1-变压器
变压器保护整定原则
I D0.min
式中
——母线单相接地故障时,流过变压器的最小零序电流;
为了方便与下一级保护相配合,可选择定时限、反时限等四种时间特性。
负序过流保护整定原则
负序电流保护定值的整定按下述条件:
按躲过正常运行时不平衡电流整定,即
I(e 5-1)
式中
——变压器额定电流。
Idz.2 0.1 ~ 0.2 Ie
式中 I0H
I 0 Hdz Ie t0 Hdz
t0
或I0H
I0Hdz I0H 1+
I max
Ie 1.05
4 I0Hdz
t0 t0Hdz
当 Imax 1.05Ie时 当 Imax 1.05Ie时
——低压变压器高压侧零序电流倍数;
——高压侧零序电流动作值(倍);
——低压变压器额定电流(A);
锁判别,故设置差动速断保护,提高变压器严重内部短路时保护动作速度。因此,差动速断保护整定
值应躲过外部短路时最大不平衡电流和空投变压器时最大可能的励磁涌流。一般差动速断保护的动作
电流可取4~8倍变压器额定电流,即
式中
——变压器的额定电流;
Isdzd 4 ~ 8 Ie
Ie
——保护装置的动作电流。
(1-1)
电流速断保护整定原则
电流速断保护的动作电流可按下列两个条件来选择:
(1)躲过厂用变压器负荷侧母线上短路时流过保护装置的最大短路电流。
动作电流整定为:
(1-1)
Isd=Kk×IDmax
式中 Kk——可靠系数,一般取1.3~1.4;
IDmax——最大运行方式下,厂用变压器负荷侧母线上三相短路时,流过保护 的最
1.25
I d 2.min
S11变压器型号参数
1698
1230×818×1498
SCB11-500
1.015
4.879
1.8
52
1986
1280×818×1587
SCB11-630
1.176
5.873
1.6
52
2582
820×1000
1600×1010×1530
2030×1360×1850
SCB11-800
1.330
6.953
1.6
6.0
54
810
1190×610×1355
S11-200/10
200
325
2600
0.9
585
180
935
1220×660×1400
S11-250/10
250
395
3050
0.8
665
200
1050
660
1240×690×1440
S11-315/10
315
475
3650
0.8
760
215
1195
1255×815×1495
6
6.3
10
±5%
0.4
Y.yn0
100
600
2.1
85
160
355
400×400
1010×780×1130
S11-M-50/10
50
130
870
2.0
100
225
450
400×400
1100×790×1150
S11-M-63/10
63
150
1040
1.9
105
260
电机与拖动大学课程 第三章 变压器1
变压器是一种静止的电气设备, 通过电磁耦合作用,把 电能或信号从一个电路传递到另一个电路。通常用来改变 电压的大小,故叫变压器,有时用于电气隔离。
分类
本章学 习重点
电力变压器(升压、降压、配电)
按用途
特种变压器(电炉、整流)
仪用互感器(电压、电流互感器、 脉冲变压器,阻抗匹配变压器)
(2)额定电压U1N/U2N U1N为额定运行时原边接线端点间应施加的电压。U2N为原边施
加额定电压时副边出线端间的空载电压。单位为V或者kV。三 相变压器中,额定电压指的是线电压。指有效值。
(3)额定电流I1N/I2N 是变压器在额定容量和额定电压下所应提供的电流,在三相变 压器指线电流。单位为A/kA。指有效值。
考虑漏磁通和原边绕组的电阻时,变压器空载运行时相 量形式表示的电压平衡方程式:
U1 I0R1 (E1 ) (E1) I0R1 jI0 x1 (E1)
I0 (R1 jx1 ) (E1) I0Z1 (E1)
U20 E2
R1:原边绕组电阻;
Z1=R1+jX1σ为原边绕组漏阻抗
五、空载运行的等效电路和相量图
E2m N2m
有效值:
E2 E2m / 2 4.44 f1N2m
相量表示:
E2 j4.44 f1N2m
.
m
.
. E2 E1
变压器中,原、副绕组电动势E1和E2之比称为变压器 的变比k.
k E1 4.44 N1 f1 m N1 E2 4.44 N2 f1 m N2
由于.
U1 E1 U2 E2
变压器原边接在电源上, 副边接上负载的运行情况,称为负载 运行。
一、物理过程
变压器接通负载 副边电流 副边磁势 原边电动势改变 原边电流改变
一起变压器低压绕组匝间短路故障分析
一起变压器低压绕组匝间短路故障分析叶 芳 朱旻哲(苏州供电公司)摘 要:介绍了一起110kV变压器短路故障,结合油中溶解气体分析、单相低电压空载、变比、绕组直流电阻、解体检查详细分析了故障原因,最后给出相关对策及建议,以供同行参考。
关键词:变压器;油中溶解气体;匝间短路;空载试验;直流电阻0 引言电力变压器作为变电站最主要的电力设备之一,其状态、性能与电力系统运行的安全性、可靠性和稳定性直接相关。
近年来随着电力系统容量的增长,电力变压器的数量日益增多,变压器故障的数量也有上升趋势,其中变压器短路故障就是十分常见的一种。
文献[1]针对某220kV变压器在下级输出线路相间短路故障切除后重瓦斯保护动作的问题,通过诊断性试验及返厂解体,判断半截油道垫块引起线圈局部绝缘薄弱,匝间短路最终造成重瓦斯保护动作。
文献[2]对一起500kV变压器主变短路故障的原因进行了分析,并详细介绍了故障概况、试验结果及分析过程,提出了相应的处理措施和预防措施。
本文就一起110kV变压器低压绕组匝间短路故障,结合油中溶解气体、单相低电压空载、变比、绕组直流电阻、解体检查详细分析了故障原因。
1 故障实例1.1 故障描述2022年8月18日下午17: 30左右, 110kV某变电站#3主变轻瓦斯、重瓦斯保护动作发生跳闸。
故障变压器为某电力变压器有限公司产品,型号SZ10-50000/110,接线组别YNd11,额定电压110+5-3×2%/10.5kV, 2017年7月投运,铭牌信息如表1所示。
