根号1到100的最简二次根式

合集下载

√54的最简二次根式

√54的最简二次根式

√54的最简二次根式
√54可以化简为√(2×3×3×3),即√(2×3^3)。

我们可以将3^2提出来,得到√(2×3^2×3)。

再将3开平方,得到√(2×9×3),即3√2×3。

因此,√54的最简二次根式为3√2×3。

二次根式是指形如√a的数,其中a是一个正整数。

如果a可以分解为两个正整数的积,那么这个二次根式就可以化简为最简二次根式。

化简二次根式的方法是将a分解质因数,然后将其中的平方数提出来,最后将剩余的数乘在平方数的外面。

例如,√48可以化简为√(2×2×2×2×3),即2×2√3。

因为2×2=4,所以√48也可以写成4√3。

化简二次根式的意义在于简化计算,使得数学运算更加方便。

在代数中,我们经常需要对二次根式进行加减乘除,如果能够将二次根式化简为最简形式,就可以减少计算量,提高效率。

除了化简二次根式,我们还可以将其与其他数进行运算。

例如,√54×√2=√(54×2)=√108=6√3。

这个过程中,我们先将√54化简为3√2×3,然后将√2乘进去,最后再将结果化简为最简形式。

化简二次根式是代数中的一个基本技能,掌握了这个技能,可以使
我们的数学运算更加高效、准确。

二次根式的计算方法

二次根式的计算方法

添加标题
乘法运算的应用:二次根式的乘法运算在解决实际问题中具有广泛的应用,例如在计算面积、 体积、长度等物理量时,常常需要进行二次根式的乘法运算。
除法运算
公式:a√b/c√d = (a/c)√(b/d) 例题:(2√3)/(3√2) = (2/3)√(3/2) 注意事项:除法运算中,分母不能为0 应用:二次根式的除法运算在解决实际问题中具有广泛应用
二次根式的定义
概念:二次根式是形如√a(a≥0)的代数式,其中a称为被开方数,√a称为根号。
性质:二次根式具有非负性,即√a≥0(a≥0)。
运算:二次根式的运算包括加法、减法、乘法和除法,遵循一定的运算法则。
应用:二次根式在数学、物理、工程等领域有着广泛的应用,如求解方程、计算面积、体积 等。
二次根式的性质
转化为同类二次根式
概念:非同类二次根式是指 根号下含有不同字母的二次 根式
加减运算:将转化后的同类 二次根式进行加减运算,得
到结果
加减法运算规则
二次根式与有理数相加减, 先化成最简二次根式,再相 加减
不同底二次根式相加减,先 化成同底二次根式,再相加 减
同底二次根式相加减,底数 不变,被开方数相加减
03
二次根式的乘除法
乘法运算
添加标题
乘法运算的定义:二次根式的乘法运算是将两个二次根式相乘,得到一个新的二次根式。
添加标题
乘法运算的法则:二次根式的乘法运算法则是:(a√b)(c√d)=(ac)√(bd)。
添加标题
乘法运算的步骤:首先,将两个二次根式相乘,得到新的二次根式;然后,将新的二次根式的 被开方数相乘,得到新的被开方数;最后,将新的二次根式的系数相乘,得到新的系数。
乘除法运算规则

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

八年级数学下册二次根式之化简

八年级数学下册二次根式之化简

八年级数学下册二次根式之化简知识点1、二次根式定义形如式子叫做二次根式;二次根式必须满足:含有二次根号;被开方数a必须是非负数(含有,且有意义)。

①被开方数可以是数,也可以是单项式、多项式、分式等代数式;②判断时一定要注意不要化简,一定要有意义。

知识点2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

①根号下无分母,分母中无根号;②被开方数中没有能开方的因数或因式。

知识点3、二次根式的性质(1)非负性√a (a≥0)是一个非负数注意:此性质可作公式记住,后面根式运算中经常用到.(2)(√a)^2=a (a≥0)注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或(3)非负代数式写成注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.知识点4、最简二次根式和同类二次根式(1)最简二次根式:☆最简二次根式的定义:①被开方数是整数,因式是整式②被开方数中不含能开得尽方的数或因式,分母中不含根号☆同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式知识点5、二次根式计算——分母有理化(1)分母有理化定义:把分母中的根号化去,叫做分母有理化。

(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:①单项二次根式:利用来确定,如下,分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如下列式子,互为有理化因式(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;知识点6、二次根式计算——二次根式的乘除(1)积的算术平方根的性质积的算术平方根,等于积中各因式的算术平方根的积。

