盾构机姿态控制与纠偏
盾构掘进姿态的影响因素及纠偏
盾构掘进姿态的影响因素及纠偏
Influence Factors and Rectification on Tunneling Attitude of the Shield Machine
山西交通职业技术学院 朱江涛/ZHU Jiangtao
摘 要 :盾构姿态控制是盾构法施工的三大要素之一。在施工时,盾构机需穿越不同的地质层和承受不同的掘削 阻力,来确保管片的安装轴线与隧道的设计轴线一致。本文结合盾构法实际施工的特点,分析盾构姿态的影响因素, 确定纠偏方法,以供相关人员进行参考。
关键词 :盾构机 盾构姿态 盾构法纠偏
盾构机掘进姿态控制是以开挖面的设计轴线为标 1.1 地质条件和操作因素
准,根 据自动测量系统 显 示的轴线偏差和偏差 趋势,
在 施 工中, 盾 构 机 穿 越 复 杂 的 地 质 层和 掘 削 各种
结合管片安装情况,在掘进过程中修正盾构机的掘进 障碍物,其掘进时的四周阻力各不相同。为此,推进盾
盾构方位
设计轴线 纠偏曲线
P=n+1 式中 :P — 油缸压力调整数值,单位为 bar ;
n — 需要调整的次数。
A
(2)
图1 盾构机姿态趋势示意图
D
B
(1)盾构机趋势的分析 盾 构 掘 进 主要 靠 的是顶推油缸 对 管片的顶推 力来
液压缸
实现,油缸的推力是合力。
F 合 =F - (F1+F2+F3+F4) 式中 :F — 油缸推力 ;
控制好盾构趋势才能有效控制掘进轴线,才能按设计 每加一点其本区的油缸压力要增加 1ba r 以上,其它区
轴线进行隧道掘进。结合某地铁项目案例,根据盾构 油压会大致相应的减少 1ba r 以上,如此在姿态控制时
盾构姿态控制
土压平衡盾构机困难状况下的操纵及纠偏董宇摘要:为了能使操纵手更熟练的操纵盾构机,本文根据自身工作实践对盾构困难状况下操纵及纠偏的理解与广大技术工作者探讨。
关键字:轴线;纠偏;趋势1 前言盾构机是一种很笨重的机具,操纵及纠偏是受很多技术参数制约的,怎样合理地把这些参数科学的统一起来,是影响盾构机操纵及纠偏的关键,下面就这些参数的调节及注意事项通过具体情况进行阐述。
2 盾构操纵及各影响参数推力对掘进的影响⑴如果推进过程中出现一侧推力比另一侧推力大,但推进油缸的行程显示却是推力小的一侧变化快,这种现象多出现在小半径施工,增加推力,使得压差变大,以满足转弯的需要,用降低掘进速度的办法来保证掘进的连续性,同时也避免刀盘被卡死。
⑵管片拼装的好坏会影响推进油缸的有效推力,所以要充分挖掘盾构机的有效推力,要避免不必要的推力损失,这也解释了为什么有时加大推力而速度依然无法获得提升。
铰接对掘进的影响在纠偏过程中一侧的铰接拉得太长是件很头痛的事情,收铰接会加大不利的趋势,严重时这环的纠偏可能前功尽弃,一定要做到收铰接时间不可太长,压力不要太高,尽量把趋势从正值纠到负值(或负值到正值),并使之过2个趋势点再收铰接,这样就会把姿态调到了有利的一侧,这时收铰接才会对姿态纠偏起到事半功倍的效果。
速度对掘进的影响⑴如果掌子面裂隙水丰富,或是在通过含水丰富地层时,要全速前进,在出土量有保证的前提下,尽可能提高掘进速度,这样做的好处是快速通过含水层,避免过多的水涌出。
⑵在掘进过程中脱顶现象是时有发生的事情,可通过增大速度的方法把脱顶的油缸伸出来,以达到所有推进油缸都顶在管片上,一次不行,可多次重复此方法,一定会见效的。
这种情况多出现速度不是很快,扭距忽大忽小的硬岩状况中。
速度不宜过快也不宜过慢,更不要走走停停,可以在扭距大的情况下减小速度达到减小扭距的办法,不要停机等扭距降下来在掘进。
刀盘转速及扭距对掘进的影响刀盘的转速要满足的条件便是与掌子面的充分切削,基本操作原则是黏土层用低转速,硬岩用高转速,同时注意推力的调整,以提高或降低刀盘对土体的惯入度。
盾构机姿态控制总结
盾构机姿态控制总结始发前的盾构姿态主要是靠盾体始发托架和反力架的的安装精度来控制的,同时反力架的安装精度还直接影响到环片的拼装姿态,因此对于盾体始发托架及反力架的控制尤为重要。
在进行完始发定向联系测量后,根据底板平面及高程控制点对始发托架进行定位。
在盾体组装完成前,开始进行反力架的定位。
始发托架及反力架的安装过程全过程进行监控,保证始发托架和反力架的左右偏差控制在±10mm之内,高程偏差控制在±5mm之内,反力架的与隧道设计轴线法平面偏差<2‰。
盾构机已经从始发井到天府广场,前一段盾构机的姿态控制的很好。
但是在68环后盾构机的姿态就不是很理想了。
在成都这种砂卵石地层,不同于粘土和岩石地层,在砂卵石地层,掘进过程中盾构机的盾体与砂卵石是紧密接触的,这使盾构机在偏移隧道中心线的时候很难快速的纠正过来,这就要求盾构机司机在掘进过成中,一定要掌握好掘进的路线,出现小的偏移要及时进行纠偏。
盾构导向系统是隧道质量保证的重要因素之一,在掘进过程中对导向系统的监控及维护尤为重要。
对VMT导向系统运行的可靠性进行定期检查,即盾构姿态的人工检测。
盾构姿态人工检测工作一周进行一次,同时利用环片检测的方法每天对导向系统运行的可靠性进行检测。
在前200m掘进过程中,VMT导向系统运行正常。
VMT工程师每次的移站都要快速准确完成,隧道中心线要经过多次测量并达到准确。
在68环的时候由于VMT出现事故盾构机出现忙掘的情况,使盾构机的方向与隧道中心先有了较大的偏差,在这种情况下,应当选择好纠偏曲线慢慢的使盾构机的姿态慢慢的纠正过来,我们却选择了强行快速纠偏,使得管片出现了大错台的情况,在一个就是由于管片的选型不是很完美,使得盾构机的姿态越来越差。
除了定期对盾构姿态进行人工检测,同时还对TCA激光站及定向棱镜的稳定性进行检查。
在始发前,导向系统的激光站及定向棱镜安装在始发井内,不会轻易发生碰动。
在盾构掘进了30环后,进行了第一次激光站的移站,激光站固定在环片顶部,定向棱镜仍旧安装在始发井内,由于环片不稳定使得TCA激光站不稳定。
浅谈盾构机姿态的控制方法
浅谈盾构机姿态的控制方法
一、简介
盾构机为沉管全封闭式施工机械,具有自动化程度高、施工质量可控、施工速度快和管片拼装精度高等优势,深受广大施工企业的青睐,用于水
