imhist(A); subplot(2,2,3); imshow(B); subplot(2,2,4);imhist(B);010020005001000100200020004000600080003.3 非线性灰度变换非线性灰度变换在整个灰度范围内采用统一的变换函数,利用变换函数的数学性质实现对不同灰度值区间的扩展和压缩。

图像增强知识点总结

图像增强知识点总结

图像增强知识点总结在图像增强领域,有许多常见的方法和技术,比如灰度变换、直方图均衡化、滤波、锐化、维纳滤波等。

这些方法都有各自的特点和应用场景,下面我们将一一介绍这些知识点。

1. 灰度变换灰度变换是图像增强中最基本的方法之一,它通过对图像的灰度级进行变换,来改善图像的质量。

常见的灰度变换包括线性变换和非线性变换。

线性变换通常使用线性函数来对图像进行变换,而非线性变换则使用非线性函数。

2. 直方图均衡化直方图均衡化是一种常见的图像增强方法,它通过对图像的灰度分布进行重新分配,来增强图像的对比度和清晰度。

直方图均衡化可以有效地增加图像的动态范围,从而使图像更加有吸引力。

3. 滤波滤波是图像增强中常用的方法之一,它通过对图像进行滤波操作,来去除图像的噪声和增强图像的细节。

常见的滤波方法包括均值滤波、中值滤波、高斯滤波等,它们都有各自的适用场景和特点。

4. 锐化锐化是图像增强中常用的方法之一,它通过增强图像的边缘和细节,来使图像更加清晰和鲜明。

常见的锐化方法包括拉普拉斯锐化、梯度锐化等,它们都可以有效地改善图像的质量。

5. 维纳滤波维纳滤波是一种基于统计模型的图像增强方法,它通过对图像进行频域滤波操作,来去除图像的噪声和增强图像的对比度。

维纳滤波可以在去噪和保留图像细节之间取得平衡,从而使图像更加清晰和有吸引力。

6. 小波变换小波变换是一种常用的图像增强方法,它可以将图像分解成不同频率的子带,从而使图像的低频部分和高频部分可以分别进行增强。

小波变换可以有效地增强图像的细节和对比度,从而使图像更加清晰和有吸引力。

7. 自适应增强自适应增强是一种基于局部特性的图像增强方法,它可以根据图像的局部特点来选择适当的增强方法和参数。

自适应增强可以在不同的图像区域使用不同的增强方法,从而使图像在不同区域上都能得到最佳的增强效果。

总结来说,图像增强是图像处理领域中一个重要的研究方向,它可以帮助我们改善图像的质量、清晰度和对比度,使图像更加鲜明、有吸引力。

图像增强的原理

图像增强的原理

图像增强的原理
图像增强的原理主要包括以下几个方面:
1. 直方图均衡化:通过调整图像的灰度级分布,使得图像中的像素更加均匀地分布在整个灰度级范围内。

具体操作包括计算图像的累积直方图,并将其映射到期望的均匀分布上。

2. 空域滤波:利用不同的滤波器对图像进行滤波操作,以增强或抑制特定频率的信息。

例如,使用高通滤波器可以增强图像的边缘信息,而使用低通滤波器可以抑制噪声。

3. 空间域法:通过调整图像的像素值来增强图像的局部细节。

例如,使用直方图拉伸可以增加图像的对比度,而局部对比度增强可以突出图像中的细节。

4. 频域法:将图像转换到频域进行处理,然后再进行反变换得到增强后的图像。