投运前该变压器的各项电气试验、油化试验结果均正常,本体瓦斯继电器校核结果合格。
表1 故障变压器铭牌信息1.2 分析处理根据故障现象,从气体继电器的动作原理分析,当变压器内部出现匝间短路、绝缘损坏、接触不良、铁心多点接地等故障时,都将产生大量的热能,使油分解出可燃性气体,向储油柜方向流动。
当气体沿油面上升,聚集在气体继电器内超过一定量,将造成轻瓦斯保护动作。
变压器S11系列的铁损和铜损
变压器的损耗包括两部分:铁损和铜损。
(1) 铁损:变压器的铁损包括磁滞损失与涡流损失两部分,但在变压器的测试中,只需要知道变压器总的铁损,而不必分别测出磁滞损失与涡流损失。
变压器在空载情况下所取得的功率都消耗于铁损和原绕组的铜损,而原绕组的铜损由于空载时对应的电流很小,所以与铁损相比铜损就微不足道了,因此变压器空载时所消耗的功率可以近似的认为是铁损。
(2) 铜损变压器的铜损分为两部分:原绕组的铜损和副绕组的铜损。
在一个给定的变压器中,铜损仅与变压器的负载有关,测量变压器铜损是通过短路实验来测定的,在短路实验中,将变压器的低压端绕组短接,而给另一个绕组加上适当小的电压,使通过两个绕组的电流都等于额定值,称为短路电压,因为短路电压很低,此时变压器的铁损可以忽略不计,此时测得的功率即可认为是变压器在额定状态下的铜损。
简介:负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器。
将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比。
关键字:变压器1、变压器损耗计算公式(1)有功损耗:ΔP=P0+KTβ2PK-------(1)(2)无功损耗:ΔQ=Q0+KTβ2QK-------(2)(3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3)Q0≈I0%SN,QK≈UK%SN式中:Q0——空载无功损耗(kvar)P0——空载损耗(kW)PK——额定负载损耗(kW)SN——变压器额定容量(kVA)I0%——变压器空载电流百分比。
UK%——短路电压百分比β——平均负载系数KT——负载波动损耗系数QK——额定负载漏磁功率(kvar)KQ——无功经济当量(kW/kvar)上式计算时各参数的选择条件:(1)取KT=1.05;(2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%;(4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h;(5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。
变压器型号
变压器型号意义变压器(Transformer)是一种能改变电压的装置,主要是利用电磁原理。
变压器型号通常由表示相数、冷却方式、调压方式、绕组线芯等材料符号,以及变压器容量、额定电压、绕组连接方式组成。
以下是电力变压器型号所代表的含义。
D-单相S-三相J-油浸自冷L-绕组为铝线Z-又载调压SC-三相环氧树脂浇注SG-三相干式自冷JMB-局部照明变压器YD-试验用单相变压器BF(C) -控制变压器(C为C型铁芯结构DDG-单相干式低压大电流变压器注:电力变压器后面的数字部分:斜线左边表示额定容量(千伏安);斜线右边表示一次侧额定电压(千伏)。
变压器的型号和符号含义变压器型号举例说明1:SJL-1000/10,为三相油浸自冷式铝线、双线圈电力变压器,额定容量为1000千伏安、高压侧额定电压为10千伏电力变压器的型号表示方法:基本型号+设计序号--额定容量(KVA)/高压侧电压2:S7-315/10变压器即三相(S)铜芯10KV变压器,容量315KVA,设计序号7为节能型.3:scr9-500/10,s11-m-100/10S--三相 C--浇注成型(干式变压器) r缠绕型 9(11)--设计序号 500(100)--容量(KVA) 10--额定电压(KV) m--密闭型号含义: SCZ(B)9-XXXX/** SC--三相固体成型(环氧浇注) Z--有载调压 B--低压箔式线圈 9--性能水平代号 XXXX--额定容量(kVA) **--额定高压电压(按额定值填入)变压器绕组数+相数+冷却方式+是否强迫油循环+有载或无载调压+设计序号+“-”+容量+高压侧额定电压组成。
4:SFPZ9-120000/110指的是三相(双绕组变压器省略绕组数,如果是三绕则前面还有个S)双绕组强迫油循环风冷有载调压,设计序号为9,容量为120000KVA,高压侧额定电压为110KV的变压器。
5: SCB9-2000/10SC----三相固体成型(环氧浇注)B-----低压箔式线圈9-----性能水平代号2000--额定容量10----额定高压电压6:SCB9-2000/0.4~0.23 Dyn11此为干式变压器的型号表示 S是代表三相; C代表环氧树脂浇注绝缘; B配电变压器; 2000是容量KVA ; 0.4-0.23KV低压侧额定线电压、额定相电压; Dyn11 接线方式表示的是一次侧三相三角形接线,低压侧星形接线,低压侧线电压为11点,即:低压侧线电压超前高压侧线电压30度。
第五章 第一节变压器原理
(2)绕组 一般用绝缘扁铜线或圆铜线在绕线模上绕 制而成。 绕组套装在变压器铁心柱上,一般低压绕 组在内层,高压绕组套装在低压绕组外层, 以便于提高绝缘性能。
(3)油、油箱、冷却及安全装置 器身装在油箱内,油箱内充满变压器油。 变压器油是一种矿物油,具有很好的绝缘性能。 变压器油起两个作用:①在变压器绕组与绕组、 绕组与铁心及油箱之间起绝缘作用。②变压器油 受热后产生对流,对变压器铁心和绕组起散热作 用。 油箱有许多散热油管,以增大散热面积。 为了加快散热,有的大型变压器采用内部油泵强 迫油循环,外部用变压器风扇吹风或用自来水冲 淋变压器油箱。这些都是变压器的冷却装置。