利工程、市政工程、油气工程等城市基础设施的管线施工,不仅可以大大
减少施工难度,节省施工时间,还可以提高施工质量和提升施工效率。
但是,控制盾构机姿态是盾构钻机施工中的关键,盾构机控制姿态不准确,
既会影响施工质量,又会严重延误施工进度,甚至出现施工安全事故,因此,控制盾构机姿态是施工质量的重要保障。
1、建立坐标系:首先,应建立一个轨道工程坐标系,可以通过在地
形上标准点测量来建立。
2、采用传感器测量方法:在盾头前设置激光传感器,可以利用它来
测量盾头的垂直位置,并定时发送信号,通过接收系统转换后可以获得盾
头的三维坐标信息,从而可以准确控制盾头的姿态。
3、采用水平仪测量法:在盾头前方设置水平仪,可以实时水平测量,通过控制盾头的角度,从而准确控制盾头的姿态。
4、采用视觉控制方法:同样,可以在盾头前方设置一台摄像头,通
过视觉控制,可以准确控制盾头的姿态。
盾构机姿态控制与纠偏
土压平衡盾构机姿态控制与纠偏目录一、姿态控制 (3)1 、姿态控制基本原则 (3)2、盾构方向控制 (3)3、影响盾构机姿态及隧道轴线的主要因素 (6)二、姿态控制技术 (10)1 、滚动控制 (10)2 、盾构上下倾斜与水平倾斜 (11)三、具体情况下的姿态控制 (12)1 、直线段的姿态控制 (12)2 、圆曲线段的姿态控制 (13)3 、竖曲线上的姿态控制 (14)4 、均一地质情况下的姿态控制 (15)5 、上下软硬不均的地质且存在园曲线段的线路 (15)6 、左右软硬不均且存在园曲线段的线路 (15)7 、始发段掘进调向 (16)8 、掘进100m 至贯通前50m 的调向 (17)9 、贯通前50米的调向 (17)10 、盾构机的纠偏 (17)11 、纠偏的方法 (18)四、异常情况下的纠偏 (20)1 、绞接力增大,行程增大 (20)2、油缸行程差过大 (20)3、特殊质中推力增加仍无法调向 (21)4 、蛇形纠偏 (22)5 、管片上浮与旋转对方向的影响 (22)五、大方位偏移情况下的纠偏 (23)一、姿态控制1 、姿态控制基本原则盾构机的姿态控制简言之就是,通过调整推进油缸的几个分组区的推进油压的差值,并结合绞接油缸的调整,使盾构机形成向着轴线方向的趋势,使盾构机三个关键节,是(切口、绞接、盾尾)尽量保持在轴线附近。
以隧道轴线为目标,根据自动测量系统显示的轴线偏差和偏差趋势把偏差控制在设计范围内,同时在掘进过程中进行盾构姿态调整,确保管片不破损及错台量较小。
通常的说就是保头护尾。
测量系统主要的几个参数:盾首(刀盘切口)偏差:刀盘中心与设计轴线间的垂足距离。
盾尾偏差:盾尾中心与设计轴线间的垂足距离。
趋势:指按照当前盾构偏差掘进,每掘进1m产生的偏差,单位mm/m 。
滚动角:指盾构绕其轴线发生的转动角度。
仰俯角:盾构轴线与水平面间的夫角。
2、盾构方向控制通过调节分组油缸的推进力与油缸行程从而实现盾构的水平调向和垂直调向。
浅谈盾构姿态偏差与控制
文章编号:1004—5716(2006)01—0162—03中图分类号:U455143 文献标识码:B浅谈盾构姿态偏差与控制郑向红(北京交通大学,北京100007)摘要:介绍北京地铁盾构施工中盾构姿态控制的基本方法。
关键词:土压平衡盾构;盾构姿态控制 盾构法施工技术已经应用于北京市地铁五号线工程中,盾构法施工在北京的地质条件下已经积累了丰富的经验,尤其在和平里北街站—雍和宫、雍和宫—北新桥站区间工程中,成功穿越地坛公园、雍和宫、东四北大街等重点文物保护单位和重要交通干线,目前已完成3000多米盾构掘进。
结合本工程施工的经验,着重介绍盾构法施工时盾构姿态偏差问题及处理办法。
1 工程概况地铁五号线贯穿北京市南北方向,南起丰台区的宋家庄站,北至昌平区的太平庄北站,全长22.6k m。
其中采用盾构法施工的区间隧道约5.8k m。
工程于2002年底开工建设,计划于2007年3月通车试运营。
盾构法是地铁隧道施工中一种先进的工法。
与传统工法相比,它能够避免对城市地面、路面的占用,避免沿线的降水施工,确保城市的生态环境。
施工机械化、自动化、信息化程度高,作业区域内的环境干净、卫生、安全,施工速度快,施工中对附近居民及企事业单位的正常工作及生活的影响也较小。
为适应北京地区的地质条件、环境要求和技术要求,地铁五号线工程全部采用目前世界上技术先进的加泥式土压平衡盾构机。
其工作原理是向密封仓内加入塑流化改性材料,与开挖面切削下来的土体经过充分搅拌,形成具有一定塑流性和透水性的塑流体。
同时通过伺服控制盾构机推进千斤顶速度与螺旋输送机向外排土速度相匹配,经仓内塑流体向开挖面传递设定的平衡压力,实现盾构机始终在保持动态平衡的条件下连续向前推进。
2 主要质量问题分析与处理盾构法施工除管片等半成品可能存在质量问题外,在施工过程中,盾构机的操作不当是引起盾构工程质量问题的重要原因,主要集中反映在盾构姿态偏差和管片拼装质量问题。
本文拟就盾构姿态控制问题谈几点体会。
盾构机纠偏处理措施方案
北京市轨道交通首都机场线工程T2支线地下段盾构机纠偏处理措施方案编制:________________审核:________________审批:________________北京城建集团机场线09标项目经理部2007年2月2日盾构机纠偏处理措施方案一、编制依据1.1 地下铁道设计规范(GB50157-92)1.2 地下铁道、轻轨交通工程测量规范(GB50308-1999)1.3 地下铁道工程施工及验收规范(GB50299-1999)1.4 北京市轨道交通机场线T2线地下段工程(9#标段)设计图纸1.5 隧道测量监测成果表二、编制说明目前机场线09标盾构掘进施工时,盾构机在里程处K2+324~K2+333出现较大偏差,垂直偏差最大为208mm,水平偏差为144mm(偏向隧道外侧),偏离设计曲线,造成已拼装完成的管片实际位置超出设计要求,为使盾构机回到隧道轴线的位置上,保证成型隧道的中心线较好的符合设计线路,特制定本方案。
