离散数学图矩阵表示

合集下载

离散数学-图的矩阵表示

离散数学-图的矩阵表示
设有向图G的结点集合 ,它的邻接矩阵 为 ,现在我们想计算从结点 到 结点 的 长度为2的路的数目
分析:从 到 长度为2的路,中间必须经过 如果图G 中有路 存在,则肯定有 ,反之如果 图G中不存在路 ,那么 或者 ,即 于是从结点 到 的长度为2的路的数目就 等于:
按照矩阵的乘法规则,上式恰好等于矩阵 的元素,即 表示从 到 ; 的长度为2的路的数目
中第i行,第j列
考虑从vi到v j的长度为3的路的数目,可以看作是由vi到vk的长度为1的路,再 联结vk 到v j的长度为2的路,则类似可知从vi到v j的长度为3的路的数目为: a
( 3) ij ( 2) aik akj ,即为( A(G )) 3的第i行,第j列元素。 k 1 n
行相加运算: 有向图:对应分量普通加法运算; 无向图:对应分量模2加法运算。 行相加相当于G中对应结点的合并。 air a jr 1 ,说明v 和v 中只有一个结点是边e 的端点,合并 i j r 后仍是er的端点。
air a jr 0 ,有两种情况:
a、vi,vj都不是er的端点; b、vi,vj都是er的端点,合并后删去自回路。 若合并后完全关联矩阵中出现元素全为0的列,表明对应的 边消失。 有了这种运算,就可以运用这种运算求关联矩阵的秩
1 0 1 0
0 1 0 0
0 1 ,求G的可达性矩阵。 1 0
Байду номын сангаас
0 2 A2 1 0
0 1 1 1
1 0 1 0
1 1 1 0
2 1 A3 2 0
4 5 7 2 2 4 4 1
1 2 2 0
3 6 7 2
0 1 1 1
由前面的定理7-2.1的推论可知,如果在vi到vj之间存在路,必定存在 一条长度不超过n的通路,所以l只需计算到n就可以了。

离散数学图的矩阵表示

离散数学图的矩阵表示

A4=
23321
01011
11010
22221
V4
v3
问每条:从vv33到到0 v0v1由1长1长0度上度0为可为22看的的路出路有A,n几中中条间元?02肯素11定a01经ij的11过10意1个义中:间结点vk,
A该 即 逐(G路个v)23=,k表遍v示历k,1为0201每=11111:个。a0101iv结每j=31100点k有1000表,v一k 示并个进v从vA1k,(,行Gv)在i3就乘到= 邻对法v接j应运长100矩一算302度阵个,111为中110v获3n110,,k取的v就从k路,1是=v3有1:到;kvv31条,k全=。1部,长vk度,1=为1,2 的路的数目:v3,1v1,1+v3,2其v中21+a3v2=3,33表v示3,1v+3到v3,v42长v4度,1+为v33,的5路v5,有1=3条v。3,ivi,1
由于,邻接矩阵的定义与关系矩阵表示定义相同,所以,可达性
矩阵P即为关系矩阵的MR+,因此P矩阵可用Warshall算法计算。
13
❖可达性矩阵的求解方法
23221 35332 58553 12111 46442
Br的任一元素bij表示的是从vi到vj长度不超过r的路的数目;
若bij 0,
若bij=0,
ij时,表示vi到vj可达, i=j时,表示vi到vi有回路;
ij时,表示vi到vj不可达, i=j时,表示vi到vi无回路;
在许多实际问题中,我们关心的往往是vi和vj之间是否存在路的 问题,而对路的数目不感兴趣,为此,引出可达矩阵。
由7.2.1推论,若从vi到vj存在一条路,则必存在一条边数小于n 的通路,(或边数小于等于n的回路)。即:如果不存在一条小

离散数学第七章图论习题课

离散数学第七章图论习题课
利用奇数+奇数=偶数,偶数+偶数=偶数,所以, 在G中结点度数为奇数的结点,在其补图中的度 数也应为奇数,故G和其补图的奇数结点个数也 是相同的。
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
证明 :
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
1、基本概念。 无向图的邻接矩阵A 根据邻接矩阵判断:各结点的度, 有向图结点 出,入度。 由Ak可以求一个结点到另一个结点长度为k 的路条数. 有向图的可达矩阵P 用P可以判定:各结点的度. 有向图的强分图。 关联矩阵M:是结点与边的关联关系矩阵. 用M判定:各结点的度
设给定图G(如由图所示),则图G的点割集