二、变压器的基本工作原理
图5.1 双绕组变压器的工作原理示意图 (1)原理图 一个铁心:提供磁通的闭合路径。 两个绕组:一次侧绕组(原边)N1,二次侧绕组(副边)N2。 (2)工作原理 当一次绕组接交流电压后,就有激磁电流i存在,该电流在铁心中可产生一个 交变的主磁通Φ。 Ф在两个绕组中分别产生感应电势e1和e2
I 0 I m I 0 I 0a
图5.9给出了对应主磁路的相量图和等效电路。
(5-12)
图5.9 变压器主磁路的相量图和等效电路
由图5.9b得:
E1 (rm jxm )I m zm I m
2
(5-13)
r 式中,m 为激磁电阻,它反映了铁心内部的损耗即: pFe I m rm ;xm Lm 为激磁电 抗,它表征了主磁路铁心的磁化性能,其中,激磁电感 Lm 可由下式给出:
,称 S U1 I1 U 2 I 2 为视在容量。
由此可见,变压器在实现变压的同时也实现了变流。此外,变压器还可以实现阻抗变 换的功能。可以看出,若固定U1,只要改变匝数比即可达到改变电压的目的了,即: 若使 N2>N1,则为升压变压器(step-up transformer); 若使 N2<N1,则为降压变压器(step-down transformer)。 图5.1中,二次侧的负载阻抗为:
第五章变压器1
按用途分:电力变压器和特种变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、 三绕组变压器和多绕组变压器。 按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器和壳式变压器。 按调压方式分:无励磁调压变压器和有载调压变压器。 按冷却介质和冷却方式分:干式变压器、油浸式变压器和 充气式变压器。
电工学 第五章
三、 变压器的结构
变压器由铁心和绕组两个基本部分组成, 另 外还有油箱等辅助设备, 现分别介绍如下。
1. 铁心 铁心构成变压器的磁路部分。 变压器的铁心
大多用0.35~0.5 mm厚的硅钢片交错叠装而成, 叠装之前, 硅钢片上还需涂一层绝缘漆。 交错 叠装即将每层硅钢片的接缝错开, 这样可以减小 铁心中的磁滞和涡流损耗。 图5-2为几种常见铁 心的形状。
e1、 e2与Φ符合右手螺旋法则。
电工学 第五章
由于副边开路, 这时变压器的原边电路相当于一个 交流铁心线圈电路。其磁动势i10N1在铁心中产生主磁 通Φ, 主磁通Φ通过闭合铁心, 在原、 副绕组中分别 感应出电动势e1、 e2。 根据电磁感应定律可得
e1
N1
d dt
e2
N2
d dt
电工学 第五章
一般小容量变压器的绕组用高强度漆包线绕制而 成, 大容量变压器可用绝缘扁铜线或铝线绕制。 绕 组的形状有筒型和盘型两种, 如图5-3所示。 筒型绕 组又称同心式绕组, 原、 副绕组套在一起, 一般低 压绕组在里面, 高压绕组在外面, 这样排列可降低 绕组对铁心的绝缘要求。 盘型绕组又称交叠式绕组, 原、 副绕组分层交叠在一起。
i 10
i 20
u1
e1
N1 N2
e2
u 20
01第1章 变压器的基本工作原理和结构
第1篇 变压器变压器是一种静止的电机。
它通过线圈间的电磁感应作用,可以把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。
变压器是电力系统中重要的电气设备。
要把发电厂发出的电能进行经济地传输、合理地分配及安全地使用,就要使用变压器。
发电厂发出的电压受发电机绝缘条件的限制不可能很高(一般为 6.3~27kV),要将发出的大功率电能直接输送到很远的用电区域,几乎不可能。
这是因为输送一定功率的电能时,输电线路的电压越低,线路中的电流和相应的线路损耗就越大,线路用铜量也巨增。
为此必须采用高电压(小电流)输电,即通过升压变压器把发电厂发出的电压升高到输电电压,例如110 kV、220 kV或500 kV等,这样才能比较经济地输送电能。
一般来说,输电距离越远,输送功率越大,要求的输电电压越高。
对于用户来说,由于用电设备绝缘与安全的限制,需把高压输电电压通过降压变压器和配电变压器降低到用户所需的电压等级。
通常大型动力设备采用6 kV或10 kV,小型动力设备和照明则为380V或220V。
发电厂发出的电能输送到用户的整个过程中,通常需要多次升压及多次降压,因此变压器的安装容量远大于发电机总装机容量,通常可达5~8倍。
可见,变压器对电力系统有着极其重要的意义。
用于电力系统升、降电压的变压器称为电力变压器。
在电力拖动系统或自动控制系统中,变压器作为能量传递或信号传递的元件,也应用得十分广泛。
在其他各部门,同样也广泛使用各种类型的变压器,以提供特种电源或满足特殊的需要,如冶炼用的电炉变压器,焊接用的电焊变压器,船用变压器以及试验用的调压变压器等。
本篇主要研究双绕组电力变压器的基本结构、工作原理和运行特性,并对三绕组变压器、自耦变压器、分裂变压器和互感器等特殊变压器进行简要介绍。
第1章 变压器的基本工作原理和结构[内容]本章首先讨论变压器的基本工作原理和分类,然后介绍变压器的基本结构及各主要部件的作用,最后介绍变压器的铭牌。
变压器基本工作原理