例如,使用傅里叶变换可以将图像转换到频域进行滤波操作,然后再进行反变换得到增强后的图像。

5. 去噪处理:通过滤波等方法去除图像中的噪声,以提高图像的质量。

常用的去噪方法包括中值滤波、高斯滤波等。

总之,图像增强的原理是通过对图像的像素值、灰度级分布、频域信息等进行调整和处理,来改善图像的质量、对比度、细节等。

不同的增强方法适用于不同的图像特点和需求,可以根据具体情况选择合适的方法进行处理。

运用计算机视觉技术进行图像增强的方法分享

运用计算机视觉技术进行图像增强的方法分享

运用计算机视觉技术进行图像增强的方法分享图像增强是计算机视觉领域中的一个重要任务,它旨在通过调整图像的各种属性和特性,提高图像的质量和可视化效果。

计算机视觉技术在图像增强中扮演着关键角色,它提供了各种方法和算法来改善图像的亮度、对比度、清晰度等关键特性。

在本文中,我们将探讨几种常见的运用计算机视觉技术进行图像增强的方法。

一、灰度变换灰度变换是最简单但也是最常见的图像增强方法之一。

通过对图像像素的灰度级进行变换,可以调整图像的亮度和对比度。

常用的灰度变换方法包括线性变换、非线性变换和直方图均衡化。

线性变换是通过对每个像素进行乘法和加法操作来改变图像的亮度和对比度。

常用的线性变换方法有亮度调整和对比度拉伸。

亮度调整可以通过将每个像素乘以一个常数来增加或减少亮度。

对比度拉伸则通过对像素值进行线性伸缩来增加图像的对比度。

非线性变换通常涉及到像素值的幂次、指数、对数等运算。

这些操作可以用来调整图像的亮度和对比度,同时改变像素值的分布。

例如,幂次变换可以通过将每个像素值的幂次来调整图像的亮度和对比度。

指数变换则可以用来调整图像的亮度和增强细节。

直方图均衡化是一种常用的非线性灰度变换方法,它通过调整图像的灰度级分布来增强图像的对比度。

直方图均衡化可以使图像的灰度级更均匀地分布在整个灰度范围内,从而提高图像的可视化效果。

二、滤波器应用滤波器应用是另一种常见的图像增强方法。

滤波器可以通过对图像进行卷积操作来改变图像的特征和属性。

常用的滤波器包括平滑滤波器、锐化滤波器和边缘检测滤波器。

平滑滤波器主要用于降低图像的噪声和去除细节。

平滑滤波器通过计算周围像素的平均值或加权平均值来减少图像的噪声。

常用的平滑滤波器包括均值滤波器和高斯滤波器。

锐化滤波器用于增强图像的细节和边缘。

锐化滤波器通过计算图像中不同方向的梯度,从而增强图像中的边缘信息。

常用的锐化滤波器包括拉普拉斯滤波器和Sobel滤波器。

边缘检测滤波器用于检测图像中的边缘和轮廓。

图像增强的几种方法

图像增强的几种方法

1、图像增强的原理及应用前景图象增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。

增强图象中的有用信息,它是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

近年来,随着消费型和专业型数码相机的日益普及,海量的图像数据正在被产生.但由于场景条件的影响,很多在高动态范围场景、昏暗环境或特殊光线条件下拍摄的图像视觉效果不佳,需要进行后期增强处理调整动态范围或提取一致色感才能满足显示和印刷的要求。