最简二次根式的定义。

最简二次根式的定义。

最简二次根式的定义。

全文共四篇示例,供读者参考第一篇示例:最简二次根式是指根号下面的被开方数为正数,且不能再约简的二次根式。

它是代数学中一个非常重要的概念,常常出现在高中数学的教学内容中。

二次根式在数学中的引入,是为了解决方程x^2=a 中的数a 是不是负数时的问题。

在实数范围内,如果a 大于等于0,那么方程x^2=a 有两个不同的实根;如果a 小于0,那么方程就没有实数根了。

为了能够对所有的实数进行开平方运算,数学家就引入了二次根式的概念。

最简二次根式就是在二次根式中的一种特殊形式,它只包含一个根号和一个不可约的正整数。

也就是说,如果一个二次根式不能再约简,那么它就是最简二次根式。

最简二次根式的一般形式为\sqrt{n} ,其中n 是一个正整数,且n 不含有平方因子,即n 的素因数分解中没有一个数出现了两次及以上。

举例来说,\sqrt{2} 、\sqrt{3} 、\sqrt{5} 都是最简二次根式,因为它们没有共同的公因数,无法再约简;而\sqrt{4} 、\sqrt{6} 、\sqrt{8} 就不是最简二次根式,因为它们的因数中有平方因子。

最简二次根式在数学中的运算和化简中有着很重要的作用。

在代数中,我们常常需要对二次根式进行加减乘除等运算,而如果能够将二次根式化为最简形式,就可以简化运算过程,减少出错的可能性。

最简二次根式的化简规则是:提取出平方因数后,就无法再继续简化了。

对于\sqrt{4m^2} ,我们可以提取出m,得到m\times \sqrt{4} = 2m ,但不能再将其简化。

最简二次根式在数学中的应用非常广泛,不仅在代数中常见,也会在几何、物理等领域中不断出现。

掌握好最简二次根式的定义和化简方法,可以帮助我们更好地理解数学知识,提高解题的速度和准确性。

在学习最简二次根式的过程中,我们还需要注意以下几点:要能够区分最简二次根式和一般的二次根式;要掌握最简二次根式的化简规则;要多做练习,加深对最简二次根式的理解和运用能力。

最简二次根式

最简二次根式

最简二次根式教学建议 1.教材分析本节是在前两节的基础上,从实际运算的客观需要动身,引出的概念,然后通过一组例题介绍了化简二次根式的方法.本小节内容比较少(求同学了解的概念并把握化简二次根式的方法),但是本节学问在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接. (1)学问结构(2)重难点分析①本节的重点Ⅰ.概念Ⅱ.利用二次根式的性质把二次根式化简为. 重点分析本章的主要内容是二次根式的性质和运算,但自始至终围围着二次根式的化简和运算.二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的.因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简洁,在本章中却起着穿针引线的作用,老师在教学中应给于极度重视,不行由于内容简洁而实行弱化处理;同时初二同学代数成果的分化一般是由本节开头的,分化的根本缘由就是对概念理解不够深刻,遇到相关问题不知怎样操作,详细操作到哪一步. ②本节的难点是化简二次根式的方法与技巧. 难点分析化简二次根式,实际上是二次根式性质的综合运用.化简二次根式的过程,一般按以下步骤:把根号下的带分数或肯定值大于1的小数化成假分数,把肯定值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分.所以对初学者来说,这一过程简单消失符号和计算出错的问题.娴熟把握化简二次根式的方法与技巧,能够进一步开拓同学的解题思路,提高同学的解题力量. ③重难点的解决方法是对于这一概念,并不要求同学能否背出定义,关键是遇到实际式子能够加以推断.因此建议在教学过程中对概念本身实行弱化处理,让同学在反复练习中熟识这个概念;同时教学中应充分对概念理解后应用详细的实例归纳总结出把一个二次根式化为的方法,在观看对比中引导同学总结详细解决问题的方法技巧. 另外,化简运算在本节既是重点也是难点,同学在简洁性和精确性上都简单消失问题,因此建议在教学过程中多要求同学观看二次根式的特点――依据其特点分析运用哪条性质、哪种方法来解答,培育同学的分析力量和观看力量――多要求同学留意每步运算的依据,培育同学的严谨习惯. 2.教法建议素养教育和新的教改精神的根本是增加同学学习的自主性和同学的参加意识,使每一个同学想学、爱学、会学。

最简二次根式

最简二次根式
最简二次根式
思考:下列二次根式能否化简?
那么什么样的二次根式是最简二次根式呢? 满足下列条件的二次根式,叫做最简二次根式:
(1) 被开方数不含分母 (2) 被开方数中不含能开得尽方的因数或因式 注意:(1)这两个条件前提都是指的是被开方数。 (2)同时满足这两个条件的二次根式才是最简二次根式。
例:下列二次根式ቤተ መጻሕፍቲ ባይዱ什么不是最简二次根式?
分析: 又如:
不是最简二次根式,因为被开方数的因数为 分数或因式为分式,不符合条件(1),条件(1) 要求被开方数的分母中不带根号。
也不是最简二次根式,因为被开方数中含 有能开得尽方的因数或因式,不满足条件 (2).注意条件(2)是对被开方数分解成质因 数或分解成因式后而言的。
小结
(1) 被开方数是小数或带分数 时要换算成真分数或假分数后化 简。 (2)被开方数是多项式的时候 要注意因式分解后化简。

