AFE4361数据手册-1[1][1].0

合集下载

PW4361E继电保护测试

PW4361E继电保护测试

PW4361E继电保护测试产品概述随着微机型继电保护装置的大量推广普及和对保护装置试验要求也不断的提高,传统的试验仪和试验方法已远远不能满足新型保护装置的需要。

微机技术的发展带来了全新的试验理念,使试验过程的智能化已成为发展的必然趋势。

PW4361E微机继电保护测试仪是我公司电力专家组和院校联手精心打造,技术性能符合GB/T7261-2000《继电器及装置基本试验方法》及DL/T624-1997《继电保护微机型试验装置技术条件》的要求,既可单机操作也可联接笔记本电脑运行,试验仪具有强大的功能,优秀的界面,独创旋转鼠标式操作取代传统的复杂的小键盘,只用一个旋钮完成全部数据的设置、修改或功能的切换。

二、技术参数电流输出交流相电流输出(有效值) 0-40A/每相三并电流输出(有效值) 0-120A相电流长时间允许工作值(有效值) 10A/每相相电流最大输出容量450V A三并电流120A时最大容量900V A三并电流90A时允许工作时间30s三并电流120A时允许工作时间15s频率范围(基波) 0-1000Hz谐波次数1-9次直流相电流输出0-±10A/每相最大输出负载电压20V电压输出交流相电压输出(有效值) 0-120V线电压输出(有效值) 0-240V相电压/线电压输出功率50V A/100V A 频率范围(基波) 0-1000Hz谐波次数1-9次直流相电压输出幅值0-±160V线电压输出幅值0-±320V相电压/线电压输出功率50V A/100V A开关量输入空接点:1-20mA,24V电位接点输入0—+6V,判为“0”,接点闭合;+11V—+250V判为“1”,接点断开开关量输出空接点DC:220V/0.2A;AC:220V/0.5A时间测量测量范围0.1ms-9999s电源电压允许范围AC220V±10%,50/60Hz环境温度允许范围-10℃- +50℃额定范围内精度电流交流相电流<0.2%交流大电流端子输出<0.2%直流电流<0.2% 电压交流电压<0.2%直流电压<0.2% 其它频率精度(50Hz时) <0.01Hz相位精度<0.5O谐波失真度<0.5%时间测量精度<0.1ms三、装箱清单:PW4361E微机继电保护测试仪主机一台高强度铝合金主机包装箱一只测试导线一包电源线一根光电鼠标一个保险管一套四、外观参考图片:第二部分:质保及售后服务实施方案一、产品的质保◆本产品严格按照国家标准和企业标准制造,出厂前经过严格的检验。

北京柏斯顿智能科技有限公司 BS-4361 机组控制器说明书 V1.00

北京柏斯顿智能科技有限公司 BS-4361 机组控制器说明书 V1.00

BS-4361机组控制器说明书V1.00北京柏斯顿智能科技有限公司2017年2月目录1.产品介绍 (4)1.1产品功能 (4)1.2系统参数 (4)1.2.1开关量输入 (4)1.2.2PT100模拟量输入 (4)1.2.3通用模拟量输入 (4)1.2.4开关量输出 (5)1.2.5模拟量输出 (5)1.2.6电源 (5)1.2.7串口通讯 (5)1.3安装使用环境 (5)2.产品使用方法 (5)2.1通讯通道 (5)2.2拟量输入 (6)2.3开关量输入 (7)2.4开关量输出 (7)2.5模拟量输出 (7)2.6电源 (8)2.7连锁控制 (8)2.8回路调节 (9)2.9应用 (9)2.10系统参数设置 (9)2.10.1第一回路参数设置 (10)2.10.2第二回路参数设置 (11)2.10.3显示设置 (11)2.10.4量程及IO配置 (12)2.10.5调节回路配置 (13)2.10.6连锁回路配置 (14)2.10.7AI参数标定 (15)2.10.8输出及阀门位置标定 (17)2.10.9输入参数说明 (18)2.10.10通讯参数 (19)2.10.11密码设置 (20)2.11操作 (20)3.面板及接线端子 (23)4.MODBUS规约 (24)5.MODBUS数据分配 (25)6.外形及开孔尺寸 (27)BS-4361机组控制器说明书1.产品介绍BS-4361机组数字控制器(DDC)是我公司针对各种小型紧凑型空调应用场合,研发的专用于小规模完整的机组控制器,它尽量将小规模机组的各种控制集中在一台控制器重,并带有汉字操作界面(TFT),本控制器是一个柜(盘)面嵌装仪表,机组的启动/停止、参数的控制操作和信息的指示都集中于仪表的TFT面板上。

本控制器使用于空调行业的新风机组,空调机组及加热器/换热器等须多种信号混合控制的场合。

1.1产品功能●2寸TFT显示器,176X220点阵,16位真彩色,最大11行汉字。

高级导电度分析仪AX430、AX433、AX413和AX436的说明书

高级导电度分析仪AX430、AX433、AX413和AX436的说明书

Single and Dual Input Analyzersfor High-level ConductivityAX430, AX433, AX413 and AX436■ Cost effective– select one or two Conductivity inputs or combine pH/Redox (ORP) with Conductivity in one analyzer –integral PID controller (AX430)■ Advanced measuring capabilities– conductivity range up to 1,999 mS cm –1– selectable concentration ranges:0 to 15% NaOH, 0 to 18% HCl, 0 to 20% H 2SO 4,0 to 40% H 3PO 4, 0 to 20% NaCl and user-defined ■ Dosing Control functionality – long dose diagnostic alarm – initial charge function■ Reduced installation cost– easy access terminations; reduced panel space ■ High functionality at minimum cost– three alarms and two fully-isolated current outputs – direct linear, reverse acting or bi-linear output ■ Expanded monitoring and control– add-on option board provides a total of five alarm relays and four current outputs– service logbook providing historical data ■ Reduced yearly maintenance costs– 12 to 30V DC option negates the need for costly safety tests ■ Wide range of applicability – regeneration of ion exchangers– municipal water phosphoric acid control– food & beverage product/water interface detection – clean-in-place concentration monitoringMore processing power,higher performanceData SheetSS/AX4CO4_5Single and Dual Input Analyzers for High-level Conductivity AX430, AX433, AX413 and AX436SS/AX4CO4_52The AX400 SeriesAX400 analyzers incorporate the latest technology to provide highly reliable, flexible, feature-packed devices that satisfy a diverse range of process monitoring and control applications.The complete range encompasses solutions for pH/Redox (ORP), conductivity and dissolved oxygen.AX43x analyzers enable continuous measurements of one or two conductivity points with simultaneous local display and retransmission. AX43x is used with the TB4 and AC400* Series of insertion, immersion and flow-through, four-electrode conductivity cells providing measurements with exceptional accuracy and performance.AX400 Series analyzers are available for either wall-/pipe- or panel-mounting and are rated to IP66/NEMA 4X.* Check with factory for availability.High Functionality as StandardAll versions are supplied with two, fully-isolated current outputs as standard, that can be assigned to the measured parameter,sample temperature or any appropriate calculated variables.Three programmable relay set points are available which can also be assigned as required.Innovative features such as a power saving display and a diagnostic current output option all contribute to a low cost of ownership.Plug-and-Produce Expanded ControlAn advanced function card provides an additional two current outputs and two further alarm relays that can be assigned to either measured values or sample temperature.ABB Plug-and-Produce software automatically reconfigures the analyzer if an option board is added later. No user programming is necessary.A real-time clock and logbook are also included making the full-facility versions extremely powerful and versatile.Significantly Reduced Maintenance CostsThe AX400 Analyzers are supplied as standard for 85 to 265V AC operation. There are no inner switches to set.They can also be provided for 24V AC, or 12 to 30V DC, supply and recognize automatically which of the two supplies is being used. 24V DC operation reduces maintenance costs significantly by negating the need for costly, yearly safety tests to ensure compliance with safety procedures.Energy Saving DisplayThe backlit display has been designed to operate in all types of environments and shows both the measured parameter(s) and,on a separate 16-character display line, diagnostic and computed information.On dual-input analyzers both measured parameters are displayed simultaneously.For conservation of energy, the backlight can be set to switch off automatically after 60s of inactivity.Backlight Can be Set to Switch-off When InactiveEasy Access Installation TerminalsE asy access to the terminations ensures rapid and cost-effective installation. The wall-/pipe-mount version has been designed to ensure that cable connection is simple and convenient. Ingress protection of the electronics section is retained even when the terminal compartment is opened.AX400 Termination Chamber Makes Access EasyAX400 OutputsSingle and Dual Input Analyzers for High-level Conductivity AX430, AX433, AX413 and AX436SS/AX4CO4_53Advanced Conductivity and Concentration MonitoringIn addition, these analyzers enable operation directly in terms of concentration: 0 to 15% NaOH, 18% HCl, 20% H 2SO 4,40% H 3PO 4, 20% NaCl and user-defined. This is particularly suited for strength-monitoring of ion exchange regenerant acid and alkali.Cost-effective Control of CIP PlantAX43x conductivity analyzers measure up to 1,999mS cm –1enabling operation in the majority of high concentration processes. Automatic and manual temperature compensations enable effective measurements up to 300°C (572°F).Single and Dual Input Analyzers for High-level Conductivity AX430, AX433, AX413 and AX436SS/AX4CO4_54AX436 Combined Conductivity and pHThe AX436 version measures conductivity and pH with the same analyzer. The option board provides the capability to retransmit conductivity, pH and both sample temperatures. This is particularly useful in the paper industry, reducing the investment in separate instruments, for example, when used on white water or the head box.Simultaneous Conductivity and pH MeasurementDual Input MeasurementSingle and Dual Input Analyzers for High-level Conductivity AX430, AX433, AX413 and AX436SS/AX4CO4_55Long-dose Alarm FunctionAn important diagnostic capability incorporated in AX43x analyzers is the long-dose alarm function. This is useful for occasions when faults occur in the dosing system.The analyzers can be configured to provide an alarm if a set point has not been reached within a specified time. This valuable facility provides a warning that could indicate a loss of dosing chemicals, a leakage or a costly pump failure.Long-dose Alarms Warns of Dosing Systems FaultsInitial Charge FunctionIn some applications, fresh dosing chemical reagent is made up every few days. For example, in bottle-washing plants the caustic solution can become dirty and must be replaced regularly. In the case of a new charge, i.e. making up a fresh reagent dilution, a general long-dose alarm could be initiated before the reagent had attained the correct concentration.AX43x analyzers provide a simple solution by having a pre-configurable Initial Charge function. A simple button press from Initial Charge Function When Making Fresh ReagentSingle and Dual Input Analyzers for High-level Conductivity AX430, AX433, AX413 and AX436SS/AX4CO4_56AX430 Integral P, PI and PID ControlThe single input AX430 analyzers incorporate three-term PID Control, offering three modes of sophisticated control: analog,pulse length (time proportional) and pulse frequency. These are supplied as standard and can be operated in direct- or reverse-acting mode, depending upon the application.Auto/Manual and Bumpless TransferAn auto/manual feature is incorporated for rapid manual access to the control functions. The controller facilitates bumpless transfer between manual and auto modes, providing the measured variable is within the proportional band and some integral action time has been programmed.Current Output Proportional ControlIn this case, the control signal is provided by the 4 to 20mA output of AX430 analyzers rather than using the alarm/control contacts. The magnitude of the current output changes in proportion to the deviation from set point. This method is used generally with motorized valves or when controlling the speed of dosing pumps with a 4 to 20mA proportional input.Pulse-frequency Proportional ControlImpulse pumps dosing chemical reagents are controlled easily by the AX430 analyzer’s pulse-frequency proportional control output. In this case, the pulse length of the alarm/control contact is fixed and the frequency of the delivered pulses increases in proportion to the system error, as set by the proportional band.Diaphragm metering pumps must have a remote pulse input capability in order to utilize this function.Pulse-frequency control in the AX430 analyzer operates by pulsing a relay on for 300ms and off for a period of time determined by the pulse frequency. The pulse frequency (PFr) is adjustable between 1 and 120 pulses per minute. The greater the difference between the measured variable and the set point,the greater the pulse frequency.ExampleIf the pulse frequency is set at 120 pulses per minute and the percentage output is 100% then the pulse rate is 2 pulses per second. If the percentage output is reduced to 50%, the pulse rate falls to one pulse per second.Pulse-frequency Proportional ControlPower Failure RecoveryIn the event of a power failure the user can configure the control mode to be Auto, Manual or Last. This optimizes control conditions on power-up to ensure rapid recovery of process control.Time Proportioning ControlOutput = 0%Output = 50%Output = 100%Energized De-energized EnergizedDe-energizedPermanently De-energized Pulse Frequency = 120 pulses per minute0.3s 0.7ms0.3s 0.2s 0.3s 0.2sSingle and Dual Input Analyzers for High-level Conductivity AX430, AX433, AX413 and AX436SS/AX4CO4_57SpecificationConductivityRangeConductivity Programmable 0.000 to 1999mScm –1(uncompensated)Concentration0.000 to 1.999 digits (user configurable)Selectable concentration ranges 0 to 15% NaOH0 to 18% HCl 0 to 20%H 2SO 40 to 40% H 3PO 40 to 20% NaCl User-defined table Temperature–20 to 300°C (–4 to 572°F )Sensor Full Scale Measurement Ranges(a) TB4 Group A and AC400 cells 0 to 1,999mS cm –1(uncompensated)(b) TB4 Group B cells 0 to 1,999μS cm –1(uncompensated)Minimum span (a)TB4 Group A and AC400 cells 100.0μS cm –1(b)TB4 Group B cells 10.00μS cm –1Concentration 5% of the maximum set concentration range Temperature10°C (50°F)Note . Refer to corresponding data sheets for process limit specifications of TB4 and AC400 cells.Resolution, Display Conductivity(a)TB4 Group A cells 0.1 μS cm –1AC400 cells 0.1mS cm –1(b)TB4 Group B cells 0.01μS cm–1Concentration 0.001 digits(configuration dependent)Temperature 0.1°C (0.1°F)Accuracy, Display Conductivity ± 0.5% measurement range per decade Temperature10°C (21°F)Display temperature range –20 to 300°C (4 to 572°F)Temperature sensor Pt1000 or 3k BalcoTemperature coefficientProgrammable 0 to 9.99%/°C and fixed temperaturecompensation curves (programmable) for acids and neutral salt Reference temperature 25°C (77°F)Dosing control functions Long-dose alarm 0 to 10 mins. (user-configurable)Initial charge function0 to 30 mins. (user-configurable)DisplayTypeDual 5-digit, 7-segment backlit LCD Information16-character, single line dot-matrixEnergy-saving functionBacklit LCD configurable as ON or Auto-Off after 60sLogbook*Electronic record of major process events and calibration data Real-time clock*Records time for logbook and auto-manual functions *Available if option board is fitted Retransmission outputs2 (4 optional) fully-isolated standardRelay Outputs – On/OffNumber of relaysThree, supplied as standardFive, when ordered with option boardNumber of set points3 supplied as standard or 5 with option card fittedSet point adjustmentConfigurable as normal or failsafe high/low, bandwidth alarm (composite high/low) or diagnostic alert Hysteresis of readingProgrammable 0 to 5% in 0.1% increments DelayProgrammable 0 to 60s in 1s intervals Relay contactsSingle-pole changeover Rating 5A, 115/230V AC, 5A DC Insulation2kV RMS contacts to earth/groundAnalog OutputsNumber of current outputs (fully isolated)Two supplied as standard or 4 with option board fitted Output ranges0 to 10mA, 0 to 20mA or 4 to 20mAAnalog output programmable to any value between 0 and 22mA to indicate system failureAccuracy±0.25% FSD, ±0.5% of reading (whichever is the greater)Resolution0.1% at 10mA, 0.05% at 20mASingle and Dual Input Analyzers for High-level Conductivity AX430, AX433, AX413 and AX436SS/AX4CO4_58…Specification…Analog OutputsMaximum load resistance 750Ω at 20mAConfigurationCan be assigned to either measured variable or either sample temperatureDigital CommunicationsCommunicationsProfibus DP (with option board fitted)Control Function – AX430 OnlyController TypeP, PI, PID (Configurable)Control OutputsAnalogCurrent output control (0 to 100%)Time proportioning cycle time1.0 to 300.0s, programmable in increments of 0.1s Pulse frequency1 to 120 pulses per minute, programmable in increments of 1 pulse per minute Controller action Direct or reverseProportional band0.1 to 999.9%, programmable in increments of 0.1%Integral action time (Integral reset)1 to 7200s, programmable in increments of 1s (0 = Off)Derivative0.1 to 999.9s in increments of 0.1s,available only for single set point control Auto/ManualUser-programmableAccess to FunctionsDirect keypad accessMeasurement, maintenance, configuration,diagnostics or service functionsPerformed without external equipment or internal jumpersMechanical DataWall-/Pipe-mount versions IP66/NEMA4XDimensions 192mm high x 230mm wide x 94mm deep (7.56 in. high x 9.06 in. wide x 3.7 in. deep)Weight 1kg (2.2 lb)Cable Entry Types Standard 5 or 7 x M20 cable glands N. American7 x knockouts suitable for 1/2 in. Hubble glandPanel-mount versions IP66/NEMA4X (front only)Dimensions 96mm x 96mm x 162mm deep (3.78 in. x 3.78 in. x 6.38 in. deep)Weight 0.6kg (1.32 lb)Power SupplyVoltage requirements 85 to 265V AC 50/60 Hz24V AC or 12 to 30V DC (optional)Power consumption <10VAInsulationMains to earth (line to ground) 2kV RMSEnvironmental DataOperating temperature limits –20 to 65°C (–4 to 149°F)Storage temperature limits –25 to 75°C (–13 to 167°F)Operating humidity limitsUp to 95%RH non condensingEMCEmissions and immunity Meets requirements of:EN61326 (for an industrial environment)EN50081-2EN50082-2Hazardous area approvalsCENELEC ATEX IIG EEx n IIC T4Pending FM non-incendive Class I Div. 2 Groups A to D Pending CSA non-incendive Class I Div. 2 Groups A to DPendingSafetyGeneral safety EN61010-1Overvoltage Class II on inputs and outputs Pollution category 2LanguagesLanguages configurable:English Italian French SpanishGermanSingle and Dual Input Analyzers for High-level ConductivityAX430, AX433, AX413 and AX436SS/AX4CO4_5 Overall Dimensions9Single and Dual Input Analyzers for High-level ConductivityAX430, AX433, AX413 and AX436SS/AX4CO4_5 Electrical Connections10Single and Dual Input Analyzers for High-level Conductivity AX430, AX433, AX413 and AX436SS/AX4CO4_511Ordering Information4X A .g .e ,1V P r o f t i g i d e d o c e h t 614X A ,e l b i s s i m r e p 16.e l b i s s i m r e p t o n **.)2V P (e l b a i r a V s s e c o r P d n o c e S s a d e t c e l e s s i m c /S m 999,1o t 0n e h w g n i s u o h t n u o m -l e n a p n i e l b a l i a v a t o n P D s u b if o r P †.n o i t a z i l a c i p o r t f o y t i l i b a l i a v a r o f y r o t c a f k c e h CSingle and Dual Input Analyzers for High-level Conductivity AX430, AX433, AX413 and AX436SS/AX4CO4_5S S /A X 4C O 4I s s u e 5ABB LimitedOldends Lane, Stonehouse Gloucestershire GL10 3TA UKTel:+44 (0)1453 826661Fax:+44 (0)1453 829671ABB Inc.Analytical Instruments9716 S. Virginia St. Ste., E Reno, Nevada 89521USATel:+1 775 850 4800Fax:+1 775 850 4808ABB has Sales & Customer Supportexpertise in over 100 countries worldwide The Company’s policy is one of continuous product improvement and the right is reserved to modify theinformation contained herein without notice.Printed in UK (08.05)© ABB 2005。