第1章 变压器的基本知识和结构变压器的基本原理和分类一、变压器的基本工作原理变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能;当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组;原、副绕组的感应分别表示为则 k N N e e u u ==≈212121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比; 改变变压器的变比,就能改变输出电压;但应注意,变压器不能改变电能的频率;二、电力变压器的分类变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类; 按用途分类:升压变压器、降压变压器;按相数分类:单相变压器和三相变压器;按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器;按铁心结构分类:心式变压器和壳式变压器;按调压方式分类:无载无励磁调压变压器、有载调压变压器;按冷却介质和冷却方式分类:油浸式变压器和干式变压器等;按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器;三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部;电力变压器的结构一、铁心1.铁心的材料采用高磁导率的铁磁材料—~厚的硅钢片叠成;为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗;变压器用的硅钢片其含硅量比较高;硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘;2.铁心形式铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构;二、绕组1.绕组的材料铜或铝导线包绕绝缘纸以后绕制而成;2.形式圆筒式、螺旋式、连续式、纠结式等结构;为了便于绝缘,低压绕组靠近铁心柱,高压绕组套在低压绕组外面,两个绕组之间留有油道;变压器绕组外形如图所示;三、油箱及其他附件1.油箱变压器油的作用:加强变压器内部绝缘强度和散热作用;要求:用质量好的钢板焊接而成,能承受一定压力,某些部位必须具有防磁化性能;形式:大型变压器油箱均采用了钟罩式结构;小型变压器采用吊器身式;2.储油柜作用:减少油与外界空气的接触面积,减小变压器受潮和氧化的概率;在大型电力变压器的储油柜内还安放一个特殊的空气胶囊,它通过呼吸器与外界相通,空气胶囊阻止了储油柜中变压器油与外界空气接触;;3.呼吸器作用:内装硅胶的干燥器,与油枕连通,为了使潮气不能进入油枕使油劣化;硅胶对空气中水份具有很强的吸附作用,干燥状态状态为兰色,吸潮饱和后变为粉红色;吸潮的硅胶可以再生;4.冷却器作用:加强散热;装配在变压器油箱壁上,对于强迫油循环风冷变压器,电动泵从油箱顶部抽出热油送入散热器管簇中,这些管簇的外表受到来自风扇的冷空气吹拂,使热量散失到空气中去,经过冷却后的油从变压器油箱底部重新回到变压器油箱内;5.绝缘套管作用:使绕组引出线与油箱绝缘;绝缘套管一般是陶瓷的,其结构取决于电压等级;1kV以下采用实心磁套管,10~35kV采用空心充气或充油式套管,110kV及以上采用电容式套管;为了增大外表面放电距离,套管外形做成多级伞形裙边;电压等级越高,级数越多;6.分接开关作用:用改变绕组匝数的方法来调压;一般从变压器的高压绕组引出若干抽头,称为分接头,用以切换分接头的装置叫分接开关;分接开关分为无载调压和有载调压两种,前者必须在变压器停电的情况下切换;后者可以在变压器带负载情况下进行切换;分接开关安装在油箱内,其控制箱在油箱外,有载调压分接开关内的变压器油是完全独立的,它也有配套的油箱、瓦斯继电器、呼吸器;7.压力释放阀作用:为防止变压器内部发生严重故障而产生大量气体,引起变压器发生爆炸;8.气体继电器瓦斯继电器作用:变压器的一种保护装置,安装在油箱与储油柜的连接管道中,当变压器内部发生故障时如绝缘击穿、匝间短路、铁芯事故、油箱漏油使油面下降较多等产生的气体和油流,迫使气体继电器动作;轻者发出信号,以便运行人员及时处理;重者使断路器跳闸,以保护变压器;变压器的名牌数据一、型号型号表示一台变压器的结构、额定容量、电压等级、冷却方式等内容; 例如:SL-500/10:表示三相油浸自冷双线圈铝线,额定容量为500kVA,高压侧额定电压为10kV级的电力变压器;二、额定值额定运行情况:制造厂根据国家标准和设计、试验数据规定变压器的正常运行状态;表示额定运行情况下各物理量的数值称为额定值;额定值通常标注在变压器的铭牌上;变压器的额定值主要有:额定容量S N :铭牌规定在额定使用条件下所输出的视在功率;原边额定电压U 1N :正常运行时规定加在一次侧的端电压,对于三相变压器,额定电压为线电压; 副边额定电压U 2N :一次侧加额定电压,二次侧空载时的端电压;原边额定电流I 1N :变压器额定容量下原边绕组允许长期通过的电流,对于三相变压器,I 1N 为原边额定线电流;副边额定电流I 2N :变压器额定容量下原边绕组允许长期通过的电流,对于三相变压器,I 2N 为副边额定线电流;单相变压器额定值的关系式: N N N N N I U I U S 2211== 三相变压器额定值的关系式:NN N N N I U I U S 221133==额定频率f N :我国工频:50Hz ;还有额定效率、温升等额定值; 变压器的空载运行变压器空载运行是指变压器原边绕组接额定电压、额定频率的交流电源,副边绕组开路时的运行状态;变压器空载运行图一、 空载时各物理量产生的因果关系二、电势与磁通的大小和相位关系设主磁通按正弦规律变化,根据电磁感应定律可推导出原绕组感应电势同理可得所以,变压器原、副绕组的感应电势大小与磁通成正比,与各自的匝数成正比,感应电势在相位上滞后磁通90°;三、原边漏电抗和激磁电抗1.原边漏电抗2.激磁电抗四、原副边回路方程和等效电路1.电动势平衡方程变压器空载运行时,各物理量的正方向通常按上图标定,根据基尔霍夫电压定律,原边回路方程为对于电力变压器,空载时原绕组的漏阻抗压降I0Z1很小,其数值不超过U1的%,将I0Z1忽略,则有副边回路方程2.空载时的等效电路Z1<<Z m、r m<<x m ;空载时电路功率因数都很小,空载电流I0主要是无功性质,由于铁磁材料的磁饱和性,引起空载电流I0的波形是尖顶波;希望空载电流越小越好,因此变压器采用高导磁率的铁磁材料,以增大Z m减少I0 ;变压器空载时既吸收无功功率,也吸收有功功率,无功功率主要用于建立主磁通,有功功率主要用于铁耗;变压器负载运行变压器负载运行是指变压器原边绕组接额定电压、额定频率的交流电源,副边绕组接负载时的运行状态;变压器负载运行图一、负载时电磁关系1.