第五章梁的应力
梁的应力计算公式全部解释

梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。
在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。
梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。
梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。
在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。
下面将分别对这三种类型的应力计算公式进行详细解释。
1. 弯曲应力计算公式。
梁在受到外部力的作用时,会产生弯曲应力。
弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。
其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。
弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。
2. 剪切应力计算公式。
梁在受到外部力的作用时,会产生剪切应力。
剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。
其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。
剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。
3. 轴向应力计算公式。
梁在受到外部力的作用时,会产生轴向应力。
轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。
第五章 受弯构件——梁

§5-1 梁的类型和应用
一、梁:实腹式受弯构件,承受横向荷载。
梁的截面内力:弯矩和剪力。 二、梁的类型 (1)型钢梁:热轧型钢梁、冷弯薄壁型钢梁 (2)组合梁: 实腹式梁 格构式梁——又称为桁架
三、梁格类型
梁格:由纵横交错的主梁和次梁组成的平面承重
体系。 梁格按主次梁的排列方式分为三种类型: (1)单向梁格(简式梁格):只有主梁,适用于柱 距较小的情况。 (2)双向梁格(普通式梁格):有主梁和一个方向 的次梁,次梁支撑在主梁上。是最常用的梁格类型。 (3)复式梁格(复杂梁格):在主梁间设纵向次梁, 纵向次梁间再设横向次梁的梁格。梁格构造复杂,传 力层次多,只在必要时才采用。
取最大弹塑性弯矩 Mx max =γx Me , (1.0≤γx<γF)
则梁的弹塑性工作弯矩
Mx≤Mx max=γxMe=γxWnx fy
即
Mx/(γxWnx) ≤ fy
梁的抗弯强度计算公式:
(1)单向弯曲时
Mx/(γxWnx)≤f
(2)双向弯曲时
Mx/(γxWnx)+My/(γyWny)≤f
式中γx、γy----截面塑性发展系数。 按142(董218)页表5-1取用。
对翼缘局部稳定不利,应取γx=1.0。
二、梁的抗剪强度
根据《材料力学》的剪力流理论,以截面的
最大剪应力不超过剪切屈服点为设计准则。
梁的抗剪强度计算公式:
截面中性轴处
Hale Waihona Puke τ=VSx / (Ixtw) ≤ fv
三、梁的腹板局部压应力强度
梁在承受固定集中荷载处无加劲肋, 或承受移动 集中荷载(如轮压)作用时, 腹板边缘在压力作用点处压应力最大, 向两边逐渐减小。
材料力学第五章 弯曲应力分析

B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)
《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
第五章梁的应力

y
ρ
σmin M
σmax
σmax
材料力学
3.静力关系 3.静力关系
M O dA y
z
第五章 梁的应力
FN = σdA = 0 ∫A M y = ∫AzσdA = 0 M z = ∫ yσdA = M A E ∫ σ dA = ∫ ydA = 0
A
z(中性轴 中性轴) 中性轴
x
[σc ] = 60MPa ,试校核梁的强度。 试校核梁的强度。
材料力学
52
第五章 梁的应力
解:(1)求截面形心 z1 z
yc =
80 × 20 × 10 + 120 × 20 × 80 = 52mm 80 × 20 + 120 × 20
(2)求截面对中性轴z的惯性矩 求截面对中性轴z
80 × 203 Iz = + 80 × 20 × 42 2 12 20 × 1203 + + 20 ×120 × 282 12 = 7.64 ×10 −6 m 4
A
a
C
B
l
1 2) M max = FL = 17.8kN • m 4 M max 17.8 × 103 σ max = = = 126 × 106 Pa = 126MPa < [σ ] Wz 141×10 −6
材料力学
第五章 梁的应力
例5-3-4:T型截面铸铁梁,截面尺寸如图,[σt ] = 30MPa 型截面铸铁梁,截面尺寸如图,
材料力学
第五章 梁的应力
所示为横截面如图b所示的槽形截面铸铁梁 例5-3-5:图a所示为横截面如图 所示的槽形截面铸铁梁,该 : 所示为横截面如图 所示的槽形截面铸铁梁, 截面对于中性轴z 的惯性矩I 已知图a中 截面对于中性轴 的惯性矩 z=5493×104 mm4。已知图 中, × b=2 m。铸铁的许用拉应力 σt]=30 MPa,许用压应力 σ c]=90 。铸铁的许用拉应力[σ ,许用压应力[ MPa 。试求梁的许可荷载 。 试求梁的许可荷载[F]。
工程力学5

