第5章 回归模型的函数形式
05_回归方程的函数形式
b1 ln Y0 , b 2 ln(1 r ) , 并 加 上 随 机 误 差 项 ,
则复利公式变成了对数到线性的半对数模型:
ln(Yt ) b1 b 2 t u t
所以复利增长率 1。 Example 9.4 The growth of the U.S. Population,1970 to 1999 pp258-259
Y / Y Y / Y X b2 ( 是 一 个 b2 ( 是 个 常 数 ) X / X Y X / X
变量)
注:当用 X 和 Y 的样本均值 代 入 时( b2
X ) ,即 为 样 本 期 Y
的平均产弹性。
Y 对 X 的 斜率 判定系 数 R2
b2 ( 常 数 )
X 对 Y 变动的解释比例
两边取以 e 为底的对数得:
ln Yt ln a1 a 2 ln X t u t
设
Yt* ln Yt , X* t ln X t , b1 ln a 1 , b 2 a 2 则 模 型 变 为 : Yt* b1 b 2 X* t u t( 变 换 后 的 模 型 为 线 性 模 型 ,该 模
厦门大学经济学院 胡朝霞
1
当 当 的。
b2 1 时 , 则 称 该 商 品 的 价 格 是 有 弹 性 的 ;
b2 1 时 , 则 称 该 商 品 的 价 格 是 无 ( 缺 乏 ) 弹 性
思 考 : 如 何 检 验 价 格 弹 性 的 特 征 ? (用 t 检 验 ) 由于双对数模型的弹性是一个常数,所以双对数模 型又称为不变弹性模型。 2. 双 对 数 模 型 与 一 般 线 性 模 型 的 比 较 :
r eb 1, 即 等 于 回 归 系 数 的 反 对 数 减
回归模型的函数形式
回归模型的函数形式回归模型是一种描述自变量和因变量之间关系的数学模型。
它可以用来预测因变量的值,基于给定的自变量值。
回归模型可以是线性的或非线性的,具体选择哪种形式取决于数据的特点和研究的目标。
以下是一些常见的回归模型的函数形式:1.线性回归模型:线性回归模型假设因变量与自变量之间存在线性关系。
最简单的线性回归模型称为简单线性回归模型,可以使用一条直线来描述自变量和因变量之间的关系:Y=β0+β1X+ε其中,Y表示因变量,X表示自变量,β0表示Y截距,β1表示X的系数,ε表示误差项。
2.多元线性回归模型:多元线性回归模型用于描述多个自变量与因变量之间的线性关系。
它的函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y表示因变量,Xi表示第i个自变量,βi表示Xi的系数,ε表示误差项。
3.多项式回归模型:多项式回归模型用于描述自变量和因变量之间的非线性关系。
它可以通过引入自变量的幂次项来逼近非线性函数:Y=β0+β1X+β2X^2+...+βnX^n+ε4.对数回归模型:对数回归模型适用于自变量与因变量之间存在指数关系的情况。
它可以将自变量或因变量取对数,将非线性关系转化为线性关系:ln(Y) = β0 + β1X + ε5. Logistic回归模型:Logistic回归模型用于描述分类变量的概率。
它的函数形式是Sigmoid函数,将自变量的线性组合映射到0和1之间的概率值:P(Y=1,X)=1/(1+e^(-β0-β1X))以上是几种常见的回归模型的函数形式。
回归模型的选择取决于数据的特征和研究的目标,需要考虑线性或非线性关系、自变量的数量、相关性等因素。
根据实际情况,可以选择合适的模型进行建模和预测。
回归模型的函数形式
• 建立工作文件,导入数据。
• 拟合回归模型:
• 取得回归结果:
1、说明回归系数的意义,分析回归结果。
偏斜率系数0.3397度量产出对劳动投入的弹性; 偏斜率系数0.8460度量产出对资本投入的弹性; 系数的统计显著性; F值,模型整体显著性; R 2 ,表明劳动力和资本解释产出的变动。
2、检验该时期墨西哥是否经历规模报酬递增 的阶段。
ln Q = A + α ln L + β ln K