磁动势平衡关系从空载到负载,由于变压器所接的电源电压U1不变,且U1≈E1 ,所以主磁通不变,负载时的磁动势等于与空载时的磁动势相等;即磁动势平衡关系这表明,变压器原、副边电流与其匝数成正比,当负载电流I2增大时,原边电流I1将随着增大,即输出功利增大时,输入功率随之增大;所以变压器是一个能量传递装置,它在变压的同时也在改变电流的大小;2.原、副边回路方程式按上图所规定的正方向,根据基尔霍夫电压定律,可写出原、副边回路方程式二、折算折算的目的:由于原、副边回路只有磁路的耦合,没有电路的直接联系,为了得到变压器的等效电路,需对变压器进行绕组折算;折算:就是把副边绕组匝数看成与原边绕组匝数相等时,对副边回路各参数进行的调整;折算原则是折算前后副边磁动势不变、副边各部分功率不变,以保持变压器内部电磁关系不变;副边各物理量的折算方法:折算后的基本方程式为三、负载时的等效电路形等效电路根据折算后的基本方程式可以构成变压器的T形等效电路2.较准确等效电路由于Z m>>Z1,可把“T”形等效电路中的激磁支路移到电源端,便得变压器的较准确等效电路,较准确等效电路的误差很小;3.简化等效电路在电力变压器中,I0<<I N ,因此,在工程计算中可忽略I0,即去掉激磁支路,将原、副边的漏阻抗合并,而得到变压器的简化等效电路 ;对于简化等效电路,可写出变压器的方程组简化等效电路所对应的相量图在工程上,简化等效电路及其方程式、相量图给变压器的分析和计算带来很大的便利,得到广泛应用;变压器参数的测定一、空载试验1.变压器的空载试验目的:求出变比k、空载损耗p k和激磁阻抗Z m;2.空载试验的接线通常在低压侧加电压,将高压侧开路3.空载试验的过程电源电压由零逐渐升至,测取其对应的U1、I0、p0;变压器原边加不同的电压,建立的磁通不同,磁路的饱和程度不同,激磁阻抗不同,由于变压器正常运行时原边加额定电压,所以,应取额定电压下的数据来计算激磁阻抗;由变压器空载时等效电路可知,因Z1<<Z m、r1<<r m,所以式中 p0—空载损耗,可作为额定电压时的铁耗;若要得到以高压侧为原边的激磁参数,可将所测得的激磁参数乘以k2,k等于变压器高压侧一相的电压除以低压侧一相的电压;对于三相变压器,试验中测定的数据是线电压、线电流和三相总功率,只要换算成一相的数据,就可直接代入上式计算;二、短路试验1.短路试验的目的:可测出短路阻抗Z k和变压器的铜耗p k;2.短路试验的接线:通常在高压侧加电压,将低压侧短路3.短路试验的过程电源电压由零逐渐升高,使短路电流由零逐渐升高至,测取其对应的U k、I k、p k;注意:由于变压器短路阻抗很小,如果在额定电压下短路,则短路电流可达~20I1N,将损坏变压器,所以做短路试验时,外施电压必须很低,通常为~U1N,以限制短路电流;取额定电流点计算,因所加电压低,铁心中的磁通很小,铁耗和励磁电流可以忽略,使用简化等效电路进行分析p kN:短路损耗,指短路电流为额定电流时变压器的损耗,p kN可作为额定电流时的铜耗;一般认为:r1=r2′=;x1=x2′=将室温下测得的短路电阻换算到标准工作温度75℃时的值,而漏电抗与温度无关;短路试验在任何一方做均可,高压侧参数是低压侧的k2倍,k等于变压器高压侧一相的电压除以低压侧一相的电压;对于三相变压器,试验中测定的数据是线电压、线电流和三相总功率,只要换算成一相的数据,就可直接按单相变压器计算;三、短路电压短路电压:在短路试验中,当短路电流为额定电流时,原边所加的电压与额定电压之比的百分值,即短路电压是变压器一个很重要的参数,其大小反映了变压器在额定负载时漏阻抗压降的大小;从运行角度来看,希望U k小一些,使变压器输出电压随负载变化波动小一些;但U k太小,变压器由于某种原因短路时短路电流太大,可能损坏变压器;一般中、小型电力变压器的U k=4%~%,大型电力变压器的U k=%~%;四、标么值标么值:实际值与该物理量某一选定的同单位的基值之比通常取各物理量对应的额定值作为基值;取一、二次侧额定电压U1N、U2N作为一、二次侧电压的基值;取一、二次侧额定电流I1N、I2N作为一、二次侧电流的基值;一、二次侧阻抗的基值分别为U1N/I1N、U2N/I2N;在各物理量原来的符号上加上一上标“”来表示该物理量的标么值;例如,U1=U1/U1N;一、外特性和电压变化率1.外特性外特性:指原边加额定电压,负载功率因数一定时,副边电压U2随负载电流变化的关系,即U2=fI2;变压器在纯电阻和感性负载时,副边电压U2随负载增加而降低,容性负载时,副边电压随负载增加而可能升高;2.电压变化率用变压器的简化相量图可推导出电压变化率的参数表达式电压变化率的大小与负载的大小成正比;在一定的负载系数下,短路阻抗的标么值越大,电压变化率也越大;当负载为感性时,△U为正值,说明副边电压比空载电压低;当负载为容性时△U有可能为负值;当△U为负值时,说明副边电压比空载电压高; 为了保证变压器的副边波动在±5%范围内,通常采用改变高压绕组匝数的办法来调节副边电压;二、变压器的损耗和效率1.变压器的损耗变压器的损耗包括铁耗和铜耗两大类;铁耗不随负载大小变化,也称为不变损耗;铜耗随负载大小变化,也称为可变损耗;2.变压器的效率通过变压器的空载试验和短路试验,测出变压器的空载损耗和短路损耗,就可以方便的计算出任意负载下的效率;变压器效率大小与负载大小、性质及空载损耗和短路损耗有关;对已制成的变压器,效率与负载大小、性质有关;当负载功率因数一定时,效率特性的效率曲线;当铁耗不变损耗等于铜耗可变损耗时效率最大;由于变压器总是在额定电压下运行,但不可能长期满负载;为了提高运行的经济性,设计时,铁损应设计得小些,一般取βm=~,对应的铜耗与铁耗之比为3~4;变压器额定时的效率比较高,一般在95~98%之间,大型可达99%以上;。
一级能效变压器标准