B
l Fl
| M |max Fl 1.2 F N m
查附录型钢表3,
x
4 3
Wz 185cm 1.85 10 m
3
M
由: 得: 故:
M max Wz
1.2F (1.85 104 ) (170 106 )
[ F ]max
185 170 26.2kN 1.2
* N2 * N1
* * 得 dFS=FN F 2 N1
其中 dFS= bdx
* FN 2 dA Ay
* FN 1
M dM y1dA Ay Iz M dM y1dA Ay Iz
Ay
* FN 2
M dM Sz Iz
M F Sz Iz
* N1
dFS
p
(4)由于y、z轴就是横截面的形心主轴,从而可得到启示:当横 截面没有对称轴时,只要外力偶作用在形心主轴之一(例如 y轴)所构成的纵向平面内,上述公式仍适用。 (5)对于用铸铁、木材以及混凝土等材料制成的梁,在应用上述
公式时,都带有一定的近似性。
例5-1 T形截面外伸梁尺寸及受力如图所示。已知横截面对中性轴
§5-2
横力弯曲时梁的正应力及其强度条件 梁的合理截面
q
一.横力弯曲时梁的正应力及其强度条件
q b
M ( x)
z h
l
y
b
Fs ( x)
由于τ的存在,横截面发生翘曲(§5-3)。平面假设不成立, 且还有沿y的挤压正应力。 由弹性力学结果表明,当l/h≥5时,用(5-2)式计算跨中截面的 最大正应力,其误差≤1.07%。所以工程中仍用纯弯曲时的正应 力公式,计算横力弯曲时的正应力。但要注意,横力弯曲时, 弯矩是x的函数,所以
材料力学第5章弯曲应力

M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1
第五章 弯曲应力

第五章弯曲应力§5-1 梁弯曲正应力§5-2 惯性矩计算§5-3 梁弯曲剪应力*§5-4 梁弯曲时的强度计算§5-5 塑性弯曲的概念*§5-6 提高梁抗弯能力的措施§5-1 梁弯曲正应力一、梁弯曲时横截面上的应力分布一般情况下,梁受外力而弯曲时,其横截面上同时有弯矩和剪力两个内力。
弯矩由分布于横截面上的法向内力元σdA所组成,剪力由切向内力元τdA组成,故横截面上同时存在正应力和剪应力。
MσdAτdA Q当梁较长时,正应力是决定梁是否破坏的主要因素,剪应力则是次要因素。
二、弯曲分类P P a aAC DB ACD +−BC D+P PPa 梁AC 、BD 段的横截面上既有剪力又有弯矩,称为剪切弯曲(横力弯曲)。
CD 段梁的横截面上只有弯矩而无剪力,称为纯弯曲。
此处仅研究纯弯曲时梁横截面上正应力与弯矩的关系。
三、纯弯曲实验1.准备A BC DE F G H 在梁侧面画上AB 、CD 、EF 、GH 四条直线,且AB ∥CD 、EF ∥GH。
在梁两端对梁施加纯弯矩M 。
A B C D E F G H M MA BC DE F G H 2.现象•变形后横向线AB 、CD 发生了相对转动,仍为直线,但二者不再平行;仍与弧线垂直。
•纵向线EF 、GH 由直线变成曲线,且EF 变短,GH 变长;•曲线EF 、GH 间的距离几乎没有变化;•横截面上部分沿厚度方向变宽,下部分变窄。
3.假定•梁的任意一个横截面,如果在变形之前是平面,在变形后仍为平面,只是绕截面的某一轴线转过了一个角度,且与变形后的轴线垂直。
——平截面假定。
•梁上部分纤维受压而下部分纤维受拉,中间一层纤维既不受拉也不受压,这一层叫中性层或中性面。
•中性层与横截面的交线叫中性轴。
梁弯曲变形时横截面绕中性轴转动。
中性层纵向对称面中性轴•梁的纵向纤维之间无挤压力作用,故梁的纵向纤维只受拉伸或压缩作用——单向受力假设。
材料力学《第五章》弯曲应力