三、方案实施组织机构组长:薛英法副组长:荚长峰、张冬成员:高军、纪德晓、李彦飞、王耀征、艾永华、赵辉四、方案实施目前盾构机姿态状况如下表:在经过20环的推进调整之后的目标姿态:4.1 盾构操作方法1. 目前左线隧道施工时,盾构穿越粉土及粉质粘土层,当推进千斤顶上下分区油压相同时盾构机有整体下沉趋势;当推进千斤顶左右分区油压相同时盾构机向右线飘移。
2. 此段设计线路为直线段,盾构机操作手在进行调整阶段的推进时,密切关注各分区油压数值、千斤顶伸长量变化的快慢程度、刀盘注水量、螺旋机压力值、管片背后注浆的压力和方量及自动导向系统给出的盾构机实时姿态以确保盾构机能平缓的过渡到目标姿态,并进行合理的管片选型确保盾尾管片间隙值,使管片能顺利脱出盾尾,并保证管片间的错台满足规范要求。
3. 在推进时,盾构机操作手不要轻易调整铰接千斤顶的行程,如觉确有必要,应当向当班副经理请示,经测量人员复核盾构及管片姿态后方可进行此项操作,当调整完铰接千斤顶后,应立刻量取千斤顶的行程计算行程差,求出铰接角度,输入自动导向系统,及时读取当前的盾构姿态,确保下一步的推进操作。
浅谈盾构机姿态的控制方法
摘
要
南水北调中线穿黄一期工程以德国 VMT 公司的盾构机为例,介绍盾构机的组成、工作原理和 激光导向系统的组成,探讨盾构隧道施工中盾构机姿态控制的原理。分析盾构施工过程中不同 地质条件下姿态控制技术,并提出一些盾构机的纠编措施。
关键词:
盾构施工; 盾构机; 姿态控制
目 录 第1章 绪 论 1 1.1 前言 1 第2章 盾构机姿态控制的组成与功能 2 2.1 推进系统 2 2.2 导向系统 3 2.3 数据采集系统 4 第3章 定位的基本原理 4 第 4 章 盾构掘进方向的控制与调整 5 4.1 穿黄隧洞 II-A 标盾构施工地质条件 5 4.2 盾构姿态偏差 6 4.3 盾构机的纠偏措施 7 4.4 不同地质环境中盾构机掘进姿态的控制方法 第 5 章 盾构机姿态位置的测量及检测 8 5.1 盾构机始发定位测量 8 5.2 盾构推进中姿态测量和计算 9 5.4 环片成环现状测量 10 5.5 隧洞沉降测量 11 5.6 盾构机推进中导向控制点的复测 11 5.7 贯通测量 12 5.8 贯通测量误差估算 13 结 论 14 致 谢 15
西南交通大学成人专科毕业设计(论文)
第 4页
构表面与隧洞间的摩擦阻力不均匀,开挖掌子面上的土压力以及切口环切削欠挖地层引起的阻力 不均匀,也会引起一定的偏差。开挖掌子面岩层分界面起伏较大,掌子面土层软硬不均,也易引 起方向偏差。即使在开挖掌子面土体的力学性质十分均匀的情况下,受刀盘自重的影响,盾构也 有低头的趋势。因此,在掘进过程中,应对竖直方向的误差进行监测和控制。盾构机的前进方向 水平向右偏,则需要提高右侧千斤顶分区的推力;反之,则需要提高左侧千斤顶分区的推力。如 果盾构机机头向下偏,则需要提高下部千斤顶分区的推力;反之亦然。一般情况下,盾构机的方 向纠偏应控制在±20mm 以内,在缓和曲线及圆曲线段,盾构机的方向纠偏应控制在±30mm 以 内。尽量保持盾构机轴线与隧道设计轴线平行,否则可能会因为姿态不好而造成盾尾间隙过小和 管片错台裂缝,造成管片破损。当开挖土体较均匀时,盾构机姿态控制较容易,一般情况下方向 角控制在±5mm/m 以内。当开挖面内地层左、右软硬不均而且又是处在曲线段时,盾构机姿态 控制比较困难。此时,可降低掘进速度,合理调节各千斤顶推力,有必要时可考虑在硬岩区使用 超挖刀(备有超挖刀的盾构机)进行超挖。当盾构机遇到上软下硬土层中,为防止盾构机抬头, 要保持下俯姿态;反之,则要保持上仰姿态。掘进时要注意上下两端和左右两侧的千斤顶行程不 能相差太大,一般控制在±20mm 以内,千斤顶行程差可以通过每环管片的楔形量调整。在曲线 段掘进时,一般情况下根据曲线半径的不同让盾构机向曲线内侧偏移一定量,偏移量一般取 10~ 30mm。在盾构机姿态控制中,推进油缸的行程控制是重点,对于 1.6m 宽的管片,原则上行程控 制在 2300~2500mm 之间。行程差控制在 0~40mm 内。行程过大,则盾尾刷容易露出,管片脱 离盾尾较多,变形较大;行程差过大,易使盾体与管片之间的夹角增大,易造成管片的破损、错 台。 4.3 盾构机的纠偏措施 盾构机在掘进过程中总会偏离设计轴线,进行纠偏时必须有计划有步骤地进行。纠偏措施如下: 1) 在掘进过程中随时注意滚角的变化,及时根据盾构机的滚角值调整刀盘的转动方向。 2) 应根据各段地质情况对各项掘进参数进行调整。 3) 在纠偏过程中,掘进速度要放慢,并且要注意避免纠偏时由于单侧千斤顶受力过大对管片造 成的破损。 4) 尽量选择合理的管片类型, 避免人为因素对盾构机姿态造成过大的影响, 严格管片拼装质量, 避免因此而引起的对盾构机姿态的调整。 5) 在纠偏时,要密切注意盾构机的姿态、管片的选型及盾尾的间隙等,盾尾与管片四周的间隙 要均匀。 6) 当盾构机偏离设计轴线较大时, 不得猛纠猛调, 避免往相反方向纠偏过大或盾尾与管片摩擦, 使管片破裂。 4.4 不同地质环境中盾构机掘进姿态的控制方法 1) 淤泥层中盾构机掘进姿态的控制 盾构机在淤泥层中掘进时, 由于地层自稳性能极差, 为控制盾构机水平和垂直偏差在允许范围内, 避免盾构机蛇形量过大造成对地层的过量拢动, 宜将盾构机掘进速度控制在 30~40mm/min 之间, 刀盘转速控制在 1.5rpm/min 左右。在该段地层中掘进时,四组千斤顶推力应较为均衡,避免掘进 过程中千斤顶行程过大,否则可能会造成推力轴线与管片中心线不在同一直线上。在掘进过程中 应保持泥水系统进浆质量,保证其比重和粘度,使得顺利出渣,尽量保持盾构机的连续掘进,同 时要严格控制同步注浆量,以保证管背间隙被有效充填。 2) 全断面土层中盾构机掘进姿态的控制 全断面土层属于均一地层,盾构机在该类地层中掘进其轴线姿态能较好地控制,在掘进时保持各 分区千斤顶均匀,总推力和掘进速度均匀,即可保持盾构较好的姿态。 3) 砂层中盾构机掘进姿态的控制 盾构机在全断面富水砂层中掘进,由于含水砂层的自稳性极差,含水量大,极易出现盾构机"磕
