北京工业大学 线性代数 期末试题
线性代数期末复习题及参考答案
线性代数期末复习题及参考答案复习题之判断题(√)1. 若行列式的每一行元素之和全为零,则行列式的值等于零. ( )2. 设A ,B 为n 阶矩阵,则22))((B A B A B A −=−+. (√)3. 方阵A 可逆的充要条件是A E ~.( )4. 若n 阶矩阵A 相似于对角矩阵,则A 必有n 个互不相同的特征值. (√)5. 二次型222123123(,,)4f x x x x x x =++是正定二次型. (√ )6. 若B A 、为n 阶方阵,则AB BA =. ( )7. 设A 为任意n 阶矩阵,则A —A T 为对称阵. ( )8. 若n 阶矩阵A 能对角化, 则A 必有n 个不同的特征值. (√)9. 实对称矩阵A 对应不同特征值的特征向量必正交. (√)10. 设AB=0,若A 为列满秩矩阵,则B=0.( )11. 对于任何矩阵Amxn ,不能经过有限次初等列变换把它变为列阶梯形矩阵和列最简形矩阵.( )12. 奇排列变成标准排列的对换次数为偶数.( )13. 在秩是r 的矩阵中,存在等于0的r-1阶子式,但是不存在等于0的r+1阶子式.复习题之填空题1.设向量()1,0,3,Tαλ=−,()4,2,0,1Tβ=−−,若α与β正交,则λ= - 4 . 2. 当A 为任意的n 阶矩阵时,下列矩阵A A T +;T A A −;T AA ;A A T 中, 对称矩阵是T T T A A AA A A +,,,反对称矩阵是T A A −. 3. 设00B A C⎛⎫=⎪⎝⎭,B ,C 均为可逆矩阵,则1A −=1100C B−−⎛⎫⎪⎝⎭.4.设A 是n 阶矩阵(2n ≥),且A 的行列式det 2A =, 则它的伴随矩阵*A 的行列式*det A =12n −5.矩阵⎪⎪⎪⎭⎫⎝⎛−−−=466353331A 的所有特征值之和等于0.6. 设,A B 为n 阶对称矩阵,则AB 是对称矩阵的充分必要条件AB=BA.7.设向量11,,0,132Tα⎛⎫=−− ⎪⎝⎭,()3,2,1,1T β=−−,则α与β的内积为 1 .8.设方阵A 满足2240A A E −+=,且A E +可逆,则1()A E −+=37A E−−. 9. 设n 阶矩阵A 的伴随矩阵为*A ,若0A =,则*A =0.10.设向量()1,2,0,1T α=−,()3,1,1,2Tβ=−−,则α与β的内积为 -1 . 11.设方阵A 满足220A A E −−=,且A 可逆,则1A −=2A E−.12.矩阵⎪⎪⎪⎭⎫ ⎝⎛−−−=269643932A 的所有特征值之和等于0 .13.2103111113423122−−−−的代数余子式之和31323334-2A A A A ++= -33 ___ .14. 设n 阶矩阵A 满足0322=+−E A A ,则()12−−E A=3A −15. 若4阶方阵A 的行列式A =3, *A 是A 的伴随矩阵,则*A = 27 ___ . 16 向量α=()1,1,1,5T−−−与()4,2,1,Tβλ=−−正交,则λ=-1.17. 二次型2221231231223(,,)4324f x x x x x x x x x x =−+−+−对应的对称矩阵是110142023A −⎛⎫ ⎪=− ⎪ ⎪−−⎝⎭_________________.18.3023111110560122−−−−−的代数余子式之和31323334A A A A +++= 0 .19. 设n 阶矩阵A 满足02A 2=−−E A ,则1)3(A −−E =2A E +−.20. 设A 是4阶方阵,4A =−,则*A =-64.21. 向量(2,2,3),(3,3,)T T t αβ=−=−−与正交,则t = 0 .22. 二次型22123131223(,,)224f x x x x x x x x x =++−对应的对称矩阵是110102022A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.复习题之计算题1a .设3111131111311113A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭, 122212221B ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭.(1)计算矩阵A 的行列式.(2)求矩阵B 的逆. 1a.(1)解:=D 31111311113111136111631161316113=11111311611311113=11110200600200002==48.(2).解:()122100************A E ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭122100036210063201⎛⎫⎪→−−− ⎪ ⎪−−−⎝⎭122100036210009221⎛⎫ ⎪→−−− ⎪ ⎪−⎝⎭12211021012033221001999⎛⎫ ⎪⎪→− ⎪⎪ ⎪−⎝⎭122100999212010999221001999⎛⎫⎪ ⎪→− ⎪ ⎪ ⎪−⎝⎭ 从而有112212129221A −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭。
(完整版)线性代数期末测试题及其答案.doc
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
北京工业大学2007-2008线性代数期末考试试卷(部分)
9.