1
2
c
O1
d
O2
a
1 1 2
b
2
M
d
O2
c
O1
a
1
b
2
O z y
由变形的连续形可知:
从伸长到缩短的过程中,必存在一 层纵向纤维既不伸长也不缩短,保 持原来的长度。 中性层:由既不伸长也不缩短的纵 M 向纤维组成。 中性轴:中性层与梁横截面的交线。 中性轴垂直于梁横截面的纵向对称轴。 a
1
1
2
c
O1
d
O2
a
1 1 2
b
2
M
d
O2
c
O1
b
2
3. 在伸长区,梁宽度减小, 在缩短区,梁宽度增加。 与轴向拉、压时变形相似。
上海交通大学
O z y
二、假设 1. 梁弯曲平面假设 梁弯曲变形后,横截面仍保持为平 面,并仍与已变弯后的梁轴线垂直, 只是绕该截面内某轴转过一个微小 M 角度。 2. 单向受力假设 设想梁由许多层纵向纤维组成,弯 曲时各纵向纤维处于单向受拉或单 向受压状态。 由实验现象和假设可推知: 弯曲变形时: 靠近梁顶面的纵向纤维受压、缩短; 靠近梁底面的纵向纤维受拉、伸长。
O1Biblioteka 1dqr2
O2
M
a
1
y
b
2
中性层下方,y 为正值, s 也为正值,表示为拉应力; 中性层上方,y 为负值, s 也为负值,表示为压应力。 y =0 (中性轴上),s = 0 ; y |max (上、下表层), s max 。
由(b)式可得s 的分布规律,但因r 的数值未知,中性轴的位置未确定, y 无从算起,所以仍不能计算正应力,用静力学关系解决。
材料力学第五章 弯曲应力

F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx
* 式中 S z
A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。
第五章梁(受弯构件)

选定高度:hmin≤h≤hmax;h≈he,并认为h0≈he
3、确定腹板厚度(假定剪力全部由腹板承受),则有:
max
VS I xtw
1.2 V h0tw
fV
或按经验公式: tw h0 3.5
tw
1.2
V h0 fV
3、确定翼缘宽度 确定了腹板厚度后,可按抗弯要求确定翼缘板面积Af,已
工字型截面为例:
V1
ctw
T
lztw
tw
T
lz
( T1 2 0.7hf
)2
(
f
V1 2 0.7hf
)2
f
w f
1
hf
1.4
f
w f
T12
( V1
f
)2
第六章 拉弯与压弯构建
第一节 概述 第二节 拉弯与压弯构件的强度与刚度 第三节 实腹式压弯构件的整体稳定 第四节 实腹式压弯构件的局部稳定 第五节 实腹式压弯构件的截面设计 第六节 格构式压弯构件
根据验算结果调整截面,再进行验算,直至满足。
二、组合梁的截面设计
1、根据受力情况确定所需的截面抵抗矩
WT
M max
x f
2、截面高度的确定
最小高度:hmin由梁刚度确定;
最大高度:hmax由建筑设计要求确定;
经济高度:he由最小耗钢量确定;
he 25 WT2 2WT0.4
he 23 W T 30mm
W
2I h
2
twh03
h 12
2
Af
h0 2
t
2
WT
Af
WT h0
h0tw 6
有了Af ,只要选定b、t中的其一,就可以确定另一值。 4、截面验算
第五章 应力、应变测试