MSK4361中文资料

MSK4361中文资料

Rev. C 6/00
元器件交易网
ABSOLUTE MAXIMUM RATINGS
High Voltage Supply 75V ○

















Current Command Input ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○±13.5V
Logic Inputs ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ -0.2V to REFOUT
- +13.5 VOLTS
-
-
-
1.5
-
-
1.5
mA
4
2.70
3
3.30 2.55
3
3.45 A/V
5,6 2.55
3
3.45
-
-
-
A/V
1
-25
0
25
-50
0
50
mA
2,3
-50
0
50
-
-
-
mA
4
0.300 0.33 0.367 0.280 0.33 0.380 V/A
5,6 0.280 0.33 0.380
2.6
-
-
2.6 VOLTS
-
-
280
-
-
280
-
nSec
-
-
2
-
-
2
-
µSec
NOTES:
1 Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only. 2 Industrial grade devices shall be tested to subgroups 1 and 4 unless otherwise specified. 3 Military grade devices ("H" Suffix) shall be 100% tested to Subgroups 1, 2, 3 and 4. 4 Subgroups 5 and 6 testing available upon request. 5 Subgroup 1, 4 TA = TC = +25°C

青岛东软载波模块检测维修指南(V1.1)

青岛东软载波模块检测维修指南(V1.1)
目录
1 概述 ............................................................................................................................................1
2 检测维修所需工具......................................................................................................................1
4.1 载波芯片及其外围电路 ............................................................................................................... 4 4.2 信号耦合电路 ............................................................................................................................... 5 4.3 信号放大电路 ............................................................................................................................... 6 4.4 接收滤波电路 ............................................................................................................................... 7 4.5 AFE4361 及其外围电路 ................................................................................................................. 8 4.6 模块接口电路 ............................................................................................................................. 10 4.7 指示灯及其他 ............................................................................................................................. 11

是德科技 E4360 太阳能阵列模拟器 (SAS)

是德科技 E4360 太阳能阵列模拟器 (SAS)

不要在易爆环境中操作
不要在存在可燃性气体或烟雾的环境 中使用仪器。
安全符号
直流电 交流电 直流和交流电 三相交流电 接地端子
不要卸下仪器外壳
只能由合格的、经过维修培训且了解 潜在危险的专业人员打开仪器外壳。 在卸下仪器外壳之前,要断开电源电 缆和外部电路的连接。
一般原则
不要违反制造商的规定使用本产品。 如不按照操作手册使用本产品,其保 护功能可能会失效。
废弃电子电气设备 (WEEE) 指 服务支持 令 2002/96/EC
本产品符合 WEEE 指令 (2002/96/EC) 市 场营销要求。贴附于产品上的标签(请见下 方)指示,不得将本电子/电气产品随同 家庭废弃物一起处理。 产品类别:根据 WEEE 指令 Annex 1 中的 设备类型分类,此产品被归类为“监测和控 制仪器”产品。 请勿作为家庭废弃物处理。 要退回不需要的产品,请与当地的 Keysight 办事处联系,或访问 /environment/product 以了解详细信息。
不要调整仪器
不要在本产品上安装替代零部件或进 行未经授权的任何改装。请将产品返 回 Keysight 销售和服务部接受服务和 维修以确保保持其安全特性。
保护接地端子 框架或机箱端子
接通电源前
确认已采取了所有的安全预防措施。 在接通电源前,确保连接所有设备。 请留意在“安全符号”下面介绍的仪器 外部标识。
本手册的重印版包含少量更正和更新, 可能具有相同的印刷日期。修订版则 标有新的印刷日期。
遵从有关标准的声明
本产品和其他 Keysight 产品的“遵从 有关标准的声明”可以从 Web 中下 载。请访问 /go/conformit y ,然后单击“Declarations of Conformity”。然后,您可以按产品编 号进行搜索,找到最新的“遵从有关标 准的声明”。