盾构姿态偏差原因分析00
天津地铁2号线机场延长线工程李明庄始发井盾构右线隧道轴线偏差原因分析与纠偏对策中煤第三建设(集团)有限责任公司天津地铁2号线机场延长线工程土建施工项目经理部一、李明庄右线盾构隧道轴线偏差环号: 设计距离设计角度实际角度偏差(mm,右偏为“+”)1 21.659 184.4736 184.4718 -1.8901310992 22.860 184.5455 184.465 -53.640657293 24.060 185.0204 184.511 -76.2878164894 25.261 185.0906 184.5442 -105.689852455 26.461 185.1600 184.5704 -145.734672316 27.662 185.2248 185.004 -178.093856737 28.862 185.2931 185.0433 -209.608719678 30.062 185.3610 185.0819 -243.392861979 31.262 185.4244 185.1258 -270.5387883310 32.462 185.4914 185.1914 -283.2840897411 33.662 185.5542 185.2356 -310.890898412 34.862 186.0206 185.295 -327.0423722313 36.061 186.0827 185.3633 -334.6255857414 37.261 186.1447 185.4318 -341.0603679815 38.460 186.2104 185.5306 -312.6963706716 39.660 186.2719 186.0001 -314.756830817 40.859 186.3332 186.0631 -320.90734442第1环第5环第10环第15环设计隧道中线实际隧道中线第17环实际中线与设计中线偏差示意图二、李明庄右线盾构轴线高程偏差环号视线前视实测高程设计高程较差1 -4.111 1.655 -5.514 -5.542 0.0282 1.671 -5.53 -5.572 0.0423 1.476 -5.544 -5.602 0.0584 1.496 -5.564 -5.632 0.0685 1.518 -5.586 -5.662 0.0766 1.537 -5.605 -5.692 0.0877 1.558 -5.626 -5.722 0.0968 1.576 -5.644 -5.752 0.1089 1.592 -5.66 -5.782 0.12210 1.579 -5.690 -5.812 0.12211 -4.136 1.590 -5.726 -5.842 0.11612 1.618 -5.754 -5.872 0.11813 1.646 -5.782 -5.902 0.12014 1.671 -5.807 -5.932 0.12515 1.687 -5.823 -5.962 0.13916 1.705 -5.841 -5.992 0.15117 1.721 -5.857 -6.022 0.165三、盾构姿态偏差原因分析:1.为了保证盾构不被洞门卡住,盾构始发采取切线始发。
盾构掘进姿态调整与纠偏
1.1.1.1盾构掘进姿态调整与纠偏
在实际施工中,由于管片选型拼装不当、盾构机司机操作失误等原因盾构机推进方向可能会偏离设计轴线并超过管理警戒值;在稳定地层中掘进,因地层提供的滚动阻力小,可能会产生盾体滚动偏差;在线路变坡段或急弯段掘进过程中,有可能产生较大的偏差,这时就要及时调整盾构机姿态、纠正偏差。
(1)参照上述方法分区操作推进油缸来调整盾构机姿态,纠正偏差,将盾构机的方向控制调整到符合要求的范围内。
(2)当滚动超限时,及时采用盾构刀盘反转的方法纠正滚动偏差。
在急弯和变坡段,必要时可利用盾构机的超挖刀进行局部超挖和在轴线允许偏差范围内提前进入曲线段掘进来纠偏。
浅谈盾构轴线偏差原因及其纠偏措施
浅谈盾构轴线偏差原因及其纠偏措施摘要:盾构法施工轴线控制是盾构法施工重点环节,通过对影响盾构轴线偏差的因素研究与控制进而达到娴熟掌握盾构法施工隧道轴线控制技巧,为以后的盾构法施工提供强有力的技术保证。
关键词:盾构;轴线控制引言盾构法施工轴线控制是盾构法隧道施工的重要环节。
文章对产生盾构轴线偏差的因素进行了分析,并有针对性地提出了防范和监控措施,以确保盾构掘进轴线及成型隧道轴线满足设计及规范要求。
一、产生盾构偏差的原因(一)始发基座的安装与线形始发架及反力架安装不稳及安装位置不符合设计要求,将直接导致盾构机在初始推进时发生位置偏移,甚至始发后轴线控制失控,盾构走形严重偏离隧道设计轴线。
(二)管片拼装盾构机在掘进过程中,随着盾构姿态沿轴线的不断调整,盾构千斤顶产生一定的行程差,通过合理的使用转弯环管片来调整盾构千斤顶的行程差,使管片与盾构机盾尾之间保证必要的盾尾间隙量。
此外,管片拼装的真圆度也影响盾尾间隙量。
(三)同步注浆对轴线控制的影响同步注浆可以及时填充盾尾前移后土体与管片之间产生的间隙,防止土层变形和坍塌,而且注浆量的多少及注浆压力的大小和分布都对轴线控制产生一定的影响。
(四)施工参数设定(1)盾构在不同区间线型中向前推进,盾构环环都在纠偏,区域千斤顶的推力及行程差直接影响盾构姿态。
(2)控制土压的设定值:一般在纠偏时,土压力的设定值比较大,使得千斤顶推力增大,千斤顶各区域调节时容易产生较大的压力差,利于增大土体对机头的反作用力将机头托起或横移。
(3)注浆压力及注浆量。
(五)土质因素在推进施工范围内,尤其开挖面土层变化处,由于不同土质的软硬程度及其承载能力有较大差异,会使盾构机产生不均匀位移,对盾构姿态造成一定的不良影响。
(六)地下水含量变化地下水含量丰富时,造成土体松软,盾构往往偏向松软土体或地下水丰富的河道的一边。
(七)施工连续性施工中途停止、施工流程不连贯以及推进速度不均匀,例如一旦遇到比较松软的土质,会造成盾构机下沉,因而影响盾构掘进姿态。
