基于MATLAB的巴特沃思和切比雪夫低通滤波器的设计
基于MATLAB的切比雪夫II型数字低通滤波器设计
![基于MATLAB的切比雪夫II型数字低通滤波器设计](https://img.taocdn.com/s3/m/1e0c456b00f69e3143323968011ca300a6c3f677.png)
科技视界Science &Technology VisionScience &Technology Vision 科技视界(上接第94页)响,其中学校和家庭是重要因素,所以学校与家庭要建立共育机制。
学校是学生们学习、生活的主要场所,在积极创造学习生活条件,开展相应工作的同时,学校方面还应及时和家长沟通,了解学生生长环境、性格爱好,并反馈学生在校学习、生活和心理状况,与家长共同教育管理学生,必要时要共同商讨学生的成长计划。
对于有心理问题的学生,学校要加强关注的力度,及时与家长取得联系,共同采取有效的干预措施,将各种心理问题扼杀在萌芽中。
总之,做好大学生的心理健康教育工作,高校辅导员应及时了解学生的心理活动,学校要健全一系列心理健康教育和问题解决机制,并及时与家长沟通,针对学生的不同心理问题给予有效的指导,确保大学生以积极的心态面对学习、生活,为今后更顺利地步入社会奠定良好的基础。
[1]李逸龙,姚海田,等.大学生教育管理与发展指导案例[M].东营:中国石油大学出版社,2012:2-3.[2]陈小菊,丁留贯.高校辅导员参与大学生心理健康教育工作探析[J].文教资料,2009(7):199-199.[3]张东伟.高校辅导员在大学生心理健康教育中的作用[J].教育理论研究,2011年(1):111-112.[4]谭平.论高校心理健康教育课程的构建[J].理论探讨,2008(12).[5]张猛,杨琳.新时期高校辅导员工作的创新研究[J].中国科技信息,2007(10):190-192.[责任编辑:杨扬]干扰抑制常见的模拟滤波器是巴特沃斯(Butterworth)滤波器和切比雪夫(Chebyshev)滤波器。
巴特沃斯滤波器的特点是具有通带内最大平坦的振幅特性,且随频率,升高,幅频特性单调递减。
切比雪夫滤波器在通带范围内是等幅起伏的,所以同样的通带衰减,其阶数较巴特沃斯滤波器要小。
可根据需要对通带内允许的衰减量(波动范围)提出要求,如要求波动范围小于1dB [1,2]。
利用MATLAB设计巴特沃斯低通数字滤波器
![利用MATLAB设计巴特沃斯低通数字滤波器](https://img.taocdn.com/s3/m/f920f360ae45b307e87101f69e3143323968f5db.png)
利用MATLAB设计巴特沃斯低通数字滤波器引言数字滤波器是数字信号处理中的重要组成部分,可以用于去除信号中的噪音和不需要的频率成分。
巴特沃斯滤波器是一种常见的数字滤波器,被广泛应用于信号处理领域。
本文将介绍如何利用MATLAB设计巴特沃斯低通数字滤波器,并给出详细的步骤和示例代码。
设计步骤利用MATLAB设计巴特沃斯低通数字滤波器主要包括以下步骤:1.设计滤波器的参数2.计算滤波器的传递函数3.绘制滤波器的幅频响应曲线4.通过频域图像观察滤波器的性能下面将分别介绍每个步骤的详细操作。
设计滤波器的参数巴特沃斯低通数字滤波器的参数包括截止频率和阶数。
截止频率决定了滤波器的通频带,阶数决定了滤波器的陡峭程度。
通过MATLAB的butter()函数可以方便地设计巴特沃斯低通数字滤波器。
该函数的参数为滤波器的阶数和截止频率。
示例代码如下:order = 4; % 阶数cutoff_freq = 0.4; % 截止频率[b, a] = butter(order, cutoff_freq);计算滤波器的传递函数通过设计参数计算得到滤波器的传递函数。
传递函数是一个复数,包括了滤波器的频率响应信息。
使用MATLAB的freqz()函数可以计算滤波器的传递函数。
该函数的参数为滤波器的系数b和a,以及频率取样点的数量。
示例代码如下:freq_points = 512; % 频率取样点数量[h, w] = freqz(b, a, freq_points);绘制滤波器的幅频响应曲线经过计算得到的传递函数能够提供滤波器的幅频响应信息。
通过绘制幅频响应曲线,可以直观地观察滤波器的频率特性。
使用MATLAB的plot()函数可以绘制滤波器的幅频响应曲线。
该函数的参数为频率点和传递函数的幅值。
示例代码如下:magnitude = abs(h); % 幅值plot(w/pi, magnitude);xlabel('归一化频率');ylabel('幅值');title('巴特沃斯低通数字滤波器幅频响应');通过频域图像观察滤波器的性能通过绘制滤波器的频域图像,可以直观地观察滤波器对不同频率的信号的响应情况。
基于matlab的切比雪夫及巴特沃斯低通高通滤波器的设计
![基于matlab的切比雪夫及巴特沃斯低通高通滤波器的设计](https://img.taocdn.com/s3/m/3328c0827e192279168884868762caaedd33bade.png)
巴特沃斯低通、切比雪夫低通、高通IIR滤波器设计05941401 1120191454 焦奥一、设计思路IIR滤波器可以分为低通、高通、带通、带阻等不同类型的滤波器,而以系统函数类型又有巴特沃斯、切比雪夫等滤波器。
其中巴特沃斯较为简单,切比雪夫较为复杂;低阶比高阶简单,但却有着不够良好的滤波特性。
在满足特定的指标最低要求下,低阶、巴特沃斯滤波器能更大程度地节省运算量以及复杂程度。
滤波器在不同域内分为数字域和模拟域。
其中数字域运用最广泛。