应力、应变测试方法
应力测试系统
应变片
电桥盒
应变仪
记录仪
应变片——能将试件上的应变变化转换成电阻变化的传感元件,其转 换原理基于金属电阻丝的电阻应变效应
电桥盒——将电阻微小的变化进行处理的测量电路。
应变仪——用于将电桥的输出信号进行放大的高增益放大器。应变仪 还具有阻抗变换的作用。
电阻应变片的结构及分类
应变片的结构
电阻应变片的结构及分类
应变片的分类
金属应变片 应变片
体型
丝式 箔式
薄膜型 体型
半导体应变片 薄膜型 扩散型
PN结及其他形式
电阻应变片的结构及分类
应变片的粘贴
应变片的粘贴工艺
粘贴应变片位置的选择
应变片应贴在零件变形最大(即应力最大)和需要测试的地方。
被测零件表面处理
清理零件的表面 清洗被测零件表面上油污等等。 打磨 焊片 再次清洗 画粘贴应变片的定位线
应变片的粘贴
应变片检查
外观检查 电阻值检查
修整应变片
在应变片的覆盖片上标出中心线。 在室外试验时,预先可在应变片的引出线上焊接一根较细软 的长度约100、150mm 的短导线,以便固定应变片。
应变片的粘贴
应变片粘贴质量检查
外观检查:用放大镜观察粘合层是否有气泡。 电阻值检查 绝缘电阻检查:
引出线的固定保护 应变片的防潮处理
电阻应变片的特性及应用
电阻值R
应变片的阻值指应变片没有粘贴也不受力时,在室温下测定 的电阻值。应变片阻值也有一个系列,如60Ω、120Ω、350Ω、 600Ω和1000Ω,其中以120Ω最为常用。阻值大,承受电压大, 输出信号大;但同时敏感栅尺寸也大。
梁应力强度计算

第五章 平面弯曲梁的强度
内容: 梁的应力、强度计算
τ→FS
z
dA
FS y
σ→M
M
z
dA
dA
y
M =∫yσσd
A
§5.1 梁的正应力
一、纯弯曲梁横截面上的正应力
F
F
a
l
a
FS F
M
x
F Fa
x
FS M
纯弯曲梁
Me
l
x
Me
450×0.03 2×45×10-9
=150
MPa
(-)
习题5-13 当20号槽钢受纯弯曲变形时,测出A、B两点间长度
Δl=27×10-3mm,材料的E=200GPa。试求梁截面上的弯矩M。
解:
50
5
M
AB
M
●
●
ε=
Δl l
=
27×10-3 50
=5.4×10-4
σ=Eε=200×109×5.4×10-4=108MPa
BC段: d2 ≥ 3
32×455×103 π140×106
= 321 mm
取: d1=250mm d2=322mm
例11. 已知:[σ]=160MPa,[τ]=100MPa,
试选工字钢梁的型号。
解: Fsmax=6kN
1.σ计算:
σmax =
M max Wz
≤ [σ]
M max = 8 kN • m
=
1 2
qab+
1 8
qb2
=
0.02375q
N
•
m
第五章 弯曲应力

28.8 106 Pa
28.8MPa
Z
cC
M
B
y 2
Iz
2.5103 N m 52 10-3m 7.6410-6 m4
17.0 106 Pa
17.0MPa
3)计算B截面上的最大拉应力和最大压应力
cB
M
B
y 2
Iz
4 103 N m 8810-3m 7.6410-6 m4
目录
第五章 弯曲应力\梁横截面上的正应力
5.2. 2 横力弯曲时横截面上的正应力
横力弯曲时梁横截面上不仅有正应力,而且有切应力。由于切 应力的存在,梁变形后横截面不再保持为平面。按平面假设推导出 的纯弯曲梁横截面上正应力计算公式,用于计算横力弯曲梁横截面 上的正应力是有一些误差的。但是当梁的跨度和横截面的高度的比 值 l >5时,其误差甚小。因此,纯弯曲时横截面的正应力计算公
5.2.1 纯弯曲时梁横截面上的正应力
1. 横截面上正应力的计算公式
研究梁横截面上正应力的方法与 研究圆轴扭转时横截面上切应力所用 的方法相似,也须综合研究变形的几 何关系、应力与应变间的物理关系以 及静力平衡关系。
1) 变形的几何关系 取截面具有竖向对称轴(例如
矩形截面)的等直梁,在梁侧面画 上与轴线平行的纵向直线和与轴线 垂直的横向直线,如图a所示。然后 在梁的两端施加外力偶Me,使梁发生 纯弯曲(图b)。此时可观察到下列 现象:
上式是研究梁弯曲变形的基本公式。由该式可知,EIz越大,曲
率半径越大,梁弯曲变形越小。EIz表示梁抵抗弯曲变形的能力,
称为梁的弯曲刚度。
将上式代入式 σ E y ,得 My
第五章 弯曲应力知识讲解