一级能效变压器是指符合最高能效等级标准的变压器。
目前中国的一级能效变压器标准主要参考GB 20052-2021《三相油浸式变压器能效限定值及能效等级》和JB/T 10317-2021《干式变压器能效限定值及能效等级》两个国家标准。
主要标准如下:
1.三相油浸式变压器一级能效限定值:
•额定容量在630kVA及以下时,负载损耗和空载损耗之和不大于0.99倍基本水平•额定容量在630kVA至1600kVA之间时,不大于0.96倍基本水平
•额定容量在1600kVA及以上时,不大于0.92倍基本水平
1.三相干式变压器一级能效限定值:
•额定容量在1000kVA及以下时,负载损耗和空载损耗之和不大于0.99倍基本水平•额定容量在1000kVA至2500kVA之间时,不大于0.97倍基本水平
•额定容量在2500kVA及以上时,不大于0.95倍基本水平
1.其他要求
•绝缘水平需符合技术标准
•允许负载损耗超出基本值范围,但总损耗不超过上述限值
•短路阻抗在规范范围内
•使用环氧真空浇注绝缘
一级能效变压器虽然制造成本较高,但运行损耗很低,能大幅节省使用能源,对于节约能源、降低运行成本和减少温室气体排放很有帮助。
符合这一标准的高效节能型变压器是电力系统的优选产品。
变压器详细讲解
变压器详细讲解变压器是一种电气设备,主要用于将交流电能从一种电压等级转换为另一种电压等级。
变压器的工作原理基于电磁感应现象,利用两个或多个线圈之间的磁场变化来实现电压的转换。
以下是变压器详细讲解:1. 基本结构:变压器主要由磁性材料制成的铁芯和绕组组成。
铁芯用于传递磁场,绕组则用于承载电流。
绕组通常用导线绕制,并分为高压绕组和低压绕组。
2. 原理:当交流电流通过高压绕组时,会在铁芯上产生磁场。
磁场的变化进而在低压绕组中产生电动势,从而实现电压的转换。
电压转换的大小取决于绕组之间的匝数比例。
3. 分类:根据用途和结构,变压器可分为以下几类:a. 配电变压器:用于配电系统,将高压电能转换为低压电能供给用户。
b. 电力变压器:用于发电、输电和配电系统中,实现电压的升高和降低。
c. 仪用变压器:用于电气测量和控制设备,提供标准电压信号。
d. 特殊变压器:如电炉变压器、整流变压器等,用于特殊场合的电压转换。
4. 参数:变压器的主要参数包括:a. 额定容量:表示变压器能承载的最大功率。
b. 额定电压:表示变压器输入和输出的电压等级。
c. 电压比:高压绕组与低压绕组之间的匝数比例,决定了电压转换效果。
d. 效率:表示变压器将电能转换为磁能和磁能转换为电能的能力。
5. 应用:变压器广泛应用于电力系统、工业生产、家电产品等领域。
例如,在家用电器中,变压器用于调节电源电压,以适应不同设备的电压需求。
6. 变压器的维护与安全:为确保变压器正常运行,需要定期进行检修和维护。
同时,应注意防止变压器过载、短路等事故,确保使用安全。
总之,变压器是一种重要的电气设备,它通过电磁感应实现电压的转换。
了解变压器的工作原理、分类和应用,有助于我们更好地在实际工程中选择和使用合适的变压器。
变压器基本工作原理和结构1
第一章 变压器基本工作原理和结构1-1从物理意义上说明变压器为什么能变压,而不能变频率?答:变压器原副绕组套在同一个铁芯上, 原边接上电源后,流过激磁电流I 0, 产生励磁磁动势F 0, 在铁芯中产生交变主磁通ф0, 其频率与电源电压的频率相同, 根据电磁感应定律,原副边因交链该磁通而分别产生同频率的感应电动势 e 1和e 2, 且有dt d N e 011φ-=, dt d N e 022φ-=, 显然,由于原副边匝数不等, 即N 1≠N 2,原副边的感应电动势也就不等, 即e 1≠e 2, 而绕组的电压近似等于绕组电动势,即U 1≈E 1, U 2≈E 2,故原副边电压不等,即U 1≠U 2, 但频率相等。
1-2 试从物理意义上分析,若减少变压器一次侧线圈匝数(二次线圈匝数不变)二次线圈的电压将如何变化?答:由dt d N e 011φ-=, dt d N e 022φ-=, 可知 , 2211N e N e =,所以变压器原、副两边每匝感应电动势相等。
又U 1≈ E 1, U 2≈E 2 , 因此,2211N U N U ≈, 当U 1 不变时,若N 1减少, 则每匝电压11N U 增大,所以1122N UN U =将增大。
或者根据m fN E U Φ=≈11144.4,若 N 1 减小,则m Φ增大, 又m fN U Φ=2244.4,故U 2增大。
1-3 变压器一次线圈若接在直流电源上,二次线圈会有稳定直流电压吗?为什么?答:不会。
因为接直流电源,稳定的直流电流在铁心中产生恒定不变的磁通,其变化率为零,不会在绕组中产生感应电动势。
1-4 变压器铁芯的作用是什么,为什么它要用0.35毫米厚、表面涂有绝缘漆的硅钢片迭成?答:变压器的铁心构成变压器的磁路,同时又起着器身的骨架作用。
为了铁心损耗,采用0.35mm 厚、表面涂的绝缘漆的硅钢片迭成。
1-5变压器有哪些主要部件,它们的主要作用是什么?答:铁心: 构成变压器的磁路,同时又起着器身的骨架作用。
变压器的运行分析1
3)当U1 =U1N和I2= I2N时,U2≠U2N,(变压器有阻抗压降),因 此S2≠S2N 。
4)分析变压器和发电机时,所说负载一般是指电流而不是阻 抗,负载的增减是指电流的增减。当副边电流为额定电流时, 称为额定负载。
第一篇 变压器
第一章 变压器的基本工作原理和结构 第二章 变压器的运行分析 第三章 三相变压器 第四章 三绕组变压器、自耦变压器和互感器 第五章 变压器并联运行 第六章 变压器的瞬态过程
§2-1 变压器各电磁量的规定正方向
变压器运行中各个电磁量都是交变的,为了表示出它们之间 相位关系,在列方程式、画相量图之前必须首先规定正方向。
正方向表示方法:用箭头表示某电磁量为正时的方向。
(1) 若某物理量与规定正方向一致为正,反之则为负。 (2) 若所求出之值为正,则向量实际方向与规定正方向一致;若求出之 值为负,则向的实际方向与规定正方向相反。