• 数据集data2_2为墨西哥1955~1974年实 际GDP、就业与实际固定资本的数据。 gdp:国内生产总值(1960年的百万比索) employment:就业人数(千人) capital:固定资本(1960年的百万比索)
• 拟合柯布-道哥拉斯生产函数,估计墨西哥 该时期的生产函数。说明回归系数的意义。 分析回归结果。 • 检验该时期墨西哥是否经历规模报酬递增 的阶段。
规模报酬参数(两个弹性系数相加),反映产 出对投入的比例变动。 规模报酬递增 规模报酬递减 规模报酬不变
作业
9.10,9.13,9.14
回归模型的函数形式
双对数模型 柯布-道格拉斯生产函数
• • • • •
双对数模型(不变弹性模型) 半对数模型(测度增长率) 倒数模型(菲利普斯曲线) 多项式回归模型 过原点的回归模型(零截距模型)
• 柯布-道格拉斯生产函数
Q = AL K
α
β
• 反映产出与劳动力和资本投入之间的函数 关系。 • 函数两边取对数,变换为
回归方程 回归模型
回归方程回归模型
回归方程是用来描述自变量和因变量之间关系的数学模型。
回
归模型是建立在统计学原理和假设之上的,用于预测和解释因变量
与一个或多个自变量之间的关系。
回归方程通常采用线性模型的形式,即因变量与自变量之间的
关系可以用直线表示。
线性回归方程的一般形式为,Y = β0 +
β1X1 + β2X2 + ... + βnXn + ε,其中Y表示因变量,X1、
X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示误差项。
回归方程的目标是通过最小化误差项来估计回归系数,使得回
归方程能够最好地拟合样本数据。
拟合程度可以通过回归模型的拟
合优度指标(如R方值)来评估。
回归模型的应用非常广泛。
它可以用于预测因变量的取值,例
如根据房屋的面积、位置等自变量来预测房屋的价格。
此外,回归
模型还可以用于解释因变量与自变量之间的关系,例如研究教育水
平对收入的影响。
需要注意的是,回归模型的建立需要满足一些假设前提,如线性关系、常态分布、误差项的独立性和同方差性等。
如果这些前提不满足,可能会导致回归模型的拟合效果不佳或结果不可靠。
总结起来,回归方程是描述自变量和因变量关系的数学模型,回归模型是基于统计学原理和假设的预测和解释工具。
它的应用广泛,但需要满足一些假设前提。
计量经济学课件 第5章 回归模型的函数形式
• 模型选择的重点不是在判定系数大小,而是要考 虑进入模型的解释变量之间的相关性(即理论基 础)、解释变量系数的预期符号、变量的统计显 著性、以及弹性系数这样的度量工具。
线性回归模型的弹性系数计算
• 平均弹性:
E
Y X
X Y
B2
X Y
多元对数线性回归模型
• 偏弹性系数的含义: 在其他变量(如,X3)保持不变的条件下,X2 每变动1%,被解释变量Y变动的百分比为B2;
• (3)菲利普斯曲线
被解释变量:英国货币工资变化率,解释变量:失业率 结论:失业率上升,工资增长率会下降。 在自然失业率UN上下,工资变动幅度快慢不同。即失业率低于自然失业率时,工 资随失业率单位变化而上升快于失业率高于自然失业率时工资随失业率单位变化而下 降。
(P113例5-6) 倒数模型: 菲利普斯曲线
依据经济理论,失业率上升,工资增长率会下降;且 当失业率处于不同水平时,工资变动率变动的程度会 不一样,即Y对X 的斜率(Y / X)不会是常数。
Y / X 20.588*(1/ X 2 )
R2 0.6594
模型选择:
1、依据经济理论
以及经验判断;
2、辅助于对拟合
R2 0.5153 Y / X 0.79
1、B1、B2、B4 0; 2、B3 0 3、B32 3B2B4
WHY? —所以经济理论的学习对于模型的建立、选择
和检验有非常关键和重要的意义。 24
四、模型(形式)选择的依据
经济理论
工作经验
1、模型的建立需要正确地理论、合适可用的数据、 对各种模型统计性质的完整理解以及经验判断。
模型选择的基本准则:进入模型中的解释变量的关系(即 理论基础)、解释变量系数的预期符号、弹性系数等经济 指标、统计显著性等
第5章多元线性回归模型
调整的复 判定系数 可以为负!