第五章弯曲应力第五章 弯曲应力内容提要一、梁的正应力Ⅰ、纯弯曲和横力弯曲纯弯曲:梁横截面上的剪力为零,弯矩为常量,这种弯曲称为纯弯曲。
横力弯曲:梁横截面上同时有剪力和弯矩,且弯矩为横截面位置x 的函数,这种弯曲称为横力弯曲。
Ⅱ、纯弯曲梁正应力的分析方法:1. 观察表面变形情况,作出平面假设,由此导出变形的几何方程;2. 在线弹性范围内,利用胡克定律,得到正应力的分布规律;3. 由静力学关系得出正应力公式。
Ⅲ、中性层和中性轴中性层:梁变形时,其中间有一层纵向线段的长度不变,这一层称为中性层。
中性轴:中性层和横截面的交线称为中性轴,梁发生弯曲变形时横截面就是绕中性轴转动的,在线弹性范围内,中性轴通过横截面的形心。
中性层的曲率,平面弯曲时中性层的曲率为()()1zM x x EI ρ=(5-1) 式中:()x ρ为变形后中性层的曲率半径,()M x 为弯矩,z EI 为梁的弯曲刚度。
(5-1)式表示梁弯曲变形的程度。
Ⅳ、梁的正应力公式1. 横截面上任一点的正应力为zMyI σ=(5-2)正应力的大小与该点到中性轴z 的距离y 成正比,试中M 和y 均取其绝对值,可根据梁的变形情况判断σ是拉应力或压应力。
2. 横截面上的最大正应力,为maxmax z My I σ=(5-3) maxzz I W y =(5-4) z W 为弯曲截面系数,对于矩形、圆形和弯环截面等,z W 的公式应熟记。
3. 弯曲正应力公式的适用范围:1)在线弹性范围内()p σσ≤,在小变形条件下的平面弯曲弯。
2)纯弯曲时,平面假设成立,公式为精确公式。
横力弯曲时,平面假设不成立,公式为近似公式,当梁的跨高比5lh≥时,误差2%≤。
Ⅴ、梁的正应力强度条件 拉、压强度相等的等截面梁[]maxmax zM W σσ=≤ (5-5) 式中,[]σ为料的许用正应力。
当梁内,max ,max t c σσ≠,且材料的[][]t c σσ≠时,强度条件应为[],max t t σσ≤,[],max c σσ≤Ⅵ、提高梁正应力强度的措施1)设法降低最大弯矩值,而提高横截面的弯曲截面系数。
第五章 弯曲应力