人类视觉系统具有强烈的全局和区域的自适应性和非线性,在多种不同的光照条件下都能清晰地辨识细节,具有电子设备所不可比拟的优势。

因此,图像增强引起了广泛的关注,很多图像增强方法在设计时考虑描述和模仿人类视觉系统的特性,以期获得符合人类视觉系统特性的增强效果。

2图像增强的算法分类图像增强算法可分成两大类:频率域法和空间域法。

前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。

基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。

采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。

基于空域的算法处理时直接对图像灰度级做运算,具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。

基于空域的算法分为点运算算法和邻域去噪算法。

点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。

数字图像处理方法-图像增强2

数字图像处理方法-图像增强2

求出:k1和k2 求出:l1和l2
第五章 图像增强
23
空域处理—彩色图像增强
彩色平衡实现的算法
9 分别对R、G、B图像实施变换:
*=
+
R(x, y) k1*R(x, y) k 2
B(x, y)* = l1*B(x, y) + l2
G(x, y)* = G(x, y)
9 得到彩色平衡图像
第五章 图像增强
直方图均衡化的技术要点:
公理:直方图p(rk ),为常数的图像对比度最好
目标:寻找一个灰度变换函数T(r),使结果图像 的直方图p(sk )为一个常数
第五章 图像增强
3
空域处理—直方图增强
直方图均衡—灰度变换函数
1) 求出原图 f 的灰度直方图,设为h。h为一个256维的向 量。
2) 求出图像 f 的总体像素个数, Nf=m ×n
第五章 图像增强
32
空域处理—彩色图像增强
伪彩色增强
人类可以分辨比灰度层次更多的颜色种类 将灰度图像变换为彩色图像——伪彩色图像 方法:伪彩色变换,密度分割
伪彩色变换法—独立映射表变换法
9对灰度图像 f(x, y),建立颜色映射表:
IR
=
T (I ) R
IG
=
T (I ) G
I = T (I )
B
B
9形成RGB图像各分量为: R (x , y ) = T R ( f (x , y
))
第五章 图像增强
G (x, y ) = TG( f (x, y ))
B(x, y) = TB( f (x, y
33
))
空域处理—彩色图像增强
伪彩色变换流程

灰度线性变换

灰度线性变换

灰度线性变换
灰度线性变换是一种用于MCU图像增强处理的常用方法。

它是把图像
的每个像素点的灰度值从原始灰度级映射到新的灰度级,实现对图像亮度、对比度等特性进行调节,以达到增强图像质量的目的。

灰度线性变换的基
本形式是:s=a*r+b,其中,s、r分别表示图像灰度变化后和变化前的灰
度值,a、b分别为变化系数。

灰度线性变换的过程依赖于变换参数a、b的选取,a的取值范围是0
至1,表示变换的量度程度,也就是变化的幅度;而b的取值范围是0至255,表示变换的量度偏移,也就是亮度上的平衡值。

如果a取值大于1,就会使图像变得更亮,a取值小于1时,图像就会变暗;如果b取值大于1,则图像会变亮;反之,图像就变暗。

通过选择合适的变换参数,就可以实现灰度线性变换,使图像质量得
到提升。

此外,灰度线性变换还可以被用来增强图像的对比度,提高图像
的色彩饱和度,从而达到更好的视觉效果。

Envi图像增强与变换

Envi图像增强与变换

实验二ENVI图像增强与变换实验指导实验目的:通过上机操作,了解图像增强、图像变换几种遥感图象处理的过程和方法,加深对图象增强与变换处理的理解,熟悉ENVI软件中图像增强与变换的一些方法。

基础理论回顾与ENVI图像增强与变换预览:1.图像增强与变换的目的:图像增强的目的在于改善图像的显示质量,提高图像目视效果,突出所需要的信息,为进一步遥感目视判读做预处理工作。

2.图像增强的方法:3.实验内容:●影像融合:HSV变换融合、主成分变换融合●裁剪影像(以下实验的影像数据)●NDVI指数的计算●纹理分析●快速傅立叶滤波实验数据:影像融合:SPOT5全色影像(2_5_SPOT5)和多光谱影像(10_SPOT5):表1 SPOT5 XI卫星有关参数介绍空间分辨率全色:2.5m(星下点)多光谱:10m(星下点)光谱响应范围全色:480-710nm1:790-890nm 近红外2:610-680nm 红波段3:500-590nm 绿波段4:1580-1750nm 短波红外其他实验:实验一几何配准后影像。

ETM+多波段数据:图 1实验方法与步骤:一、影像融合1.HSV融合ENVI中的融合方法:图2使用HSV融合可以进行RGB图像到HSV色度空间的变换,用高分辨率的图像代替颜色亮度值波段,并自动将色度和饱和度重采样到高分辨率像元尺寸,然后再将图像变换回RGB色度空间。

输出的RGB图像的像元将与高分辨率数据的像元大小相同。

1.从ENVI主菜单中,选择File →Open Image File 把SPOT5全色影像(2_5_SPOT5)和多光谱影像(10_SPOT5)都加载到可用波段列表中:图 32.从ENVI主菜单中,选择Transform → Image Sharpening → HSV,开始进行多光谱影像和全色影像的HSV 变换融合。