根号的运算法则PPT

根号的运算法则PPT

解: (1) 6 × 7 = 6 × 7 = 42
( ) (2) -3 5 ×2 10=(-3)× 5×2× 10
=-6 5×10=-6 52×2=-30 2
计算下列各题,观察有何规律?
1. 36 = 6
A
2. 36 = 6
B
49 7
49 7
3. 9 = 3
C
4. 9 = 3
D
16 4
16 4
性质4 如果 a ≥0,b>0 , 则有
18.1 二次根式 18.2 二次根式的运算
制作人:田赛群 13级应数2班
1.了解二次根式的意义;
2.掌握用简单的一元一次不等式解决二次根式中字 母的取值问题;
3.掌握二次根式的性质,并能灵活运用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5.通过二次根式性质 和 的介绍渗透对称性、规律 性的数学美.
重点:(1)二次根的意义;
一:二次根式
(2)二次根式中字母的取值范围.
二:二次根式的乘、除运算
难点:确定二次根式中字母的取值范围. 三:二次根式的加、减运算
本节学习二次根式的概念及其判别
• 什么叫做平方根?
• 一般地,如果一个数的平方等于a,那么这个数叫做 a的平方根。
• 什么叫算术平方根?
• 正数的正平方根和零的平方根,统称算术平方根
二次根式加减运算的步骤:
(1)把各个二次根式化成最简二次根式 (2)把各个同类二次根式合并. 注意:不是同类二次根式的二次根式
(如 2 与 3 )不能合并
练习 1.判断:下列计算是否正确?为什么?
1 2 3 5 ;22 2 2 2 ; 3 8 18 4 9 2 3 5

最简二次根式的定义。-概述说明以及解释

最简二次根式的定义。-概述说明以及解释

最简二次根式的定义。

-概述说明以及解释1.引言1.1 概述最简二次根式是数学中一个重要的概念,它在代数与数论的研究中有着广泛的应用。

简单来说,最简二次根式是指一个形如√a的根式表达式,其中a是一个自然数。

最简二次根式可以被表示为有理数的平方根,并且在根号下的数a是一个最简分数。

最简二次根式在数学中扮演着重要的角色,它们广泛应用于各个领域,包括几何、代数、物理等。

在几何中,最简二次根式可以用来表示一些特殊的长度或比例关系。

而在代数中,最简二次根式的性质与运算规则可以帮助我们进行各种复杂的数学计算。

为了更好地理解最简二次根式的定义,我们需要了解一些相关概念,如根式、有理数和最简分数。

根式是指一个形如√a的表达式,其中a可以是任何实数。

有理数是可以写成m/n的数,其中m和n都是整数,且n不能为零。

最简分数是指一个分数,其分子和分母没有公因数,即它不能被更小的整数表示。

通过对最简二次根式的深入研究,我们可以发现它们具有一些独特的性质。

例如,最简二次根式的和、差、积和商仍然是最简二次根式。

这些性质为我们解决一些复杂的问题提供了便利。

在本文的后续部分中,我们将进一步探讨最简二次根式的性质和应用。

首先,我们将介绍最简二次根式的定义和相关概念。

接着,我们将详细讨论最简二次根式的特性和运算规则。

最后,我们将总结本文的主要内容,并展望最简二次根式在未来研究中的应用前景。

1.2文章结构文章结构部分的内容可以包括以下内容:文章结构部分介绍了整篇文章的组织结构和各部分的内容概述,帮助读者更好地理解文章的整体架构和各个部分的作用。

文章结构部分一般包括以下内容:1. 引言部分:简要介绍文章的主题和研究背景,概述文章的目的和意义。

引言部分可以用几句话引起读者的兴趣和关注,概述研究领域中的问题和现状。

2. 正文部分:根据文章大纲中的各个要点进行展开。

每个要点可以单独成为一个小节,在正文中进行详细的叙述和论证。

正文部分应该清晰地叙述问题、提出观点、列举例证,论述论据等。

2023最简二次根式与同类二次根式(解析版)

2023最简二次根式与同类二次根式(解析版)