LTC4361芯片资料

LTC4361芯片资料

1436112fT YPICAL APPLICATIOND ESCRIPTION Protection ControllerA PPLICATIONS nUSB Protection n Handheld Computers n Cell/Smart Phones n MP3/MP4 Players n Digital Camerasn2.5V to 5.5V Operationn Overvoltage Protection Up to 80Vn No Input Capacitor or TVS Required for Most Applicationsn 2% Accurate 5.8V Overvoltage Thresholdn 10% Accurate 50mV Overcurrent Circuit Breaker n <1μs Overvoltage Turn-Off, Gentle Shutdown n Controls N-Channel MOSFETn Adjustable Power-Up dV/dt Limits Inrush Current n Reverse Voltage Protection n Power Good Output n Low Current Shutdownn Latchoff (L TC4361-1) or Auto-Retry (L TC4361-2) After Overcurrentn Available in 8-Lead ThinSOT™ and 8-Lead (2mm × 2mm) DFN PackagesThe L TC ®4361 overvoltage/overcurrent protection control-ler safeguards 2.5V to 5.5V systems from input supply overvoltage. It is designed for portable devices with multiple power supply options including wall adaptors, car battery adaptors and USB ports.The L TC4361 controls an external N-channel MOSFET in series with the input power supply. During overvoltage transients, the L TC4361 turns off the MOSF ET within 1μs, isolating downstream components from the input supply. Inductive cable transients are absorbed by the MOSFET and load capacitance. In most applications, the L TC4361 provides protection from transients up to 80V without requiring transient voltage suppressors or other external components.The L TC4361 has a delayed start-up and adjustable dV/dt ramp-up for inrush current limiting. A PWRGD pin provides power good monitoring for V IN . The L TC4361 features a soft shutdown controlled by the ON pin and drives an optional external P-channel MOSF ET for negative voltage protection. F ollowing an overvoltage condition, the L TC4361 automati-cally restarts with a start-up delay. After an overcurrent fault, the L TC4361-1 remains off while the L TC4361-2 automatically restarts after a 130ms start-up delay.L , L T , L TC, L TM, Linear Technology and the Linear logo are registered trademarks and ThinSOT , Hot Swap, No R SENSE and PowerPath are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.Output Protected from Overvoltage at InputProtection from Overvoltage and OvercurrentOUT V V GATE 10V/DIVV IN , V OUT 5V/DIV 0.5μs/DIV436112 TA01bSi1470DH C OUT = 10μFV OUTV INFEATURES2436112fBias Supply Voltage (IN) ............................–0.3V to 85V Input VoltagesSENSE ...................................................–0.3V to 85V OUT, ON ...................................................–0.3V to 9V Output Voltages PWRGD ....................................................–0.3V to 9V GATE (Note 3) ........................................–0.3V to 15V GATEP ....................................................–0.3V to 85V IN to GATEP ...........................................–0.3V to 10V(Notes 1, 2)ORDER INFORMATIONLead Free FinishTAPE AND REEL (MINI)TAPE AND REEL PART MARKING*PACKAGE DESCRIPTION TEMPERATURE RANGE L TC4361CTS8-1#TRMPBF L TC4361CTS8-1#TRPBF L TDWN 8-Lead Plastic TSOT-230°C to 70°C L TC4361CTS8-2#TRMPBF L TC4361CTS8-2#TRPBF L TFMN 8-Lead Plastic TSOT-230°C to 70°C L TC4361ITS8-1#TRMPBF L TC4361ITS8-1#TRPBF L TDWN 8-Lead Plastic TSOT-23–40°C to 85°C L TC4361ITS8-2#TRMPBF L TC4361ITS8-2#TRPBF L TFMN 8-Lead Plastic TSOT-23–40°C to 85°C L TC4361CDC-1#TRMPBF L TC4361CDC-1#TRPBF LDWP 8-Lead (2mm × 2mm) Plastic DFN 0°C to 70°C L TC4361CDC-2#TRMPBF L TC4361CDC-2#TRPBF LFMP 8-Lead (2mm × 2mm) Plastic DFN 0°C to 70°C L TC4361IDC-1#TRMPBF L TC4361IDC-1#TRPBF LDWP 8-Lead (2mm × 2mm) Plastic DFN –40°C to 85°C L TC4361IDC-2#TRMPBFL TC4361IDC-2#TRPBFLFMP8-Lead (2mm × 2mm) Plastic DFN–40°C to 85°CTRM = 500 pieces. *Temperature grades are identifi ed by a label on the shipping container .Consult L TC Marketing for parts specifi ed with wider operating temperature ranges.Consult L TC Marketing for information on lead based fi nish parts.For more information on lead free part marking, go to: http://www.linear .com/leadfree/For more information on tape and reel specifi cations, go to: http://www.linear .com/tapeandreel/A BSOLUTE MAXIMUM RATINGSP IN CONFIGURATION Operating Temperature RangeLTC4361C ................................................0°C to 70°C LTC4361I .............................................–40°C to 85°C Storage Temperature Range ..................–65°C to 150°C Lead Temperature (Soldering, 10 sec) TSOT .................................................................300°CON 1OUT 2GATEP 3GND 48PWRGD 7 GATE 6 SENSE 5 INTOP VIEWTS8 PACKAGE8-LEAD PLASTIC TSOT-23T JMAX = 125°C, θJA = 195°C/WTOP VIEWGND GATEP OUT ON IN SENSE GATE PWRGDDC PACKAGE8-LEAD (2mm s 2mm) PLASTIC DFN941236578T JMAX = 125°C, θJA = 102°C/WEXPOSED PAD (PIN 9) IS GND, CONNECTION OPTIONAL3436112fE LECTRICAL CHARACTERISTICS Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to GND unless otherwise specifi ed.The l denotes the specifi cations which apply over the full operatingtemperature range, otherwise specifi cations are at T A = 25°C. V IN = 5V , V ON = 0V , unless otherwise noted.SYMBOL PARAMETER CONDITIONSMIN TYP MAX UNITSSupplies V IN Input Voltage Range l 2.580V V IN(UVL)Input Undervoltage Lockout V IN Rising l 1.82.1 2.45V I INInput Supply CurrentV ON = 0V l 220400μA V ON = 2.5Vl1.510μA Thresholds V IN(OV)IN Pin Overvoltage Threshold V IN Rising l 5.684 5.8 5.916V ΔV OV Overvoltage Hysteresis l 25100200mV ΔV OC Overcurrent ThresholdV IN – V SENSEl 455055mV External Gate DriveΔV GATE External N-Channel MOSFET Gate Drive (V GATE – V OUT )2.5V ≤ V IN < 3V , I GATE = –1μA 3V ≤ V IN < 5.5V , I GATE = –1μAl l 3.54.5 4.5667.9V V V GATE(TH)GATE High Threshold for PWRGD Status V IN = 3.3VV IN = 5V l l 5.76.7 6.37.2 6.87.8V V I GATE(UP)GATE Pull-Up Current V GATE = 1V l –5–10–15μA V GATE(UP)GATE Ramp-Up V GATE = 1V to 7Vl 1.53 4.5V/ms I GATE(FST)GATE Pull-Down Current Fast Turn-Off, V IN = 6V , V GATE = 9V l 153060mA I GATE(DN)GATE Pull-Down Current V ON = 2.5V , V GATE = 9V l 104080μA Input Pins I OUT(IN)OUT Input Current V OUT = 5V , V ON = 0V V OUT = 5V , V ON = 2.5Vl l 510020±3μA μA V ON (TH)ON Input Threshold l 0.4 1.5V I ONON Pull-Down Current V ON = 2.5V l2.5510μA Output Pins V GATEP(CLP)IN to GATEP Clamp Voltage l 5 5.87.5V R GATEP GATEP Resistive Pull-Down V GATEP = 3Vl 0.82 3.2MΩV PWRGD (OL)PWRGD Output Low Voltage V IN = 5V , I PWRGD = 3mA l 0.230.4V R PWRGD PWRGD Pull-Up Resistance to OUTV IN = 6.5V , V PWRGD = 1V l250500800kΩDelay t ON GATE On DelayV IN High to I GATE = –5μAl 50130200ms t OFF GATE Off Propagation Delay V IN = Step 5V to 6.5VV IN – V SENSE = Step 0mV to 100mV l l 50.2510120μs μs t PWRGD PWRGD Delay V IN = Step 5V to 6.5VV GATE > V GATE(TH) to PWRGD Low l l 250.25651100μs ms t ON (OFF)ON High to GATE OffV ON = Step 0V to 2.5Vl25μsNote 3: An internal clamp limits V GATE to a minimum of 4.5V above V OUT .Driving this pin to voltages beyond this clamp may damage the device.4436112fT YPICAL PERFORMANCE CHARACTERISTICS PWRGD Voltage vs PWRGD CurrentGATE Off Propagation Delay vs OverdriveNormal Start-Up SequenceGATE Slow Ramp-UpEntering Sleep ModeInput Supply Currentvs Input VoltageGATE Drive vs GATE CurrentGATE Fast Pull-Down Current vs TemperatureV IN (V)10.1I I N (μA )1100100010000100436112 G011010I GATE (μA)00$V G A T E (V )4321678481012436112 G02526TEMPERATURE (°C)–5020I G A T E (F S T ) (m A )25303540–2502550436112 G0375100I PWRGD (mA)00V P W R G D (O L ) (mV )2001003004005001234436112 G045V OVDRV (V)t O F F (μs )165432780.51 1.52436012 G052.5V IN 5V/DIV V GATE 10V/DIV V OUT 5V/DIVI CABLE 0.5A/DIV20ms/DIV436112 G07FIGURE 5 CIRCUITR IN = 150mΩ, L IN = 0.7μH R SENSE = 25mΩLOAD = 10Ω, C OUT = 10μFV IN 5V/DIV V GATE 10V/DIV V OUT 5V/DIVI CABLE 0.5A/DIV1ms/DIV436112 G08FIGURE 5 CIRCUITR IN = 150mΩ, L IN = 0.7μH R SENSE = 25mΩLOAD = 10Ω, C OUT = 10μFV ON 5V/DIV V GATE 10V/DIVV OUT 5V/DIVI CABLE 0.5A/DIV50μs/DIV436112 G09FIGURE 5 CIRCUITR IN = 150mΩ, L IN = 0.7μH R SENSE = 25mΩLOAD = 10Ω, C OUT = 10μFT A = 25°C, V IN = 5V , V ON = 0V , unless otherwise noted.V IN (V)2.54V G A T E /V G G A T E (T H ) (V )658 3.54354.5436112 G065.5101279116GATE Voltage and GATE High Threshold (for PWRGD Status) vs Input VoltageP IN FUNCTIONSExposed Pad (DFN): Ground. Connection to PCB is optional.GATE: Gate Drive for External N-Channel MOSF ET. An internal charge pump provides a 10μA pull-up current to charge the gate of the external N-channel MOSFET. An additional ramp circuit limits the GATE ramp rate when turning on to 3V/ms. For slower ramp rates, connect an external capacitor from GATE to GND. An internal clamp limits GATE to 6V above the OUT pin voltage. An internal GATE high comparator controls the PWRGD pin. GATEP: Gate Drive for External P-Channel MOSFET. GATEP connects to the gate of an optional external P-channel MOSFET to protect against negative voltages at IN. This pin is internally clamped to 5.8V below V IN. An internal 2M resistor connects this pin to ground. Connect to IN if not used.GND: Device Ground.IN: Supply Voltage Input. Connect this pin to the input power supply. This pin has an overvoltage threshold of 5.8V. After an overvoltage event, this pin must fall below V IN(OV) – ΔV OV to release the overvoltage lockout. Dur-ing lockout, GATE is held low and the PWRGD pull-down releases.ON: On Control Input. A logic low at ON enables theL TC4361. A logic high at ON activates a low current pull-down at the GATE pin and causes the L TC4361 to entera low current sleep mode. An internal 5μA current pulls ON down to ground. Connect to ground or leave open ifunused.OUT: Output Voltage Sense Input for GATE Clamp. Connectto the source of the external N-channel MOSFET to sensethe output voltage for GATE to OUT clamp. PWRGD: Power Good Status. Open-drain output with internal 500k resistive pull-up to OUT. Pulls low 65ms after GATE ramps above V GATE(TH).SENSE: Current Sense Input. Connect a sense resistorbetween IN and SENSE. An overcurrent protection circuitturns off the N-channel MOSFET when the voltage acrossthe sense resistor exceeds 50mV for more than 10μs.5436112fB LOCK DIAGRAM6436112fO PERATIONMobile devices like cell phones and MP3/MP4 players have highly integrated subsystems fabricated from deep submi-cron CMOS processes. The small form factor is accompanied by low absolute maximum voltage ratings. The sensitive electronics are susceptible to damage from transient or DC overvoltage conditions from the power supply. Failures or faults in the power adaptor can cause an over-voltage event. So can hot-plugging an AC adaptor into the power input of the mobile device (see L TC Application Note 88). Today’s mobile devices derive their power supply or recharge their internal batteries from multiple alternative inputs like AC wall adaptors, car battery adaptors and USB ports. A user may unknowingly plug in the wrong adaptor, damaging the device with a high or even a negative power supply voltage.The L TC4361 protects low voltage electronics from these overvoltage conditions by controlling a low cost external N-channel MOSFET confi gured as a pass transistor. At power-up (V IN > 2.1V), a start-up delay cycle begins. Any overvoltage condition causes the delay cycle to continue until a safe voltage is present. When the delay cycle completes, an internal high side switch driver slowly ramps up the MOSFET gate, powering up the output at a controlled rate and limiting the inrush current to the output capacitor. If the voltage at the IN pin exceeds 5.8V (V IN(OV)), GATE is pulled low quickly to protect the load. The incoming power supply must remain below 5.7V (V IN(OV) – ΔV OV) for the duration of the start-up delay to restart the GATE ramp-up.A sense resistor placed between IN and SENSE implements an overcurrent protection with a 50mV trip threshold and a 10μs glitch fi lter. After an overcurrent, the L TC4361-1 latches off while the L TC4361-2 restarts following a 130ms delay.The L TC4361 has a CMOS compatible ON input. When driven low, the part is enabled. When driven high, the external N-channel MOSFET is turned off and the supply current of the L TC4361 drops to 1.5μA. The PWRGD pull-down releases during this low current sleep mode, UVLO, overvoltage or overcurrent and the subsequent 130ms start-up delay. After the start-up delay, GATE starts its slow ramp-up and ramps higher than V GATE(TH) to trigger a 65ms delay cycle. When that completes, PWRGD pulls low.The L TC4361 has a GATEP pin that drives an optional external P-channel MOSFET to provide protection against negative voltages at IN.7436112f8436112fThe typical L TC4361 application protects 2.5V to 5.5V systems in portable devices from power supply overvolt-age. The basic application circuit is shown in Figure 1. Device operation and external component selection is discussed in detail in the following sections.APPLICATIONS INFORMATIONFigure 1. Protection from Input Overvoltage and OvercurrentM1R SENSE OUT V IN 5VThe GATE ramp rate is limited to 3V/ms. V OUT follows at a similar rate which results in an inrush current into the load capacitor C OUT of:I INRUSH =C OUT •dV GATEdt=C OUT •3 mA/µF []The servo loop is compensated by the parasitic capaci-tance of the external MOSFET . No further compensation components are normally required. In the case where the parasitic capacitance is less than 100pF, a 100pF compensation capacitor between GATE and ground may be required.An even slower GATE ramp and lower inrush current can be achieved by connecting an external capacitor , C G , from GATE to ground. The voltage at GATE then ramps up with a slope equal to 10μA/C G [V/s]. Choose C G using the formula:C G =10µA I INRUSH •C OUTOvervoltageWhen power is fi rst applied, V IN must remain below 5.7V(V IN(OV) – ΔV OV ) for more than 130ms before GATE is ramped up to turn on the MOSFET . If V IN then rises above 5.8V (V IN(OV)), the overvoltage comparator activates the 30mA fast pull-down on GATE within 1μs. After an over-voltage condition, the MOSFET is held off until V IN once again remains below 5.7V for 130ms.OvercurrentThe overcurrent comparator protects the MOSFET from excessive current. It trips when the SENSE pin falls more than 50mV below IN for more than 10μs. When the overcur-rent comparator trips, GATE is pulled low quickly and the PWRGD pull-down releases. The L TC4361-2 automatically tries to apply power again after a 130ms start-up delay.Start-UpWhen V IN is less than the undervoltage lockout level of 2.1V , the GATE driver is held low and the PWRGD pull-down is high impedance. When V IN rises above 2.1V and ON is held low, a 130ms delay cycle starts. Any undervoltage or overvoltage event at IN (V IN < 2.1V or V IN > 5.7V) restarts the delay cycle. This delay allows the N-channel MOSFET to isolate the output from any input transients that occur at start-up. When the delay cycle completes, GATE starts its slow ramp-up.GATE ControlAn internal charge pump enhances the external N-channel MOSFET with 6V from GATE to OUT . This allows the use of logic-level N-channel MOSFETs. An internal 6V clamp between GATE and OUT protects the MOSFET gate.APPLICATIONS INFORMATIONThe L TC4361-1 has an internal latch that maintains this off state until it is reset. To reset this latch, cycle IN be-low 2.1V (V IN(UVL)) or ON above 1.5V (V ON(TH)) for more than 500μs. After reset, the L TC4361-1 goes through the start-up cycle.In applications not requiring the overcurrent protection, tie the SENSE pin to the IN pin. To implement an overcurrent threshold I TRIP , choose R SENSE using the formula:R SENSE=ΔV OC I TRIPAfter choosing the R SENSE, keep in mind that:I TRIP(MAX)=ΔV OC(MAX) R SENSE(MIN)I TRIP(MIN)=ΔV OC(MIN)R SENSE(MAX)PWRGD OutputPWRGD is an active low output with a MOSFET pull-downto ground and a 500k resistive pull-up to OUT. The PWRGDpin pull-down releases during the low current sleep mode(invoked by ON high), UVLO, overvoltage or overcurrentand the subsequent 130ms start-up delay. After the start-up delay, GATE starts its slow ramp-up and control of thePWRGD pull-down passes on to the GATE high comparator.V GATE > V GATE(TH) for more than 65ms asserts the PWRGDpull-down and V GATE < V GATE(TH) releases the pull-down.The PWRGD pull-down is capable of sinking up to 3mAof current allowing it to drive an optional LED. To inter-face PWRGD to another I/O rail, connect a resistor fromPWRGD to the I/O rail with a resistance low enough tooverride the internal 500k pull-up to OUT. Figure 2 detailsPWRGD behavior for a L TC4361-2 with 1k pull-up to 5Vat PWRGD.I436112 F02Figure 2. PWRGD Behavior9436112fA PPLICATIONS INFORMATIONON InputON is a CMOS compatible, active low enable input. It has a default 5μA pull-down to ground. Connect this pin to ground or leave open to enable normal device operation. If it is driven high while the external MOSFET is turned on, GATE is pulled low with a weak pull-down current (40μA) to turn off the external MOSF ET gradually, minimizing input voltage transients. The L TC4361 then goes into a low cur-rent sleep mode, drawing only 1.5μA at IN. When ON goes back low, the part restarts with a 130ms delay cycle. GATEP ControlGATEP has a 2M resistive pull-down to ground and a 5.8V Zener clamp in series with a 200k resistor to IN. It con-trols the gate of an optional external P-channel MOSFET to provide negative voltage protection. The 2M resistive pull-down turns on the MOSF ET once V IN – V GATEP is more than the MOSFET gate threshold voltage. The IN to GATEP Zener protects the MOSFET from gate overvoltage by clamping its V GS to 5.8V when V IN goes high. MOSFET Confi gurations and SelectionThe L TC4361 can be used with various external MOSFET confi gurations (see Figure 3). The simplest confi guration is a single N-channel MOSFET. It has the lowest R DS(ON) and voltage drop and is thus the most power effi cient solution. When GATE is pulled to ground, the N-channel MOSFET can isolate OUT from a positive voltage at IN up to the BV DSS of the N-channel MOSFET. However, reverse current can still fl ow from OUT to IN via the parasitic body diode of the N-channel MOSFET.F or near zero reverse-leakage current protection when GATE is pulled to ground, back-to-back N-channel MOSF ETs can be used. Adding an additional P-channel MOSF ET controlled by GATEP provides negative input voltage protection down to the BV DSS of the P-channel MOSFET. Another confi guration consists of a P-channel MOSFET controlled by GATEP and a N-channel MOSFET controlled by GATE. This provides protection against overvoltage and negative voltage but not reverse current.Figure 3. MOSFET Confi gurationsGATEPOVERVOL TAGE, REVERSE-CURRENT PROTECTIONNEGATIVEVOL TAGEPROTECTIONGATEOVERVOL TAGE, REVERSE-CURRENT PROTECTIONGATEGATEGATEP436112 F03OVERVOL TAGEPROTECTIONOVERVOL TAGEPROTECTIONNEGATIVEVOL TAGEPROTECTIONGATERRRR10436112f11436112fA PPLICATIONS INFORMATION Figure 4. 20V Hot-Plug into a 10μF CapacitorFigure 5. 20V Hot-Plug into the L TC4361436112 F04aV IN 10V/DIVI CABLE 20A/DIV5μs/DIV436112 F04bR IN = 150mΩ, L IN = 0.7μHLOAD = 10Ω, C OUT = 10μF436112 F05aV IN 10V/DIVV OUT 1V/DIV I CABLE 20A/DIV5μs/DIV436112 F05bR IN = 150mΩ,L IN = 0.7μH, R SENSE = 25mΩLOAD = 10Ω, C OUT = 10μFInput T ransientsFigure 4 shows a typical setup when an AC wall adaptor charges a mobile device. The inductor L IN represents the lumped equivalent inductance of the cable and the EMI fi lter found in some wall adaptors. R IN is the lumped equivalent resistance of the cable, adaptor output capacitor ESR and the connector contact resistance.L IN and R IN form an LC tank circuit with any capacitance at IN. If the wall adaptor is powered up fi rst, plugging the wall adaptor output to IN does the equivalent of applying a voltage step to this LC circuit. The resultant voltage overshoot at IN can rise to twice the DC output voltage of the wall adaptor as shown in Figure 4. Figure 5 shows the 20V adaptor output applied to the L TC4361. Due to the low capacitance at the IN pin, the plug-in transient has been brought down to a manageable level.12436112fAPPLICATIONS INFORMATIONAs the IN pin can withstand up to 80V , a high voltage N-channel MOSF ET can be used to protect the system against rugged abuse from high transient or DC voltages up to the BV DSS of the MOSFET . Figure 6 shows a 50V input plugged into the L TC4361 controlling a 60V rated MOSFET .Input transients also occur when the current through the cable inductance changes abruptly. This can happen when the L TC4361 turns off the N-channel MOSFET rapidly in an overvoltage or overcurrent event. Figure 7 shows an input transient after an overcurrent. The current in L IN will cause V IN to overshoot and avalanche the N-channel MOSFET to C OUT . Typically, IN will be clamped to a voltage of V OUT + 1.3 • (BV DSS of Si1470DH) = 45V . This is well below the 85V absolute maximum voltage rating of the L TC4361.The single, nonrepetitive, pulse of energy (E AS ) absorbed by the MOSFET during this avalanche breakdown with a peak current I AS is approximated by the formula: E AS = 0.5 • L IN • I AS 2F or L IN = 0.7μH and I AS = 4A, then E AS = 5.6μJ. This is within the I AS and E AS capabilities of most MOSFET’s including the Si1470DH. So in most instances, the L TC4361 can ride through such transients without a bypass capacitor , transient voltage suppressor or other external components at IN. Note that if an IN bypass capacitor is used, the V IN transients will overshoot less but last longer . If V IN dips below V IN(UVL) for more than 10μs, the internal latch-off latch in the L TC4361-1 could be inadvertently reset.Figure 6. 50V Hot-Plug into the L TC4361Figure 7. Overcurrent Turn-Off and Resulting Input T ransientV IN 20V/DIVV OUT 1V/DIV I CABLE 5A/DIV5μs/DIV436112 F06FDC5612R IN = 150mΩ, L IN = 0.7μHR SENSE = 25mΩ, LOAD = 10Ω, C OUT= 10μF V IN 20V/DIV V GATE 10V/DIV V OUT 5V/DIVI CABLE 5A/DIV2μs/DIV436112 F07FIGURE 5 CIRCUITR IN = 150mΩ, L IN = 0.7μHR SENSE = 25mΩ, LOAD = 10Ω, C OUT= 10μF13436112fFigure 10. Layout for N-Channel MOSFET Confi gurationFigure 8. Setup for Testing 20V Plugged into 5V SystemFigure 9. Overvoltage Protection Waveforms When 20V Plugged into 5V System20V WALL ADAPTER5V USBV IN 20V/DIV V GATE 10V/DIVV OUT 5V/DIV I CABLE 10A/DIV1μs/DIV436112 F09FIGURE 8 CIRCUITR IN = 150mΩL IN = 2μH, R SENSE = 25mΩ, LOAD = 10ΩC OUT = 10μF (16V , SIZE 1210)436112 F10Figure 8 shows a particularly severe situation which can occur in a mobile device with dual power inputs. A 20V wall adaptor is mistakenly hot-plugged into the 5V device with the USB input already live. As shown in Figure 9, a large current can build up in L IN to charge up C OUT . When the N-channel MOSFET shuts off, the energy stored in L IN is dumped into C OUT , causing a large 40V input transient. The L TC4361 limits this to a 1V rise in the output voltage.If the ΔV OUT due to the discharge of the energy in L IN into C OUT is not acceptable or the avalanche capability of the MOSFET is exceeded, an additional external clamp such as the SMAJ24A can be placed between IN and GND. C OUT is the decoupling capacitor of the protected circuits and its value will largely be determined by their requirements. Using a larger C OUT will work with L IN to slow down the dV/dt at OUT , allowing time for the L TC4361 to shut off theMOSFET before V OUT overshoots to a dangerous voltage. A larger C OUT also helps to lower the ΔV OUT due to the discharge of the energy in L IN if the MOSFET BV DSS is used as an input yout ConsiderationsFigure 10 shows an example PCB layout for the L TC4361 (TS8 package) with a single N-channel MOSFET (SC70 package) and a 0603 size sense resistor . Keep the traces to the N-channel MOSFET wide and short. The PCB traces associated with the power path through the N-channel MOSFET should have low resistance. Use Kelvin connec-tions to R SENSE for an accurate overcurrent threshold.APPLICATIONS INFORMATION14436112fP ACKAGE DESCRIPTION DC Package8-Lead Plastic DFN (2mm × 2mm)(Reference L TC DWG # 05-08-1719 Rev A)1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE2. D RAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDEMOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGEp 0.10BOTTOM VIEW—EXPOSED PADp 0.05 0.05RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDEREDs 45o15436112fInformation furnished by Linear Technology Corporation is believed to be accurate and reliable. However , no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.TS8 Package8-Lead Plastic TSOT-23(Reference L TC DWG # 05-08-1637)P ACKAGE DESCRIPTION(NOTE 3)TS8 TSOT-23 0802NOTE:1. DIMENSIONS ARE IN MILLIMETERS2. DRAWING NOT TO SCALE3. DIMENSIONS ARE INCLUSIVE OF PLATING4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR5. MOLD FLASH SHALL NOT EXCEED 0.254mm6. JEDEC PACKAGE REFERENCE IS MO-1930.520.65RECOMMENDED SOLDER PAD LAYOUTPER IPC CALCULATOR16436112fLinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX: (408) 434-0507 ● www.linear .com© LINEAR TECHNOLOGY CORPORA TION 2010LT 0410 • PRINTED IN USAT YPICAL APPLICATION 5V System Protected from ±24V Power Supplies,Overcurrent and Reverse CurrentRELATED PARTSPART NUMBER DESCRIPTIONCOMMENTSL TC2935Ultralow Power Supervisor with Eight Pin-Selectable Thresholds500nA Quiescent Current, 2mm × 2mm 8-Lead DFN and TSOT-23 Packages L T300820mA, 45V , 3μA I Q Micropower LDO 280mV Dropout Voltage, Low I Q : 3μA, V IN = 2.0V to 45V , V OUT = 0.6V to 39.5V; ThinSOT and 2mm × 2mm DFN-6 PackagesL T300920mA, 3μA I Q Micropower LDO280mV Dropout Voltage, Low I Q : 3μA, V IN = 1.6V to 20V , V OUT = 0.6V to 19.5V; ThinSOT and SC-70 PackagesL TC3576/L TC3576-1Switching USB Power Manager with USB OTG + T riple Step-Down DC/DCs Complete Multifunction PMIC: Bi-Directional Switching Power Manager + 3 Bucks + LDO L TC4090/L TC4090-5High Voltage USB Power Manager with Ideal Diode Controller and High Effi ciency Li-Ion Battery Charger High Effi ciency 1.2A Charger from 6V to 38V (60V Max) Input Charges Single Cell Li-Ion Batteries Directly from a USB PortL TC4098USB-Compatible Switchmode Power Manager with OVPHigh V IN : 38V operating, 60V transient; 66V OVP . 1.5A Max Charge Current from Wall, 600mA Charge Current from USBL TC4210Single Channel, Low Voltage Hot Swap™ Controller Operates from 2.7V to 16.5V , Active Current Limiting, SOT23-6L TC4213No R SENSE ™ Electronic Circuit BreakerControls Load Voltages from 0V to 6V . 3 Selectable Circuit Breaker Thresholds. Dual Level Overcurrent Fault ProtectionL T4356Surge Stopper- Overvoltage/Overcurrent Protection Regulator Wide Operation Range: 4V to 80V . Reverse Input Protection to –60V . Adjustable Output Clamp VoltageL TC4411SOT-23 Ideal Diode2.6A Forward Current, 28mV Regulated Forward VoltageL TC4412 2.5V to 28V , Low Loss PowerPath™ Controller in ThinSOTMore Effi cient than Diode-ORing, Automatic Switching Between DC Sources, Simplifi ed Load Sharing L TC4413-1/L TC4413-2Dual 2.6A, 2.5V to 5.5V Fast Ideal Diodes in 3mm × 3mm DFN130mΩ On Resistance, Low Reverse Leakage Current, 18mV Regulated Forward Voltage (L TC4413-2 with Overvoltage Protection Sensor)5V System Protected from ±24V Power Supplies and OvercurrentV OUT 5V 0.5AV IN 5VOUT V IN 5V。