3.在Select Input RGB Input Bands对话框中,分别选择多光谱影像(10_SPOT5)影像的波段1、波段2和波段3,然后点击OK:图 44.打开High Resolution Input File(输入高分辨率数据)对话框,在Select Input Band列表中选择SPOT5全色影像(2_5_SPOT5),点击OK:图 5至此,完成了HSV变换融合的数据输入工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性变换简单的线性灰度变换法可表示为 g(x,y)=(d-c/b-a)[f(x,y)-a]+c,其中: b 和 a 分别是输入图像亮度分量的最大值和最小值,d 和 c 分别是输出图像亮度 分量的最大值和最小值。经过线性灰度变化法,图像亮度分量的线性范围从[a,b] 变化到[c,d],如图 2.1 所示:
工作计划与进度安排:
第一阶段(1-2 天):熟悉 matlab 编程环境,查阅相关资料; 第二阶段(2-3 天):算法设计; 第三阶段(2-3 天):编码与调试; 第四阶段(1-2 天):实验与分析; 第五阶段(1-2 天):编写文档。
指导教师:
专业负责人:
学院教学副院长:
2016 年 7 月 3 日
5 仿真与结果分析........................................................................................................ 7 5.1 仿真.................................................................................................................. 8 5.2 结果分析........................................................................................................ 10
M b f(x,y ) f
2
沈阳理工大学数字图象处理课程设计
2.3 非线性灰度变换
非线性拉伸不是对图像的整个灰度范围进行扩展,而是有选择的对某一灰度 范围进行扩展,其他范围的灰度值则有可能被压缩。非线性拉伸利用变换函数的 数学性质实现对不同灰度值区间的扩展与压缩。下面介绍其中一种非线性扩展法: 对数变换。
3 设计方案.................................................................................................................... 3 3.1 设计思想.......................................................................................................... 3 3.2 设计流程.......................................................................................................... 4
图 2.2 分段线性拉伸示意图
图中,中间段的灰度得到拉伸,两端灰度被压缩公式如 2.2 所示:

c a
f
(x,
y)
g(x, y)bdac[f (x, y)a]c
0 f(x,y ) a a f(x,y ) b
(2.2)
Mg d[f (x, y)b]d Mf b
4 软件实现.................................................................................................................... 5 4.1 线性灰度变换增强.......................................................................................... 5 4.2 分段线性灰度变换增强设.............................................................................. 6 4.3 非线性灰度变换增强...................................................................................... 7
图 2.1 线性拉伸示意图
1
沈阳理工大学数字图象处理课程设计
若图像中大部分像素的灰度级分布在区间[a,b]内,M 为原图的最大灰度级,只 有很小一部分的灰度级超过了此区间,则为了改善增强效果,可以令:
c g(x, y)bdac[f (x, y)a]c
d
0 f (x, y) a a f (x, y) b b f (x, y) M
(2.1)
由于人眼对灰度级别的分辨能力有限,只有当相邻像素的灰ห้องสมุดไป่ตู้值相差到一定
程度时才能被辨别出来。通过上述变换,图像中相邻像素灰度的差值增加,例如
在曝光不足或过度的情况下,图像的灰度可能会局限在一个很小的范围内,这时
得到的图像可能是一个模糊不清,似乎没有灰度层次的图像。采用线性变换对图
像中每一个像素灰度作线性拉伸,将有效改善图像视觉效果。[1]
2016 年 7 月 4 日
2016 年 7 月 4 日
沈阳理工大学数字图象处理课程设计
摘要
空域增强在数字图像处理中起到对图像灰度的拉伸、压缩变换的作用,目前 这种方法在处理图像灰度值方面得到广泛的运用。图像变换增强是利用一系列的 变换方法使图像的对比度得到提升,以达到增强图像的目的,便于观察,易于区 分不同灰度的图像。
根据函数的性质,灰度变换的方法有以下几种:
(1)线性灰度变换。 (2)分段线性灰度变换。 (3)非线性灰度变换。 对于线性灰度变换和非线性灰度变换,是直接用确定的公式依次对每个像素 进行处理,也称为直接线性变换。[3]
3
沈阳理工大学数字图象处理课程设计
3.2 设计流程
如下图 3.1 所示为线性变换流程图。
对数变换,是指输出图像的像素点的灰度值与对应的输出图像的像素灰度值 之间为对数关系,其一般公式为:g(x,y)=a+ln[f(x,y)+1]/blnc,式中 a,b,c 都是可以 选择的参数,式中 f(x,y)+1 是为了避免对 0 求对数,确保 ln[f(x,y)+1]≥0。当 f(x,y)=0 时,ln[f(x,y0+1),则 y=a,则 a 为 y 轴上的截距,确定了变换曲线的初始位置的变 换关系 b,c,两个参数确定变换曲线的变换速率。对数变换扩展了低灰度区,压 缩了高灰度区,能使低灰度区的图像较清晰地显示出来。[2]
I
沈阳理工大学数字图象处理课程设计
目录
1 设计目的与要求........................................................................................................ 1 1.1 设计目的.......................................................................................................... 1 1.2 设计要求.......................................................................................................... 1
成绩评定表
学生姓名 赵诗雅
班级学号
1303030403
专业
电子信息工程
课程设计题目
图像空域增强算法 设计—
灰度变换增强