应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
割点。
a c
a c
b
d
b
d
a c
a c
b
d
b
d
推论:任何6人的人群中,或者有3人互相认识,或者有 3人彼此陌生。(当二人x,y互相认识,边(x,y)着红色, 否则着兰色。则6人认识情况对应于K6边有红K3或者 有兰K3。)
证明简单图的最大度小于结点数。
证明: 设简单图G有n个结点。对任一结点u,由于G没

离散数学CH04_图论_根树

离散数学CH04_图论_根树

4.6 树
4.6 树
图中的三棵树T1,T2和T3都是带权2,2,3,3,5
的二叉树,它们的权分别是:
W(T1)=2×2+2×2+3×3+5×3+3×2=38 W(T2)=3×4+5×4+3×3+2×2+2×1=47 W(T3)=3×3+3×3+5×2+2×2+2×2=36 以上三棵树都是带权2,2,3,3,5的赋权二叉树,但不 是最优树。
【例】求图所示的二叉树产 生的前缀码。 解:在图(a)中,每一个 分枝点引出的左侧边标记0, 右侧边标记1。由根结点到 树叶的路经上各边的标记组 成的0、1序列作为对应树叶 的标记,如图 (b)所示。产 生的前缀码为: 01,11,000,0010,0011
4.6 树
定理 任意一个前缀码,都对应一个二叉树。 证明:
4.6 树
给定了一个前缀码,设h是其中最长序列的长度。画出一个高为 h的正则二叉树。按定理9.6.7中描述的办法给各边标记0或1。 每一个结点对应一个0、1序列,它是由根结点到该结点的路经 上各边的标记组成的。如果某个0、1序列是前缀码的元素,则 标记该结点。将已标记结点的所有后代和该结点的射出边全部删 除,得到了一个二叉树,再删除未加标记的树叶,就得到要求的 二叉树。
在通信中常用0、1字符串表示英文字母,即用二进制 数表示英文字母。最少用多少位二进制数就能表示26
个英文字母呢?1位二进数可以表示2=21个英文字母
,两位二进制数可以表示4=22个英文字母,……,n 位二进制数可以表示2n个英文字母。如果规定,可以 用1位二进制数表示英文字母,也可以用两位二进制数 表示英文字母。
4.6 树
定理 在完全m叉树中,其树叶数为t,分枝点数为i,则 (m1)*i=t-1。 证明:

第7章 图论 [离散数学离散数学(第四版)清华出版社]

第7章 图论 [离散数学离散数学(第四版)清华出版社]

6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e

2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)

《离散数学》第6章 图的基本概念

《离散数学》第6章  图的基本概念

E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。

《离散数学》图论 (上)

《离散数学》图论 (上)
12
无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。

离散数学第8章 图论

离散数学第8章 图论
ij
为d(vi,vj)。
8.2
图的矩阵表示
一、图的邻接矩阵 二、图的连接矩阵
三、图的关联矩阵
二、图的连接矩阵 定义 8-9 设图 G= ( V , E ),其中 V={v1 ,
v2 , … , vn } , n 阶方阵 C= ( cij ),称为图 G 的连接 矩阵,其中第i行j列的元素
1 c ij 0
利用邻接矩阵,我们可以 (1)判断G中任意两个结点是否相连接;
方法是:对 l=1,2,…,n–1,依次检查Al的(i,j)
项元素
(l ( ) ij)是否为0,若都为0,那么结点v 与v 不 a ij i j
相连接,否则vi与vj有路相连接。 (2)计算结点vi与vj之间的距离。
(1) ( 2) ( n 1) 中至少有一个不为0, 若 aij , aij , , aij 则可断定vi与vj相连接,使 a (l ) 0 的最小的 l 即
若中有相同的结点,设为ur= uk(r<k),则子路ur+1…uk可以从 中删去而形成一条较短的路= viu1…ur uk+1…uh–1 vj,仍连接vi到 vj 。 若中还有相同的结点,那么重复上述过程又可形成一条 更短的路,…。这样,最后必得到一条真路,它连接vi到vj, 并短于前述任一非真路。因此,只有真路才能是短程。
非真 生成
真 生成
真 非生成
非真 非生成
真 非生成
七、路与回路 定义:图G中l条边的序列{v0,v1}{v1,v2}…{vl–1,vl}称为连
接v0到vl的一条长为 l 的路。它常简单地用结点的序列 v0v1v2…vl–1vl来表示。其中v0和vl分别称为这条路的起点和终点。 开路:若v0vl,则称路v0v1v2…vl–1vl为开路; 回路:若v0=vl,则称路v0v1v2…vl–1vl为回路; 真路:若开路v0v1v2…vl–1vl中,所有结点互不相同(此时所有 边也互不相同),则称该路为真路; 环:在回路v0v1v2…vl–1v0中,若v0,v1,v2,…,vl–1 各不相同 (此时所有边也互不相同),则称该回路为环。