EVAL-ADF4360-6EB1中文资料

EVAL-ADF4360-6EB1中文资料

EVAL-ADF4360-6EB1中⽂资料aFEATURESSelf-Contained Board for generating RF frequencies Flexibility for Reference Input, Output frequency, PFD Spacing & Loop BandwidthAccompanying Software allows complete control of syn-thesizer functions from PC Battery Operated: 9V suppliesTypical Phase Noise Performance of -141dBc/Hz @ 3MHz offsetTypical Spurious Performance of -70dBc/Hz @ 200kHz offset.Analog Devices, Inc., 1999One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781-329-4700Fax: 781-326-8703 Information furnished by Analog Devices is believed to be accurate and reliable. However,no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.Evaluation Board For ADF4360-6Integrated V CO & F requency S ynthesizerBLOCK DIAGRAMREV.PrC 08/03GENERAL DESCRIPTIONThis ADF4360-6EB1 Evaluation board is designed to allow the user to evaluate the performance of theADF4360-6 Frequency Synthesizers for PLL's (Phase Locked Loops). The block diagram of the board is shown below. It contains the ADF4360-6, a PC connector, plus SMA connectors for the power supplies, Reference Input, and RF outputs. It also contains a loop filter to complete the PLL. The eval board can be setup as necessary for the customer's PLL requirements. A cable is included with the board to connect to a PC printer port to allow software programmability.The package also contains windows software to allow easy programming of the synthesizer.RF OUT BINRF OUT A V VREV.PrC 08/03–2–Figure 1. Evaluation Board Silkscreen Figure 2. PC Cable DiagramHard ware DescriptionThe evaluation board comes with a cable for connecting to the printer port of a PC. The silk screen and cable diagram for the evaluation board are shown below. The board schematic is shown on pages 3 and 4.The board is powered from a single 9V battery.All components necessary for LO generation are catered for on-board. A 10MHz TCXO from Fox provides the necessary Reference Input. Otherwise an External Reference signal can be connected via SMA1.The PLL comprises the ADF4360-6 and a passive loop filter. The VCO outputs are available at RF OUT A through a standard SMA connector, plus the complementary VCO output is available from RF OUT B complementary connector.If the user wishes they may use their own power supplies and reference input, they can use the SMA connectors as shown on the silkscreen and block diagram. Control of the Chip Enable pin can be achieved by inserting J7, and removing R12. The on board filter is a Third Order,Passive Low Pass Filter. This contains three capacitors,(C13, C14 & C15), plus two resistors (R10 & R11). To save Board space, The footprint for R10 is located on the underside of the board. For design of the loop filter, It is designed for a centre frequency of 1.15GHz, and a channel spacing of 200kHz. The charge pump current setting is chosen to be 2.5mA. It's bandwidth is 10kHz.To design a filter for different setups, Please use ADIsimPLL.ADI SimPLLA copy of ADIsimPLL is also included on the eval kit CD. This software package designs, simulates and analyses the entire frequency domain and time domain response. You can use it to design an appropriate filter for the PLL. Various passive and active filter architectures are allowed.RF OUTPUT STAGESThe output RF stages can be customised to suit therequirements of the end-user. A tuned load, consisting of a 51nH shunt Inductor for each output (L5 & L6) isconnected to to Vvco. A series 2.7pF coupling capacitor (C17 & C19) is included plus a series 7.5nH Inductor (L3& L4) before the RF output to the SMA connector. This can be changed to optimise tuning to the desired fundamental frequency.If in doubt, a 50Ohm resistor can replace the shunt Inductor, and a zero-ohm link can short out L3 & L4.ADF4360-x CABLE CONNECTIONSPC Printer PortIf the the version of version of ADIsimPLL that you are using is not configured for the ADF4360-6, then you can design the loop filter by selecting the ADF4106 as a synthesizer and inserting all other relevant parametersfrom the ADF4360-6 datasheet. Be careful to note that the charge pump current is half that of the ADF4106.Figure 3. Evaluation Board Circuit Diagram (Page 1)–3–REV.PrC 08/03Figure 4. Evaluation Board Circuit Diagram (Page 2)REV.PrC 08/03–4––5–REV.PrC 08/03Figure 5. Software Front PanelSoftware DescriptionThe software comes on a CD. If the user double clicks on “setup.exe”, then the install wizard installs the software.Follow the on-screen directions. The software will be installed in a default directory called “C:/Program Files/Analog Devices/ADF4360”. To run the software, simply double-click on “ADF4360.exe”. It should be noted that this is a beta-version of software for the ADF4360.Before the main software screen appears, the Device win-dow appears, which will ask the user to choose which de-vice is being evaluated. Choose the appropriate version of the ADF4360 and click OK. The Main Interface window will now appear. (See Figure 5).Programmable Software SettingsClick on RF VCO Output Frequency, and the Output Frequency window will appear. Enter the desired output frequency (in MHz) and also the desired PFD frequency (in kHz) and click OK.Click on Reference Frequency and Insert the desired frequency in MHz, Again click OK.Click On Prescaler, and the Prescaler window will appear.Grab the pointer, and choose the appropriate setting (Again Click OK).Click on Charge Pump Current Setting 2 or Charge Pump Current Setting 1 and the Current Setting window will appear. Grab the pointer to set the Charge Pump Current Setting to the appropriate setting based on the loop design.It will be necessary to adjust the core power current to 15mA and and the output power current to give optimum operation. These settings are clearly marked in the window shown below.Click on the RF PD Polarity button to set the RF PD Polarity bit positive.The part should now be now set up, and other features can now be examined by the user. To examine the contents written to each register, the Registers button can be selected below. As stated on the part's datasheet, The Correct sequence of Register writes is to the R Counter,The Function Latch and finally the NCounter Latch.Table 1. Bill of Materials for the EVAL-ADF4360-6EB1REV.PrC 08/03–6–。

基于ADF4360_4锁相频率合成器的混频器本振源电路设计

基于ADF4360_4锁相频率合成器的混频器本振源电路设计

0引言锁相(PhaseLock)技术是一种相位负反馈频率控制技术,该技术在锁定时无剩余频差,并具有良好的窄带载波跟踪性能和带宽调制跟踪性能,而且对相位噪声和杂散也具有很好的抑制作用。

因此,通过锁相频率合成技术实现的频率源已在通信、电视等领域得了广泛应用。

本文介绍的ADl 公司的ADF4360系列芯片就是用于无线通信射频系统(GSM,DECT,PCS,WCDMA。

DCS)基站和WLAN混频电路的一款性价比很高,且应用范围较广的锁相芯片。

1ADF4360_4的性能特点ADF4360_4丰要由数字鉴相器、电荷泵、R分频器、A,B计数器及双模前置P/P+1分频器等组成。

数字鉴相器对R计数器与N计数器的输出信号进行相位比较,得到一个误差电压。

14bit可编程参考R分频器对外部晶振分频后得到参考频率。

该器件可以通过可编程6位A计数器、13位B计数器及双模前置分频器(P/P+1)来共同完成主分频比N(N=BP+A)。

因此,设计时只需外加环路滤波器,并选择合适的参考值,即可获得稳定的频率输出,其输出频率为:f0=fvco=N(fi/R)式中,fi为参考频率,它可由高稳定度晶体振荡器提供。

而其鉴相频率fr为:fr=fi/R其中,fi应小于8MHz。

ADF4360_4是美国ADI公司生产的的高性能锁相频率合成芯片,主要用于无线发射机和接收机中为上下变频提供本振信号。

该器件的主要特点如下:(1)该合成器的输出频率范围为1450~1750MHz;并可选择二分频。

选择二分频时,可输出725~875MHz的频率信号;(2)工作电压为3~3.6V;(3)合成器的输出信号的功率可控制范围为-13~-4dbm;(4)可编程双模前置分频器的分频比为8/9、16/17、32/33等;(5)能够进行模拟和数字锁定检测;(6)芯片内部集成又VCO。