盾构机姿态控制与纠偏
土压平衡盾构机姿态控制与纠偏目录一、姿态控制 (3)1 、姿态控制基本原则 (3)2、盾构方向控制 (3)3、影响盾构机姿态及隧道轴线的主要因素 (6)二、姿态控制技术 (10)1 、滚动控制 (10)2 、盾构上下倾斜与水平倾斜 (11)三、具体情况下的姿态控制 (12)1 、直线段的姿态控制 (12)2 、圆曲线段的姿态控制 (13)3 、竖曲线上的姿态控制 (14)4 、均一地质情况下的姿态控制 (15)5 、上下软硬不均的地质且存在园曲线段的线路 (15)6 、左右软硬不均且存在园曲线段的线路 (15)7 、始发段掘进调向 (16)8 、掘进100m 至贯通前50m 的调向 (16)9 、贯通前50米的调向 (17)10 、盾构机的纠偏 (17)11 、纠偏的方法 (18)四、异常情况下的纠偏 (19)1 、绞接力增大,行程增大 (19)2、油缸行程差过大 (20)3、特殊质中推力增加仍无法调向 (20)4 、蛇形纠偏 (22)5 、管片上浮与旋转对方向的影响 (22)五、大方位偏移情况下的纠偏 (23)一、姿态控制1 、姿态控制基本原则盾构机的姿态控制简言之就是,通过调整推进油缸的几个分组区的推进油压的差值,并结合绞接油缸的调整,使盾构机形成向着轴线方向的趋势,使盾构机三个关键节,是(切口、绞接、盾尾)尽量保持在轴线附近。
以隧道轴线为目标,根据自动测量系统显示的轴线偏差和偏差趋势把偏差控制在设计范围内,同时在掘进过程中进行盾构姿态调整,确保管片不破损及错台量较小。
通常的说就是保头护尾。
测量系统主要的几个参数:盾首(刀盘切口)偏差:刀盘中心与设计轴线间的垂足距离。
盾尾偏差: 盾尾中心与设计轴线间的垂足距离。
趋势:指按照当前盾构偏差掘进,每掘进1m产生的偏差,单位mm/m 。
滚动角:指盾构绕其轴线发生的转动角度。
仰俯角:盾构轴线与水平面间的夫角.2、盾构方向控制通过调节分组油缸的推进力与油缸行程从而实现盾构的水平调向和垂直调向。
浅谈盾构机掘进过程中的姿态控制
浅谈盾构机掘进过程中的姿态控制摘要:随着地铁项目的大力发展,越来越多的盾构机投入到隧道工程施工中,在各项目施工过程中经常出现盾构机偏离设计线路等问题,影响施工质量和进度,本文就影响盾构机姿态的因素、盾构机穿越不同地层的姿态控制和发生偏离后的纠偏措施等几个方面进行论述,使盾构机应用技术更加成熟的在不同环境中发挥作用,为社会创造更大的价值。
关键词:盾构机;姿态控制;纠偏中国北京自从在1969年10月1日开通了首条地铁以来,正在以令人咋舌的发展速度一步一步的迈入世界领先水平,从一无所有到走向海外,中国地铁不但促进了中国城市的发展,更赢得了全世界对中国制造的尊重,在这一历史进程中盾构机的应用和发展无疑起到了至关重要的决定性作用,社会在发展,盾构机的种类也日渐繁多,因此对盾构机的应用技术便有了更高的要求。
1 盾构姿态的影响因素笔者根据目前所在武汉蔡甸线地铁工程的实践经验,经过总结后得出影响盾构水平偏差及垂直偏差的因素有多个方面,主要有:① 现场地质方面;② 工程设计方面;③ 始发基座偏差;④ 操作手的操作水平和操作经验;⑤ 管片姿态;⑥ 注浆压力;⑦ 旋转角。
2盾构机姿态控制2.1盾构曲线段出洞的姿态控制⑴以洞门中心作为起始点,以加固区外边缘与隧道轴线间的交点作为终点,并且通过计算保证盾构及管片报表不会超标的前提下,采取以直线推进来代替盾构出洞段曲线推进。
⑵采用超挖刀调整盾构推进的趋势在推进时,可以通过超挖盾构小曲率半径内侧加固土体来达到盾构纠偏的目的。
超挖量的多少根据实际的纠偏效果,伸长或缩短超挖刀的伸出长度,并根据超挖刀的伸出长度调整刀盘转速。
2.2 盾构正常段姿态的控制正常推进段推进轴线控制主要有平面直线段推进轴线控制、平面曲线段推进轴线控制、纵坡推进轴线控制等,平面直线段推进姿态的控制,控制比较简单,只要考虑千斤顶行程差与盾构姿态的关系,平面曲线段推进姿态主要控制盾尾与管片间的间隙、左右油压差值及左右千斤顶长度差值。
(完整word版)盾构机的方向控制
盾构轴线控制轴线控制,即及时纠正盾构机推进中产生的轴线偏离,使推进轴线时时刻刻与计划路线保持一致。
近年来各种自动测量系统和盾构千斤顶操作无人化的轴线控制系统大量问世。
自动化、省力化已是当前的社会需求。
将来这些新的系统必然得以有效的广泛地应用。
不过这里需要说明的是,即使利用计算机自动化系统测量的场合下,管理者也必须很好地理解测量、轴线控制原理,以便对测量结果进行核校及对轴线修正的判断。
1 修正偏离的原则盾构轴线控制的基本原则如下:①偏离量增大之前及早修正;②在场地条件受限不能修正,只能按现时轴线掘进的场合下,通常可提前10~20m控制偏离量。
③遵循偏离量的管理值和允许值,确立偏离修正方针。
图1示出的是盾构轴线控制、偏离修正图。
为了把施工时的实际偏离量控制在规定的允许偏离量以内,首先应确定偏离量的管理值(允许值的50%~80%为目标),并在该目标范围内修正偏离进行推进管理。
必须确立连续修正偏离的意识,但是,如果不明确修正到什么时候,什么程度的方针,则会像图1示出的那样出现反复偏离。
图20.4.1 盾构偏移修正图如果在已经发生偏离的场合下修正盾构轴线,则因超挖和盾构外周面摩擦的增大周围地层将发生扰动,致使沉降。
从防止沉降的观点出发,希望减小偏离量。
在轴线控制时,必须先掌握盾构现在在推进轴线上的偏离量,其次按可以把偏离量拉回到管理值以内的原则设定轴线修正量,即使超过管理值也可以考虑先修正几米的原则进行轴线控制。
2 盾构轴线控制2.1 决定轴线修正量在决定盾构轴线修正量时,应进行盾构位置、轴线变化的模拟,必须明确偏离修正的方针。
设盾构推进微小距离△L 时,对应的轴线变化角为θ,则对应计划线形的偏离量的变化为δ,由图2可知,δ可按下式计算:δ=δ1+δ2 (1)δ1=(δh0一δt0)·△L/L (2)δ2=δp+L1·sinθ(3)δp=R·(1一cosθ)(4)=ΔL·(1一cosθ)/{2·sin(θ/2)}式中:δ1——偏离计划轴线差的变位量;δ2——轴线修正的变位量;δh0——掘削面现时偏离量;δt0——盾尾现时的偏离量;δp——盾构旋转位置的变位量。