最简二次根式与同类二次根式【知识梳理】一.最简二次根式最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a≥0)、x+y等;含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2等.二.同类二次根式同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变.【知识拓展】同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.(1)同类二次根式类似于整式中的同类项.(2)几个同类二次根式在没有化简之前,被开方数完全可以互不相同.(3)判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.【考点剖析】一.最简二次根式(共5小题)1.(2022秋•黄浦区月考)下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义即可求解.【解答】解:A.==3,选项A不符合题意;B.==,选项B不符合题意;C.是最简二次根式,选项C符合题意;D.==a2,选项D不符合题意;故选:C.【点评】本题主要考查了最简二次根式,掌握最简二次根式的定义是解题的关键.2.(2018秋•松江区期末)化为最简二次根式:=.【分析】根据二次根式的性质化简即可.【解答】解:==2,故答案为:2.【点评】本题考查的是最简二次根式,掌握二次根式的性质是解题的关键.3.(2022秋•长宁区校级期中)二次根式中:、、、是最简二次根式的是.【分析】根据最简二次根式的概念判断即可.【解答】解:==,被开方数含分母,不是最简二次根式,=2,=|x|是最简二次根式,故答案为:.【点评】本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.4.(2022秋•虹口区校级月考)在,,,,中,最简二次根式有个.【分析】根据二次根式的定义即可得出答案.【解答】解:最简二次根式有,共1个.故答案为:1.【点评】此题考查了最简二次根式,最简根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数.5.(2019秋•宝山区校级月考)将式子﹣(m﹣n)化为最简二次根式.【分析】根据二次根式的性质即可求出答案.【解答】解:由题意可知:m﹣n<0,∴n﹣m>0,∴原式=﹣(m﹣n)=故答案为:【点评】本题考查最简二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.二.同类二次根式(共11小题)6.(2021秋•金山区期末)下列根式中,与是同类二次根式的是()A.B.C.D.【分析】一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.【解答】解:=2,A、原式=2,故A不符合题意.B、原式=2,故B不符合题意.C、原式=,故C符合题意.D、原式=,故D不符合题意.故选:C.【点评】本题考查同类二次根式,解题的关键是正确理解同类二次根式的定义,本题属于基础题型.7.(2021秋•宝山区校级期中)最简二次根式3与是同类二次根式,则x的值是.【分析】根据同类二次根式:二次根式化为最简二次根式后,如果它们的被开方数相同列方程,解出即可.【解答】解:∵最简二次根式3与是同类二次根式,∴2x﹣5=7﹣x,解得x=4;故答案为:4.【点评】本题考查同类二次根式、最简二次根式,掌握同类二次根式的定义,根据定义列方程是解题关键.8.(2022秋•虹口区校级期中)若两最简根式和是同类二次根式,则a+b的值的平方根是.【分析】根据同类二次根式的概念列出二元一次方程组,解二元一次方程组求出a、b,根据平方根的概念解答即可.【解答】解:由题意得:,整理得:,解得:,则a+b=8,∵8的平方根为±2,∴a+b的平方根为±2,故答案为:±2.【点评】本题考查的是同类二次根式的概念、平方根的概念、二元一次方程组的解法,掌握同类二次根式的概念是解题的关键.9.(2022秋•黄浦区期中)若最简二次根式和是同类二次根式,那么a+b的值是.【分析】由同类二次根式的概念即可求解.【解答】解:∵最简二次根式和是同类二次根式,∴b﹣1=2,1﹣2a=7,∴a=﹣3,b=3,∴a+b=0.故答案为:0.【点评】本题考查同类二次根式的概念,关键是掌握:把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.10.(2022秋•青浦区期中)下列各根式中,与是同类二次根式的是()A.B.C.D.【分析】把各选项中式子化为最简二次根式,利用同类二次根式定义判断即可.【解答】解:A、=,与为同类二次根式;B、=与不是同类二次根式;C、=4与不是同类二次根式;D、=2与不是同类二次根式;故选:A.【点评】此题考查了同类二次根式,以及最简二次根式,熟练掌握同类二次根式定义是解本题的关键.11.(2022秋•嘉定区校级月考)最简二次根式与是同类二次根式,则a+b=.【分析】根据根指数及被开方数分别相同可列出方程,解出后可得出a和b的值,代入可得出答案.【解答】解:∵最简二次根式与是同类二次根式,∴,解得:,则a+b=2.故答案为:2.【点评】本题考查了同类二次根式及的知识,属于基础题,要熟练掌握最简同类二次根式的根指数相同,且被开方数相同.12.(2022秋•青浦区期中)如果最简二次根式和是同类二次根式,则ab=.【分析】先根据同类二次根式的定义求出a,b的值,进而可得出结论.【解答】解:由题意得,,解得,所以ab=0.故答案为:0.【点评】本题考查的是同类二次根式,熟知一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.13.