ADF4360_4是一款双模前置分频型单环频率合成器,该器件可在不改变频率分辨率的同时,有效地提高频率合成器的输山频率。

AP436中文资料

AP436中文资料

Synchronous Rectifier MOSFET DriverFeatures- V OUT slew-rate minimum 100V/uS @ CL=3000pF - I OUT (sink & source)=1.2 / 0.9 A - Safety considered.- Reduce power system thermal & increase system efficiency.- Pb-free packages: SOT89-5L, SOP-8LApplication- Power Adapter.(50~120W for LCD Monitor & NB…etc.)General DescriptionsThe AP436 is a high-speed controller designed to drive N-channel power MOSFET used as synchronous rectifiers in high current, high frequency fly-back converters. The circuit does not require any ties to the primary side and derives its operating power directly from the secondary. The circuit functions are structured by anticipating transformer output transitions then turns the power MOSFET on or off before the transitions of the transformer to minimize body drain diode conduction and reduce associated losses.Pin Assignment( Top View )GND TABV DC V CCV GND GND V R V OUT SOP-8L GND V CC GNDPin DescriptionsName Description V CC Operating voltage inputV R Reference input voltage V DC Duty cycle input voltageV OUTOutput voltage for driving N channelMOSFETGND GroundOrdering InformationS : SOP-8L Y : SOT89-5LBlank: Tube A : TapingSynchronous Rectifier MOSFET Driver Block DiagramsVDCVROUTVGNDAbsolute Maximum RatingsSymbol Parameter Rating UnitV CC SupplyVoltage 14 V V R Referenceinputvoltage -0.3≦V≦2.5 V V DC Duty cycle input voltage -0.3≦V≦V CC-2.1 VV OUT Output voltage to Ground -0.7 VP D Powerdissipation 1 W T ST Storage temperature range -65 to 150 o CT OP Operating temperature range -40 to +125 o CV OP Operating voltage range 7.2 to 14 VSynchronous Rectifier MOSFET DriverElectrical CharacteristicsUnless otherwise specified, guaranteed for Tj=25OC, V CC =12V.Symbol Parameter Conditions Min. Typ. Max. Units V CC Supply Voltage 7.2 12 14 V I B1 Input Bias Current (Pin V R ) V R =0.7V,V CC =12V -74 -103 -150 uA I B2 Input Bias Current (Pin V DC ) V DC =0.7V,V CC =12V -74 -103 -150 uA V R Reference Pin Voltage Range 0.3 0.7 1.5 V V DCL Minimum Input Signal Voltage -0.3 V V OH Output High Vcc-1.5 V V OL Output LowCL=3000pFR L =2K 0.8 0.9 V V DC Detection Voltage V R V R +6 mV V CM Common Mode Range 0.7 1.5 V I S Supply Current (Average Value) V CC =12V,No Load 5.5 6 mAI SOURCE Sourcing Current (Transient Value) 1250 mAI SINK Sinking Current (Transient Value) V CC =12V,C L =3000pFR L =2K,Cin=47uF,F Vdc =200KHz 900 mA I OP Operation Current (Average Value)14 mA Output Delay Time(Low to High)80 100 nS T PDOutput Delay Time(High to Low) 60100nST ROutput Rise Time (10% ~ 90% Rise Edge)35 100 nS T FOutput Fall Time (10% ~ 90% FallEdge)V CC =12V,C L =3000pFR L =2K,Cin=47uF, F Vdc =60KHz60 100 nS F OP Maximum Operation Frequency 200 KHz P D Power Dissipation SOT89-5L, SOP-8L1WI SD (Icc Shutdown Current)V CC =5V, C L =3000pFR L =2K,Cin=47uF, F Vdc =60KHz0.2 0.43 mASynchronous Rectifier MOSFET DriverTypical Application Circuit(1)(2)Marking Information(1)SOP-8L( Top View )~AP436YY WW (2)SOT89-5LXX : Identification code (See Appendix)Y : Year: 0-9M : Month: A~L(Top View)Appendix Part Number Package Identification CodeAP436 SOT89-5L FMSynchronous Rectifier MOSFET DriverPackage Information(1) Package Type: SOP-8LDimensions In Millimeters Dimensions In InchesSymbolMin. Nom. Max. Min. Nom. Max.A 1.40 1.60 1.75 0.055 0.063 0.069A1 0.10 - 0.25 0.040 - 0.100A2 1.30 1.45 1.50 0.051 0.057 0.059B 0.33 0.41 0.51 0.013 0.016 0.0200.008 0.010C 0.19 0.20 0.25 0.0075D 4.80 5.05 5.30 0.189 0.199 0.209E 3.70 3.90 4.10 0.146 0.154 0.161e - 1.27 - - 0.050 -H 5.79 5.99 6.20 0.228 0.236 0.244L 0.38 0.71 1.27 0.015 0.028 0.050y - - 0.10 - - 0.004θ0O - 8O0O - 8OSynchronous Rectifier MOSFET DriverPackage Information (Continued)(2) Package Type: SOT89-5LDimensions In Millimeters Dimensions In InchesSymbolMin. Nom. Max. Min. Nom. Max.A 4.40 4.50 4.60 0.173 0.177 0.181B 4.05 4.15 4.25 0.159 0.163 0.167C 1.50 1.60 1.70 0.059 0.063 0.067D 1.30 1.40 1.50 0.051 0.055 0.059E 2.40 2.50 2.60 0.094 0.098 0.102F 0.80 - - 0.031 - -G 3.00 Ref. 0.118 Ref.H 1.50 Ref. 0.059 Ref.I 0.40 0.46 0.52 0.016 0.018 0.020J 1.40 1.50 1.60 0.055 0.059 0.063K 0.35 0.39 0.43 0.014 0.015 0.017L 5o Typ. 5o Typ.。

intersil BTS436L2 数据手册

intersil BTS436L2 数据手册

BTS436L2Smart High-Side Power SwitchOne Channel: 38mΩStatus FeedbackProduct Summary PackageOn-state Resistance R ON 38mΩOperating Voltage V bb(on) 4.75 (41V)Nominal load current I L(NOM) 9.8ACurrent limitation I L(SCr) 40AGeneral Description•N channel vertical power MOSFET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology.•Providing embedded protective functionsApplications•µC compatible high-side power switch with diagnostic feedback for 5V, 12V and 24V grounded loads•All types of resistive, inductive and capacitve loads•Most suitable for loads with high inrush currents, so as lamps•Replaces electromechanical relays, fuses and discrete circuitsBasic Functions•Very low standby current•CMOS compatible input•Fast demagnetization of inductive loads•Stable behaviour at undervoltage•Wide operating voltage range•Logic ground independent from load groundProtection Functions•Short circuit protection•Overload protection• Current limitation• Thermal shutdown•Overvoltage protection (including load dump) with external resistor•Reverse battery protection with external resistor•Loss of ground and loss of V bb protection •Electrostatic discharge protection (ESD)Diagnostic Function•Diagnostic feedback with open drain output•Open load detection in ON-state•Feedback of thermal shutdown in ON-stateTO 220-5-11 TO-263-5-2 TO-220-5-12 Standard SMD StraightBlock DiagramFunctional diagramPin Definitions and FunctionsPin Symbol Function 1GNDLogic ground2 INInput , activates the power switch incase of logical high signal 3 V bbPositive power supply voltage The tab is shorted to pin 34 ST Diagnostic feedback , low on failure5 OUT Output to the loadTab V bbPositive power supply voltage The tab is shorted to pin 3Pin configurationMaximum Ratings at T j = 25 °C unless otherwise specifiedParameter Symbol Values Unit Supply voltage (overvoltage protection see page 4) V bb 43V Supply voltage for full short circuit protection T j Start =-40 ...+150°CV bb 24V Load dump protection 1)V LoadDump = V A + V s , V A = 13.5 V R I 2)= 2 Ω, R L = 4.0 Ω, t d = 200 ms, IN= low or high V Load dump 3 60V Load current (Current limit, see page 5) I L self-limited A Operating temperature range Storage temperature range T j T stg-40 ...+150-55 ...+150°CPower dissipation (DC), T C ≤ 25 °C P tot 75W Maximal switchable inductance, single pulse V bb = 12V, T j,start = 150°C, T C = 150°C const. (See diagram on page 8) I L(ISO) = 9.8 A, R L = 0 Ω, E 4)AS =0.33J:Z L 5.0mH Electrostatic discharge capability (ESD) IN: (Human Body Model) ST: out to all other pins shorted: acc. MIL-STD883D, method 3015.7 andESD assn. std. S5.1-1993; R=1.5k Ω; C=100pF V ESD 1.04.08.0kV Input voltage (DC) V IN -10 ... +16V Current through input pin (DC) Current through status pin (DC) see internal circuit diagrams page 7I IN I ST±2.0±5.0mAThermal CharacteristicsParameter and Conditions Symbol Values Unit min typ maxThermal resistance chip - case: junction - ambient (free air): device on pcb 5):R thJCR thJA-- -- -- -- -- 33 1.7575--K/W1)Supply voltages higher than V bb(AZ) require an external current limit for the GND and status pins (a 150Ω resistor for the GND connection is recommended). 2)R I = internal resistance of the load dump test pulse generator 3)V Load dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 4)E AS is the maximum inductive switch-off energy 5)Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2 (one layer, 70µm thick) copper area for V bb connection. PCB is vertical without blown air.Electrical CharacteristicsParameter and Conditions SymbolValuesUnitat T j =-40...+150°C, V bb = 12 V unless otherwise specified min typ maxOperating ParametersOperating voltage T j =-40T j =+25...+150°C: V bb(on) 4.75 ----4143VOvervoltage protection7) T j =-40°C: I bb=40 mA T j =25...+150°C: V bb(AZ) 4143--47--52VStandby current (pin 3) 8)T j=-40...+25°C: V IN=0; see diagram on page 9T j= 150°C: I bb(off) ----5--825µAOff-State output current (included in I bb(off))V IN=0I L(off)-- 1 10µA Operating current 9), V IN=5 V I GND-- 0.8 1.4mA6)not subject to production test, specified by design7) Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins (a 150Ωresistor for the GND connection is recommended. See also V ON(CL) in table of protection functions and circuit diagram page 7.8)Measured with load9)Add I ST, if I ST > 0, add I IN, if V IN>5.5 VParameter and Conditions Symbol Values Unit at T j =-40...+150°C, V bb = 12 V unless otherwise specified min typ max Protection Functions 10) Current limit (pin 3 to 5)I L(lim)(see timing diagrams on page 11) T j =-40°C: T j =25°C: T j =+150°C: 46 39 30 58 51 38 685846A Repetitive short circuit shutdown current limit I L(SCr) T j =T jt (see timing diagrams, page 11) -- 40 --A Thermal shutdown time 11)T j,start = 25°C: (see timing diagrams on page 11)t off(SC) -- 1.9 --ms Output clamp (inductive load switch off) at V OUT = V bb - V ON(CL) I L = 40 mA: V ON(CL) 41 43 47 52V Thermal overload trip temperature T jt 150 -- --°C Thermal hysteresis ∆T jt -- 10 --K Reverse battery (pin 3 to 1) 12) -V bb -- -- 32V Reverse battery voltage drop (V out > V bb )13 ) I L = -2 A T j =150 °C: -V ON(rev) -- 600 --mVDiagnostic CharacteristicsOpen load detection current (on-condition)I L (OL) 100 -- 900mAInput and Status Feedback 14)Input resistance see circuit page 7R I2.53.5 6k ΩInput turn-on threshold voltage V IN(T+) 1.7 -- 3.2V Input turn-off threshold voltage V IN(T-) 1.5 -- --V Input threshold hysteresis∆ V IN(T) -- 0.5 --V Off state input current (pin 2), V IN = 0.4 V I IN(off) 1 -- 50µA On state input current (pin 2), V IN = 5 VI IN(on) 20 50 90µA Delay time for status with open load after switch off(see timing diagrams on page 11)t d(ST OL4) 100 520 900µsStatus output (open drain)Zener limit voltage I ST = +1.6 mA: ST low voltageI ST = +1.6 mA: V ST(high) V ST(low)5.4 --6.1 ----0.4V10)Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. 11)Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2 (one layer, 70µm thick) copper area for V bb connection. PCB is vertical without blown air. 12)Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperatureprotection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 7). 13)not subject to production test, specified by design 14)If a ground resistor R is used, add the voltage drop across this resistor.Truth TableInputOutputStatuslevel level BTS 436L2Normal operation LHLHHHOpen load LH ZHHLOvertem-perature LHLLHLL = "Low" Level X = don't care Z = high impedance, potential depends on external circuit H = "High" Level Status signal after the time delay shown in the diagrams (see fig 5. page 11)R ON R ON 8070605040302010V bb [V]Typ. standby currentI bb(off) = f (T j ); V bb = 9...34 V, IN1,2 = lowI bb(off) [µA] 051015202530354045-50050100150200 T j [°C]BTS436L2Timing diagramsFigure 1a: V bb turn on:proper turn on under all conditionsFigure 2a: Switching a resistive load, turn-on/off time and slew rate definition:Figure 2b: Switching a lamp,INSTOUTLtVIThe initial peak current should be limited by the lamp and not by the current limit of the device.Figure 2c: Switching an inductive load*) if the time constant of load is too large, open-load-status may occurFigure 3a: Short circuitshut down by overtemperature, reset by cooling other channel: normal operationINFigure 4a: Overtemperature: Reset if T j <T jtINSTOUTJtVTFigure 5a: Open load: detection in ON-state, open load occurs in on-stated(ST OL)Figure 5b: Open load: turn on/off to open loadPackage and Ordering CodeAll dimensions in mmStandard (=staggered): P-TO220-5-11Sales codeBTS436L2 Ordering code:Q67060-S6111-A2SMD: P-TO263-5-2 (tape&reel) Sales code BTS436L2 GOrdering code:T&R Q67060-S6111-A3Straight: P-TO220-5-12Sales codeBTS436L2 S Ordering code:Q67060-S6111-A4Infineon Technologies AG , St.-Martin-Strasse 53,D-81669 München© Infineon Technologies AG 2001All Rights Reserved.Attention please!The information herein is given to describe certaincomponents and shall not be considered as a guarantee of characteristics.Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.Infineon Technologies is an approved CECC manufacturer. InformationFor further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our InfineonTechnologies Representatives worldwide (see address list).WarningsDue to technical requirements components may contain dangerous substances. For information on the types inquestion please contact your nearest Infineon Technologies Office.Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.。

AFE4361更换说明

AFE4361更换说明

AFE4361更换说明青岛东软载波科技股份有限公司为了提高本公司的产品性能和质量,在2009年初启动了AFE4361的开发计划,开发AFE4361的主要目的是替代AFE3361,目标有以下几个:1、实现全工业级产品,工作温度范围‐40~+85℃(AFE3361是半工业级产品);2、提高抗静电能力,引脚抗4kV人体放电(AFE3361是2kV);3、增加一级放大器,提高接收灵敏度至‐85dBm(AFE3361的接收灵敏度是‐75dBm);4、去掉47uF/6.3V钽电容,降低成本。

5、不改变AFE3361的外围电路,实现完全替换。

经过一年多的开发测试,最终版的AFE4361在2010年6月份正式发布,同时AFE3361停止生产,所有用到青岛东软载波科技股份有限公司AFE3361的产品均可在不改变电路的情况下,用AFE4361替代AFE3361,同时可以把电路上用的47uF/6.3V钽电容去掉,原来焊接47uF/6.3V钽电容的位置保持悬空即可,经过这样的调整之后,产品的性能有所提高,并且整体成本降低很多。

为了方便客户对AFE4361评估测试,与该文档一起发布的还有我们公司内部对AFE4361做的一个比较详细的测试报告《AFE4361测试报告》,以供客户测试参考。

为了能够及时了解客户的测试情况,在该文档的后面附了一份反馈表,我们希望客户在对AFE4361做完测试后,能够把测试情况反馈给我们,以便我们能够改善自己的产品,提升产品和服务质量。