1 3 如果 2 2 3
10. 二次型 x1
x2
2 9 0 x1 x3 5 1 0 x2 的正惯性指数与负惯性指数之和是 0 2 1 x 3
c d a b d c T , (1)计算 MM , (2)利用(1)计算行列式 M 的值 b a
T
2
6.
1 2 设 3 维列向量 1 , 2 , 3 和 1 , 2 满足 2 1 2 ,则由向量组 1 , 2 , 3 构成的矩阵 1 2 3 的 3 1 2 3
秩__________3
7.
b1 x c1 y 1 b2 c2 如果实系数方程组 b2 x c2 y 0 的实数解,则 2 维向量 , 必线性___关 b3 c3 b x c y 0 3 3
设 1 1,
8.
2 1 是实对称矩阵 A 的特征值, (2, t 2, 2)T , (t 1, 1, 2)T 是分别属于-1,1 的特征向
a 是正交矩阵,则 a=______________ 1 3
T
量,则 t=_____________
T
T
T
T
(1)求该向量组的一个极大线性无关组 (2)把其余向量用该极大线性无关组线性表出 八、如果 A、B 都是 n 阶方阵,而且 B 是可逆的,证明,AB 和 BA 一定具有相同的特征值 ①:这份试卷是 seraph_256 班里的同学,在考场上自觉通过无望,就将卷子的大部分手抄在草稿纸上带出考场以备 后来复习之用的,所以并不完整,选择题部分由于时间关系就没有抄,其它地方也并不保证没有错误,但是考虑到 这份卷子的时效性所以还是把它发上来,请大家自行参考……
线性代数期末测试题及其答案
线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题5分,共25分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t 7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-AC.n A r =)(D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x 10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ 三、解答题 (每小题10分,共50分)11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式E X B C T =-)(, 求X 。
线性代数期末试卷及详细答案
线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。
每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。
2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。
大学线性代数期末考试练习题含答案
线性代数练习题一、单项选择题(本大题共5小题,每小题3分,共15分)1.下列等式中,正确的是( )A.2001002001021⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭B. 1233693456456⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭C.1051002⎛⎫= ⎪⎝⎭D.120120035035--⎛⎫⎛⎫-= ⎪ ⎪--⎝⎭⎝⎭2.设矩阵A =100220340⎛⎫ ⎪⎪ ⎪⎝⎭,那么矩阵A 的列向量组的秩为( )A.3B.2C.1D.03.设向量1α=(-1,4),2α=(1,-2),3α=(3,-8),若有常数a,b 使a 1α-b 2α-3α=0,则()A.a=-1,b=-2B.a=-1,b=2C.a=1,b=-2D.a=1,b=24.向量组1α=(1,2,0),2α=(2,4,0),3α=(3,6,0),4α=(4,9,0) 的极大线性无关组为( )A.1α,4αB.1α,3αC.1α,2αD.2α,3α5.下列矩阵中是正定矩阵的为( )A.1223⎛⎫ ⎪⎝⎭B.3336-⎛⎫ ⎪-⎝⎭C.0331⎛⎫ ⎪-⎝⎭D.1001-⎛⎫⎪-⎝⎭二、填空题(本大题共5小题,每题3分,共15分)6.行列式111123149=___ ___.7.已知3维向量α=(1,-3,3),β=(1,0,-1)则α+3β=_ _. 8.设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n-1,则齐次线性方程组Ax=0的 通解为__ __.9.设1,2,…,n 是n 阶矩阵A 的n 个特征值,则矩阵A 的行列式|A |=_ ___. 10.二次型f(x 1,x 2,x 3)=x 1x 2+x 1x 3+x 2x 3的秩为_ __.三、计算题(本大题共8小题,共70分)11.(9分)已知矩阵A =111210101⎛⎫ ⎪- ⎪ ⎪⎝⎭,B =100210021⎛⎫ ⎪⎪ ⎪⎝⎭,求:(1)A T B ;(2)| A T B |.12.