离散数学课件图论2

离散数学课件图论2
❖结点(Vertices):用 表示, 旁边标上该结点的名称。 ❖ 边(Edges)
有向边: 带箭头的弧线。 从u到v的边表示成 <u,v>
无向边:不带箭头的弧线。 u和v间的边表示成 (u,v)
School of Information Science and Engineering
实例
1. 设 V1= {v1, v2, …,v5}, E1 = {(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)}
例: 给定右图所示 V/R={ {a,b,g},{c,d,e,f},{h} }
h
gf
e
a
bc
d
School of Information Science and Engineering
14-3 图的连通性
[G的连通性与连通分支] ① 若u, vV,uv,则称G是连通的 ② V/R={V1,V2,…,Vk},称等价类构成的子图G[V1], G[V2], …,G[Vk]为G的连通分支,其个数 p(G)=k (k1); k=1,G是连通的。
定义:设G=<V,E>为n阶无向简单图,以V为顶点集,以所 有使G成为完全图Kn的添加边组成的集合为边集的图, 称为G的补图,记作 G 。
若G G , 则称G是自补图。 相对于K4, 求上面图中所有图的补图,并指出哪些是自补图. 问:互为自补图的两个图的边数有何关系?
School of Information Science and Engineering
School of Information Science and Engineering
14-1 图
6. 邻域与关联集 ① vV(G) (G为无向图) v 的邻 N (v ) { 域 u |u V (G ) (u ,v ) E (G ) u v }

离散数学第七章图的基本概念

离散数学第七章图的基本概念

4.无向图的连通性
若无向图G中任何两顶点都连通,则称G是连通图.
对于任意的无向图G.设V1,V2,…,Vk是顶点之间连通关系的 等价类,则称他们的导出子图为G的连通分支.用p(G)表示G 的连通分支数.
V1 e1
e2 e3
V3
e4 V2
V4
a
de
h
i
b
c
f
g
5.有向图的连通性
若略去有向图D中各边的键头,所得无向图是无向连通图,则 称D是弱连通图(或称D是连通图).
(2) mij d (vi )(i 1,2,..., n)
j 1
mn
nm
n
(3) mij mij d(vi ) 2m
j1 i1
i1 j1
i 1
m
(4) mij 0 vi是孤立点 j 1
(5)若第j列与第k列相同, 则说明e j与ek为平行边.
2.有向图的关联矩阵
设有向图D=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em} 1, vi为ej的始点
e1,e2,e3},{e1,e2,
e2
e4},{e9}等边割集 ,e9是桥.
e3 V4
e5 e6
V5 e4
V6
e9
V7
7.3 图的矩阵表示
1.无向图的关联矩阵
设无向图G=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em}
令mij为顶点vi与ej的关联次数, 则称(mij)n×m为G的关联矩阵.记为M(G)
若Γ 满足:vi-1,vi为ei的端点(若G为有向图,vi-1是ei的始 点,vi是ei的终点)i=1,2,…,k,则称Γ 为G中通路,v0,vk分 别称为通路的始点和终点,Γ 中边的数目k称为通路长度.

左孝凌离散数学ppt课件

左孝凌离散数学ppt课件

第七章 图论 7.1 图的基本概念
完全图:任意两个不同的结点都是邻接的简单图称为
完全图。n个结点的无向完全图记为Kn。
图7.1.5给出了K3和K4。从图中可以看出K3有3条边,
K4有6条边。容易证明Kn有条边。
n(n 1) 2
图7.1.5K3与K4示意图
图7.1.6
第七章 图论 7.1 图的基本概念
一个图G可用一个图形来表示且表示是不唯一的。
第七章 图论 7.1 图的基本概念
【例7.1.2】设G=〈V(G),E(G)〉,其中
V(G)={a,b,c,d},E(G)={e1,e2,e3,e4,e5,e6,e7},e1=(a,b), e2=(a,c),e3=(b,d),e4=(b,c),e5=(d,c),e6=(a,d),e7=(b,b) 。
1)若e1,e2,…,ek都不相同, 则称路μ为迹;
2)若v0,v1,…,vk都不相同, 则称路μ为通路;
3)长度大于2的闭的通路(即 除v0=vk外,其余结点均不相同的 路)μ称作圈。
图7.1.1
第七章 图论
7.2 路与回路
例如在图7.2.1中,有连接v5 到v3的路v5e8v4e5v2e6v5e7v3,这 也是一条迹;路v1e1v2e3v3是一 条通路;路v1e1v2e3v3e4v2e1v1是 一条回路,但不是圈;路 v1e1v2e3v3e2v1是一条回路,也是 圈。
定 义 7.2.1 给 定 图 G = 〈V,E〉, 设 v0,v1,…,vk∈V , e1 , e2,…,ek∈E,其中ei是关联于结点vi-1和vi的边,称 交替序列v0e1v1e2…ekvk为连接v0到vk的路,v0和vk分别 称为路的起点与终点。路中边的数目k称作路的长度。 当v0=vk时,这条路称为回路。