盾构机的姿态控制及纠偏
❖ 6、铰接油缸的伸出长度直接影响掘进时盾构 机的姿态,硬减小铰接油缸的长度差,尽量 控制在30mm以内,将铰接油缸的形程控制 在40-80mm之间为宜。
❖ 四、盾构机的纠偏措施
❖ 盾构机在掘进时总会偏离设计轴线,按规定 必须进行纠偏。纠偏必须有计划、有步骤地 进行,切忌一出现偏差就猛纠猛调。盾构机 的纠偏措施如下:
❖ 三、盾构机姿态控制一般细则
❖ 1、在一般情况下,盾构机的方向偏差应控制 在20mm/m之内,在缓和曲线段及园曲线段, 盾构机的方向偏差量应控制在30mm/m以内, 曲线半径越小,控制难度越大。
❖ 这将受到设备状况,地质条件和施工操作等 方面原因的影响。当开挖面图提交均匀或软 硬上下相差不大时,保持盾构机轴线与隧道 设计轴线平行较容易。方向偏角应控制在 5mm/m以内,特殊情况下不宜超过10mm/m; 否则,会因盾构急转弯过急造成盾尾间隙过 小破坏盾尾刷和管片错台破裂漏水。
❖ 一、姿态控制
❖ 1、姿态控制基本原则
❖ 以隧道轴线为目标,根据自动测量显示的 轴线偏差和偏差趋势,把偏差控制在设计范 围内,同时在掘进过程中进、盾构机方向控制
❖ 通过分组油缸的推进力和推进行程从而实 现盾构的左转、右转、抬头、低头和直行。
❖ 1)改变刀盘旋转方向
❖ 2)改变管片拼装左右交叉先后顺序
❖ 3)调整两腰推进油缸轴线,使其与盾构机轴 线不平行。
❖ 4)当旋转量较大时可在切口环和支撑环内单 边加压重
❖ 2、盾构机上下倾斜和水平倾斜 ❖ 1)倾斜量应控制在2%以内 ❖ 滚动角应控制在10mm/m,滚动角太大,盾构
机不能保持正确的姿态,影响管片的拼装质 量。可通过反转刀盘来减小刀盘的滚动角 ❖ 2)通过应用盾构千斤顶逐步纠正 ❖ 如果盾构机向右偏,可提高右侧千斤顶的推 力;反之亦然,如果盾构机向下偏,则提高 下部千斤顶的推力;反之亦然。
盾构技术 姿态控制要点
2
目录
盾构姿态控制目标 直线掘进姿态控制 曲线掘进姿态控制
3
4
姿态控制目标
验收规范规定最大偏差目标: 水平:±50mm 高程:±50mm
5
姿态控制目标
• 纠偏原则:
(1)偏离量增加之前及早修正。 (2)勤纠、量小。 (3)遵循偏离量的管理值和允许值。 (4)确保管片质量和盾尾间隙。
• ⑵ 控制管片水平移动和侵限 • ①进入缓和曲线段时,将盾构机姿态往曲
线内侧(靠圆心侧)偏移20~40mm,形 成反向预偏移,这样可以抵消之后管片的 往曲线外侧(背圆心侧)的偏移。
40
盾构曲线掘进姿态控制
小半径曲线段盾构推进轴线预偏示意图
41
盾构曲线掘进姿态控制
• ②减小油缸推力。 • 在砂质地层中要加强渣土改良,总推力
33
盾构曲线掘进姿态控制
图中箭头为盾尾及千 斤顶对管片的作用力
34
盾构曲线掘进姿态控制
管片形成轴线与设计轴线模拟
直线管片
楔形管片 直线管片
短直线
允许误差
施工轴线 设计轴线
35
盾构曲线掘进姿态控制
• ⑶ 管片之间易发生错台。管片易产生开 裂和破损,严重者漏水。
• 管片存在一个水平方向的受力,不但会使 整段隧道衬砌管片发生水平偏移(即前面 所叙的侵限现象),还会导致管片之间发 生相对位移,形成错台。由于管片的特殊 受力状态,管片与管片之间存在着斜向应 力,使得前方管片内侧角和后方管片外侧 角形成两个薄弱点如下图,使得相当多的 管片因此破裂。还有一个破裂原因就是因 为相邻两环管片产生了相对位移,使得管 片螺栓对其附近的混凝土产生剪切作用, 使该处的混凝土开裂。
,线性最佳。 • ⑶ 趋势调节:趋势调节不能变化太大,不
盾构技术-姿态控制要点
22
盾构直线掘进姿态控制
• 4、在盾构机姿态控制中,推进油缸的行程控 制是重点。对于1.5米宽的管片,原则上推进 油缸的行程在1850mm左右,行程差控制在0~ 50mm之间。
• 5、铰接油缸的伸出长度直接影响掘进时盾 构机的姿态,故减小铰接油缸的长度差,尽 量控制在30mm以内,将铰接油缸的行程控 制在40-80mm之间为宜。
用; • ⑺ 防止相邻管片纵缝两侧受力不同
12
盾构直线掘进姿态控制
推
21 22 1
20
2
进
19
3
油
18
46
6
示
15
7
意
14
8
图
13
9
12 11 10
13
盾构直线掘进姿态控制
• 方向控制要点: • ⑴ 控制基点:以盾尾位置为控制基点 • ⑵ 调节量控制:一环掘进调节6mm较为合理
• ⑤根据曲线的特点做好管片选型; • ⑥为防止盾构机抬头以及管片上浮及
向圆曲线外侧移动,通过自动测量系 统调整盾构机姿态为:垂直方向控制 在-30~-40mm之间,水平方向应控制 在曲线内侧20~40mm之间。
39
盾构曲线掘进姿态控制
• 根据管片监测情况,如管片上浮量较大, 则垂直偏差可调整为-40~-50mm之间。 同时应加密自动测量移站频率,减少移站 后出现的轴向偏差。
步纠偏。 8、纠偏时要注意盾构机姿态,控制住设计轴
线中心±50mm以内,盾尾间隙要均匀平衡。
26
盾构直线掘进姿态控制
• 盾构姿态蛇行变化,主要是通过调整盾构 分区推力来实现的。盾构姿态调整,要在 各种地质情况下推进参数基础上,加大局 部推力或把另外两个或者三个方向的推力 降低,来调整盾构姿态。 除了通过推力调整盾构机姿态外,还可以 调整盾尾间隙,如盾尾上半部间隙小就适 当加大盾尾上半部推力,推进油缸行程和盾 尾间隙相应跟着变大。
盾构掘进纠偏的原则
盾构掘进纠偏的原则以盾构掘进纠偏的原则为标题,我将为大家详细介绍盾构掘进纠偏的原则。
盾构掘进是一种常用的地下工程施工方法,广泛应用于地铁、隧道等工程中。
然而,在盾构掘进过程中,由于地质条件、工程设计等因素的影响,可能会导致盾构机偏离预定线路,这就需要进行纠偏操作。
盾构掘进纠偏的原则主要包括以下几个方面:1. 监测与分析:在盾构掘进过程中,需要对盾构机进行实时监测,以获取准确的数据。
通过监测数据的分析,可以了解盾构机的偏移情况,确定纠偏的方向和程度。