由此式可以看出,R2 R2 ,即调整的复判定系数不大于未
经调整的复判定系数,这意味着随着解释变量的增加,R 2
将越来越小于 R2 。
(四)不同模型之间复判定系数的比较
ln Yi 1 2 X 2i 3 X 3i u1i
Yi 1 2 X 2i 3 X 3i u2i
同理
var(ˆ3 ) (
2
x32i )(1 r223 )
总体方差的估计
ˆ 2
uˆ
2 i
n3
残差平方和的自由度=样本容量的大小-待 估计的参数的个数
§5.3 多元线性回归模型的统计检验
一、拟合优度检验
(一)复判定系数R2的计算公式
R2 ESS
2
( yi ˆ2 x2i ˆ3 x3i )(x3i ) 0
x2i yi ˆ2 x22i ˆ3 x2i x3i
x3i yi ˆ2 x2i x3i ˆ3 x32i
参数估计量为:
ˆ2 (
x2i yi )( x32i ) ( x3i yi )( x2i x3i ) ( x22i )( x32i ) ( x2i x3i )2
Yt 1 2 X t u1t
Yt 1 2 X t u2t
Yt 1 2 X t ut
参数稳定性的检验步骤:
(1)将两序列合并为一个大样本后进行回 归,得到大样本下的残差平方和RSS3
自由度为 T+m-k
(2)分别以两个连续时间序列作为样本进行 回归,得到相应的残差平方和: RSS1与 RSS2
静观后效法
(一)t检验法
计量经济学第五讲---模型函数形式
32
第5章
33
第5章
34
第5章
35
第5章
Dependent Variable: Y Method: Least Squares Sample: 1970 1999 Included observations: 30 Variable Coefficient Std. Error t-Statistic Prob.
Akaike info criterion
Schwarz criterion F-statistic Prob(F-statistic)
6.816985
6.915724 8080.449 0.000000
44
第5章
45
第5章
半对数模型总结
1、对数—线性模型(增长率模型)
2、线性—对数模型
LOG(Z)
R-squared
Adjusted R-squared
0.845997
0.995080 0.994501
0.093352
9.062488
0.0000
12.22605 0.381497
-4.155221 -4.005861
Mean dependent var S.D. dependent var
每提高1个百分点,平均而言,数学S.A.T分数将增加0.13 个百分点。根据定义,如果弹性的绝对值小于1,则称缺 乏弹性。因此,在该例中,数学S.A.T分数是缺乏弹性的。 另外,r2=0.9, 表明logX解释了变量logY的90%的变 动。
13
第5章
第五章回归模型的函数形式
1.模型 假设有如下函数
Yi
AX
B2 i
从模型可知,就我们目前的知识,无法用普通最小二乘法 估计这样的模型。但我们可以把以上模型作如下变化,得 到:
ln Yi ln A B2 ln X i
继而,如果令 B1 ln A,则有:
ln Yi B1 B2 ln X i ui
以上模型称为双对数模型,或双对数线性模型。
上图C)中可以用来表示宏观经济学中著名的菲利普斯曲线。菲利普 斯根据英国货币工资变化的百分比(Y)与失业率(X)的数据,得到了形 如图C)的曲线。从图中可以看出,工资随着失业水平的变化是不对 称的:当失业率低于UN 时,工资随失业率单位变化而上升比失业率
高于U N时工资随失业率单位变化而下降得更快,经济学家称U N 为自然失 业率。
第五章 回归模型的函数形 式
上海立信会计学院
到目前为止,我们考虑的都是参数线性,同时又是变量线 性的模型。本章将考虑参数线性,但变量不一定是线性的 模型。
1.双对数模型或不变弹性模型
2.半对数模型
3.倒数模型
所有这些模型的一个重要特征是,它们都是参数线性模型, 但变量却不一定是线性的。
一、双对数模型
3.双对数模型的假设检验
双对数模型的假设检验与线性模型没有任何不同。在随机 误差项服从正态分布的假设下,估计的回归系数服从自由 度为(n-k)的t分布,其中k为包括截距在内的参数个数。
4.比较线性和双对数回归模型(一个经验问题)
对于数学成绩支出一例来说,线性支出模型和双对数模型哪个更合适?