三类条件
物理关系
静力关系
1.变形几何关系
m a
n
a
m a o b m
n a o dx
b m
dx
b n
b n
假设oo层为中性层 变形前:aa = bb = oo = dx
m M a
o b m
n a M M
d M
dx
o b n
m o
b′
n o
b′
m
n
变形后:假设中性层oo层变形后的曲率半径为,则
max
M [ ] Wz max
(2) 设计截面尺寸
(3) 计算许用载荷
M Wz [ ]
M max Wz [ ]
例2. T形截面铸铁梁,已知[σt]=30MPa,[σc]=60MPa, 试 80 校核梁的强度。
9kN
A 1m
4kN
B D 1m
20
CLeabharlann 1m120讨论: 1.横截面是绕中性轴转动。 (中性层不伸长也不缩短,中性轴是中性层与横截
面的交线 。) 上部受压
当M > 0时 下部受拉 上部受拉 下部受压
当M < 0时
讨论: 2.纵向纤维的伸长或者缩短与它到中性层的
距离成正比。
m
n′
n a
y
a
y
b m
b
中性层 n′
中性轴 横截面
n
定量分析
与圆轴扭转问题相似,弯曲问题的理论分析也 必须包含三类条件。 变形几何关系
结论: 1.横截面上只存在正应力。
(纵向线与横向线保持直角。)
2.正应力分布不是均匀的。
(纵向线中既有伸长也有缩短的。)
材料力学课件第五章 弯曲应力

MI = RA ×200×10 = 23.6×200×10 = 4.72kN⋅ m= Mm ax
−3 −3
MIV = RB ×115×10−3 = 27×115×10−3 = 3.11kN⋅ m
可能的危险截面: 截面, 截面, 可能的危险截面: I-I截面,II-II截面,III-III截面 截面 截面 截面
※一般实心截面细长梁: 最大正应力强度是梁强度的控制因素 一般实心截面细长梁:
Mm ax ≤[σ] W z
※如下情况,需特别校核剪应力: 如下情况,需特别校核剪应力: a) 自制薄壁截面(组合截面)梁: ) 自制薄壁截面(组合截面) b)梁跨度较小 ) c)支座附近有较大集中力 )
简支梁L=2m,a=0.2m。梁上载荷为 例 5.5:图示 简支梁 : 。 q=10kN/m,P=200kN。材料许用应力为 。材料许用应力为[σ]=160MPa, , [τ]=100MPa 。试选择适用的工字钢型号。 试选择适用的工字钢型号。 解: 一、作Q、M图 、 图
m m m m
(三)梁横截面上各点变形规律 三 ①中性层 ②中性轴 ③变形规律
m b x
y b dx
m z y
∵b b′ = ( ρ + y)dθ = ρdθ + ydθ
'
b'b′ − dx = ydθ ∴ε x = dx dx
=
y
b dx
b
dθ
ρ y b’
ρ
b’
∴ε x =
y
ρ
(1)
m b x
例5.2 卷扬机卷筒心轴的材料 为45钢,弯曲许用应力 = 钢 弯曲许用应力[σ] 100MPa,心轴的结构和受力 , 情如图所示。 情如图所示。P = 25.3kN。试 。 校核心轴的强度。 校核心轴的强度。 画心轴计算简图: 解: 一、画心轴计算简图: 求支反力: 二、求支反力:由整体平衡
材料力学第五章

例5-2 求图5-9所示简支梁各截面内力,并作内力图。 (a)
(c) (d)
(b)
图5-9
(e)
解 (1)求约束力。注意固定铰 A 处 FAx 0 ,故梁 AB 受力如图 5-9(a) 所示。
材料力学
第五章 弯曲内力与强度计算
一 平面弯曲的概念与实例
二 梁的内力——剪力与弯矩
三
剪力图与弯矩图
四
载荷集度、剪力与弯矩间的关系
五
纯弯曲时梁横截面上的正应力
六
梁的弯曲正应力强度条件及其应用
七
弯曲切应力
八
提高梁的弯曲强度的措施
第一节 平面弯曲的概念与实例
直杆在垂直于其轴线的外力或位于其轴线所在平面内的外力偶作用下, 杆的轴线将由直线变成曲线,这种变形称为弯曲。承受弯曲变形为主的杆 件通常称为梁。
(a)
(b) (c)
图5-12
解 (1)由静力平衡方程求出支座约束力。
FA
Me L
(方向向上)
FB
Me L
(方向向下)
(2)列剪力方程和弯矩方程。
FS ( x)
FA
Me L
(0 x L)
(a)
由于力偶在任何方向的投影皆等于零,所以无论在梁的哪一个横截面上,
剪力总是等于支座约束力 FA (或 FB )。所以在梁的整个跨度内,只有一个剪 力方程式(a)。
设 a x2 a b ,左段受力如图 5-9(c)所示。 由平衡方程求得
FS2 FAy F 0
材料力学第五章__弯曲应力