2. 适时纠偏:盾构掘进纠偏需要在适当的时机进行。
如果盾构机偏离的程度较小,可以通过微调来进行纠偏;如果偏离较大,则需要停机进行大范围的纠偏。
在进行纠偏操作时,要保证施工安全,避免对周围结构和设备造成影响。
3. 纠偏方法:盾构掘进纠偏的方法有多种,常用的包括:调整盾构机推力和转向力的分配,通过改变推力和转向力的大小和方向来纠正偏移;调整盾构机刀盘的转速和刀具的姿态,通过改变刀盘的工作状态来纠偏;调整盾构机的土压平衡,通过改变土压平衡的方式来纠正偏移。
4. 纠偏精度:盾构掘进纠偏的精度是一个重要的指标。
在实际施工中,需要根据工程的要求和具体情况来确定纠偏的精度。
一般来说,盾构机的偏移应控制在允许范围内,不能超过设计要求。
5. 纠偏操作的安全性:在进行盾构掘进纠偏操作时,要保证施工的安全性。
操作人员需要经过专门的培训,熟悉盾构机的结构和工作原理,掌握纠偏的操作方法。
同时,要严格按照操作规程进行操作,确保施工的安全。
6. 纠偏效果的评估:盾构掘进纠偏操作完成后,需要对纠偏效果进行评估。
通过对纠偏结果的分析,可以了解纠偏的效果是否达到预期要求。
如果纠偏效果不理想,需要及时采取相应的措施进行修正。
盾构掘进纠偏的原则是保障盾构施工质量和安全的重要保证。
通过科学合理的纠偏方法和操作,可以有效地解决盾构机偏移的问题,保证地下工程的顺利进行。
同时,盾构掘进纠偏的原则也为其他地下工程的施工提供了有益的借鉴和参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土压平衡盾构机姿态控制与纠偏目录一、姿态控制 (3)1 、姿态控制基本原则 (3)2、盾构方向控制 (3)3、影响盾构机姿态及隧道轴线的主要因素 (6)二、姿态控制技术 (10)1 、滚动控制 (10)2 、盾构上下倾斜与水平倾斜 (11)三、具体情况下的姿态控制 (12)1 、直线段的姿态控制 (12)2 、圆曲线段的姿态控制 (13)3 、竖曲线上的姿态控制 (14)4 、均一地质情况下的姿态控制 (15)5 、上下软硬不均的地质且存在园曲线段的线路 (15)6 、左右软硬不均且存在园曲线段的线路 (15)7 、始发段掘进调向 (16)8 、掘进100m 至贯通前50m 的调向 (16)9 、贯通前50米的调向 (17)10 、盾构机的纠偏 (17)11 、纠偏的方法 (18)四、异常情况下的纠偏 (19)1 、绞接力增大,行程增大 (19)2、油缸行程差过大 (20)3、特殊质中推力增加仍无法调向 (20)4 、蛇形纠偏 (22)5 、管片上浮与旋转对方向的影响 (22)五、大方位偏移情况下的纠偏 (23)一、姿态控制1 、姿态控制基本原则盾构机的姿态控制简言之就是,通过调整推进油缸的几个分组区的推进油压的差值,并结合绞接油缸的调整,使盾构机形成向着轴线方向的趋势,使盾构机三个关键节,是(切口、绞接、盾尾)尽量保持在轴线附近。
以隧道轴线为目标,根据自动测量系统显示的轴线偏差和偏差趋势把偏差控制在设计范围内,同时在掘进过程中进行盾构姿态调整,确保管片不破损及错台量较小。
通常的说就是保头护尾。
测量系统主要的几个参数:盾首(刀盘切口)偏差:刀盘中心与设计轴线间的垂足距离。
盾尾偏差:盾尾中心与设计轴线间的垂足距离。
趋势:指按照当前盾构偏差掘进,每掘进1m产生的偏差,单位mm/m 。
滚动角:指盾构绕其轴线发生的转动角度。
仰俯角:盾构轴线与水平面间的夫角。
2、盾构方向控制通过调节分组油缸的推进力与油缸行程从而实现盾构的水平调向和垂直调向。
不同的盾构油缸分组不同,分组的数量越多越利于调向。
所有的油缸均自由的方式对调向最为有利。
方向控制要点:( 1 )控制要点:以盾尾位置为控制点1例如在盾构通过富水岩层中,管片己上浮和旋转,因此需要提前对盾构头部姿态作出调整,一般情况下会通过人工测量反馈一定的上浮量,将垂直姿态适当的下调一定的比例,如上浮100mm 时,需将整体姿态向下50mm 。
确保盾尾管片的姿态在控制轴线允许偏差范围内。
( 2 )调节量控制一般情况下掘进调节量5mm/m 以内较为合理,线性最佳,特殊情况下,可根据线路的转弯半径提前进行调节。
例如在左转时,进入转弯曲线前,需提前向左边进行适当的偏移。
因此主司机必须提前掌握整个线路的走向以及趋势,确保方向能够更加缓和的调整。
( 3 )趋势调节趋势一般情况下不能太大,否则会造成急于纠偏的现象,大趋势变化由大方位变化而来。
趋势要与管片银行量调整大小匹配,在管片能够调整的范围内进行调向。
也就是要跟着管片方向进行调向。
反之则容易使管片与盾尾卡死,绞接力及行程会增力口。
( 4 )油在工行程差一般情况下油在工行程差不大于50mm ,在特殊情况下油缸行程差值也不要大于60mm 。
油缸行走的差值,直接反映了调向的快慢,例如左边的油在工行程比右边的行程多行走50mm ,那么方向将向右边偏移,一般情况下调节的行走行程的差值不大于管片调形量,例如管片银行量为38mm ,那么每环最大的调节行程差控制在38mm以内较为合适,否则过快的调向会造成卡盾现象(5)铰接控制对于被动式铰接来说,铰接基本处于自由的状态,切口及盾尾的姿态趋势决定了铰接的位置状态,一般来讲,如果切口和盾尾的位置状态控制的好的情况下,则铰接的位置状态也会比较理想,如果铰接位置偏离施工轴线较小,则不需要做刻意的调整,只需要使切口保持在施工轴线附近进行推进,再控制好盾尾的姿态,则铰接也可以回到施工轴线的附近,但如果铰接偏离施工轴线比较大,则需要通过调整推进方法进行调整,一般我们采取梯形推进的方法进行调整,即以靠近施工轴线的趋势推进一段距离,然后再以平行施工轴线的趋势推进一段距离,以此方法重复进行一段距离的推进后,则铰接的位置状态一般情况下可以在较短的距离内调整到施工轴线附近。
一般情况下铰接行程在其油缸总行程的中卫左右以下,例如铰接油缸极限行程为140mm,一般情况下油缸进行控制在80mm以下较为合适,但是也不易过小,控制在30mm以上。