1.作散点图,通过散点图来判断。(这种方式只适合双变量模型) 2.比较两个模型的 值。该方法要求应变量的形式必须是相同的。 3.即使两个模型中的应变量相同,两个 值可以直接比较,我们也 建议不要根据最高 r值2 这一标准选择模型。而应该首先考虑进入模型 中的解释变量之间的相关性、解释变量系r数2 的预期符号、统计显著性 以及类似弹性系数这r 2 样的度量工具。
计量经济学第五章(新)
利用Eviews得回归方程为:
ˆ ln y 1.6524 0.3397 ln x1 0.9460 ln x2
t = (-2.73) p= (0.0144*) R2=0.995 (1.83) (0.085) (9.06) (0.000**)
对回归方程解释如下:斜率系数0.3397表示 产出对劳动投入的弹性,即表明在资本投入保持 不变的条件下,劳动投入每增加一个百分点,平 均产出将增加0.3397个百分点。同样地,在劳动 投入保持不变的条件下,资本投入每增加一个百 分点,产出将平均增加0.8640个百分点。两个弹 性系数相加为规模报酬参数,其数值等于1.1857 ,表明墨西哥经济的特征是规模报酬递增的(如 果数值等于1,属于规模报酬不变;小于1,则属 于规模报酬递减)。
20.5879 z 1 20.5879 x (4.6794 ) (4.3996 ** )
3、半对数模型和双对数模型
形式为:
ln y 0 1 x u y 0 1 ln x u
的模型称为半对数模型。 把形式为:
ln y 0 1 ln x u
即可利用多元线性回归分析的方法处理了。
例如,描述税收与税率关系的拉弗曲线:抛物线 t = a + b r + c r2 c<0
t:税收;
r:税率
设 z1 = r, z 2 = r2, 则原方程变换为 s = a + b z1 + c z 2 c<0
例 某生产企业在1981-1995年间每年的产量和总成本如下 表,试用回归分析法确定其成本函数。
表5-1 墨西哥的实际GDP、就业人数和实际固定资本
年份 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 GDP 114043 120410 129187 134705 139960 150511 157897 165286 178491 199457 212323 226977 241194 260881 277498 296530 306712 329030 354057 374977 就业人数 8310 8529 8738 8952 9171 9569 9527 9662 10334 10981 11746 11521 11540 12066 12297 12955 13338 13738 15924 14154 固定资产 182113 193749 205192 215130 225021 237026 248897 260661 275466 295378 315715 337642 363599 391847 422382 455049 484677 520533 561531 609825
回归模型的函数形式
回归模型的函数形式回归模型是一种用于研究变量之间关系的统计模型。
它可以帮助我们理解自变量和因变量之间的关系,并用于预测未来的观测值。
回归模型的函数形式通常包括线性回归和非线性回归两种。
一、线性回归模型线性回归模型是回归分析中最常见的一种模型,它假设自变量和因变量之间存在线性关系。
线性回归模型的函数形式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是自变量,β0,β1,β2,...,βn 是回归系数,ε是误差项。
线性回归模型假设误差项ε服从正态分布,且均值为0,方差为常数σ^2、回归系数β表示自变量对因变量的影响程度,其值越大表示影响越大。
二、非线性回归模型当自变量和因变量之间的关系不是简单的线性关系时,我们可以使用非线性回归模型。
非线性回归模型的函数形式可以是各种形式的非线性函数,常见的形式包括指数函数、幂函数、对数函数等。
例如,指数函数形式的非线性回归模型可以表示为:Y=β0+β1e^(β2X)+ε幂函数形式的非线性回归模型可以表示为:Y=β0+β1X^β2+ε对数函数形式的非线性回归模型可以表示为:Y = β0 + β1ln(X) + ε需要注意的是,非线性回归模型的参数估计一般不像线性回归模型那样可以用最小二乘法直接求解,通常需要使用迭代算法。