离散数学 关系的闭包

离散数学 关系的闭包
4.4 关系的闭包
闭包定义 闭包的构造方法
集合表示 矩阵表示 图表示
闭包的性质
1
一、闭包定义
定义 设R是非空集合A上的关系, R的自反(对称或
传递)闭包是A上的关系R, 使得R满足以下条件:
(1)R是自反的(对称的或传递的) (2)RR (3)对A上任何包含R的自反(对称或传递)关系 R 有 RR. 一般将 R 的自反闭包记作 r(R), 对称闭包记作 s(R), 传递闭包记作 t(R).
南宁空调回收 kuaihuixin 南宁空调出租 仧莒彾
j
i
得到G . 考察G的每个顶点 x , 找从 x 出发的每一条路 设R 是A上的二元关系,每当(a,b)∈R和(b,c)∈R而(a,c) R时,将有序对(a,c)加到R上使其扩充成R1,并称R1 为R的传递扩张, R1
如果是传递关系,则R1是R的传递闭包;
①i=1时 R∪IA= IA∪R 结论成立。
终得到G . 考察G的每条边, 如果有一条 x 到 x 的单 R的自反(对称,传递)闭包是含有R并且具有
r 注意在上述等式中矩阵的元素相加时使用逻辑加.
i
j
= IA∪R∪R2∪.
向边, i≠j, 则在G中加一条 x 到 x 的反方向边,最终 ⑶ 因 R s(R) ,得 t(R) ts(R) ;
(R∪IA)k+1=(R∪IA)k。(R∪IA) = (IA∪R∪R2∪...∪Rk)。(IA∪R) = (IA∪R∪R2∪...∪Rk)∪(R∪R2∪...∪Rk+1) = IA∪R∪R2∪...∪Rk∪Rk+1 所以结论成立.
t(r(R))=t(R∪IA) = (R∪IA)∪(R∪IA)2∪(R∪IA)3∪... =(IA∪R)∪(IA∪R∪R2)∪(IA∪R∪R2∪R3)∪... = IA∪R∪R2∪R3∪...= IA∪t(R) = IA∪R (R传递t(R)=R) =r(R) 所以r(R)也传递。

离散数学第讲7

离散数学第讲7

无向图 <V,E> (2) 若|V(G)| 、|E(G)|均为有限数,则称G为有限图。
一个 为A与B的无序积,记作A&B.
是一个有序的二元组
,记作G, 其中
1 , vi可达vj
第十四章 图的(基1本)概念V≠φ称为顶点集,其元素称为顶点或结点。
第十四章 图的基本概念
第十四章 图的(基2本)概念E称为边集,它是无序积V&V的多重子集,其元素称为
所有边互不相同),则称此回路为基本回路或者初级 则V1∪ V2 =V, V1∩V2= φ,由握手定理知
若回路中的所有边e1,e2,…,ek互不相同,则称此回路为简单回路或一条闭迹;
回路、圈。 26 设有向图D=<V,E>中无环, V={v1,v2,…,vn}, E={e1,e2,…,em}, 令aij(1)为顶点vi与邻接到顶点vj边的条数,称(aij(1))n×n为D的邻接矩
第十四章 图的基本概念
例14.1 画出下列 图形。
v1。
。v2
(1) G=<V,E>,其中
V={v1,v2,v3,v4,v5},
v3

(1)
E={(v1,v1), (v1,v2), (v2,v3),
v4 。
。v5
(v2,v3), (v1,v5),
(v2,v5), (v4,v5)}。
(2) D=<V,E>,其中
顶点的度数均小于3,问G中至少有多少个顶点?
第十四章 图的基本概念
定义14.5完全图
1. 设G=<V,E>为一个具有n个结点的无向简单图,如 果G中任一个结点都与其余n-1个结点相邻接,则称 G为无向完全图,简称G为完全图,记为Kn。