语 组长签字:
成绩
日期
2016 年 7 月 18 日
课程设计任务书
学院
信息科学与工程
专业
电子信息工程
学生姓名
赵诗雅
班级学号 1303030403
课程设计题目
图像空域增强算法设计—灰度变换增强
灰度变换的方法有线性灰度变换、分段线性灰度变换、非线性灰度变换。本 文采用灰度变换技术,分别对灰度图像进行了线性灰度变换增强、非线性灰度增 强和分段线性灰度增强。仿真结果表明灰度变换可使图像动态范围增大,图像对 比度扩展,图像变清晰,特征明显;对于灰度局限在某一个很小范围内的数字图 像,采用线性函数对图像的每一个像素进行线性扩展,扩大像素的对比度,将有 效地改善视觉效果,达到了提高图像对比度,增强图像效果的目的,证明了图像 变换增强在数字图像处理中的重要作用。 关键词:空域增强;灰度变换;线性灰度变换;非线性灰度变换
2.2 分段线性灰度变换
为了突出图像中感兴趣的目标或灰度区间,相对抑制那些不感兴趣的灰度区 间,可采用分段线性变换,它将图像灰度区间分成两段乃至多段分别作线性变换。 进行变换时,把 0~255 整个灰度值区间分为若干线段,每一个直线段都对应一 个局部的线性变换关系。
常用的三段线性变换如图 2.2 所示:
II
沈阳理工大学数字图象处理课程设计
1 设计目的与要求
1.1 设计目的
空域增强在数字图像处理中起到对图像灰度的拉伸、压缩变换的作用,目前 这种方法在处理图像灰度值方面得到广泛的运用。灰度变换是空域变换的一种重 要方式,可使图像对比度扩展,图像清晰,特征明显。本实验中,我们就用灰度 变换来对灰度图像进行处理。
实践教学要求与任务:
本设计要求利用 Matlab 进行编程及仿真,仿真内容为图像空域 增强算法设计——灰度变换增强。拟利用所学数字图象处理技术知 识,在 Matlab 软件系统上来实现灰度变换增强,并且对程序进行测 试。要求如下:
(1)掌握课程设计的相关知识、概念、思路及目的。 (2)程序设计合理、能够正确运行且操作简单,可实施性强。 (3)掌握灰度变换增强的方法。 (4)能够利用线性变换,非线性变换对灰度图像进行变换。
1.2 设计要求
(1)熟练掌握 MATLAB 软件的基本操作 (2)学会掌握 MATLAB 软件的程序编程 (3)查阅相关资料并分析,掌握灰度变换增强的主要思路 (4)培养独立分析和解决问题的能力,学会撰写课程设计的总结报告 (5)善于总结和改进方案,提高可实施性和高效性。
相关文档
最新文档