三、多元回归模型多元回归模型用于研究多个自变量对因变量的影响。
多元回归模型的函数形式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,X1,X2,...,Xn是多个自变量,β0,β1,β2,...,βn是对应的回归系数,ε是误差项。
多元回归模型可以通过估计回归系数,来衡量每个自变量对因变量的影响。
通过比较不同自变量的回归系数,我们可以判断它们之间的影响大小。
总结:回归模型是一种用于研究变量关系的统计模型。
线性回归模型假设自变量和因变量之间存在线性关系,可以用线性函数表示。
Eviews5章基本回归模型的OLS估计
编辑课件ppt
5
EViews统计分析基础教程
一、普通最小二乘法(OLS)
2.方程对象
EViews5.1提供了8种估计方法: “LS”为最小二乘法; “TSLS”为两阶段最小二乘法; “GMM”为广义矩法; “ARCH”为自回归条件异方差; “BINARY”为二元选择模型,其中包括Logit模型、 Probit模型和极端值模型; “ORDERED”为有序选择模型; “CENSORED”截取回归模型; “COUNT”为计数模型。
12
EViews统计分析基础教程
四、 线性回归模型的基本假定
线性回归模型必须满足以下几个基本假定:
假定1:随机误差项u具有0均值和同方差,即 E ( ui ) = 0 i=1,2,…,n Var ( ui ) = σ2 i=1,2,…,n
其中,E表示均值,也称为期望,在这里随机误差项u的 均值为0。Var表示随机误差项u的方差,对于每一个样 本点i,即在i=1,2,…,n的每一个数值上,解释变量y 对被解释变量x的条件分布具有相同的方差。当这一假定
样本回归函数为
yt= B1 + B2xt +μt
yt= b1 + b2xt + et 其中,et为残差项,
5-3式为估计方程,b1 和b2分别为B1和B2的估计量, 因而
e = 实际的yt –估计的yt
编辑课件ppt
3
EViews统计分析基础教程
一、普通最小二乘法(OLS)
1.最小二乘原理 估计总体回归函数的最优方法是选择B1和B2的估计量b1 , b2,使得残差et尽可能达到最小。 用公式表达即为
条直线能反映出该组数据的变化。
如果用不同精度多次观测一个或多个未知量,为了确定各未 知量的可靠值,各观测量必须加改正数,使其各改正数的平 方乘以观测值的权数的总和为最小。因而称最小二乘法。
计量经济学 总结
3.5回归模型的其他函数形式一、模型的类型与变换1.倒数模型、多项式模型与变量的直接置换法2.幂函数模型、指数函数模型与对数变换法3.复杂函数模型与级数展开法 二、非线性回归实例 三、非线性最小二乘估计 1.普通最小二乘原.2.高斯-牛顿迭代法(对原始模型展开台劳级数,取一阶近似值)⒊ 牛顿-拉夫森迭代法大部分非线性关系又可以通过一些简单的数学处理, 使之化为数学上的线性关系, 从而可以运用线性回归模型的理论方法。
⒋应用中的一个困难如何保证迭代所逼近的是总体极小值(即最小值)而不是局部极小值?一般方法是模拟试验:随机产生初始值→估计→改变初始值→再估计→反复试验, 设定收敛标准(例如100次连续估计结果相同)→直到收敛。
⒌非线性普通最小二乘法在软件中的实现给定初值 写出模型 估计模型 改变初值 反复估计1一般情况下, 线性化估计和非线性估计结果差异不大。
如果差异较大, 在确认非线性估计结果为总体最小时, 应该怀疑和检验线性模型。
2非线性估计确实存在局部极小问题。
3根据参数的经济意义和数值范围选取迭代初值。
4NLS 估计的异方差和序列相关问题。
NLS 不能直接处理。
应用最大似然估计。
3.6受约束回归– 在建立回归模型时, 有时根据经济理论需要对模型中的参数施加一定的约束条件。
例如: – 需求函数的0阶齐次性条件 – 生产函数的1阶齐次性条件模型施加约束条件后进行回归, 称为受约束回归(restricted regression ); 未加任何约束的回归称为无约束回归(unrestricted regression )。
一、模型参数的线性约束 1.参数的线性约束2.参数线性约束检验具体问题能否施加约束?需进行相应的检验。
常用的检验有: F 检验、x2检验与t 检验。
F 检验: 1构造统计量;2检验施加约束后模型的解释能力是否发生显著变化。