(2022秋•徐汇区校级期中)如果最简二次根式与2是同类二次根式,则x的值是.【分析】根据同类二次根式的定义:化成最简二次根式后,被开方数相同的叫做同类二次根式,可得x2+7=4x+3,然后进行计算即可解答.【解答】解:∵最简二次根式与2是同类二次根式,∴x2+7=4x+3,∴x2﹣4x+4=0,∴(x﹣2)2=0,∴x﹣2=0,∴x=2,故答案为:2.【点评】本题考查了同类二次根式,最简二次根式,熟练掌握同类二次根式的定义是解题的关键.14.(2022秋•虹口区校级月考)在二次根式①;②;③;④;⑤中,与是同类二次根式的有.(填写编号)【分析】先根据二次根式的性质进行化简,再根据同类二次根式的定义逐个判断即可.【解答】解:∵①=2,②=,③=2,④=5,⑤=a ,∴与是同类二次根式的有②⑤.故答案为:②⑤.【点评】本题考查了同类二次根式的定义和二次根式的性质与化简,能正确根据二次根式的性质进行化简是解此题的关键.15.(2018秋•普陀区校级月考)若最简二次根式与是同类二次根式,求a,b的值.【分析】直接利用同类二次根式的定义分析得出答案.【解答】解:∵最简二次根式与是同类二次根式,∴,解得:.【点评】此题主要考查了同类二次根式的定义,正确把握定义是解题关键.16.(2022秋•宝山区校级期中)若最简二次根式与是同类根式,则2a﹣b=.【分析】结合同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行求解即可.【解答】解:∵最简二次根式与是同类根式,∴2a﹣4=2,3a+b=a﹣b,解得:a=3,b=﹣3.∴2a﹣b=2×3﹣(﹣3)=9.故答案为:9.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.【过关检测】一、单选题【答案】C【分析】将各选项化简,不能化简的即为答案.A不符合题意;=,所以B不符合题意;C符合题意;==D不符合题意.a故选:C.【点睛】本题主要考查了最简二次根式,即被开方数中不含能被开方的数或式子.【答案】D【分析】先根据同类二次根式的定义,列方程求出a 的值,再根据二次根式的定义列出不等式,求出x 的取值范围即可.【详解】解:∵∴61822a a −=−,∴4a =,∴420a x −≥,∴1620x −≥,∴8x ≤,故选:D .【点睛】本题考查了同类二次根式的概念及二次根式的性质:概念:化成最简二次根式后,被开方数相同的根式叫同类二次根式;性质:被开方数为非负数.【分析】先判断a 和b 的符号,然后根据二次根式的符号化简即可. 【详解】解:20ba −≥0b ∴≤0ab >所以a 和b 同号,0,0a b ∴<<,a a ==−故选:D .【点睛】本题考查了二次根式的性质;熟练掌握性质是解答本题的关键.【答案】D【分析】根据二次根式的性质化简即可求解.【详解】解:0)m >有意义, ∴0n <=−故选:D .【点睛】本题考查了二次根式有意义的条件,根据二次根式的性质化简,掌握二次根式的性质是解题的关键.【答案】C【分析】根据同类二次根式的概念逐个判断即可.【详解】A2A 选项不符合题意; B2=B 选项不符合题意;C 和C 选项符合题意;D D 选项不符合题意;故选:C .【点睛】本题考查同类二次根式,正确理解同类二次根式的概念是解题的关键.【答案】A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式将4x =代入得,原式1=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母二、填空题1【分析】根据分母有理化进行化简,然后判断出整数部分和小数部分,相乘解出即可.【详解】∵,23< ,∴536< ,∴532<< ,∴2m = ,2n == ,∴1mn . 【点睛】本题考查分式的有理化,熟悉定义是本题关键.【答案】②⑤/⑤②【分析】先将各项化简成最简二次根式,再利用同类二次根式的性质判断即可作答.【详解】===②和⑤, 故答案为:②⑤.【点睛】此题主要考查了同类二次根式的定义,正确化简二次根式是解题关键.同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2/2−【分析】将分子和分母同时乘以(2 ,再运用平方差公式进行化简即可得到结果.2====.2【点睛】本题主要考查二次根式的化简,当分母为含有二次根式的多项式时,可利用平方差公式进行“分母有理化”,掌握此方法是解此题的关键.【分析】根据最简二次根式的定义进行判断即可.,==【点睛】本题主要考查了最简二次根式的定义,解题的关键是熟练掌握最简二次根式的条件,①被开方数不含分母;②被开方数不含能开得尽方的因数或因式.【答案】【详解】解:原式==.故答案为:.【点睛】本题考查了二次根式的性质化简,掌握二次根式的性质是解题的关键.【答案】2或0【分析】根据二次根式和同类二次根式的定义列方程求出x、y的值,再计算x y+.【详解】由题意得,12+=y,22311x x+=−,解得1y =,1x =±,∴当11x y ==,时,112x y +=+=; 当11x y =-=,时,110x y +=−+=; 故答案为2或0.【点睛】本题考查二次根式和同类二次根式的定义,二次根式省略的根指数为2,化成最简二次根式之后,若被开方数相同,称为同类二次根式,掌握基本概念是关键.【答案】2/0.5【分析】根据同类二次根式的被开方数相同,得出关于a 的方程,解出即可得出答案.【详解】解:∵ ∴223+=a , 解得:12a =.故答案为:12【点睛】解一元一次方程,解本题的关键在熟练掌握同类二次根式的被开方数相同.【答案】5【分析】利用同类二次根式的概念即可求出.【详解】∵两个最简二次根式只有同类二次根式才能合并,∴38172,5a a a −=−=. 