(9分)设⎪⎪⎪⎭⎫ ⎝⎛-=100111001A ,B =2153⎛⎫ ⎪⎝⎭,C =132031⎛⎫ ⎪⎪ ⎪⎝⎭,且满足C AXB =,求矩阵X .13.(9分)求向量组1α=(-1,2,1,0)T ,2α=(0,1,1,2)T ,3α=(1,4,3,4)T ,4α=(1,1,6,4)T 的秩 与一个极大线性无关组.14.(9分)判断线性方程组⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x 是否有解,有解时求出它的解.15.(9分)已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=a A 01020101,01=λ是A 的一个特征值,求A 的全部特征值及其特征向量.16.(9分)求一个正交变换将二次型322322214332x x x x x f +++=化为标准形.17.(8分)求⎪⎪⎪⎭⎫ ⎝⎛=343122321A 的逆矩阵.18.(8分)利用施密特正交化法将向量组()⎪⎪⎪⎭⎫⎝⎛=931421111,,321a a a 正交化.。
2019-2020学年线性代数期末考试题(含答案)
线性代数2019-2020学年第二学期期末考试试卷一、填空题(本大题共5个小题,每小题3分,共15分。
)1. 行列式11111111---x 的展开式中x 的系数是_________;2. 已知3阶矩阵A 的特征值为0,1,2,则=+-E A A 752__________;3. 向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩为______;4. 设⎪⎪⎪⎭⎫ ⎝⎛-=12032211t A ,若3阶非零方阵B 满足0=AB ,则=t ;5. 设3阶可逆方阵A 有特征值2,则方阵12)(-A 有一个特征值为_________。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
) 1. A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是【 】A .若A 是可逆矩阵,则*A 也是可逆矩阵;B .若A 不是可逆矩阵,则*A 也不是可逆矩阵;C .若0||*≠A ,则A 是可逆矩阵;D .AE AA =||*。
2. 设⎪⎪⎪⎭⎫ ⎝⎛=333222111c b a c b a c b a A ,若⎪⎪⎪⎭⎫ ⎝⎛=333222111b c a b c a b c a AP ,则P =【 】 A . ⎪⎪⎪⎭⎫ ⎝⎛010100001; B . ⎪⎪⎪⎭⎫ ⎝⎛010001100;C . ⎪⎪⎪⎭⎫ ⎝⎛001010100;D . ⎪⎪⎪⎭⎫ ⎝⎛010100000.3. n m >是n 维向量组m ααα,,,21 线性相关的【 】.A 充分条件 .B 必要条件.C 充分必要条件 .D 必要而不充分条件4.设321,,ααα是0=Ax 的基础解系,则该方程组的基础解系还可以表示为【 】A .321,,ααα的一个等价向量组;B. 321,,ααα的一个等秩向量组;C. 321221,,αααααα+++;D . 133221,,αααααα---.5. s ααα,,,21 是齐次线性方程组0=AX (A 为n m ⨯矩阵)的基础解系,则=)(A R 【 】A .sB .s n -C .s m -D .s n m -+三、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。
线性代数期末试题及答案
第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数期末考试考核试卷
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵
2019-2020-2《线性代数》期末试卷A
1 2 −1
12. 已知矩阵
A
=
0 −1
a 2
0 1
不可相似对角化,
求
.
( ) 13. 用正交变换法将二次型 f x1, x2 , x3 = 2x12 + 4x1x3 + 2x22 + 4x2 x3 + 4x32 化为标准形,并写出
正交变换.
( ) 14. 如果二次型 f x1, x2 , x3 = x12 + 2x1x2 + 4x1x3 + 2x22 + 4x2 x3 + λ x32 为正定二次型, 求 λ 的
β1 = α1 + 2α2 − 5α3, β2 = α1 − α2 + α3, β3 = −α2 + α3
x1
+
x2
+
ax3
=
a2
7.
已知线性方程组
x1 + ax2 ax1 + x2
+ x3 + x3
=1 =1
无解, 求参数
.
考试纪律承诺:本人自愿遵守学校考试纪律,保证以诚信认真的态度作答试卷,独立完成,不与 他人交流,如有雷同等违纪情况,接受学校相关纪律处分。
取值范围.
三、证明题(本题共 2 题,每小题 6 分,共 12 分)
15.