第一步:给出参数估计值 β的初值 ()β0,将f x i(, )β在 ()β0处展开台劳级数, 取一阶近似值;第二步:计算 z df x d i i =(, ) ()βββ0和 ~(, ) ()()y y f x z i i i i =-+⋅ββ00的样本观测值; 第三步:采用普通最小二乘法估计模型 i i i z y εβ+=~,得到β的估计值 ()β1; 第四步:用 ()β1代替第一步中的 ()β0,重复这一过程,直至收敛。
第五章回归模型的函数形式
第五章回归模型的函数形式1.引言回归分析是统计学中一种重要的数据分析方法,用于研究自变量与因变量之间的关系。
在回归分析中,我们需要确定一个合适的函数形式来描述变量之间的关系,这个函数形式即为回归模型的函数形式。
本章将介绍回归模型的函数形式的基本概念和常用的函数形式。
2.线性回归模型线性回归模型是最简单的回归模型之一,其函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y是因变量,Xi是自变量,βi是参数,ε是误差项。
线性回归模型假设自变量与因变量之间的关系是线性的,并且误差项服从正态分布。
3.多项式回归模型多项式回归模型是线性回归模型的一种扩展形式,其函数形式为:Y=β0+β1X+β2X^2+...+βnX^n+ε多项式回归模型允许自变量的幂次大于1,通过引入幂项和交互项,可以更好地拟合非线性关系。
4.对数回归模型对数回归模型是一种特殊的回归模型,其函数形式为:ln(Y) = β0 + β1X1 + β2X2 + ... + βnXn + ε对数回归模型适用于因变量为正数且取值范围较广的情况,通过取对数可以将因变量的范围缩小,使得模型更易拟合。
5.非线性回归模型除了线性回归模型和多项式回归模型外,还存在许多其他形式的非线性回归模型。
非线性回归模型的函数形式通常不容易直接确定,需要通过试验和拟合来确定参数。
常见的非线性回归模型包括指数模型、幂函数模型、对数模型等。
在实际应用中,选择适当的函数形式是回归分析的一个重要问题。
选择不合适的函数形式可能导致模型的预测效果较差。
为了选择适当的函数形式,可以通过观察变量之间的散点图、拟合曲线图、残差图等进行初步判断,然后利用统计方法进行模型的比较和选择。
7.总结回归模型的函数形式是回归分析的基础,选择合适的函数形式对于模型的拟合和预测效果至关重要。
线性回归模型、多项式回归模型、对数回归模型和非线性回归模型是常用的函数形式。
选择适当的函数形式需要综合考虑变量之间的实际关系和统计分析的要求,可以通过观察图形和利用统计方法进行模型的比较和选择。
第五章线性回归模型的扩展
虚拟变量 (1)D=1 表示男,0表示女 D=1 表示男, (2)D=1 表示生活在南方,0 表示不生活 D=1 表示生活在南方, 在南方 0不具备某种性质 一般地 D=
1具有某种性质
虚拟变量 季节
1是第i个季节 Di = 0不是第i个季节
i=1、2、3、4 i=1、 四个变量合起来可以表示各个季度
双对数线性模型 双对数模型特性:斜率b 度量了Y 双对数模型特性:斜率b1度量了Y对X的弹 性,即给X一个很小的变动所引起Y 性,即给X一个很小的变动所引起Y变动的 百分比。 弹性=Y变动百分比/X变动百分比 弹性=Y变动百分比/X变动百分比 双对数模型又称为不变弹性模型
例:对《widget》 例:对《widget》教科书的需求
工作权利法对工会会员的影响
回归结果: Y’=26.68-10.51D =26.68Se=(1.00) (1.58) t=(26.68) (6.65) R2 =0.497 Y—工会会员占工人的比例(1980) 工会会员占工人的比例(1980) D=0,制定工人工作权利法的州 D=0,制定工人工作权利法的州 D=1,未制定工作权利法的州 D=1,未制定工作权利法的州
第六节 包含虚拟变量的回归模型 虚拟变量:定性的或者反映质的差别的或 虚拟变量:定性的或者反映质的差别的或 者分组的信息结合到回归模型中。比如性 分组的信息结合到回归模型中。比如性 别、种族、宗教、季节、战争/和平、有自 别、种族、宗教、季节、战争/ 然灾害/无自然灾害、南方/ 然灾害/无自然灾害、南方/北方。我们可以 用只取0 用只取0和1的变量来表示这些定性或者分 组的因素。称为虚拟变量。 组的因素。称为虚拟变量。
虚拟变量的性质
第5章 多元线性回归分析
为
n
偏回归系数:控制其它解释量不变的条件下,第
j 个解释变量的单位变动对应变量平均值的影响。
12
多元线性回归
指对各个回归系数而言是“线性”的,对变量则 可是线性的,也可是非线性的 例如:生产函数