离散数学8

离散数学8

再证R传递:任取 a,b,cA 设<a,b>R,
<b,c>R。(要证出<a,c>R ) 由R是对称的,得<b,a>R ,由 <b,a>R且<b,c>R,根据已知条件得 <a,c>R , 所以R是传递的。
(4). R是A上关系, 设 S={<a,b>|c∈A∧<a,c>∈R∧<c,b>∈R} 求证若R是等价关系,则S也是等价关系。 证明:a)证S自反:任取a∈A,∵R是自反的,∴有 <a,a>∈R,由S定义得<a,a>∈S, (S定义中c就是a)∴ S自反. b)证S对称: 任取a,b∈A,且有<a,b>∈S,由S定义得 c∈A∧<a,c>∈R∧<c,b>∈R, 由R对称得 c∈A∧<b,c>∈R∧<c,a>∈R,由S定义得<b,a>∈S,S对称. c)证S传递:任取a,b,c∈A,有<a,b>∈S,<b,c>∈S,由S定义 得 (d∈A∧<a,d>∈R∧<d,b>∈R)∧(e∈A∧<b,e>∈R∧ <e,c>∈R) , 由于R传递,所以有<a,b>∈R,<b,c>∈R, 由S定义得<a,c>∈S, 所以S传递. 所以S是A上等价关系. (6). R是A上对称和传递的关系,证明如果a∈A,b∈A, 使得<a,b>∈R,则R是一个等价关系. 证明:任取a∈A,有已知得b∈A,使得<a,b>∈R,由R对称 得<b,a>∈R,又由R传递得, <a,a>∈R,R自反, ∴R是等价 关系.

第五章 图的基本概念-离散数学

第五章 图的基本概念-离散数学
3
Co
e4
e7
bo
oc
8
图 论
无向完全图:每对顶点间均有边相连的无向 简单图。N阶无向完全图记作Kn.
o o K2 o K3 o o o o K4
1 2
o o
o o o K5 o o
无向完全图Kn, 有边数
n( n − 1)
竞赛图:在的每条边上任取一个方向的有 向图.
9
图 论
有向完全图:每对顶点间均有一对方向相反 的边相连的有向图。例如:
2
图 论
5.1 图的定义及相关术语 5.2 通路 回路 图的连通性 5.3 图的矩阵表示 5.4 无向树 5.5 欧拉图和哈密顿图 5.6 平面图
3
图 论
§5.1 图的定义及相关术语
例1. 多用户操作系统中的进程状态变换图:
就绪 r 进程调度 ro 执行 e o w V={r,e,w}
E={<r,e>,<e,w>,<w,r>}
图 论
2
2. 回路:如果一条路的起点和终点是一个顶 点,则称此路是一个回路. ov e e 如右图中的 v o ov e e L1=v0 e1v1 e5v3 e6v2e4v0 e e L2= v0 e1v1 e5v3e2v0
0 1 4 1 2 3 5 6
2
o v3
22
3. 迹与闭迹
图 论
简单通路(迹) 顶点可重复但边不可重复的通路。 简单回路(闭迹) 边不重复的回路。 4. 路径与圈 初级通路(路径) 顶点不可重复的通路。 初级回路(圈) 顶点不可重复的回路。 例如右图中: o v0 L1=v0 e1v1 e5v3 e6v2e4v0 e1 e4 L2= v0 e1v1 e5v3e2v0 o v2 e2 e3 L3=v0 e1v1 e5v3 e2v0 e3v3 e6v2e4v0 v1 o e5 e6 L1和L2是闭迹, 也是圈. o v3 L3是闭迹,而不是圈.