已知
λ
是可逆矩阵
A
的一个特征值,证明:矩阵
A∗
+
A−1
有一特征值为
|
A | +1 λ
.
16. 设向量组α1 , α2 , α3 线性无关, 向量 β 不能由向量组α1 , α2 , α3 线性表示, 证明:向量组
大学线性代数期末试卷及答案
大学线性代数期末试题一、填空题(每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3、n 阶方阵A 满足032=--E A A ,则=-1A。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( ) 三、单项选择题 (每小题仅有一个正确答案。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=TA A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
线性代数期末试题及答案
8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。
北京工业大学线性代数07-08二学期末考试题
北京工业大学2007-2008学年第二学期期末线性代数(工) 课程试卷(A )考试方式:闭卷 考试时间:2008年06月25日 学号 姓名 成绩 注:本试卷共8大题,满分100分. 得分登记(由阅卷教师填写)一. 填空题(每小题3分,共30 分).1. 矩阵乘积100123401056783019101112⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪-⎝⎭⎝⎭2. 设n 阶方阵A B 、满足AB A B =+,则A E -可逆,且1()A E --=3. 如果2阶方阵A 的特征值是1,1-,*A 为其伴随矩阵,则行列式*2A E -=4. 设3维列向量组321,,ααα和21,ββ满足122123123αβαββαββ=⎧⎪=-+⎨⎪=-⎩,则由向量组321,,ααα构成的矩阵123()ααα的行列式等于 (写出具体数值)5. 如果211110139pp =-,而且0p >,则p = 6.如果实系数方程组112233100b xc y b x c y b x c y +=-⎧⎪+=⎨⎪+=⎩有实数解,则行列式2233b c b c =7. 设121,0λλ=-=是实对称矩阵A 的特征值,(2,2,1),(1,1,2)T Tt t αβ=+=+--是分别属于1,1-的特征向量,则t =8. 如果(1,1,1)Tα=-是实方阵A 的一个特征向量,则223A E -必有一个特征向量等于9.如果13133a ⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭是正交矩阵,则a = 10. 二次型112323233(,,)112341x x x x x x ⎛⎫⎛⎫ ⎪⎪- ⎪⎪ ⎪⎪--⎝⎭⎝⎭的正惯性指数与负惯性指数之和是二. 单项选择题(每小题3分,共15分)。
将正确答案的字母填入括号内。
1. 如果n 阶实矩阵A 满足30A =,E 是n 阶单位矩阵,则 【 】(A )A E +可逆,但A E -不可逆 (B )A E +不可逆,但A E -可逆 (C )A E +、A E -都可逆 (D )A E +、A E -都不可逆2. 如果向量组1234,,,αααα线性无关,而且其中的每一个向量都与向量β正交,则向量组1234,,,,ααααβ 【 】 (A) 一定线性相关 (B ) 一定线性无关 (C ) 可能线性相关,也可能线性无关 (D ) 前三个选项都不正确 3. 设A 是n 阶方阵,则下列选项中不正确的是 【 】(A ) 当线性方程组b AX =无解时,行列式0A =。
北京工业大学-线性代数-期末试题
一. 填空题(每小题3分,共30 分. 注意:所有题目需给出计算结果; a a =型答案无效)1. 100121201224680011111⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭2. 记12111323154917827----第二列四个位置的代数余子式分别是12223242,,,A A A A .若23122232420A aA a A a A +++=,且0a >,则a =3. 在行列式223121xx x x x -的完全展开式中,合并同类项后,3x 的系数是4. 3阶实方阵A 和非零向量123,,ααα满足:112233,2,A A A αααααα===-.若记以123,,ααα为列向量组的矩阵为()123P ααα=,则1P AP -⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(写出具体的矩阵).5. 若32⨯型、23⨯型实矩阵,A B 满足112211817AB ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则,A B 的秩之和()()R A R B +=6. A 是2阶实方阵. 