Y AL K u
取自然对数
因为样本回归函数为 ˆ + X e X Y = X Xβ 两边左乘 X 有: 因为 X e = 0 ,则正规方程为:
ˆ +e Y = Xβ
X
e
ˆ = X Y X Xβ
24
OLS估计式
ˆ = X Y 由正规方程 X Xβ
-1 ˆ β = (X X) X Y 多元回归中
( X X )kk 是满秩矩阵, 其逆存在
最小方差 结论:在古典假定下,多元线性回归的 OLS估计 式是最佳线性无偏估计式(BLUE)
27
三、OLS估计的分布性质
基本思想 ˆ 是随机变量,必须确定其分布性质才可能 ● β i 进行区间估计和假设检验 ● u i是服从正态分布的随机变量 , 决定了 Yi 也 是服从正态分布的随机变量
ˆ 是 Y 的线性函数,决定了 β ˆ 也是服从正态 ● β i i i 分布的随机变量
2 i 2 2 ˆ e ( Y Y ) i i i
2 ˆ ˆ ˆ ˆ min e [Yi -(1 2 X 2i 3 X 3i ... k X ki )]
求偏导,令其为0:
( ei2 ) 0 ˆ
j
22
即 ˆ ˆ X ˆ X ... ˆ X ) 0 -2 Y ( ki ki i 1 2 2i 3 3i
第五章5讲 残差自回归模型 (1)
例5-6
(4)检验残差项是否相关,对此回归模型的残差 进行自相关性检验,一般采用DW检验(建议): library(lmtest) dwtest(x.fit1)
从这里可以看出该残差序列有着明显的自相关性,需要 对其残差序列进行拟合。
例5-6
(5)画出残差序列自相关,偏自相关图来识别模 型: x.fit2=x.fit1$residual acf(x.fit2,col=4,lwd=2) pacf(x.fit2,col=4,lwd=2)
根据样本容量n 和多元回归模型中解释变量的数 目 k (不包括常数项)查DW分布表,得临界值 dL 和 dU ,然后依下列准则考察计算得到的DW值,
以决定模型的自相关状态。
31
回顾:Durbin-Waston检验(DW检验)
DW检验决策规则
0 ≤ DW ≤ dL
误差项 u1,u2 ,...,un 间存在 正相关
(DW原假设)H0 : ρ = 0 ⇔ H0 : E(εtεt−1) = (0 残差相关性原假设)
26
回顾:Durbin-Waston检验(DW检验)
假设条件 原假设:残差序列不存在一阶自相关性
H 0
:
E(εtεt
)
−1
= 0 ⇔
H 0
:ρ
= 0
备择假设:残差序列存在一阶自相关性
H 0
: E(εtεt −1) ≠
思考:若模型不唯一,怎么处理?
建模步骤:模型的选择问题
模型
ARIMA(0,1,1)模型:
(1 − B)xt = 4.99661 + (1 + 0.70766B)ε t
Auto-Regressive模型一:
εxtt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
Y的变动百分数 X的变动百分数
=
Y X
Y 100 = Y X 100 X
X Y
=slope
X Y
因此,如果Y代表了商品的需求量,X代表了单 位价格,E就是需求的价格弹性。
图 5-1
双对数模型的假设检验
双对数模型的假设检验与线性模型的检验 方法没有什么不同。
• 5.2线性模型与双对数回归模型的比较 (1)根据弹性定义公式,我们可以得出这 样的结论:对于线性模型,弹性系数是一 个变量;对于对数模型,其弹性系数为一 常量。
• 在实际经济活动中,经济变量的关系是复杂的, 直接表现为线性关系的情况并不多见。
• 如著名的Cobb- Dauglas生产函数表现为幂函数 曲线形式、宏观经济学中的菲利普斯曲线 (Pillips cuves)表现为双曲线形式等。
• 但是,大部分非线性关系又可以通过一些简单的 数学处理,使之化为数学上的线性关系,从而可 以运用线性回归模型的理论方法。
• 例5-2:柯布-道格拉斯生产函数
– 反应了产出与劳动力和资本投入之间的关系函 数。
– 劳动投入弹性+资本投入弹性=规模报酬参数
(1)规模报酬递增—规模报酬参数>1 (2)规模报酬递减—规模报酬参数<1 (3)规模报酬不变—规模报酬参数=1
• 例5-3:对能源的需求(P107)
二、半对数模型(semilog model)
对数-线性模型——测量增长率
例5-4:以时间t作为解释变量模型—增长模型
我们来研究一下在货币、银行及金融等课程中