青岛东软载波科技股份有限公司联系方式:联系人:邢乃波(市场部经理)电话:0532‐83676836E‐mail:xnb@青岛东软载波科技股份有限公司2010年06月28日AFE4361客户反馈表产品型号: AFE4361客户名称:客户联系人:客户联系电话: 日 期:客户反馈青岛东软载波科技股份有限公司地址:青岛市上清路16号甲(266023)总机:0532‐83676800/11/22传真:0532‐83676971网址:。

锁相环ADF4360-9中文手册

锁相环ADF4360-9中文手册

主输出频率范围:65——400;参考时钟频率范围:10——250;辅助分频器分频系数2——31,输出频率1.1——200M;外部电感设置芯片输出中心频率;1.8V逻辑兼容;参数:REFIN输入频率:10——250M;相位检测器频率:8M;逻辑输入:输入高,1.5V;逻辑低0.6V;VCO输出:最大400M;最小65M;引脚:CPGND:电荷泵地。

A VDD:模拟电源。

A VDD应该与DVDD相同。

AGND:模拟地。

R FoutA:VCO输出。

R FoutB:VCO互补输出。

Vvco:VCO电源。

Vvco与A VDD相同。

V TUNE:控制VCO的输出。

来自CP滤波输出。

L1,L2:外部电感到AGND,设置输出频率。

470电阻并联到AGND。

Cc:10nF电容去耦。

RSET:接一个电阻到CPGND,设置电荷泵最大输出电流。

Icpmax=11.75/RSET。

C N:与Vvco间接10uF电容。

DGND:数字地。

REFin:参考输入。

CMOS逻辑输入。

CLK:串行时钟。

高阻CMOS电平。

DATA:串行数据。

高阻CMOS电平。

LE:载入使能。

CMOS电平。

DIVOUT:将VCO的频率被A分频,或被2A分频。

DVDD:数字电源。

与A VDD相同。

LD:锁定检测。

逻辑高变频锁定。

逻辑低失锁。

CP:电荷泵输出。

电路描述:B计数器:反馈环中的N位计数器,在VCO的输出频率为400M或者更小的情况下工作。

VCO的输出频率为:f VCO=B×f REFIN/R。

B取值3——8191。

(B=4,R=1,f REFIN=50 f VCO=200)R计数器:输入支路中的分频计数器。

分频比1——16383。

锁定检测:LD引脚输出一个时钟检测信号。

数字时钟检测高电平有效。

当R计数器中的锁定检测精度(LDP)设置为0时,当相位误差在3个连续的相位检测器周期中小于15ns时数字时钟检测就设置为高;当LDP设置为1,在5个周期中相位误差小于15ns时时钟检测设置为1。

ADF4351_中文pdf数据手册

ADF4351_中文pdf数据手册

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2012 Analog Devices, Inc. All rights reserved.
应用
无 线 基 础 设 施 (W-CDMA 、 TD-SCDMA 、 WiMAX 、 GSM 、 PCS、DCS、DECT) 测试设备 无线局域网(LAN)、有线电视设备 时钟产生
功能框图
SDVDD AVDD DVN
×2 DOUBLER
10-BIT R COUNTER
概述
ADF4351结合外部环路滤波器和外部参考频率使用时,可 实现小数N分频或整数N分频锁相环(PLL)频率合成器。 ADF4351具有一个集成电压控制振荡器 (VCO),其基波输 出频率范围为2200 MHz至4400 MHz。此外,利用1/2/4/8/ 16/32/64分频电路,用户可以产生低至35 MHz的RF输出频 率。对于要求隔离的应用,RF输出级可以实现静音。静音 功能既可以通过引脚控制,也可以通过软件控制。同时提 供辅助RF输出,且不用时可以关断。 所有片内寄存器均通过简单的三线式接口进行控制。该器 件采用3.0 V至3.6 V电源供电,不用时可以关断。
ADI中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI不对翻译中存在的差异或由此产生的错误负责。如需确认任何词语的准确性,请参考ADI提供 的最新英文版数据手册。
09800-001
ADF4351
ADF4351
目录
特性 ..................................................

半导体传感器ADF4360-4BCPZ中文规格书

半导体传感器ADF4360-4BCPZ中文规格书

ADF4116/ADF4117/ADF4118Rev. D | Page 13 of 28PHASE FREQUENCY DETECTOR (PFD) AND CHARGE PUMP The PFD takes inputs from the R counter and N counter and produces an output proportional to the phase and frequency difference between them. Figure 28 is a simplified schematic of the PFD. The PFD includes a fixed delay element that sets the width of the antibacklash pulse. This is typically 3 ns. This pulseensures that there is no dead zone in the PFD transfer function and gives a consistent reference spur level.00392-028 Figure 28. PFD Simplified Schematic and Timing (In Lock) MUXOUT AND LOCK DETECTThe output multiplexer on the ADF411x family allows the user to access various internal points on the chip. The state of MUXOUT is controlled by M3, M2, and M1 in the function latch. Figure 33 shows the full truth table. Figure 29 shows the MUXOUT section in block diagram form.00392-029 Figure 29. MUXOUT Circuit Lock DetectMUXOUT can be programmed for both digital lock detect and analog lock detect.Digital lock detect is active high. It is set high when the phase error on three consecutive phase detector cycles is less than 15 ns. It stays set high until a phase error greater than 25 ns isdetected on any subsequent PD cycle.The N channel, open-drain, analog lock detect should be operated with an external pull-up resistor of 10 kΩ nominal. When lock is detected, it is high with narrow low going pulses. INPUT SHIFT REGISTER The ADF411x family digital section includes a 21-bit input shift register, a 14-bit R counter, and an 18-bit N counter, comprisinga 5-bit A counter and a 13-bit B counter. Data is clocked into the 21-bit shift register on each rising edge of CLK. The data is clocked in MSB first. Data is transferred from the shift register to one of four latches on the rising edge of LE. The destination latch is determined by the state of the two control bits (C2, C1) in the shift register. These are the two LSBs, DB1 and DB0, as shown in the timing diagram in Figure 2. The truth table for these bits is shown in Figure 34. Table 5 summarizes how the latches are programmed.Table 5. Programming Data LatchesControl Bits C2C1 Data Latch 00 R Counter 01 N Counter (A and B) 10 Function Latch 1 1 Initialization LatchADF4116/ADF4117/ADF4118 Rev. D | Page 6 of 28ABSOLUTE MAXIMUM RATINGS T A = 25°C, unless otherwise noted. Table 3.ParameterRating AV DD to GND 1−0.3 V to +7 V AV DD to DV DD−0.3 V to +0.3 V V P to GND 1−0.3 V to +7 V V P to AV DD−0.3 V to +5.5 V Digital I/O Voltage to GND 1 −0.3 V to V DD + 0.3 V Analog I/O Voltage to GND 1−0.3 V to V P + 0.3 V REF IN , RF IN A, RF IN B to GND 1−0.3 V to V DD + 0.3 V RF IN A to RF IN B±320 mV Operating Temperature Range Industrial (B Version)−40°C to +85°C Extended (Y Version)−40°C to +125°C Storage Temperature Range −65°C to +150°C Maximum Junction Temperature 150°C TSSOP θJA Thermal Impedance 112°C/W Reflow SolderingPeak Temperature260°C Time at Peak Temperature 40 sec Transistor CountCMOS6425Bipolar3031 GND = AGND = DGND = 0 V.Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. This device is a high performance RF integrated circuit with an ESD rating of <2 kV , and it is ESD sensitive. Proper precautions should be taken for handling and assembly. ESD CAUTION。

基于ADF4360-1的本振源设计

基于ADF4360-1的本振源设计

基于ADF4360-1的本振源设计时间:2009-12-16来源:现代电子技术作者:邹玲,石小磊湖北工业大学关键字:4360ADF0 引言在无线通信领域,本振信号性能的优劣是影响混频器输出频谱纯度的主要因素。

频率合成技术是指由一个稳定、准确的标准参考频率,经过一系列的处理过程,产生大量离散的具有同一稳定度和准确度的信号频率。

锁相式频率合成器是一种建立在相位负反馈基础上的闭环控制系统,主要由鉴相器、环路滤波器和压控振荡器组成。

通过锁相频率合成实现的频率源在通信、CATV等领域得到了广泛应用,很多现代电子设备和系统的功能实现都直接依赖于频率源的性能。

ADI公司生产的ADF4360-1是电流型电荷泵数字锁相式频率综合器芯片,具有很高的性价比。

1 ADF4360-1的工作原理及主要性能ADF4360-1主要由数字鉴相器、电荷泵、分频器、计数器及双模前置P/(P+1)分频器等组成。

如图1所示。

1.1 工作原理从ADF4360-1外部输入的信号有标准频率源信号和控制信号,14位可编程参考R分频器对外部频率源信号分频后得到参考频率送至鉴相器。

控制信号由时钟信号CLK、数据信号DATA和使能信号LE组成。

在CLK的控制下,串行输入24位数据信号,暂时存放在24位数据寄存器中。

在接收到使能信号LE后,先前输入的24位数据根据地址位到达对应的锁存器。

ADF4360-1的主分频比N由双模预分频器(P/P+1)、可编程5位A计数器及13位B分频器实现,算法为N=B×P+A,输出频率为:fout=(B×P+A)×fref/R,通过设置A,B,R三个控制字寄存器的控制字来实现对锁相环的控制。

该芯片外围只需添加环路滤波器,根据输出频率大小选择合适的参数,即可输出较稳定的频率。

1.2 主要性能ADF4360-1是美国ADI公司生产的一款高性能锁相频率合成芯片,主要可应用于无线射频通信系统基站(GSM,WCDMA)、手机以及通信检测设备中,为上下变频提供本振信号。

EM-4360 技术手册说明书

EM-4360 技术手册说明书

EM-4360技术手册版本 A.1深圳市恒晟电子技术有限公司目 录第一章 硬件配置 (3)1.1 主要特性 (3)1.2 系统结构及接口位置 (4)1.2.1 PC/104连接器 P1A, P1B, P2C,P2D (6)1.2.2 电源连接器 JP (9)1.2.3 多用连接器J2 (9)1.2.4 串口连接器 J3,J5,J7 (10)1.2.5 并口连接器 J7 (11)1.2.6 4个10/100M ETHERNET和4个USB 接口RJ1,RJ2,RJ3,RJ4 (11)1.2.7 IDE连接器J8 (12)1.2.8 GPIO接口J6,J10 (13)1.2.9 在板DOM电子硬盘 (13)1.2.10 在板SPI FLASH软盘 (13)1.3 在板功能 (14)1.3.1 CPU (14)1.3.2 中断控制器 (14)1.3.3 DMA控制器 (14)第二章 软件设置 (15)2.1 系统资源分配表 (15)第一章 硬件配置EM-4360是与IBM-PC/AT标准完全兼容的PC/104 CPU模块。

采用Intel x86兼容嵌入式低功耗处理器,工作频率800MHz,在板包含DMA控制器、中断控制器及定时器,实时时钟(板上自带或外接后备电池),512M字节DDRII内存;在板的外部接口有双向并行口、四个16550兼容的RS232串行口(COM1可选RS422/485,COM2可选RS485接口标准)、4个USB 接口、4个10/100 自适应Ethernet接口、板载DOM、IDE硬盘驱动器及PS/2键盘、鼠标接口。

EM-4360的设计,充分考虑了应用环境的恶劣情况,采取了多种措施,以确保系统在各种应用环境中都能稳定、可靠、高效的运行。

采用工业级器件,利用高智能布线系统,增加防静电及抗干扰电路,尽可能的降低功耗,提高可靠性及宽温操作能力。

1.1 主要特性Intel x86兼容嵌入式低功耗CPU,主频800MHz,内置浮点运算协处理器CPU片内集成16 KBytes L1 Cache和256KBytes L2 Cache高容量在板DDR2内存:512 Mbyte1个IDE接口板载1G-4G DOM电子盘(可选项)4个USB 2.0接口1个并行口,SPP/EPP/ECP可选4个PC/AT兼容的RS232串行口,COM1和COM2可设置为RS232/TTL标准,COM3和COM4,可设置为RS232/TTL/RS485标准PS/2键盘和鼠标接口在板4个Intel 82551ER 10/100M自适应Ethernet接口板载16路可编程GPIO高度紧凑的PC/104结构形式(90 96 15mm)低功耗:5.0W(1GHz,典型值)电源要求:+5V 5%,0.7A工作环境:-20 C ~75 C(扩展温度-40 C ~85 C)5~95%相对湿度贮存温度:-55 C ~ +85 C重量:<0.25Kg1.2 系统结构及接口位置EM-4360系统结构及接口位置如图1-1、1-2所示。