若齐次线性方程组()0A E X -=和(2)0A E X -=均有非零解,则行列式*12A A E -++=7. 若12,,,m ααα是齐次线性方程组123112301012012700x x x -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--= ⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭的解空间中的线性无关向量组,则m 能取到的最大值是8. 若3阶实方阵123()A ααα=的列向量组123{,,}ααα与线性无关向量组12{,}ββ满足112212312325αββαββαββ=-⎧⎪=+⎨⎪=-⎩ ,则A 的阶梯化矩阵中非零行的行数是 9. 方程12342680111x x x+-+=--的根123,,x x x 之和123x x x ++= 10. 若Q 是n (1n >)阶实方阵,且齐次线性方程组0QX =只有零解,T A Q Q =,则A的特征值 0(填“,,><=”之一).二(10分). 计算行列式0152313110183810113132510D ----=------(要求出具体数值).三(10分). 用初等变换的方法,解方程101110110011101110X -⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.四(10分).a 取何值时,线性方程组12341234123422320574x x x x x x x x x x x x a-++=⎧⎪+-+=⎨⎪-+-=⎩ 有解?有解时,写出其通解.五(12分). 已知288828882A ⎛⎫⎪= ⎪ ⎪⎝⎭. 求一个可逆矩阵P ,使得1P AP -是对角矩阵;并求出这一对角矩阵.六(12分). 给定列向量组12345(0,1,2,1,0),(1,1,1,0,3),(1,0,2,1,2),(5,2,3,7,11),(9,5,5,14,19).T T T Tααααα=-=-=-=--=--1 求该向量组的秩;2 求该向量组的一个极大线性无关组;3 把其余向量用问题2中求出的极大线性无关组线性表出.七(8分).八(8分).。
线性代数期末附答案 (1)
《线性代数》模拟试题(一)一、单项选择题(每小题3分,共27分)1. 对于n 阶可逆矩阵A ,B ,则下列等式中( )不成立. (A) ()111---⋅=B A AB (B) ())/1()/1(111---⋅=B A AB (C) ()111---⋅=B AAB (D) ()AB AB /11=-2. 若A 为n 阶矩阵,且0A =3,则矩阵=--1)(A E ( ).(A )2A A E +- (B )2A A E ++ (C )2A A E -+ (D )2A A E -- 3. 设A 是上(下)三角矩阵,那么A 可逆的充分必要条件是A 的主对角线元素为( ). (A) 全都非负 (B ) 不全为零 (C )全不为零 (D )没有限制4. 设 33)(⨯=ij a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a aa a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,那么( ).(A )B P AP =21 (B )B P AP =12 (C )B A P P =21 (D )B A P P =12 5. 若向量组m ααα,,,21 线性相关,则向量组内( )可由向量组其余向量线性表示.(A )至少有一个向量 (B )没有一个向量 (C )至多有一个向量 (D )任何一个向量6. 若⎪⎪⎪⎭⎫⎝⎛=210253143212A ,其秩=)(A R ( ).(A )1 (B )2 (C )3 (D) 47. 若方程组b AX =中方程的个数小于未知量的个数,则有( ).(A )b AX =必有无穷多解 (B )0AX =必有非零解 (C )0AX =仅有零解 (D )0AX =一定无解 8. 若A 为正交阵,则下列矩阵中不是正交阵的是( ).(A )1-A (B )A 2 (C )4A (D )TA 9. 若满足条件( ),则n 阶方阵A 与B 相似.(A )B A = (B ))()(B A R R = (C )A 与B 有相同特征多项式 (D )A 与B 有相同的特征值且n 个特征值各不相同 二、填空题(每空格3分,共21分)1. 若向量组321,,ααα线性无关,则向量组321211,,αααααα+++是线性 .2. 设A 为4阶方阵,且3)(=A R ,*A 是A 的伴随阵,则0=*X A 的基础解系所含的解向量的个数是 . 3. 设()2,1,11-=α,()5,,22k =α,()1,6,13-=α线性相关,则=k .4. 设⎪⎪⎪⎭⎫ ⎝⎛=300050004A ,则=--1)2(E A .5. 设三阶方阵A 有特征值4,5,6,则=A ,TA 的特征值为 ,1-A 的特征值为 .