离散数学ch2 (10)

离散数学ch2 (10)

i
1
i
证明:由定理14.1,必要性显然 充分性:由已知条件可知,d中有2k个奇数,不妨设它们为 d1, d2, …, dk , dk+1 , dk+2 …, d2k,构造以d为度数列的n阶无 向图G=<V,E>,如下: V={v1, v2, …, vn},在顶点vr和vr+k之 间连边,r=1,2,…, k,若di为偶数,令di’= di ,若di为奇数, 则令di’= di -1,得到d’=(d1’, d2’, …, dn’),则di’均为偶数, 再在vi处画di’/2条环,i= 1,2,…, n, 这就证明了d是可图 化的 易知:(2, 4, 6, 8, 10),(1, 3, 3, 3, 4) 是可图化的,而(1, 2, 3, 4, 5),(3, 3, 3, 4) 不是可图化的
第五部分 图论
本部分主要内容 图的基本概念 欧拉图、哈密顿图 树 平面图 支配集、覆盖集、独立集、匹配与着色
1
图论的研究可以追溯到1736 年, 图论中几个重要的结论也 是在19 世纪得到的,但图论引起人们兴趣是20 世纪20 年代。 应用:计算机科学、化学、运筹学、经济学、语言学等。 内容:图的基本概念包括路径和环,欧拉回路,哈密尔顿 回路/货郎担问题,图同构、平面图等。
9
相关概念
7. 设D=<V,E>为有向图, ek =<vi,vj>E ,称vi,vj为ek的端点, vi为ek的始点,vj为ek的终点, ek与vi(vj)关联,若vi =vj, 则称ek为D中的环 8. 若两个顶点之间有一条有向边,则称这两个顶点相邻, 若两条边中一条边的终点是另一条边的始点则称这两条 边相邻 图(无向的或有向的)中没有边关联的顶点称作孤立点

《离散数学》第七章_图论-第3-4节

《离散数学》第七章_图论-第3-4节

图的可达性矩阵计算方法 (3) 无向图的可达性矩阵称为连通矩阵,也是对称的。 Warshall算法
例7-3.3 求右图中图G中的可达性矩 阵。 分析:先计算图的邻接矩阵A布尔乘法的的2、 v1
3、4、5次幂,然后做布尔加即可。
解:
v4
v2
v3 v5
P=A∨ A(2) ∨ A(3) ∨A(4)∨A(5)
图的可达性矩阵计算方法(2)
由邻接矩阵A求可达性矩阵P的另一方法: 将邻接矩阵A看作是布尔矩阵,矩阵的乘法运算和加 法运算中,元素之间的加法与乘法采用布尔运算 布尔乘:只有1∧1=1 布尔加:只有0∨0=0 计算过程: 1.由A,计算A2,A3,…,An。 2.计算P=A ∨ A2 ∨ … ∨ An P便是所要求的可达性矩阵。
v4
v3
v2
G中从结点v2到结点v3长度 为2通路数目为0,G中长 度为2的路(含回路)总数 为8,其中6条为回路。 G中从结点v2到结点v3长度 为3的通路数目为2, G中 长度为3的路(含回路)总

图的邻接矩阵的 应用 (2)计算结点vi与vj之间的距离。
中不为0的最小的L即为d<vi,vj>。
(一)有向图的可达性矩阵
可达性矩阵表明了图中任意两个结点间是否至少存在一条 路以及在任何结点上是否存在回路。
定义7-3.2 设简单有向图G=(V,E),其中V={v1, v2,…,vn },n阶方阵P=(pij)nn ,称为图G的可达 性矩阵,其中第i行j列的元素
p ij =
1 1 1 1 P v3 1 1 v4 0 0 v5 0 0 v1 v2 1 1 1 1 1 1
0 1 A(G)= 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0

离散数学-图的矩阵表示

离散数学-图的矩阵表示

使用压缩矩阵
对于稠密图(边数较多的 图),可以使用压缩矩阵 来减少存储空间和计算时 间。
使用动态规划
对于某些特定的问题,可 以使用动态规划来优化算 法,提高计算效率。
05
离散数学-图的矩阵表示的挑战和未
来发展方向
离散数学-图的矩阵表示的挑战
计算复杂性
图的矩阵表示的计算复杂性较高, 特别是对于大规模图,需要消耗 大量的计算资源和时间。
表示图中任意两个顶点之间距离的矩阵, 距离矩阵中的元素d[i][ j]表示顶点i和顶点j 之间的最短路径长度。
图的邻接矩阵
1
邻接矩阵是表示图中顶点之间连接关系的常用方 法,其优点是简单直观,容易理解和计算。
2
邻接矩阵的行和列都对应图中的顶点,如果顶点i 和顶点j之间存在一条边,则矩阵中第i行第j列的 元素为1,否则为0。
THANKS
感谢观看
3
通过邻接矩阵可以快速判断任意两个顶点之间是 否存在边以及边的数量。
图的关联矩阵
01
关联矩阵是表示图中边和顶点之间关系的常用方法,
其优点是能够清晰地展示图中边的连接关系。
02
关联矩阵的行和列都对应图中的边,如果边e与顶点i相
关联,则矩阵中第i行第e列的元素为1,否则为0。
03
通过关联矩阵可以快速判断任意一条边与哪些顶点相
图的矩阵表示的算法复杂度分析
创建邻接矩阵的时间复杂 度:O(n^2),其中n是顶 点的数量。
查找顶点之间是否存在边 的复杂度:O(1)。
创建关联矩阵的时间复杂 度:O(m),其中m是边的 数量。
查找边的权重复杂度: O(1)。
图的矩阵表示的算法优化策略
01
02
03