ADF4360-1BCPZ资料

ADF4360-1BCPZ资料

Integrated Synthesizer and VCOADF4360-1 Rev.BInformation furnished by Analog Devices is believed to be accurate and reliable.However, no responsibility is assumed by Analog Devices for its use, nor for anyinfringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: Fax: 781.326.8703© 2004 Analog Devices, Inc. All rights reserved.FEATURESOutput frequency range: 2050 MHz to 2450 MHzDivide-by-2 output3.0 V to 3.6 V power supply1.8 V logic compatibilityInteger-N synthesizerProgrammable dual-modulus prescaler 8/9, 16/17, 32/33 Programmable output power level3-wire serial interfaceAnalog and digital lock detectHardware and software power-down mode APPLICATIONSWireless handsets (DECT, GSM, PCS, DCS, WCDMA)Test equipmentWireless LANsCATV equipment GENERAL DESCRIPTIONThe ADF4360-1 is a fully integrated integer-N synthesizer and voltage-controlled oscillator (VCO). The ADF4360-1 is designed for a center frequency of 2250 MHz. In addition, there is a divide-by-2 option available, whereby the user gets an RF output of between 1025 MHz and 1225 MHz.Control of all the on-chip registers is through a simple 3-wire interface. The device operates with a power supply ranging from 3.0 V to 3.6 V and can be powered down when not in use.FUNCTIONAL BLOCK DIAGRAMCPVCO REFTUNEC CC NOUT AOUT BFigure 1.ADF4360-1Rev. B | Page 2 of 24TABLE OF CONTENTSSpecifications.....................................................................................3 Timing Characteristics.....................................................................5 Absolute Maximum Ratings............................................................6 Transistor Count...........................................................................6 ESD Caution..................................................................................6 Pin Configuration and Function Descriptions.............................7 Typical Performance Characteristics.............................................8 Circuit Description...........................................................................9 Reference Input Section...............................................................9 Prescaler (P/P + 1)........................................................................9 A and B Counters.........................................................................9 R Counter......................................................................................9 PFD and Charge Pump................................................................9 MUXOUT and Lock Detect......................................................10 Input Shift Register.....................................................................10 VCO.............................................................................................10 Output Stage................................................................................11 Latch Structure...........................................................................12 Power-Up.....................................................................................16 Control Latch..............................................................................18 N Counter Latch.........................................................................19 R Counter Latch.........................................................................19 Applications.....................................................................................20 Direct Conversion Modulator..................................................20 Fixed Frequency LO...................................................................21 Interfacing...................................................................................21 PCB Design Guidelines for Chip-Scale Package..........................22 Output Matching........................................................................22 Outline Dimensions.......................................................................23 Ordering Guide.. (23)REVISION HISTORY12/04—Rev. A to Rev. BUpdated Format..................................................................Universal Changes to Specifications................................................................3 Changes to the Timing Characteristics.........................................5 Changes to the Power-Up Section................................................16 Added Table 10...............................................................................16 Added Figure 16..............................................................................16 Changes to Ordering Guide..........................................................23 Updated Outline Dimensions. (23)6/04—Data Sheet Changed from Rev. 0 to Rev. AChanges to Specifications................................................................3 Changes to Table 6..........................................................................12 Changes to Table 7..........................................................................13 Changes to Table 9.. (15)8/03—Revision 0: Initial VersionADF4360-1Rev. B | Page 3 of 24SPECIFICATIONS 1AV DD = DV DD = V VCO = 3.3 V ± 10%; AGND = DGND = 0 V; T A = T MIN to T MAX , unless otherwise noted. Table 1.Parameter B Version Unit Conditions/Comments REF IN CHARACTERISTICS REF IN Input Frequency 10/250 MHz min/max For f < 10 MHz, use a dc-coupled CMOS compatiblesquare wave, slew rate > 21 V/µs.REF IN Input Sensitivity 0.7/AV DD p-p min/max AC-coupled. 0 to AV DD V max CMOS compatible. REF IN Input Capacitance 5.0 pF max REF IN Input Current ±100 µA max PHASE DETECTORPhase Detector Frequency 28 MHz max CHARGE PUMPI CP Sink/Source 3With R SET = 4.7 kΩ. High Value 2.5 mA typ Low Value 0.312 mA typ R SET Range 2.7/10 kΩ I CP 3-State Leakage Current 0.2 nA typ Sink and Source Current Matching 2 % typ 1.25 V ≤ V CP ≤ 2.5 V. I CP vs. V CP 1.5 % typ 1.25 V ≤ V CP ≤ 2.5 V. I CP vs. Temperature 2 % typ V CP = 2.0 V. LOGIC INPUTS V INH , Input High Voltage 1.5 V min V INL , Input Low Voltage 0.6 V max I INH /I INL , Input Current ±1 µA max C IN , Input Capacitance 3.0 pF max LOGIC OUTPUTS V OH , Output High Voltage DV DD – 0.4 V min CMOS output chosen. I OH , Output High Current 500 µA max V OL , Output Low Voltage 0.4 V max I OL = 500 µA. POWER SUPPLIES AV DD 3.0/3.6 V min/V max DV DD AV DD V VCO AV DD AI DD 410 mA typDI DD 4 2.5 mA typ I VCO 4, 524.0 mA typ I CORE = 15 mA.I RFOUT 43.5 – 11.0 mA typ RF output stage is programmable.Low Power Sleep Mode 47 µA typ RF OUTPUT CHARACTERISTICS 5 VCO Output Frequency 2050/2450 MHz min/max I CORE = 15 mA. VCO Sensitivity 57 MHz/V typ Lock Time 6400 µs typ To within 10 Hz of final frequency. Frequency Pushing (Open Loop) 6 MHz/V typ Frequency Pulling (Open Loop) 15 kHz typ Into 2.00 VSWR load. Harmonic Content (Second) −20 dBc typ Harmonic Content (Third) −35 dBc typOutput Power 5, 7−13/−6 dBm typ Programmable in 3 dB steps. See Table 7. Output Power Variation ±3 dB typ For tuned loads, see the Output Matching section. VCO Tuning Range 1.25/2.5 V min/maxADF4360-1Rev. B | Page 4 of 24Parameter B Version Unit Conditions/CommentsNOISE CHARACTERISTICS 1, 5VCO Phase-Noise Performance 8 −110 dBc/Hz typ @ 100 kHz offset from carrier. −130 dBc/Hz typ @ 1 MHz offset from carrier. −141 dBc/Hz typ @ 3 MHz offset from carrier. −148 dBc/Hz typ @ 10 MHz offset from carrier.Synthesizer Phase-Noise Floor 9−172 dBc/Hz typ @ 25 kHz PFD frequency. −163 dBc/Hz typ @ 200 kHz PFD frequency. −147 dBc/Hz typ @ 8 MHz PFD frequency. In-Band Phase Noise 10, 11−81 dBc/Hz typ @ 1 kHz offset from carrier.RMS Integrated Phase Error 120.72 Degrees typ 100 Hz to 100 kHz.Spurious Signals due to PFD Frequency 11, 13−70 dBc typ Level of Unlocked Signal with MTLD Enabled −38 dBm typ1 Operating temperature range is –40°C to +85°C.2Guaranteed by design. Sample tested to ensure compliance. 3I CP is internally modified to maintain constant-loop gain over the frequency range. 4T A = 25°C; AV DD = DV DD = V VCO = 3.3 V; P = 32. 5These characteristics are guaranteed for VCO Core Power = 15 mA. 6Jumping from 2.05 GHz to 2.45 GHz. PFD frequency = 200 kHz; loop bandwidth = 10 kHz. 7Using 50 Ω resistors to V VCO into a 50 Ω load. For tuned loads, see the section. Output Matching 8The noise of the VCO is measured in open-loop conditions. 9The synthesizer phase-noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider value). 10The phase noise is measured with the EVAL-ADF4360-xEB1 Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REF IN for the synthesizer; offset frequency = 1 kHz. 11f REFIN = 10 MHz; f PFD = 200 kHz; N = 12500; Loop B/W = 10 kHz. 12f REFIN = 10 MHz; f PFD = 1 MHz; N = 2400; Loop B/W = 25 kHz. 13The spurious signals are measured with the EVAL-ADF4360-xEB1 Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REF IN for the synthesizer; f REFOUT = 10 MHz @ 0 dBm.ADF4360-1Rev. B | Page 5 of 24TIMING CHARACTERISTICS 1AV DD = DV DD = V VCO = 3.3 V ± 10%; AGND = DGND = 0 V; 1.8 V and 3 V logic levels used; T A = T MIN to T MAX , unless otherwise noted. Table 2.Parameter Limit at T MIN to T MAX (B Version) Unit Test Conditions/Comments t 1 20 ns min LE Setup Timet 2 10 ns min DATA to CLOCK Setup Time t 3 10 ns min DATA to CLOCK Hold Time t 4 25 ns min CLOCK High Duration t 5 25 ns min CLOCK Low Duration t 6 10 ns min CLOCK to LE Setup Time t 720ns minLE Pulse Width1See the section for the recommended power-up procedure for this device.Power-UpCLOCKDATALELEFigure 2. Timing DiagramADF4360-1Rev. B | Page 6 of 24ABSOLUTE MAXIMUM RATINGST A = 25°C, unless otherwise noted. Table 3.Parameter Rating AV DD to GND 1−0.3 V to +3.9 V AV DD to DV DD −0.3 V to +0.3 V V VCO to GND −0.3 V to +3.9 V V VCO to AV DD −0.3 V to +0.3 V Digital I/O Voltage to GND −0.3 V to V DD + 0.3 V Analog I/O Voltage to GND −0.3 V to V DD + 0.3 VREF IN to GND −0.3 V to V DD + 0.3 VOperating Temperature RangeMaximum Junction Temperature 150°CCSP θJA Thermal Impedance(Paddle Soldered) 50°C/W (Paddle Not Soldered) 88°C/W Lead Temperature, SolderingVapor Phase (60 sec) 215°C Infrared (15 sec) 220°C1GND = AGND = DGND = 0 V.Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. This is a stress rat-ing only; functional operation of the device at these or any other conditions above those indicated in the operational sec-tions of this specification is not implied. Exposure to absolutemaximum rating conditions for extended periods may affect device reliability. This device is a high performance RF integrated circuit with an ESD rating of <1 kV and it is ESD sensitive. Proper precautions should be taken for handling and assembly.TRANSISTOR COUNT 12543 (CMOS) and 700 (Bipolar)ESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulateon the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy elec-trostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.ADF4360-1Rev. B | Page 7 of 24PIN CONFIGURATION AND FUNCTION DESCRIPTIONSCPGND AV DD AGND RF OUT A RF OUT B V VCO DATA CLK REF IN DGND C N R SETV T U N E A G N D A G N D A G N D A G N D C C C PC EA G N DD V D DM U X O U TL E04414-003Figure 3. Pin ConfigurationADF4360-1Rev. B | Page 8 of 24TYPICAL PERFORMANCE CHARACTERISTICSFREQUENCY OFFSET (Hz)O U T P U T P O W E R (d B )Figure 4. Open Loop VCO Phase Noise04414-005–145–150–155–140–135–130–125–120–115–110–105–90–95–100–85–80–75–7010010M1M 100k10k 1000FREQUENCY OFFSET (Hz)O U T P U T P O W E R (d B )Figure 5. VCO Phase Noise, 2250 MHz, 200 kHz PFD, 10 kHz Loop Bandwidth04414-006–145–150–155–140–135–130–125–120–115–110–105–90–95–100–85–80–75–7010010M1M 100k10k 1000FREQUENCY OFFSET (Hz)O U T P U T P O W E R (d B )Figure 6. VCO Phase Noise, 1125 MHz,Divide-by-2 Enabled, 200 kHz PFD, 10 kHz Loop BandwidthO U T P U T P O W E R (d B )–2kHz –1kHz 2250MHz 1kHz 2kHzFigure 7. Close-In Phase Noise at 2250 MHz (200 kHz Channel Spacing)O U T P U T P O W E R (d B )–200kHz–100kHz2250MHz100kHz200kHzFigure 8. Reference Spurs at 2250 MHz(200 kHz Channel Spacing, 10 kHz Loop Bandwidth)O U T P U T P O W E R (d B )–90–80–70–60–50–40–30–20–100–1MHz–0.5MHz2250MHz0.5MHz1MHzFigure 9. Reference Spurs at 2250 MHz(1 MHz Channel Spacing, 25 kHz Loop Bandwidth)ADF4360-1Rev. B | Page 9 of 24CIRCUIT DESCRIPTIONREFERENCE INPUT SECTIONThe reference input stage is shown in Figure 10. SW1 and SW2 are normally closed switches. SW3 is normally open. When power-down is initiated, SW3 is closed, and SW1 and SW2 are opened. This ensures that there is no loading of the REF IN pin on power-down.04414-010POWER-DOWNFigure 10. Reference Input StagePRESCALER (P/P + 1)The dual-modulus prescaler (P/P + 1), along with the A and B counters, enables the large division ratio, N , to be realized (N = BP + A). The dual-modulus prescaler, operating at CML levels, takes the clock from the VCO and divides it down to a manage-able frequency for the CMOS A and B counters. The prescaler is programmable. It can be set in software to 8/9, 16/17, or 32/33 and is based on a synchronous 4/5 core. There is a minimum divide ratio possible for fully contiguous output frequencies; this minimum is determined by P , the prescaler value, and is given by (P 2−P).A ANDB COUNTERSThe A and B CMOS counters combine with the dual-modulus prescaler to allow a wide range division ratio in the PLL feed-back counter. The counters are specified to work when the prescaler output is 300 MHz or less. Thus, with a VCOfrequency of 2.5 GHz, a prescaler value of 16/17 is valid, but a value of 8/9 is not valid.Pulse Swallow FunctionThe A and B counters, in conjunction with the dual-modulus prescaler, make it possible to generate output frequencies that are spaced only by the reference frequency divided by R. The VCO frequency equation is()R f A B P f REFIN VCO /×]+×[=where:f VCO is the output frequency of the VCO.P is the preset modulus of the dual-modulus prescaler (8/9, 16/17, and so on).B is the preset divide ratio of the binary 13-bit counter (3 to 8191). A is the preset divide ratio of the binary 5-bit swallow counter (0 to 31). f REFIN is the external reference frequency oscillator.Figure 11. A and B CountersR COUNTERThe 14-bit R counter allows the input reference frequency to be divided down to produce the reference clock to the phase frequency detector (PFD). Division ratios from 1 to 16,383 are allowed.PFD AND CHARGE PUMPThe PFD takes inputs from the R counter and N counter(N = BP + A) and produces an output proportional to the phase and frequency difference between them. Figure 12 is a simpli-fied schematic. The PFD includes a programmable delay ele-ment that controls the width of the antibacklash pulse. This pulse ensures that there is no dead zone in the PFD transfer function and minimizes phase noise and reference spurs. Two bits in the R counter latch, ABP2 and ABP1, control the width of the pulse (see Table 9).04414-012Figure 12. PFD Simplified Schematic and Timing (In Lock)ADF4360-1Rev. B | Page 10 of 24MUXOUT AND LOCK DETECTThe output multiplexer on the ADF4360 family allows the user to access various internal points on the chip. The state of MUXOUT is controlled by M3, M2, and M1 in the function latch. The full truth table is shown in Table 7. Figure 13 shows the MUXOUT section in block diagram form.Lock DetectMUXOUT can be programmed for two types of lock detect: digital and analog. Digital lock detect is active high. When LDP in the R counter latch is set to 0, digital lock detect is set high when the phase error on three consecutive phase detector cycles is less than 15 ns.With LDP set to 1, five consecutive cycles of less than 15 ns phase error are required to set the lock detect. It stays set high until a phase error greater than 25 ns is detected on any subse-quent PD cycle.The N-channel open-drain analog lock detect should be oper-ated with an external pull-up resistor of 10 kΩ nominal. When lock has been detected, the output will be high with narrow low-going pulses.DGNDMUXOUTDV ANALOG LOCK DETECT SDOUT04414-013Figure 13. MUXOUT CircuitINPUT SHIFT REGISTERThe ADF4360 family’s digital section includes a 24-bit input shift register, a 14-bit R counter, and an 18-bit N counter, com-prising of a 5-bit A counter and a 13-bit B counter. Data isclocked into the 24-bit shift register on each rising edge of CLK. The data is clocked in MSB first. Data is transferred from the shift register to one of four latches on the rising edge of LE. The destination latch is determined by the state of the two control bits (C2, C1) in the shift register. The two LSBs are DB1 and DB0, as shown in Figure 2.The truth table for these bits is shown in Table 5. Table 6 shows a summary of how the latches are programmed. Note that the test mode latch is used for factory testing and should not be programmed by the user.Table 5. C2 and C1 Truth TableControl BitsC2 C1 Data Latch 0 0 Control Latch 0 1 R Counter1 0 N Counter (A and B) 11Test Mode LatchVCOThe VCO core in the ADF4360 family uses eight overlapping bands, as shown in Figure 14, to allow a wide frequency range to be covered without a large VCO sensitivity (K V ) and resultant poor phase noise and spurious performance.The correct band is chosen automatically by the band select logic at power-up or whenever the N counter latch is updated. It is important that the correct write sequence be followed at power-up. This sequence is 1. R counter latch 2. Control latch 3. N counter latchDuring band select, which takes five PFD cycles, the VCO V TUNE is disconnected from the output of the loop filter and connected to an internal reference voltage.04414-0140.40.20.60.81.01.21.41.61.82.42.22.02.62.83.01850190019502000205021002150220022502300235024002450250025502600FREQUENCY (MHz)V O L T A G E (V )Figure 14. Frequency vs. V TUNE , ADF4360-1The R counter output is used as the clock for the band select logic and should not exceed 1 MHz. A programmable divider is provided at the R counter input to allow division by 1, 2, 4, or 8 and is controlled by Bits BSC1 and BSC2 in the R counter latch. Where the required PFD frequency exceeds 1 MHz, the divide ratio should be set to allow enough time for correct band selection.After band select, normal PLL action resumes. The nominal value of K V is 57 MHz/V or 28 MHZ/V if divide-by-2 operation has been selected (by programming DIV2 [DB22], high in the N counter latch). The ADF4360 family contains linearization circuitry to minimize any variation of the product of I CP and K V.The operating current in the VCO core is programmable in four steps: 5 mA, 10 mA, 15 mA, and 20 mA. This is controlled by Bits PC1 and PC2 in the control latch.OUTPUT STAGEThe RF OUT A and RF OUT B pins of the ADF4360 family are con-nected to the collectors of an NPN differential pair driven by buffered outputs of the VCO, as shown in Figure 15. To allow the user to optimize the power dissipation versus the output power requirements, the tail current of the differential pair is programmable via Bits PL1 and PL2 in the control latch. Four current levels may be set: 3.5 mA, 5 mA, 7.5 mA, and 11 mA. These levels give output power levels of −13 dBm, −10.5 dBm, −8 dBm, and −6 dBm, respectively, using a 50 Ω resistor to V DD and ac coupling into a 50 Ω load. Alternatively, both outputs can be combined in a 1 + 1:1 transformer or a 180° microstrip coupler (see the Output Matching section). If the outputs are used individually, the optimum output stage consists of a shunt inductor to V DD.Another feature of the ADF4360 family is that the supply current to the RF output stage is shut down until the part achieves lock as measured by the digital lock detect circuitry. This is enabled by the mute-till-lock detect (MTLD) bit in the control latch.RF A RF BFigure 15. Output Stage ADF4360-1LATCH STRUCTURETable 6 shows the three on-chip latches for the ADF4360 family. The two LSBs determine which latch is programmed. Table 6. Latch StructureCONTROL LATCHN COUNTER LATCHR COUNTER LATCHTable 7. Control LatchTable 9. R Counter LatchPOWER-UPPower-Up SequenceThe correct programming sequence for the ADF4360-1 after power-up is: 1. R counter latch 2. Control latch 3. N counter latchInitial Power-UpInitial power-up refers to programming the part after theapplication of voltage to the AV DD , DV DD , V VCO , and CE pins. On initial power-up, an interval is required between programming the control latch and programming the N counter latch. This interval is necessary to allow the transient behavior of the ADF4360-1 during initial power-up to have settled.During initial power-up, a write to the control latch powers up the part and the bias currents of the VCO begin to settle. If these currents have not settled to within 10% of their steady-state value, and if the N counter latch is then programmed, the VCO may not oscillate at the desired frequency, which does not allow the band select logic to choose the correct frequency band and the ADF4360-1 may not achieve lock. If the recommended interval is inserted, and the N counter latch is programmed, the band select logic can choose the correct frequency band, and the part locks to the correct frequency.The duration of this interval is affected by the value of the capacitor on the C N pin (Pin 14). This capacitor is used to reduce the close-in noise of the ADF4360-1 VCO. The recom-mended value of this capacitor is 10 µF. Using this value requires an interval of ≥ 5 ms between the latching in of the control latch bits and latching in of the N counter latch bits. If a shorter delay is required, this capacitor can be reduced. A slight phase noise penalty is incurred by this change, which is explained in the Table 10.Table 10. C N Capacitance vs. Interval and Phase NoiseC N Value Recommended Interval between Control Latch and N Counter Latch Open-Loop Phase Noise @ 10 kHz Offset 10 µF ≥ 5 ms −85 dBc 440 nF≥ 600 µs−84 dBcCLOCKPOWER-UPDATALECONTROL LATCH WRITE TO N COUNTER LATCH WRITE04414-02Figure 16. ADF4360-1 Power-Up TimingHardware Power-Up/Power-DownIf the ADF4360-1 is powered down via the hardware (using the CE pin) and powered up again without any change to the N counter register during power-down, it locks at the correct fre-quency because the part is already in the correct frequency band. The lock time depends on the value of capacitance on the C N pin, which is <5 ms for 10 µF capacitance. The smaller ca-pacitance of 440 nF on this pin enables lock times of <600 µs. The N counter value cannot be changed while the part is in power-down because it may not lock to the correct frequency on power-up. If it is updated, the correct programming se-quence for the part after power-up is to the R counter latch, followed by the control latch, and finally the N counter latch, with the required interval between the control latch and N counter latch, as described in the Initial Power-Up section. Software Power-Up/Power-DownIf the ADF4360-1 is powered down via the software (using the control latch) and powered up again without any change to the N counter latch during power-down, it locks at the correct fre-quency because it is already in the correct frequency band. The lock time depends on the value of capacitance on the C N pin, which is <5 ms for 10 µF capacitance. The smaller capacitance of 440 nF on this pin enables lock times of <600 µs.The N counter value cannot be changed while the part is in power-down because it may not lock to the correct frequency on power-up. If it is updated, the correct programming se-quence for the part after power-up is to the R counter latch, followed by the control latch, and finally the N counter latch, with the required interval between the control latch and N counter latch, as described in the Initial Power-Up section.CONTROL LATCHWith (C2, C1) = (0, 0), the control latch is programmed. Table 7 shows the input data format for programming the control latch. Prescaler ValueIn the ADF4360 family, P2 and P1 in the control latch set the prescaler values.Power-DownDB21 (PD2) and DB20 (PD1) provide programmable power-down modes.In the programmed asynchronous power-down, the device powers down immediately after latching a 1 into Bit PD1, with the condition that PD2 has been loaded with a 0. In the pro-grammed synchronous power-down, the device power-down is gated by the charge pump to prevent unwanted frequency jumps. Once the power-down is enabled by writing a 1 intoBit PD1 (on the condition that a 1 has also been loaded to PD2), the device will go into power-down on the second rising edge of the R counter output, after LE goes high. When the CE pin is low, the device is immediately disabled regardless of the state of PD1 or PD2.When a power-down is activated (either in synchronous or asynchronous mode), the following events occur:•All active dc current paths are removed.•The R, N, and timeout counters are forced to their load state conditions.•The charge pump is forced into three-state mode.•The digital lock detect circuitry is reset.•The RF outputs are debiased to a high impedance state. •The reference input buffer circuitry is disabled.•The input register remains active and capable of loading and latching data. Charge Pump CurrentsCPI3, CPI2, and CPI1 in the ADF4360 family determine Current Setting 1.CPI6, CPI5, and CPI4 determine Current Setting 2. See the truth table in Table 7.Output Power LevelBits PL1 and PL2 set the output power level of the VCO. See the truth table in Table 7.Mute-Till-Lock DetectDB11 of the control latch in the ADF4360 family is the mute-till-lock detect bit. This function, when enabled, ensures that the RF outputs are not switched on until the PLL is locked.CP GainDB10 of the control latch in the ADF4360 family is the charge pump gain bit. When it is programmed to a 1, Current Setting 2 is used. When it is programmed to a 0, Current Setting 1 is used. Charge Pump Three-StateThis bit puts the charge pump into three-state mode when programmed to a 1. It should be set to 0 for normal operation. Phase Detector PolarityThe PDP bit in the ADF4360 family sets the phase detector polarity. The positive setting enabled by programming a 1 is used when using the on-chip VCO with a passive loop filter or with an active noninverting filter. It can also be set to 0. This is required if an active inverting loop filter is used.MUXOUT ControlThe on-chip multiplexer is controlled by M3, M2, and M1.See the truth table in Table 7.Counter ResetDB4 is the counter reset bit for the ADF4360 family. When this is 1, the R counter and the A, B counters are reset. For normal operation, this bit should be 0.Core Power LevelPC1 and PC2 set the power level in the VCO core. The recom-mended setting is 15 mA. See the truth table in Table 7.。