三、计算题(共42分) 1. (6分)计算行列式ba b b b b b a b b bb b a b b b b b a ----+----+2. (8分)已知矩阵⎪⎪⎪⎭⎫⎝⎛=200012021A ,求10A .3. (10分)设三阶方阵A 满足i i i αA α= )3,2,1(=i ,其中T )2,2,1(1=α,T )1,2,2(2-=α,T )2,1,2(3--=α,求A .4.(6分)在向量空间3R 中,取两组基:(I ),110,011,101321⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=ααα (II ),411,222,301321⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=βββ设α在基I 下的坐标为()T3,1,1,求α在基α在基II 下的坐标.5. (12分)λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+1610522321321321x x x x x x x x x λλ (1)有惟一解;(2)无解; (3)有无穷多解,并求其通解.四、证明题(每小题5分,共10分)1. 设A 为n 阶可逆阵,E A A =2. 证明A 的伴随阵A A =*.2. 若A ,B 都是n 阶非零矩阵,且0AB =. 证明A 和B 都是不可逆的.《线性代数》模拟试题(一)参考答案一、单项选择题(每题3分,共27分)1. B2. B3. C4. C5. A6. B7. B8. B9. D 二、填空题(每空3分,共21分)1. 无关;2. 3 ;3. 3 ;4. ⎪⎪⎪⎭⎫ ⎝⎛10000003121; 6. 120; 4,5,6; 615141,, 三、计算题(7+10+10+12=39分)1. 解:b a b b b b b a b b b b b a b b b b b a ----+----+a aa a a ab b bba 000000-+=4000000000a aa ab b b a ==. 2. 解:先求A 的特征值,λλλλ---=-20012021E A =)1)(3)(2(λλλ+--- 1,3,2321-===λλλ ,当21=λ时,由0X E A =-)2(得,A 的对应于2的特征向量是⎪⎪⎪⎭⎫ ⎝⎛=1001ξ,当32=λ时,由0X E A =-)3(得,A 的对应于3的特征向量是⎪⎪⎪⎭⎫ ⎝⎛=0112ξ,当12-=λ时,由0X E A =+)(得,A 的对应于1-的特征向量是⎪⎪⎪⎭⎫ ⎝⎛-=0113ξ,取⎪⎪⎪⎭⎫ ⎝⎛=1001η⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=01121,0112132ηη.令()321,,ηηηP = ,则⎪⎪⎪⎭⎫⎝⎛-==-1321AP P AP P T,所以 T P P A 1010132⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+--+=1010211021102110212000)13()13(0)13()13(.3. 解:因为)3,2,1(==i i i i αA α,所以⎪⎪⎪⎭⎫ ⎝⎛=300020001),,(),,(321321ααααααA ,因此 1321321),,(300020001),,(-⎪⎪⎪⎭⎫ ⎝⎛=ααααααA .又),,(321ααα⎪⎪⎪⎭⎫ ⎝⎛---=212122221,所以1321),,(-ααα⎪⎪⎪⎭⎫⎝⎛---=21212222191,故 =A ⎪⎪⎪⎭⎫ ⎝⎛---212122221⎪⎪⎪⎭⎫ ⎝⎛300020001⎪⎪⎪⎭⎫ ⎝⎛---21212222191⎪⎪⎪⎭⎫ ⎝⎛----=62225020731. 4.解:()()⎪⎪⎪⎭⎫ ⎝⎛--=311211112,,,,321321αααβββ,(),311,,321⎪⎪⎪⎭⎫ ⎝⎛=αααα所以 ()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-311311211112,,1321βββα ()()⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=323532321939192939591939295321,,311,,ββββββ, α在基II 下的坐标为()T 323532,,-.5. 解:)3)(5(61011211-+=---=λλλλD , (1)当0≠D ,即5-≠λ且3≠λ时,方程组有惟一解.(2)当5-=λ时,⎪⎪⎪⎭⎫ ⎝⎛-----==1610155122151)(βA,B −→−r ⎪⎪⎪⎭⎫ ⎝⎛---100013902151 此时3)(,2)(==B A R R ,方程组无解,(3)当3=λ时,⎪⎪⎪⎭⎫ ⎝⎛---==1610153122131)(βA,B −→−r ⎪⎪⎪⎭⎫⎝⎛--00001001717571778, 此时2)()(==B A R R ,方程组有无限多个解.,并且通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10757871717321c x x x )(R c ∈. 四、证明题(5+5=10分) 1. 证:根据伴随矩阵的性质有E A AA =*又E A A =2,所以2A AA =*,再由于A 可逆,便有A A =*.2. 证:假设A 可逆,即1-A 存在,以1-Α左乘0AB =的两边得0B =,这与B 是n 阶非零矩阵矛盾;类似的,若B 可逆,即1-B 存在,以1-B 右乘0AB =的两边得0A =,这与A 是n 阶非零矩阵矛盾,因此,A 和B 都是不可逆的.。