特别说明:
1)双绕组变压器原、副边容量按相等进行设计。
单相变压器
三相变压器
SN U1N I1N U2N I2N
I1N
SN U1N
I2N
SN U2N
SN I1N
3U1N I1N 3U2N I2N
SN 3U1N
I2N
SN 3U 2 N
2)U1N指原边额定电压;U2N指原边加上额定电压时的副边开 路电压。
I与Φ成右手关系, Φ与E成右手关系 a
U 2 x
ZL
副边:U2——从x到a的电压降方向 I2 ——由a流入原绕组方向
1)电动机惯例:
当U1 、I1同正同负时,电功率从供电电源输入变压器,变压器原边为吸收 电能的电路,相当于电动机性质,这种规定称为电动机惯例。
[精品]扼流变压器
BE1、2-400/25 型扼流变压器用途:BE1-400/25型(铁芯400Hz)及BE2-400/25型扼流变压器用于交流50Hz 电化区段,在双轨条25Hz轨道电路的发送端和接收端或需要连通牵引电流的地方。
用来把25Hz轨道电路的发送和接收设备同钢轨连接起来以传输25Hz信息和通过牵引电流。
特点:1.变压器箱体采取分体式结构,便于变压器的更换、维修;2.变压器牵引线圈匝间、层间采用隔离方式,提高了安全性能。
主要技术性能:1.同名端为1、4;2.中点允许通过总电流400A;3.匝比 1 :3(牵引线圈1-2/信号线圈4-5);4.不平衡度应小于 0.5 %;5. 绝缘电阻在环境温度为+15~+35℃,相对湿度为45%~75%的环境中测试时,应不小于100 MΩ;6. 绝缘耐压在大气压不低于84KPa条件下(相当于海拔高度1000m以下)变压器应能承受交流正弦波50Hz、2000V有效值,历时1min的耐压试验应无击穿或表面闪络现象。
安装尺寸:350×164;四个安装孔径为φ14mm。
BE1、2-600/25 型扼流变压器用途:BE1-600/25型(铁芯400Hz)及BE2-600/25型扼流变压器用于交流50Hz电化区段,在双轨条25Hz轨道电路的发送端和接收端或需要连通牵引电流的地方。
用来把25Hz轨道电路的发送和接收设备同钢轨连接起来以传输25Hz信息和通过牵引电流。
特点:1.变压器箱体采取分体式结构,便于变压器的更换、维修;2.变压器牵引线圈匝间、层间采用隔离方式,提高了安全性能。
主要技术性能:1.同名端为1、4;2.中点允许通过总电流600A;3.匝比 1 :3(牵引线圈1-2/信号线圈4-5);4.不平衡度应小于 0.5 %;5. 绝缘电阻在环境温度为+15~+35℃,相对湿度为45%~75%的环境中测试时,应不小于100 MΩ;6. 绝缘耐压在大气压不低于84KPa条件下(相当于海拔高度1000m以下)变压器应能承受交流正弦波50Hz、2000V有效值,历时1min的耐压试验应无击穿或表面闪络现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京航空航天大学机械工程及自动化学院
21
2.2 交流铁心和线圈电路
感应电动势e
e = −N dΦ d ( Φ m sin ω t ) = −N = − N ωφ m cos ω t = 2π fN Φ m sin( ω t − 90 o ) dt dt
e的幅值: e的有效值:
E m = 2 π fN Φ m
N2:绕组圈数 u2:输出电压 i2 :输出电流 R2 :线圈电阻 Φ s 2 :副边漏磁通(空气闭合) e2 :主磁通感应电动势 es 2:漏磁通感应电动势 Z :负载阻抗
23
N1:绕组圈数 u1 :输入电压(交流正弦) i1 :输入电流 R1 :线圈电阻 Φ:主磁通(铁芯闭合) :原边漏磁通(空气闭合) Φ s1 e1 :主磁通感应电动势 es1 :漏磁通感应电动势
北京航空航天大学机械工程及自动化学院
5
1
绪论
为了在各种场合正确使用电机,必须学习掌 握以下内容:
工作原理和构造 (电-磁场-转矩-转速关系) 机械特性 (输出转矩-转速关系) 使用特性和控制(启动、调速、制动、反转的 原理和实现) 额定参数(功率、转矩、转速、电压、电流) 应用场合
μI m NS iN Φ = BS = μS = sin ωt = Φ m sin ωt L L
i = I msin ωt
μ NS
L
Φm =
Im
20
北京航空航天大学机械工程及自动化学院来自2.2 交流铁心和线圈电路
4、铁芯线圈电压和电流的关系
根据克希荷夫电压定律:u + e + es = i R
顺时针:电位上升之和= 电位下降之和 u:外电压,箭头反方向为电位上升方向 e, :感应电动势(电源),箭头方向为电位上升方向 iR: 电阻压降,箭头方向为电位下降方向
L s 2:副边漏电感
U1 E1 N1 = = 空载时原、副边电压之比: k = U 20 E2 N 2 K:变压器的变比
北京航空航天大学机械工程及自动化学院
26
2.3 变压器工作原理
3、负载运行和电流变换
E1 = 4.44 fN1Φ m ≈ U1
当电源电压U1和频率f不变时,E1和Φ m也近于常数 铁芯中最大主磁通在空载和有负载时近似恒定 磁动势也应该恒定: i1 N1 + i2 N 2 = i0 N1 i0 :变压器空载原边电流,相对于负载电流很小,可 以忽略
18
北京航空航天大学机械工程及自动化学院
2.2 交流铁心和线圈电路
2、交流铁芯的基本物理量
N:线圈匝数 u:输入电压(正弦交流) i:输入电流 R:线圈电阻 Φ:主磁通(铁芯闭合) Φs:漏磁通(空气闭合) e :主磁通感应电动势 es :漏磁通感应电动势 S :铁心截面积(m2 )
掌握磁路和铁芯线圈电路的分析方法
北京航空航天大学机械工程及自动化学院
8
2
2.1 2.2 2.3 2.4 2.5
变压器
变压器概述 交流铁心和线圈电路 变压器工作原理 效率和负载特性 其它变压器
北京航空航天大学机械工程及自动化学院
9
2.1 变压器概述
1、概念 变压器:把一种交流电能转化成同频率的另 一种交流电能的静止电器