离散数学部分概念和公式总结(考试专用)

离散数学部分概念和公式总结(考试专用)

命题:称能判断真假的陈述句为命题。

命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。

命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。

给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。

若指定的一组值使A的值为真,则称成真赋值。

真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。

将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。

命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。

(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。

(3)若A至少存在一组赋值是成真赋值,则A是可满足式。

主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。

主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。

命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。

约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。

一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。

前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。

集合的基本运算:并、交、差、相对补和对称差运算。

笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。

二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。

第六章 图的矩阵表示

第六章 图的矩阵表示

•一个图的完全关联矩阵是不是唯一的?
•完全关联矩阵是不是唯一的确定一个图?
•用完全关联矩阵来表示图有什么好处?
•图的哪些性质可以从完全关联矩阵上一目了然?
•矩阵的运算是否会有相应的图的变化?
•反过来,图的哪些变化对应着完全关联矩阵的哪些变 化?
一般地说,我们把一个 n 阶方阵 A 的某些
列作一置换,再把相应的行作同样的置换,得
(1)
n i 1 m ij j 1 ij i m j 1 ij i ij i, j
(4) 平行边对应的列相同。 (5) 不能表示自环。
v2
e2
v3
e1
v1
e5
e4
e3
v1 M (G ) v2 v3 v 4
v4
e1 e2 1 1 1 1
e3
e4 1
1 1
0 0 1 1 1 1 0 0 0 0 → 1 1 0 1 0 0 0 0 0 0
1 0 M ' (G ) M ' (G1 ) 0
1 1 0 0
0 0 1 1 1 1 0 0 0 0 → 1 1 0 1 0 0 1 1 0 0
( )
( )
(3) (5)
1 0 0 0 0
1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 4 0 0 0 0 1 1 0 0 0 0 1 1
6
1 0 0 0 0
1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j1 ij
d(vi )
(i 1,2,...,n)
(3) mij 2m
i, j
(4) 平行边的列相同
(5)
m m
j1 ij
0,
当且仅当vi为孤立点。
4
有向图的关联矩阵
定义 设无环有向图D=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令
1 , mij 0 ,
1 0 0 1 0 0 1 0
给出了图G的邻接矩阵,就等于给出了图G的全部
信息。图的性质可以由矩阵 A通过运算而获得。
9
有向图的邻接矩阵
定义 设有向图D=<V,E>, V={v1, v2, …, vn}, E={e1,
e2,
…,
em},

a(1) ij
为顶点vi邻接到顶点vj边的条数,
称a(i(j1) )mn为D的邻接矩阵, 记作A(D), 简记为A.
7.3 图的矩阵表示
▪ 无向图的关联矩阵 ▪ 有向图的关联矩阵 ▪ 有向图的邻接矩阵 ▪ 有向图的可达矩阵
1
无向图的关联矩阵
定义 设无向图G=<V,E>, V={v1, v2, …, vn}, E={e1, e2, …, em}, 令mij为vi与ej的关联次数,称(mij)nm为G 的关联矩阵,记为M(G).
注 无向图也有相应的邻接矩阵,一般只考 虑简单图,无向图的邻接矩阵是对称的, 其性质基本与有向图邻接矩阵的性质相同。
16
例如:下图邻接矩阵为:
0 1 0 1
A(G)
1 0 1
0 1 1
1 0 1
1
1 0
17
有向图的可达矩阵
定义 设D=<V,E>为有向图, V={v1, v2, …, vn}, 令
1,
pij
0,
vi可达v j 否则
称(pij)nn为D的可达矩阵, 记作P(D), 简记为P.
性质: P(D)主对角线上的元素全为1. D强连通当且仅当P(D)的元素全为1.
18
有向图的可达矩阵(续)
例 右图所示的有向图D的可达矩阵为
1 0 0 0 P 1 1 1 1
1 0 1 1 1 0 1 1
2
例:求下图G的关联矩阵
e1
4 1
e2
e3
e5
2
上图G的关联矩阵:
e4
3
e1 e2 e3 e4 e5
1 2 1 0 0 0
M (G) 2 0 1 Biblioteka 1 03 0 0 1 1 1
4 0 0 0 0 1
3
无向图的关联矩阵
性质:
(1)
m n
i1 ij
2
( j 1,2,...,m)
(2)
m m
19
设 G=V,E 是 n 阶 简 单 有 向 图 , V={v1,v2,…,vn} , 由可达性矩阵的定义知,当i≠j时,如果vi到vj有路, 则pij=1;如果vi到vj无通路,则pij=0;又如果vi到vj 有通路,则必存在长度小于等于n–1的通路。又n
4
0
0
0 1 1 1
6
5 0 0 0 0 0 0
有向图的关联矩阵(续)
性质
(1)
m n
i1 ij
0
( j 1,2,...,m)
(2)
m j 1
(
mij
1)
d (vi ),
m j 1
(
mij
1)
d (vi ),
i 1,2,...,n
(3) mij 0
i, j
(4) 平行边对应的列相同
vi为e