工大线性代数期末试卷及参考答案(A)
学院: 专业:班级:姓名: 学号:,,s α线性表示,则下列结论中正确的 2,,s k k 使等式s s k α+成立。
存在一组全为零的数12,,,,s k k k 使等式11s s k α+成立; 2,,,s k k 使等式1s s k k βαα=+成立; 的线性表达式唯一。
的特征值为1,1,2,-则矩阵2A E ++的特征值为1,3,7; C. 1,1,2-; 1,0,3-.二、填空题(每小题3分,共15分)6.设(,1,2)ij A i j = 为行列式2131D =中元素ij a 的代数余子式, 则11122122A A A A =7.设4阶方阵520021000012011A ⎛⎫⎪ ⎪= ⎪- ⎪⎝⎭,则1A -=8.设线性方程组1231231232202020x x x x x x x x x λ-+=⎧⎪-+=⎨⎪+-=⎩有非零解,则λ=9.已知向量组123(3,2,0,1),(3,0,,0),(1,2,4,1)ααλα===--的秩为2,则λ=10.设n 阶方阵A 的特征值为12,,,n λλλ,则kA (k 为常数)的特征值为三、计算n 阶行列式(本题14分)11. 211112111112n D =四、证明题(每小题8分,共16分)12.已知对于n 阶方阵A ,存在自然数k ,使得0k A =,试证明矩阵E A -可逆,并写出其逆矩阵的表达式。
13. 设向量组12:,,,L A ααα和向量组12:,,,,S B βββ的秩分别为p 和q ,试证明:若A 可由B 线性表示,则p q ≤。
五、解矩阵方程(14分)14.设412221311A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,132231B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求X 使AX B =.六、解答题(每小题10分,共20分)15. 设11,11A ⎛⎫= ⎪-⎝⎭121101B ⎛⎫= ⎪--⎝⎭, 求AB .16. 设()12340,4,2,(1,1,0),(2,4,3),(1,1,1)αααα===-=-,求该向量组的秩和一个最大无关组,并将其余向量表示成最大无关组的线性组合。
北京工业大学线性代数考试题
北京工业大学2007-2008学年第二学期期末线性代数(工) 课程试卷(A )考试方式:闭卷 考试时间:2008年06月25日 学号 姓名 成绩 注:本试卷共8大题,满分100分. 得分登记(由阅卷教师填写)一. 填空题(每小题3分,共30 分).1. 矩阵乘积100123401056783019101112⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪-⎝⎭⎝⎭2. 设n 阶方阵A B 、满足AB A B =+,则A E -可逆,且1()A E --= 3. 如果2阶方阵A 的特征值是1,1-,*A 为其伴随矩阵,则行列式*2A E -=4. 设3维列向量组321,,ααα和21,ββ满足122123123αβαββαββ=⎧⎪=-+⎨⎪=-⎩,则由向量组321,,ααα构成的矩阵123()ααα的行列式等于 (写出具体数值)5. 如果211110139p p =-,而且0p >,则p = 6.如果实系数方程组112233100b xc y b x c y b x c y +=-⎧⎪+=⎨⎪+=⎩有实数解,则行列式2233b c b c =7. 设121,0λλ=-=是实对称矩阵A 的特征值,(2,2,1),(1,1,2)T Tt t αβ=+=+--8. 如果(1,1,1)T α=-是实方阵A 的一个特征向量,则223A E -必有一个特征向量等于9.如果1313a ⎛⎫ ⎪⎪⎪-⎪⎭是正交矩阵,则a = 10. 二次型112323233(,,)112341x x x x x x ⎛⎫⎛⎫ ⎪⎪- ⎪⎪ ⎪⎪--⎝⎭⎝⎭的正惯性指数与负惯性指数之和是二. 单项选择题(每小题3分,共15分)。
将正确答案的字母填入括号内。
1. 如果n 阶实矩阵A 满足30A =,E 是n 阶单位矩阵,则 【 】(A )A E +可逆,但A E -不可逆 (B )A E +不可逆,但A E -可逆 (C )A E +、A E -都可逆 (D )A E +、A E -都不可逆2. 如果向量组1234,,,αααα线性无关,而且其中的每一个向量都与向量β正交,则向量组1234,,,,ααααβ 【 】 (A) 一定线性相关 (B ) 一定线性无关 (C ) 可能线性相关,也可能线性无关 (D ) 前三个选项都不正确 3. 设A 是n 阶方阵,则下列选项中不正确的是 【 】 (A ) 当线性方程组b AX =无解时,行列式0A =。