矩(中性轴以下或以上面积对中性轴的静矩)
的比值(Iz/S),因此工程中经常采用的最大
剪应力的计算公式为:
max
bIz
FS / Smax
整理课件
3.圆截面梁的剪应力
整理课件
假设
1.假设AB弦上各点的剪 应力作用线都通过k点。
2.假设AB弦上各点剪应 力的垂直分量τy相等, 亦即假设τy沿AB弦均 匀分布。
整理课件
1、矩形截面梁弯曲剪应力
初等剪应力理论是由俄罗斯工程师茹拉夫斯基( 1844-1850)设计木梁时提出。 1856年圣维南提出精确剪应力理论。 1.矩形截面梁的剪应力 分析步骤: 1.提出假设; 2.在假设的基础上推导公式; 3.找出剪应力沿截面高度分布的规律。
整理课件整理课件来自理课件P yz Q
x
整理e课件
h
e Hh R
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
*§5.5 关于弯曲理论 的基本假设
自学
整理课件
§5.6 提高弯曲强度的 措施
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
F
S
S
* z
整理课件
I zb
整理课件
整理课件
工字钢截面:
max
Q Af
min
Af —腹板的面积。
max
结论: 翼缘部分max«腹板上的max,只计算 腹板上的max。
铅垂剪应力主要腹板承受(95~97%),且
max≈ min
故工字钢最大剪应力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
h
y
y
Wz
Iz h
b h3 12
h
b h2 6
22
Wz
Iz d
d4
64 d
d3
32
22
D d
y m a x y m a xz
y
Wz
Iz D
64
(D4 d 4) D
2
2
D 3[1 ( d ) 4 ]
32
D
纯弯曲梁段横截面上的正应力
当 l/h5时,横截面上的剪力对正应力 分布和最大值的影响一般在%以内,因此横力 弯曲时横截面上的正应力 采用下式
12
q(x )
q(x )
x 1 x 21 d2x d x
1
2
1
2
M = 1M 1 2 M + d M = M 2
1
2
M = M 1 Q QM + d M = M 2
x
x
x
x
aa b b
梁横截面上正应力的最大值: 永远出现在梁截面的上、下边缘处
ma x tma xcma xM Izmyax
令Wz
Iz ymax
则
——抗弯截面模量
M
ma x tma xcma xWz
不同梁横截面的抗弯截面模量:
b
y m a x y m a x
z
d
y m a x y m a x
(e) m
y
mn O
d
mn O1 dxO2 x aa
微段梁上处沿 轴线方 向应变为
x
m
(
y)d d
d
y ky
()
中性层处曲率半径
k 1
——曲率
()式表明,梁在纯弯曲时,其纵向纤维的线应变与纤 维距中性层的距离成正比。
. 物理关系
(f) M
纯弯曲直梁上有正应力 ,而 。若梁内的应
综合考虑:几何关系 物理关系 静力学
. 几何关系
梁横截面上的变形
(a)
纵向对称轴
mn
(b)
bb
aa mdx n
z x
O
y
( c ) m
( d ) m
( e )
中性层 梁横截面上的变形 z 规律:
m x()纵向线和,由变形
中 性 层 O y
前的直线弯曲为直线 。
m n bb
aa mn
()在变形前,与梁轴
由自重引起的的最大正应力:
m q a xM W m qz a x2 1.3 7 8 4 4110 0 3 608.0M 6 Pa
自重和荷载共同作用下的最大正应力
m am x q am q x a 8 .x 0 1 6.1 6 1 2 0 .1 6 M 8 8Pa