( 6 )速度与调向的关系掘进速度的快慢与调向也有直接的关系,在一般情况下,速度慢对调向更为有利,因此在调向困难时,一定要放慢掘进速度已确保方向可控,并且每掘进300-500mm的油在工行程,观察姿态的变化是否与调节的方向相一致。
如果行程差在增大而方向没有任何变化或向相反的方向移动,那么需立即停机并将情况及时的反馈至相关人员进行测量核定。
3、影响盾构机姿态及隧道轴线的主要因素在进行盾构法隧道施工中,由于盾构机是始终悬浮于原状土体之内的,整条隧道必须一次成型,不具有调整性。
所以在施工中必须事先分析好一些影响施工的主要因素,从而确定相应的解决方案,以保证隧道的整体成型质量,其中对盾构机姿态及隧道轴线的影响又是最主要的因素,需要进行系统地分析具体的解决。
主要包括以下几个方面:(1)随地设计轴线的影响。
隧道的总体设计除了要满足地铁运行的使用要求以外,对于盾构法施工,还应在设计中充分考虑到盾构法施工的特点,发挥盾构法施工的长处,避免一些不必要的难点,以保证施工的顺利高效进行。
对于既有的隧道轴线,应充分地对设计轴线进行系统地分析研究。
对不同的设计线型,确定具体的施工方案,主要包括:在设计轴线的基础上,结合盾构法施工的特点制定出一条指导施工的施工轴线;确定小半径施工、穿越建构筑物及河流施工、穿越不同地层施工等特殊工况的施工方案;确定具体的测量检测方案;确定轴线调整预案等。
( 2 )隧道穿越地层的地质状况的影响盾构机在掘进中,所穿越的地层直接影响到盾构机及隧道的整体受力情况,尤其是在两种不同的地层之间进行掘进中,盾构机的受力情况更加复杂,给掘进中的姿态控制造成了较大的难度,所以在施工中,要对隧道穿越地层的地质情况进行系统地分析,事先确定施工方案,以保证施工的顺利进行。
(3)隧道测量的影响在隧道掘进过程中,测量的正确性、准确性及精确性是至关重要的,它直接觉得了盾构机的掘进方向,所以在施工中应保证测量的万无一失,并经常进行复测,并对现有测量成果进行及时调整,保证隧道轴线的正确性。
对于管片上浮或旋转造成测量系统出现问题,此时主司机要密切注意油缸进程差值的变化以及线路是否正确,在发现异常时及时反馈至相关人员对测量系统进行校核,确保我们的“眼睛”是正确的。
重庆5号线就是出现过由于管片上浮和旋转引起的测量系统误差问题。
(4)隧道管片型式的影响管片的不同形式对隧道的掘进有着不同的影响,目前国内普遍的管片设计形式是有两种类型即全部采用鍥行量一样的通用环和采用标准环(直线环)、左转弯环、右转弯环的形式,一般设计方会出具隧道的整体管片排列图,但根据具体的施工情况会做出相应的调整,同时根据管片的不同拼装方式(主要有通缝拼装和错缝拼装),也应确定相应的施工方案。
( 5 )地表建构筑物等的影响隧道掘进过程中,地表的附着物(包括建构筑物及河流等)也会对盾构机及隧道的受力情况造成一定影响,需要进行具体分析,并确定相应的施工方案,保证隧道掘进的整体安全性及质量规范要求。
( 6 )设备方面的影响隧道掘进过程中是否会出现小转弯半径是设备选型方面的一个关键,因此首先要在掘进前就确定设备最小的转弯半径值以确保能够顺利通过圆曲线段。
( 7 )刀具更换的方面的影响一般情况下盾构设备的最小转弯半径曲线是要求在全盘是斤刀的情况下模拟的,因此在掘进前就要考虑刀具更换的位置确定相应的更换方案,己确保能够顺利的通过曲线段。
(8)铰接形式方面的影响不同型式的盾构机其具体的原理也是有一些微秒的差别,就土压平衡式盾构机而言,其区别主要表现在铰接型式上。
我们知道,现在的盾构机主要存在两种类型的铰接型式,一种是以日本、法国等国家生产的盾构机为代表的,采用的是主动式铰接型式,俗称“死绞”,这种型式的铰接,一般设置在滚钩机的中段(我们称之为“支承环”),每组铰接油缸的液压回路是独立的,可以独立操作,一般情况下是处在锁定状态的,盾构机的前后部分在铰接锁定状态下采用螺栓及销轴的机械连接,盾构机的前后部分不会产生相对的运动,是一个固定的整体,就像没有铰接一样,只有在盾构机偏离轴线较大或处于小半径曲线的掘进中,才有必要打开铰接,但铰接的打开度需要提前计算打开角度,然后按计算值将铰接打开到所设定的角度后,讲铰接锁定,然后再进行推进。
这种铰接型式在进行直线段隧道的掘进的施工中是比较有利的,操作人员在施工中可以不用考虑铰接的姿态位置,盾构机的纠偏操作也比较简单易行,在与轴线的偏差值不是特别大的情况下,可以非常有效的控制盾构机的姿态,盾构机在覆土内的运行也比较稳定,基本不会产生较大的切口上浮及下沉,但在进行小半径曲线段施工的过程中,这种铰接型式就存在机动性能不好,纠偏效果不好等弊端,并且在盾构机与轴线偏差值较大的情况下,盾构机的纠偏会比较困难,并且会使盾构及管片局部受力,造成盾构机或者管片的损伤,影响管片的成环质量以及工程的整体质量;另一种是以德国生产的盾构机为代表的,采用的是被动式铰接型式,俗称“活铰”这种型式的铰接,一般设置在盾构机的前段与盾尾的连接处,魅族铰接油缸的液压回路是互相联通的,保持有相同的油缸压力,在推进的过程中可以进行“放松”和“拉紧”的操作,一般情况下处于“锁定”状态下,但其锁定状态与主动铰接的锁定有着本质上的区别,不是靠硬性机械连接,而是靠闭合液压回路的进出油路来起到锁定作用,每组铰接油缸的液压回路还是保持互相连通,受外力较大的铰接油缸行程会相应的逐渐伸长,受外力较小的铰接油缸行程会相应缩短,这种铰接型式,可以非常有效的起到保护管片的作用,可以适应各种型式的掘进轴线要求,具有较高的机动性,比较适应较大的变坡以及小半径隧道的施工工况,能够有效的保证管片的成环质量及隧道的整体质量,然而,由于盾尾始终处于游离状态,所以盾尾的姿态主要取决于管片的姿态,操作手在进行盾构姿态调整中,只能对其切口的高程及平面进行调整,所以如果要将盾构机的姿态调整到理想的状态,就要综合考虑切口、铰接、盾尾以及管片的相对姿态与位置,对操作手的综合素质有较高的要求,同时由于铰接部位的频繁运动,会造成铰接密封部件的较大磨损,很容易造成盾构机铰接部位密封件损坏以及的漏水漏浆,影响掘进工作的正常进行。
由于被动式铰接盾构机的姿态控制存在较高的技术要求,如果控制好的话会得到比较好的效果。