北京工业大学高等数学期末考试复习一
(1,1) (1,1)
2 3
a b
0 0
得
a b
2 3
即 f (x, y) 2x 3 y x2 y3
令
f f
x y
2 3
2x 0 3y2 0
x f ( x)dx, 则 F (1)
1
f ( x)dx A
0
0
且 F(0) 0
分母
1
f ( x)dx
1 f ( y) F (z) y dy
0
x
x
1
0
f
1
( x)dxx
f
(
y)F (
y)
F( x)dy
1
0
f
(
x
)dx
1
x
F
(
y)
F ( x)dF (
y)
1
f
(
x)
1
1
F 2( y)
F ( x)(F (1)
F ( x))dx
0
2
x
1 0
f
(
x
)
1 2
[
A2
F
2 ( x)]
F ( x)A
F 2 ( x)dx
1 0
1 2
[
A2
F
2
(
x)]
F
(
x
)
A
F
2
(
x
)d
F
(
x
)
1 A2F (1) F (0) 1 1 F 3( x) 1 1 A F 2( x) 1
3. 下列方程不是线性微分 方程的是( C )
( A) y xy e x
(B) y 2 y y sin x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 填空题(每小题3分,共30 分. 注意:所有题目需给出计算结果; a a =型答案无效)
1. 100121201224680011111⎛⎫⎛⎫⎛⎫
⎪⎪ ⎪-= ⎪⎪
⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭
2. 记
121113231
5
4
9
17827
----第二列四个位置的代数余子式分别是12223242,,,A A A A .若
23122232420A aA a A a A +++=,且0a >,则a =
3. 在行列式22
3121
x x x x x -的完全展开式中,合并同类项后,3x 的系数是
4. 3阶实方阵A 和非零向量123,,ααα满足:112233,2,A A A αααααα===-.若
记以123,,ααα为列向量组的矩阵为()123P ααα=,则1P AP -⎛⎫
⎪
⎪= ⎪ ⎪⎝⎭
(写出具体的矩阵).
5. 若32⨯型、23⨯型实矩阵,A B 满足112211817AB ⎛⎫ ⎪
=- ⎪ ⎪-⎝⎭
,则,A B 的秩之和
()()R A R B +=
6. A 是2阶实方阵. 若齐次线性方程组()0A E X -=和(2)0A E X -=均有非
零解,则行列式*12A A E -++=
7. 若12,,
,m ααα是齐次线性方程组123112301012012700x x x -⎛⎫⎛⎫⎛⎫
⎪⎪ ⎪--= ⎪⎪ ⎪
⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭
的解空间中
的线性无关向量组,则m 能取到的最大值是
8. 若3阶实方阵123()A ααα=的列向量组123{,,}ααα与线性无关向量组
12{,}ββ满足1122123
12325αββαββαββ
=-⎧⎪
=+⎨⎪=-⎩ ,则A 的阶梯化矩阵中非零行的行数是
9. 方程1
23
4
26801
1
1x x x
+-+=--的根123,,x x x 之和123x x x ++= 10. 若Q 是n (1n >)阶实方阵,且齐次线性方程组0QX =只有零解,
T A Q Q =,则A 的特征值 0(填“,,><=”之一).
二(10分). 计算行列式01523
1
3110
1
8
3810113132510
D ----=------(要求出具体数值).
三(10分). 用初等变换的方法,解方程101110110011101110X -⎛⎫⎛⎫ ⎪ ⎪
-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭
.
四(10分).a 取何值时,线性方程组123412341
23422320574x x x x x x x x x x x x a
-++=⎧⎪
+-+=⎨⎪-+-=⎩ 有解?
有解时,写出其通解.
五(12分). 已知288828882A ⎛⎫
⎪
= ⎪ ⎪⎝⎭
. 求一个可逆矩阵P ,使得1P AP -
是对角矩阵;并求出这一对角矩阵.
六(12分). 给定列向量组
12345(0,1,2,1,0),(1,1,1,0,3),(1,0,2,1,2),(5,2,3,7,11),(9,5,5,14,19).
T T T T
ααααα=-=-=-=--=--
1 求该向量组的秩;
2 求该向量组的一个极大线性无关组;
3 把其余向量用问题2中求出的极大线性无关组线性表出.
七(8分).
八(8分).。