故答案为:5.【点睛】本题考查同类二次根式的概念,掌握同类二次根式的概念为关键.当变形后移至根号内得______.【分析】根据二次根式的性质可得110a −>,则a<0,据此即可求解.【详解】解:∵∴110a −>,则a<0,∴==【点睛】本题考查了二次根式的性质化简,掌握二次根式的性质是解题的关键.【答案】±【分析】根据同类二次根式的定义,列出方程,求解即可,【详解】解:由题意可得:722573a b a b a b +=⎧⎨+−=+⎩,解得91a b =⎧⎨=−⎩8a b +=8的平方根为±故答案为:±【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解题的关键.【答案】3−【分析】根据同类二次根式的定义,即可求出a 、b 的值,然后计算a+b 的值即可.【详解】解:∵最简二次根式b +是同类二次根式, ∴1422a +=,12b +=,∴4a =−,1b =, ∴413a b +=−+=−; 故答案为:3−.【点睛】本题考查了同类二次根式的定义,解题的关键是熟练掌握同类二次根式的定义,正确求出a 、b 的值.【答案】2a −【分析】根据二次根式性质:被开方式非负得到430a b −≥,解得0b ≤a 化简即可得到答案.2a =430a b −≥,∴0b ≤,∴2a2a =−∴2a =−故答案为:2a −a及去绝对值运算等知识,熟练掌握二次根式是解决问题的关键.三、解答题【答案】1a =,1b =.【分析】根据同类二次根式的定义列方程即可求出. 【详解】解:最简二次根式122543a a a b +=⎧∴⎨+=+⎩解得:11a b =⎧⎨=⎩ 即1a =,1b =.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解题的关键.【答案】【分析】根据二次根式的性质和非负数的性质可得关于x 、y 的方程,解方程即可求出x 、y 的值,然后代入所求式子计算即可.【详解】解:∵x2﹣12x+=0,∴x2﹣0,∴(x ﹣6)0,∴x ﹣6=0,y+4=0,解得:x =6,y =﹣4,=【点睛】本题考查了二次根式的性质和非负数的性质以及二次根式的化简求值,属于常考题型,熟练掌握基本知识是解题关键.【答案】【分析】先把原式的前两项化为最简二次根式,再合并即得结果. 【详解】解:原式=2334⋅⋅==【点睛】本题考查了二次根式的加减运算,属于基本题型,熟练掌握二次根式的加减运算法则是关键. 【答案】【分析】根据二次根式的性质先化简二次根式,再约分化简即可.【详解】解:原式25c ==. 【点睛】本题主要考查了二次根式的化简和分式的乘法,属于常见题型,熟练掌握二次根式的性质是解题的关键.【答案】−【分析】根据二次根式的性质进行化简各二次根式后,再合并同类二次根式即可. 【详解】解:由题意知,00,x y <<62=2623y x ⨯=2623y x ⨯==−【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.【答案】3x ≤【分析】按照移项、合并同类项、系数化为1的步骤求解,结果化为最简二次根式即可.−≥≥合并同类项得:x ≥系数化1得:x ≤,∴x ≤,∴3x ≤,∴原不等式解集为3x ≤.【点睛】本题考查了一元一次不等式的解法,以及二次根式的化简,熟练掌握一元一次不等式的解法以及二次根式的运算法则是解答本题的关键.【答案】(1(2)(3)m=a +b ,n=ab【分析】观察上述例子可发现,通过把被开方数变成一个完全平方式,再利用二次根式性质化简即可, 需注意完全平方公式中的a2+b2在被开方数中被合并,可以通过2ab 去判断a 、b 的值.【详解】解:(1,(2(3)通过以上规律不难发现:m=a +b ,n=ab.【点睛】此题考查的是利用完全平方公式化简同类二次根式,找出其中的规律是解决此题的关键.【答案】(1)6 (2)1023【分析】(1)根据同类二次根式的性质列出等式即可求解a ; (2)代入a 的值,根据新定义的运算法则即可求解. 【详解】(1)∵∴2216a a −=−+, ∴6a =, (2)当6a =时 (2[])a a −※※ 26)[6](=−※※866==14646==−※542234==⨯ 1023=.【点睛】本题考查了同类二次根式的性质、新定义下的实数的运算等式,理解新定义的运算法则是解答本题的关键.【答案】(1)313(1)1,,212(1)n n n n +++ ;(2)221n n n ++【分析】(1)分别求出S1,S2,…的值,再求出其算术平方根即可;(2)根据(1)的结果进行拆项得出1+12+1+112+⋯+1+()11n n +,求出答案即可.【详解】(1)∵S1=1+22119124+= ,32=; ∵S2=1+2211492336+=,76=; ∵S3=1+221116934144+=,1312; ∵Sn=1+()()()22222211111n n n n n n+++=++,()n n 11n n 1)+++(;(2)解:S=()()11371326121n n n n +++++⋯++=()1111111126121++++++⋯+++n n=1111111n 1223341n n ⎛⎫+−+−+−+⋯+− ⎪+⎝⎭1n 11n =+−+=221n nn ++【点睛】本题考查二次根式的化简和数字类规律,解题的关键是掌握二次根式的化简运算和数字类规律基本解题方法.【答案】(1(22;(3)【分析】(1)观察题中给的例子,我们将10拆成22+与−根式的性质化简即可;(2)将10拆成222+与−(312拆成22+与接下来按照二次根式的性质化简即可.【详解】(1(22;(3=.【点睛】本题考查了二次根式化简与完全平方式的综合运用,通过题干得出相应的方法是解题关键.。