直流滤波器不平衡电子式电流互感器技术说明书

直流滤波器不平衡电子式电流互感器技术说明书

PCS-9250-EAC直流滤波器不平衡电子式电流互感器技术说明书目录1.概述 (2)2.型号及名称 (3)3.正常使用条件 (3)3.1.环境温度 (3)3.2.环境相对湿度 (3)3.3.海拔高度 (3)3.4.风速 (3)3.5.抗震要求 (3)3.6.污秽等级 (3)4.主要技术参数 (4)4.1.额定电压 (4)4.2.绝缘水平 (4)4.3.频率 (4)4.4.额定一次电流 (4)4.5.额定二次输出 (4)4.6.误差限值 (4)4.7.额定输出 (4)4.8.温升限值 (5)4.9.机械强度要求 (5)4.10.重量 (5)4.11.EMC要求 (5)5.结构 (6)6.型式试验 (2)6.1.试验项目 (2)6.2.短时电流试验 (2)6.3.温升试验 (2)6.4.雷电冲击电压试验 (2)6.5.工频耐压及局部放电试验 (3)6.6.操作冲击试验 (3)6.7.直流电压耐受试验 (3)6.8.极性反转直流电压耐受试验 (3)6.9.直流电压局部放电试验 (4)6.10.无线电干扰(RIV)试验 (4)6.11.低压器件的耐压试验 (4)6.12.电磁兼容试验 (4)6.13.温度特性试验 (5)6.14.电流测量准确度试验 (5)7.出厂试验 (5)7.1.外观检查 (5)7.2.光纤传输损耗试验 (5)7.3.直流电压耐受试验和局部放电试验 (5)7.4.准确度试验 (6)8.标志、包装、储运和随机文件 (6)8.1.标志 (6)8.2.包装 (6)8.3.运输 (7)8.4.贮存 (7)9.产品随行文件 (7)PCS-9250-EAC 直流滤波器不平衡电子式电流互感器 技术说明书 NARI-RELAYS- 2 -直流滤波器不平衡电子式电流互感器技术说明书1. 概述PCS-9250-EAC 型直流滤波器不平衡电子式电流互感器主要应用于500kV 直流换流站,测量滤波器不平衡支路电流,输出信号供换流站的控制及保护设备使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

符号
条件
VCC
ICC
Frange Vaud SLIN GFTL
V(Pin 12)=High V(Pin 12)=Low
On Pin 9 On Pin 16 On Pin 11
最小值 典型值 最大值 单位
4.5
5.0
5.5
V

5.0

mA

7.0

0.1
0.27
10 MHz

200
— mV

‐85
‐82 dBm
REF 1.0
青岛东软载波科技股份有限公司 Qingdao Eastsoft Communication Technology Co.,LTD
6 绝对最大额定值
参数 电源电压范围 焊接温度范围 工作温度范围 存储温度范围
符号 VCC TS TA TSTG
最小值 ‐0.3 — ‐40 ‐55
AFE4361 数据手册
8 封装信息
16 PINS, SOP, 15 A1 A2 b C D E H e L θ
最小值 1.34 0.1 1.24 0.31 0.17 9.80 3.80 5.80
0.40 0o
注释: 1.尺寸单位为毫米(mm); 2.尺寸 D 和 E 不包括塑模毛边或突起;
版本信息
版本号 1.0
发布日期 2010.6
页数 7
章节或图表
更改说明
首次发布。
青岛东软载波科技股份有限公司
地址:青岛市上清路 16 号甲(266023) 总机:0532‐83676800/11/22 传真:0532‐83676971 网址:
‐7‐ 地址:青岛市上清路 16 号甲 邮编:266023 总机:0532‐83676800/11/22 传真:0532‐83676971
3 订购信息
有效的器件编号 AFE4361
封装类型 16 Pins, SOP, 150 mil
4 引脚排列
AFE4361 数据手册
表面代码 AFE4361
5 引脚描述
引脚序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
引脚符号 OSC0 0SC1
MIXOUT VCC
‐2‐ 地址:青岛市上清路 16 号甲 邮编:266023 总机:0532‐83676800/11/22 传真:0532‐83676971
REF 1.0
青岛东软载波科技股份有限公司 Qingdao Eastsoft Communication Technology Co.,LTD
40
50

dB
‐5‐ 地址:青岛市上清路 16 号甲 邮编:266023 总机:0532‐83676800/11/22 传真:0532‐83676971
REF 1.0
青岛东软载波科技股份有限公司 Qingdao Eastsoft Communication Technology Co.,LTD
REF 1.0
青岛东软载波科技股份有限公司 Qingdao Eastsoft Communication Technology Co.,LTD
AFE4361 数据手册
重要通知
青岛东软载波科技股份有限公司保留对本文档进行更正、修改、改进、完善、废止的权利,在做出修 改时,恕不另行通知。确保应用符合技术规范,是您自身应负的责任。青岛东软载波科技股份有限公司不 承担任何 AFE4361 在本公司产品之外应用的责任。未经青岛东软载波科技股份有限公司书面批准,不得将 青岛东软载波科技股份有限公司的产品用作生命维持系统中的关键组件。
I 正交调频解调器输入
O 正交调频解调器输出
I 音频带通滤波器的输入
O 音频带通滤波器的输出
I 静噪电路输入
O 扫描控制输出;当静噪电路输入低电平时,输出高电平。
O 静噪输出;当静噪电路输入低电平时,该引脚接地。
G地
I 低噪声放大器输入
‐4‐ 地址:青岛市上清路 16 号甲 邮编:266023 总机:0532‐83676800/11/22 传真:0532‐83676971
‐1‐ 地址:青岛市上清路 16 号甲 邮编:266023 总机:0532‐83676800/11/22 传真:0532‐83676971
REF 1.0
青岛东软载波科技股份有限公司 Qingdao Eastsoft Communication Technology Co.,LTD
REF 1.0
1 应用电路
AFE4361 数据手册
2 材料清单
‐3‐ 地址:青岛市上清路 16 号甲 邮编:266023 总机:0532‐83676800/11/22 传真:0532‐83676971
REF 1.0
青岛东软载波科技股份有限公司 Qingdao Eastsoft Communication Technology Co.,LTD
青岛东软载波科技股份有限公司 Qingdao Eastsoft Communication Technology Co.,LTD
AFE4361 数据手册
概述与特点
应用领域
AFE4361 是一款低功耗窄带 FM 中频集成电路,用于 FM 双变频通信设备中,内部除了集成有本地振荡器、 混频器、限幅放大器、正交鉴频器、音频放大器、 静噪电路、扫描控制电路以及静噪开关外,还在信 号输入端增加了一级低噪声放大器,因此,其接收 灵敏度比 AFE3361 更高,为了能更好得适应低压电 力线载波通信,AFE4361 的工作温度范围扩展为工 业级的‐40℃~+85℃,另外在抗静电方面也得到了 加强,引脚能够抵抗 4kV 人体静电放电。AFE4361 采用 16‐pin SOP 封装。
LMTIN DCP0 DCP1 QUAD AUDOUT FLTIN FLTOUT SQUIN SCANCTL MUTE VSS LNAIN
I/O
描述
I 振荡器输入
O 振荡器输出
O 混频器输出(1.8KΩ 输出阻抗)
P 电源
I 限幅放大器输入(1.8KΩ 输入阻抗)
O IF 放大器去耦电容连接
O IF 放大器去耦电容连接
最大值 +6
+255 +85 +125
单位
V ℃ ℃ ℃
7 电气特性
标称条件: VCC= 5.0 V, VSS= 0 V, TA = +27 ℃, fLF= 270 KHz, FM Deviation=10 KHz, FSK Rate=1 KHz
参数 一般特性 电源电压
电流消耗
频率范围 音频输出电压 输入灵敏度 滤波放大器增益
典型值 — — — — — — —
1.27BSC — —
最大值 1.75 0.25 1.65 0.51 0.25 10.00 4.00 6.20
1.27 8o
‐6‐ 地址:青岛市上清路 16 号甲 邮编:266023 总机:0532‐83676800/11/22 传真:0532‐83676971
AFE4361 数据手册
目录
1 应用电路 ............................................................................................................................................................. ‐ 3 ‐ 2 材料清单 ............................................................................................................................................................. ‐ 3 ‐ 3 订购信息 ............................................................................................................................................................. ‐ 4 ‐ 4 引脚排列 ............................................................................................................................................................. ‐ 4 ‐ 5 引脚描述 ............................................................................................................................................................. ‐ 4 ‐ 6 绝对最大额定值 ................................................................................................................................................. ‐ 5 ‐ 7 电气特性 ............................................................................................................................................................. ‐ 5 ‐ 8 封装信息 ............................................................................................................................................................. ‐ 6 ‐ 重要通知 ................................................................................................................................................................. ‐ 7 ‐ 版本信息 ................................................................................................................................................................. ‐ 7 ‐
相关文档
最新文档