E = Em = 4 . 44 fN Φ m 2
通常,线圈电阻R和漏磁通较小,因而忽略它们的电 压降,所以:u = −e
电压有效值
U ≈ E = 4.44 fNΦ m
(2-1)
北京航空航天大学机械工程及自动化学院
22
2.3 变压器工作原理
左:原边
右:副边
北京航空航天大学机械工程及自动化学院
25
2.3 变压器工作原理
副边电压方程:e2 + es 2 = i2 R2 + u 2
e2的有效值: E 2 = 4.44 fN 2 Φ m 变压器空载时: i2 = 0 → E2 = U 20 U 20 :空载时副边输出电压
e 2 = i2 R 2 + u 2 − L s 2 di 2 dt
转化-----变比系数k实现 转化-----实现U、I、Z的变换
例: 发电厂----------变压器--------------企业、工厂、 学校
输送电能: P =UIcosφ 变换U、I
北京航空航天大学机械工程及自动化学院
P、cosφ 保持不变
10
2.1 变压器概述
2、变压器的分类 按用途:电力、自耦、仪用及控制 按相数:单相、三相 按绕组数目:单、双、三、多 按冷却方式分:自然 风冷 水冷 油冷 按电压分:升压 降压 按铁芯缠绕方式分:芯式 壳式
北京航空航天大学机械工程及自动化学院
24
2.3 变压器工作原理
2、空载运行和电压变换 原边电压方程: u1 + e1 + es1 = i1 R1 忽略不计 i1 R1 和 es1
根据公式 U ≈ E = 4.44 fNΦ m e1的有效值 E1 = 4.44 fN1Φ m ≈ U1
14
2.1 变压器概述
北京航空航天大学机械工程及自动化学院
15
2.1 变压器概述
铁芯和绕组 1)铁芯(变压器的磁路部分)
材料:软磁材料 硬磁材料 结构:口字型 山型 F型 C型
2)绕组(变压器的电路部分) 涂绝缘漆的铜导线——漆包线
北京航空航天大学机械工程及自动化学院
16
2.1 变压器概述
北京航空航天大学机械工程及自动化学院
6
课程介绍
讲课 实验 学时 学分 16次 2次 34 2 课程内容 • • • • • • • 绪论 变压器 直流电动机 交流电动机 控制电动机 电机控制电路 习题 1学时 3学时 8学时 8学时 4学时 6学时 2学时
考试(100分): 笔试 70分 作业 20分 实验 10分
Φ⎯ ⎯→
u⎯ ⎯→ i (iN )
e
Φs ⎯ ⎯→ es
19
北京航空航天大学机械工程及自动化学院
2.2 交流铁心和线圈电路
3、磁路分析
iN ∫ H d l = ∑ I → HL = Ni → H = L
iN F B = μH = μ = μ L L
• L 磁路的平均长度 (m) • i N 磁动势 F,产生磁通的 动力 •μ导磁率,亨利/米(H/m)
北京航空航天大学机械工程及自动化学院
11
2.1 变压器概述
3、变压器基本结构 由闭合铁心(硅钢片)、原边线圈绕组、副 边线圈绕组组成
北京航空航天大学机械工程及自动化学院
12
2.1 变压器概述
(a)心式 1:铁芯
北京航空航天大学机械工程及自动化学院
(b)壳式 2:线圈
13
2.1 变压器概述
北京航空航天大学机械工程及自动化学院
北京航空航天大学机械工程及自动化学院
4
1
绪论
1832年,法国发明家H.皮克西研制成功了第一台交流发电机。 1884年,J.霍普金森试验了交流同步发电机﹐同时也发现了同步电机 能作电动机运行。但是他没有能解决同步电动机的起动问题。 1886~1888年间E.汤姆孙制成了一个感应电动机的模型。 与此同时﹐美国的特斯拉也独立地提出了依靠旋转磁场工作的感应电 动机﹐展出了他的感应电动机样品﹐并于1890年提出了多相交流发电 机和变压器的设想。以后特斯拉与美国西屋电气公司的C.F.斯科特合 作研制成功了多相感应电动机﹐并提出了一系列专利﹐使感应电动机 完善化。 1890年,美国西屋电气公司利用特斯拉的专利制成了第一台能自动起 动的同步电动机。 1891年,在德国法兰克福举办的展览会上﹐俄国人多利沃-多布罗沃 利斯基展出了他在1889年发明的鼠笼式感应电动机和变压器。 1893年﹐美国西屋电气公司开始成批提供异步电动机产品供工业应用。 至此电机方面的主要发明基本完成﹐电机的结构已趋成熟﹐以后就进 入了产品发展阶段。 诺贝尔奖委员会于1912年评选出爱迪生和特斯拉为诺贝尔物理学奖得 主。然而,由于两人的关系成了死对头,他们没有领奖。
4、变压器基本原理
原边线圈绕组接正弦交流电压u1,在铁心中产生主 磁通Φ,在副边线圈绕组产生感应输出电压u2,u1 与u2成比例关系,取决于原边线圈圈数N1与副边线 圈圈数N2。负载接在u2上
北京航空航天大学机械工程及自动化学院
17
2.2 交流铁芯和线圈电路
1、磁场的基本物理量
磁感应强度B,单位:特斯拉T 磁场内某点的磁场强弱和方向,矢量 磁通Φ ,单位:伏•秒,称为韦伯Wb 磁感应强度B与垂直于磁场方向的面积S的乘积 Φ = B S,B = Φ / S,B又称为磁通密度 1T = 1Wb/m2 磁场强度H,矢量,安培/米(A/m) ∫ Hdl = ∑ I 安培环路定律(全电流定律) 磁导率µ,表示磁场媒质磁性的物理量,衡量物质的导磁能 力 B = µ H 单位:亨利/米(H/m)
北京航空航天大学机械工程及自动化学院
2.3 变压器工作原理
1、原边-副边电磁关系(忽略漏磁通)
原边交流电压u1产生电流i1 磁动势i1 N1产生磁通经过铁芯闭合,在原、副边分别感 应出电动势e1和e2 e2产生电流i2,i2也产生磁通通过铁芯闭合 铁芯中的磁通由原、副绕组的磁动势共同产生的合成磁 通 忽略原、副绕组的漏磁通
2.3 变压器工作原理
阻抗变换举例
E=10V;R0=200Ω;RL=8 Ω 求负载电阻所获得的功率输出
解: P = I 2 RL = (
E 10 2 ) 2 RL = ( ) x8 = 18mW R0 + RL 200 + 8