j


vi与e

j


1,
vi为e

j


则称(mij)nm为D的关联矩阵,记为M(D).
5
例: 求图G的关联矩阵。
e2
2
3
e3
e1
e5
e6
e4
5
1
4
上图G的关联矩阵: e1 e2 e3 e4 e5 e6
1 1 0 0 0 0 0
2 1 1 1 1
0
0
M (G) 3 0 1 1 0 1 1
性质
(1)
a n (1)
j1 ij
d (vi ),
i 1,2,...,n
(2)
a n (1)
i1 ij
d(vj ),
j 1,2,...,n
(3)
a(1) ij
m
D中 长 度 为1的 通 路 数
i, j
(4)
a n (1)
i1 ii
D中 长 度 为1的 回 路 数
10
D中的通路及回路数
3 2 2 2
A3 1 2 1 0 2 2 2 1 1 2 1 0
5 6 4 2
A4 2 2 2 1 4 4 3 2 2 2 2 1
15
所以,由v1到v3长度为1、2、3、4的通路 分别有0、2、2、4条,G中共有长度为4的 通路43条,其中回路11条,长度小于等于4 的通路共有87条,其中回路22条。
4 0 0 1
13
在下图中v1到v3长度为1、2、3、4的通路分别有 多少条,G中共有长度为4的通路多少条,其中回 路多少条,长度小于等于4的通路共有多少条,其 中回路多少条。
1
4
2
3
14
解:因为
1 2 0 0 1 2 0 0 1 2 2 0
A2 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 2 1 0 0 0 1 0 0 0 1 0 1 0 0 1
定理 设A为n阶有向图D的邻接矩阵, 则Al(l1)中
元素
a(l ij
)
为D中vi到vj长度为
l
的通路数,
a(l ii
)为vi到自身长度为
l
的回路数,
nn
a( l ) ij
为D中长度为
l
的通路总数,
i1 j1
n
a(l ) ii
为D中长度为
l
的回路总数.
i1
11
D中的通路及回路数(续)
推论 设Bl=A+A2+…+Al(l1), 则Bl中元素 nn
bi(jl)为D中长度小于或等于l 的通路数,
i1 j1
n
b(l) ii
为D中长度小于或等于l
的回路数.
i1
例 有向图D如图所示, 求A, A2, A3, A4, 并回答诸问题:
(1) D中长度为1, 2, 3, 4的通路各有多 少条?其中回路分别为多少条?
(2) D中长度小于或等于4的通路为多 少条?其中有多少条回路?
7
有向图的邻接矩阵
定义 设有向图D=<V,E>, V={v1, v2, …, vn}, E={e1,
e2,
…,
em},

a(1) ij
为顶点vi邻接到顶点vj边的条数,
称a(i(j1) )mn为D的邻接矩阵, 记作A(D), 简记为A.
8
求下图G的邻接矩阵。
1
4
2
3
解 上图G的邻接矩阵。
1 2 0 0 A(G) 0 0 1 0
12
例(续)
1 0 0 0
1 0 0 0
A 2 1
0 0
1 0
0 1
A2 3 2
0 0
0 1
1长度 0
通路
1
回路
8
1
1 0 1 0
2 0 0 1
2 3
11 3 14 1
1 A3 4
0 0
0 1
0 0
1 A4 5
0 0
0 0
0 1
4 合计
17 50
3 8
3 0 0 1
4 0 1 0
3 0 1 0
相关文档
最新文档