介绍过的复利计算公式:
等式两端取对数:
Yt Y0 (1 r)t
ln Yt ln Y0 t ln(1 r)
令 B1 lnY0, B2 ln(1 r)
ln Yt B1 B2t
根据前面的式子,我们可以建立下面的半对数回归模型:
第二部分 线性回归模型
Chp 5:回归模型的函数形式
主要内容
• 双对数模型或不变弹性模型 • 半对数模型
– 对数-线性模型——度量增长率 – 线性-对数模型——解释变量为对数形式
• 倒数模型 • 多项式模型 • 零截距模型(过原点的回归模型) • 小结
问题的提出
• 在很多时候,自变量的变化与应变量并不 是简单的线性关系,如考虑某一段时间内, 某个经济变量增长率,如GDP增长率、货 币供应、失业率等,这就需要引入回归模 型的其他一些函数形式。
对上面数据进行OLS回归得 ln(Uspop) 5.3593 0.0107t
t (3321.13)(129.779)
r2 0.9982
回归结果解释:斜率0.0107表示,平均而言ln(Y) (美国人口)的年增长率为0.0107,即Y以每年1.07% 的速度增长。
半对数模型中斜率度量的是解释变量的绝对变化引起Y 相对变化。把这个相对改变量0.0107乘以100,就得到 增长率,本例中的增长率为1.07%。
ln Yt B1 B2t ut
(5-18)
模型(5-18)应变量是对数形式,自变量 是线性的,参数也是线性的,该模型称为
半对数模型。
在线性模型中,B2表示X增加一个单位,Y的绝 对量的平均增量,即Y增加B2个单位。
在半对数模型中,B2表示X增加一个单位,Y的 相对量的平均增量,即Y增加100*B2 %。
(2)对于线性模型,Y对X的弹性可以表示为:
E dY dX
X Y
B2
X Y
可见线性模型给出的是点弹性,我们可以通过计
算平均弹性系数来给出线性模型的区间弹性:
E dY dX
X Y
B2
X Y
5.3多元对数线性回归模型
• 多元对数线性回归模型 lnYi=B1+B2lnX2i+B3lnX3i+ui
• 其中,B2,B3又称为偏弹性系数,它们度量 了在其他变量保持不变 条件下,应变量对 某一解释变量的偏弹性。
正因为如此,半对数模型有称为增长率模 型,可以用来度量变量的增长率,包括经 济和其他非经济变量的增长率。
半对数模型的截距解释: 本例中b1=lnY0=5.3593,取其反对数得
Y0=212.5761 即为当t=0时Y的取值,就是Y的初期值
(1975年)。
(1)瞬时增长率和复合增长率
• 复合增长率 b2=ln(1+r)r=eb2-1
一旦计算出b2,复合增长率r就可以求出了, 书上的例子中美国人口年复合增长率为
R=antilog(0.0108)-1=1.0757%, 但前面求得的增长率为1.07%,区别在哪里? 1.07%是某时点上的瞬时增长率,1.0757%
是一段时间内的复合增长率。
(2)线性趋势模型
模型
Yt B1 B2t ut
回归结果表明:样本期内,美国人口以2.757百万的 绝对速度增长,美国人口表现出上升的趋势。截距 表示的是t=0时的美国人口(1974年),210百万。
实践中,增长率模型更实用些,因为人们更加关注 经济变量的相对变化而不是绝对变化。
5.5 线性-对数模型模型:解释变量是对 数形式
下面的半对数模型称为线性—对数模型:
(5-22)
称为线性趋势模型。该模型中t是时间变量,即Y对 时间t的回归。 t称为趋势变量。 斜率>0,称Y有向上的趋势;斜率<0,称Y有向下的趋 势。
表5-4中的数据,拟合模型(5-22)得 (Uspop) 209.6731 2.757t
t (287.4376)(73.6450)
r2 0.9943
一、双对数模型Double log model
——如何度量弹性
• 考虑数学分数的例子:
Yi
AX
B2 i
• Y:数学分数;X:家庭年收入 • 上式可转化为:
lnYi=lnA+B2lnXi •2lnXi 如果令B1=lnA,则模型可以写成
lnYi=B1+B2lnXi 为了进行估计,可以将模型写成
lnYi=B1+B2lnXi +ui 这是一个线性模型,因为参数是线性的, 另外这个模型是对数形式变量线性的,因 此称这个模型是双对数模型。
令Yi* =lnYi ,
X
* i
lnXi ,则模型可以写成
Yi*
B1
B2
X
* i
ui
• 双对数模型的特性:
– 模型参数是线性的,关于变量和; – 斜率B2度量了Y对X的弹性,即X的单位变动引