线垂直的横向直线和
m 变形后仍保持为直线 ,且仍与弯曲后的梁 轴线保持垂直。
O
纯弯曲直梁的受力变形的两个假设 :
() 平面假设:认为梁的横截面在弯曲后仍保 持为平面,且仍与变形后的梁轴线保持垂直。
()单向受力假设:认为梁的各纵向纤维之间没 有因纯弯曲而引起相互挤压作用,则横截面上 各点处的纵向线段均处于单向应力状态。
章梁的应力
§梁横截面上的正应力
概念:
纯弯曲与横力弯曲
横力弯曲梁段——梁的横截面上既有剪力,又有弯 矩,这种梁段叫横力弯曲梁段。
纯弯曲梁段——剪力,而弯矩常数,这种梁段称为 纯弯曲梁段。
P
P
a
a
纯弯曲梁段:段
P 计算简图A C
Q图 P Pa
M图
DB P
横力弯曲梁段: 、段
纯弯曲直梁段横截面上的正应力
危险截面应在梁段中任一截面。
利用型钢表,可查得号工字钢的截面几何性 质:
Iz 656c0m04 Wz 234cm 04
危险截面上的最大正应力
m p axM W m p z a x2337 4 1 1 53 0 0 0 616 .10 M 2 Pa
()危险截面上翼缘与腹板交界处点的正应力
发生在梁跨中截面上、下边缘处。
§ 梁横截面上的剪应力
矩形截面梁的剪应力
当梁在其纵向对称平面内受有横向荷载时, 梁的横截面上有剪力存在,相应地横截面上必 然有剪应力 。
如下图所示矩形截面梁上两截面上同一个坐标点处 的正应力值不相等(图),但两截面上的剪力值相等( 图) 。
P1
P2
P1 1 2 P 2
aM Im zp ayxa375 16305(56 261 00 2 08)11 03
14.08M 9 Pa
()考虑自重时,把自重化为均布荷载,查 型钢表中 理论重量。
由自重引起的最大弯矩:
M m q aq 8 x l2 1 8 1 .0 4 121 2 1.7 8 k4 N m (发生在梁跨中截面处)
z 力不超过材料的比例极限
x
,且材料的拉伸与压缩弹性模 量相同时,胡克定律,即得
y y
x
E
y
kEy
()
该式表明,梁横截面上任一点的正应力与该点距中性轴的 距离成正比,而且距中性轴等远处的各点正应力相等。
y
. 静力学关系
(g ) M
z
dA
x
dA
y zy
x0
N
AdA
A
E
ydA
1M
()
EzI
等直梁在纯弯曲条件下横截面上任一 式为
x
My Iz
点处正应力公
上式中
Iz Ay2dA—为梁的横截面图形对中性轴的
惯性矩; EI z —为梁的抗弯刚度。
的符号确定方法:
() 将弯矩和坐标的正负号同时代入; () 以中性层为界,变形后梁凸出边的应力必为拉应力, 而凹入边的应力则为压应力。
(c)
560 560
166
166
1 2.5
z
12.5
a
z21
ay ( m m )21
(b)
A C
D
B
1 2.5
560解 ()首先不考3 m虑梁自重6 m ,作出3梁m 的弯矩图(),有 z
(a) a
M
21
375kN .m (c)
y (m m ) (b)
M m p a 1 x 2 3 53k 7N 5 m
E
A ydA
E
Sz
0
因为
E
0Sz
0
()
My 0
M yA zd A A E yz E dA y Az E d Iy A z0 ()
由( 4I)yz0
Mz M
Mz AydA AE y2dA E Ay2dA E Iz M
x
M(x)y Iz
例题 如图()所示的简支梁为号工字型钢,截面简化尺寸 如图()所示。若梁上作用有集中力=,试求: ()不计梁自重时,该梁危险截面上的最大正应力;
()不计梁自重时,该梁危险截面上翼缘与腹板交界处点的 正应力。
P
P
PA
CP
D
B
A
C
3m D 6m
B3m
(a)
3m
M6m
3m
(a)
M
375kN .m