最简二次根式

最简二次根式
1.被开方数不含分母; 2. 被开方数中不含能开的尽方的因数或因式。 我们把满足上述两个条件的二次根式,叫做最 简二次根式。例如,
2 2, 30 10 , 2 a 7 等都是最简二次根式。
ab a b a 0 , b 0
积的算术平方根等于积中各因式的绝 对值的算术平方根之积.
特别提醒
• 公式可以推广到多个 非负因式的情况。例 如,
abcd
a
b
c
d
( a 0 , b 0 , c o , d o ).
例2
1 2
200 ; 14 112 ;
解题思路:先将被开方数进行因式分解, 然后化简
知识点2二次根式的除法法则
a b a b 被开方数相除,根指数 81 9, 不变 (a 0, b 0)
两个二次根式相除,把 举例 243 3 243 3
0 . 36 0 . 12

0 . 36 0 . 12

3
提别提醒二次根式的运算结果要化到最
例1 计算:
(1) 1 2 32 ;
( 2 ) 4 xy
1 y;(3) 来自 8 ( 3) 2 .解 : (1)
1 2
32
1 2
32 16 4 .
( 2) xy 4
1 y
4 xy
1 y
4 x.
(3) 6 8 ( 3 2 ) 6 ( 3) 8 2 18 4 72
最简二次根式
知识点1二次根式的乘法法则
a b ab ( a 0, b 0)
文字语言:两个二次根式相乘,把
被开方数相乘,根指数不变。
特别提醒

最简二次根式进阶洋葱数学

最简二次根式进阶洋葱数学

最简二次根式进阶洋葱数学最简二次根式是指,将二次根式化简为不含有平方根的形式。

这是数学中基本的操作之一,也是高中数学中的重点内容。

不过,要将二次根式进行化简,需要掌握一些技巧和方法。

下面,我们就来详细介绍一下最简二次根式的相关知识。

一、二次根式的基本特征我们知道,二次根式是指,形如√a+b或√a-b(a和b为正数)的数学表达式。

其中,a叫做根数,b叫做系数。

对于二次根式,我们有以下几个基本特征需要掌握。

1. 二次根式不能化为整数我们知道,二次根式是有理数的一种,但它往往不能化为整数,而只能以根号的形式表示。

例如,√2就是一个无理数,它的近似值为1.41421356...2. 二次根式的大小关系对于两个正实数a和b,如下关系成立:√a<√b,当且仅当a<b。

即,一个二次根式的大小关系取决于它所包含的根数大小关系。

例如,√2<√3。

3. 二次根式的加减运算对于两个二次根式√a+b和√c+d,它们的加减运算往往需要先化简,然后再合并同类项。

下面是一个例子:√40+√20=√4×10+√4×5=2√10+√204. 二次根式的乘法和除法对于两个二次根式√a+b和√c+d,它们的乘法往往需要先将它们展开,然后再合并同类项。

例如:(√2+√3)×(√2-√3)=2-3=-1而它们的除法则需要使用有理化的方法进行。

例如:(√7+√3)/(√7-√3)=[(√7+√3)×(√7+√3)]/[(√7-√3)×(√7+√3)]=[7+2√21]/4二、如何化简二次根式化简二次根式是数学中的一个基本操作,它需要我们掌握一些方法和技巧。

下面,我们列举一些常用的化简技巧,供大家参考。

1. 分解因式对于一个二次根式,如果它所包含的根数是一个完全平方数,那么我们可以尝试将它进行分解因式。

例如:√12=√4×3=2√32. 合并同类项对于两个二次根式,如果它们所包含的根数相同,那么我们可以尝试将它们合并为一个二次根式。

二次根式——精选推荐

二次根式——精选推荐

二次根式定义性质和概念如果一个数的平方等于a,那么这个数叫做a的平方根。

a可以是具体的数,也可以是含有字母的代数式。

二次根式即:若,则x叫做a的平方根,记作x=。

其中a叫被开方数。

其中正的平方根被称为算术平方根。

关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。

被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。

性质:二次根式1.任何一个正数的平方根有两个,它们互为相反数。

如正数a的算术平方根是,则a的另一个平方根为﹣;最简形势中被开方数不能有分母存在。

二次根式2.零的平方根是零,即;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。

二次根式4.无理数可用有理数形式表示, 如:。

几何意义二次根式1°(a≥0)[任何一个非负数都可以写成一个数的平方的形式;利用此性质在实数范围内因式分解];二次根式2°,都是非负数;当a≥0时,;而中a取值范围是a≥0,中取值范围是全体实数。

二次根式3°c=表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论;4° 逆用可将根号外的非负因式移到括号内,如二次根式二次根式﹙a>0﹚,﹙a<0﹚二次根式﹙a≥0﹚,﹙a<0﹚二次根式7° 注意:,即具有双重非负性。

算术平方根正数a的正的平方根和零的平方根统称为算术平方根,用(a≥0)来表示。

0的算术平方根为0.开平方运算化简化简二次根式是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。

最简二次根式二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。

运算法则乘除法1.积的算数平方根的性质二次根式(a≥0,b≥0)2. 乘法法则二次根式(a≥0,b≥0)二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。

二次根式讲解大全

二次根式讲解大全

① a 1 a b ;② a 1 a b
b
b
例 8、比较 5 3 与 2 3 的大小。
5、规律性问题 例 1. 观察下列各式及其验证过程:
,验证:

验证:
.
(1)按照上述两个等式及其验证过程的基本思路,猜想 4 4 的变形结果,并进行验证; 15
(2)针对上述各式反映的规律,写出用 n(n≥2,且 n 是整数)表示的等式,并给出验证过程.
成立的条件是__________。
3. 已知 m 是小于 10 的正整数,且
可化为同类二次根式,m 可取的值有_______。
4. 如果 xy= ,x-y=5 -1,那么(x+1)(x-1)的值为________。
5. 已知 x
=12,x=________。 6. 若 a<-2,
的化简结果
是________。
2
yx
yx
例 5、(2009 龙岩)已知数 a,b,若 (a b)2 =b-a,则 ( )
A. a>b B. a<b C. a≥b
D. a≤b
2、二次根式的化简与计算
例 1. 将
根号外的 a 移到根号内,得 ( )
A.
; B. - ; C. - ; D.
1 例 2. 把(a-b) -a-b 化成最简二次根式
与 是同类二次根式,则的α值可以是
A、5 B、6 C、7 D、8
20.(08,大连)若 x a b, y a b ,则 xy 的值为
A. 2 a
B. 2 b
C. a b
D. a b
21.(08,遵义)若 a 2 b 3 0 ,则 a2 b .
22.(08,遵义)如图,在数轴上表示实数 15 的点可能是

二次根式的性质(第2课时 商的算术平方根的性质及最简二次根式)

二次根式的性质(第2课时 商的算术平方根的性质及最简二次根式)
的算术平方根.
我们可以运用它来进行二次根式的解题和化简,化去根号
内的分母.
例1
化简:
(1)
解:(1)
3
25
;(2)
3
3
3
= .
5
25
25
(2)
=
45
.
169
45
45
9×5 3 5
=
= 2= .
169
169
13
13
议一议
如何化去

根号内的分母?

1
可以先利用分式的基本性质将 的分子与分母同乘2
2
,使分母成为完全平方数,再利用商的算术平方根
A. 7
B. C.
D.
3
1
2
2

3.化简:
解:
3
(1)
;
100
75
(2)
;
27
3
3
3
(1)
=
=
.
100
100 10
75
(2)
=
27
补充解法:
52 × 3
52 5
=
= .
2
2
3 ×3
3
3
5 3 5
75
75
=
= .
=
27
3 3 3
27
81
(3)
>0 ;
2
25
还有其他解法
吗?
81
(3)
>0 ;
2
2 二次根式的性质
第2课时 商的算术平方根的性质及最简二次根式
学习目标
1.理解商的算术平方根的性质. (重点)

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。

其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。

1) 二次根式有意义的条件是被开方数为非负数。

据此可以确定字母的取值范围。

2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。

若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。

3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。

4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。

二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。

(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。

(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。

应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。

该性质常与配方法结合求字母的值。

2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。

初中数学中的根号运算如何掌握?

初中数学中的根号运算如何掌握?

初中数学中的根号运算如何掌握?在初中数学的学习中,根号运算是一个重要且具有一定难度的知识点。

对于许多同学来说,掌握根号运算并非易事,但只要掌握了正确的方法和技巧,就能轻松应对。

接下来,让我们一起深入探讨如何掌握初中数学中的根号运算。

首先,我们要理解根号的定义。

根号(√)是用来表示一个数的平方根的符号。

例如,√4 表示 4 的平方根,因为 2 的平方等于 4,所以√4 = 2。

同样,√9 = 3,因为 3 的平方是 9。

那么,如何计算一个数的平方根呢?对于一些完全平方数,我们可以直接得出其平方根。

但对于大多数非完全平方数,我们需要使用一些方法。

最简二次根式是根号运算的基础。

最简二次根式需要满足两个条件:被开方数不含分母;被开方数中不含能开得尽方的因数或因式。

例如,√8 就不是最简二次根式,因为 8 可以分解为 2×2×2,其中 2×2 可以开方出来,所以√8 =2√2,而2√2 就是最简二次根式。

在进行根号运算时,同类二次根式的合并是一个重要的环节。

同类二次根式是指几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

例如,2√3 和3√3 就是同类二次根式,可以合并为5√3。

接下来,我们来看看根号的乘法和除法运算。

根号的乘法法则是:√a × √b =√(a×b) 。

例如,√2 × √3 =√(2×3) =√6 。

根号的除法法则是:√a ÷ √b =√(a÷b) (b≠0)。

例如,√8 ÷ √2 =√(8÷2) =√4 = 2 。

在进行根号的乘除运算时,我们通常先将根式化为最简二次根式,然后再按照法则进行计算。

然后是根号的加减法运算。

根号的加减法运算,只有同类二次根式才能相加减。

例如,2√5 +3√5 =5√5 ,而√2 +√3 由于不是同类二次根式,不能直接相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档