在设计过程中,一般是导出模拟域的滤波器,之后通过频率转换变为数字域滤波器,实现模拟域到数字域的传递。
在针对高通、带通、带阻的滤波器上,可以又低通到他们的变换公式来进行较为方便的转换。
综上,IIR滤波器的设计思路是,先得到一个满足指标的尽可能简单的低通模拟滤波器,之后用频域变换转换到数字域。
转换方法有双线性变换法、冲激响应不变法等。
虽然方法不同,但具体过程有很多相似之处。
首先将数字滤波器的指标转换为模拟滤波器的指标,之后根据指标设计模拟滤波器,再通过变换,将模拟滤波器变换为数字滤波器,是设计IIR滤波器的最基本框架。
以下先讨论较为简单的巴特沃斯低通滤波器。
二、巴特沃斯低通滤波假设需要一个指标为0~4hz内衰减小于3db、大于60hz时衰减不小于30db的滤波器。
其中抽样频率为400hz。
以双线性变换方法来设计。
首先将滤波器转换到模拟指标。
T =1f f ⁄=1400Ωf ′=2ff f =8ff f =Ωf ′f =0.02fΩf ′=2ff f =120ff f =Ωf ′f =0.3f根据双线性变换Ω=2f tan (f 2) 得到Ωf =25.14Ωf =407.62这就得到了模拟域的指标。
由巴特沃斯的方程Α2(Ω)=|f f (f Ω)|2=11+(ΩΩf )2f20ff |f f (f Ω)|=−10ff [1+(ΩΩf)2f] {20ff |f f (f Ωf )|≥−320ff |f f (f Ωf )|≤−30ff得到{ −10ff [1+(Ωf Ωf)2f ]≥−3−10ff [1+(Ωf Ωf )2f]≤−30当N取大于最小值的整数时,解出N=2,因此为二阶巴特沃斯低通滤波器。
用MATLAB设计巴特沃斯低通滤波器
![用MATLAB设计巴特沃斯低通滤波器](https://img.taocdn.com/s3/m/94841d14eef9aef8941ea76e58fafab069dc4497.png)
⽤MATLAB设计巴特沃斯低通滤波器⽤MATLAB 设计巴特沃斯低通滤波器1 巴特沃斯低通滤波器的特性⼀个理想低通滤波器的幅频特性如图3-80的阴影部分所⽰。
为了实现这个理想低通特性,需要在从0~ωC 的整个频带内增强增益,在ω>ωC 增益要降到0。
实际上,理想滤波器是不可能实现的。
图3-78是实际滤波器的幅频特性。
但是实际滤波器的特性愈接近理想特性愈好,巴特沃斯(Butterworth )滤波器就是解决这个问题的⽅法之⼀。
巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数,巴特沃斯的低通模平⽅函数为:221|()|1,2,,1(/)NC H j N j j ωωω==+ (3-138)式中以C ω是滤波器的电压-3dB 点或半功率点。
不同阶次的巴特沃斯滤波器特性如图3-79(a)所⽰。
4阶巴特沃斯滤波器的极点分布如图3-79(b)所⽰。
巴特沃斯滤波器幅频响应有以下特点:最⼤平坦性:在0=ω附近⼀段范围内是⾮常平直的,它以原点的最⼤平坦性来逼近理想低通滤波器。
通带、阻带下降的单调性。
这种滤波器具有良好的相频特性。
3dB 的不变性:随着N 的增加,频带边缘下降越陡峭,越接近理想特性。
但不管N 是多少,幅频特性都通过-3dB 点。
极点配置在半径为ωC 的圆上,并且均匀分布。
左半平⾯上的N 个极点是)(s H 的极点,右半平⾯上的N 个极点是)(s H -的极点。
2 巴特沃斯低通滤波器的实现为使巴特沃斯滤波器实⽤,我们必须能够实现它。
⼀个较好的⽅法是将巴特沃斯滤波器函数化成若⼲⼆阶节级联,其中每⼀节实现⼀对共轭复极点。
通过将极点以共轭复数的形式配对,对所有的每⼀个⼆阶节都具有实系数。
1图3-78 低通滤波器的幅频特性图3-80所⽰运算放⼤器电路为实现⼀对共轭极点提供了很好的⽅法。
电路的系统函数为202202121121122121)(1)11(1)(ωωω++=+++=s Qs C C R R s C R C R s C C R R s H (3-139)式中,ω0是S 平⾯原点与极点之间的距离,Q 被称为电路的“品质因数”,它提供了对响应峰值尖锐程度的⼀种度量。
数字信号处理课程设计-基于MATLAB的巴特沃斯低通滤波器以切贝雪夫低通滤波器的设计
![数字信号处理课程设计-基于MATLAB的巴特沃斯低通滤波器以切贝雪夫低通滤波器的设计](https://img.taocdn.com/s3/m/40bc499fe2bd960591c67707.png)
各专业全套优秀毕业设计图纸吉首大学信息科学与工程学院课程设计报告书课程:数字信号处理教程_______________________课题:基于MATLAB的巴特沃斯低通滤波器以切贝雪夫低通滤波器的设计姓名: _________________________学号:—专业:通信工程___________________________________年级:2012 级 __________________________________________指导教师: _______________________________________基地指导教师: _________________________________________2014年12 月一、项目介绍与设计目的1. 通过实验加深对巴特沃斯低通滤波器以及切贝雪夫低通滤波器基本原理的理解。
2. 学习编写巴特沃斯低通滤波器和切比雪夫的MATLA仿真程序。
3. 滤波器的性能指标如下:通带截止频率fp=3kHz,通带最大衰减Rp=2dB阻带截止频率fst=6kHz,阻带最小衰减As=30db二、设计方案1. 项目环境要求MATLAB软件2. 设计内容一.理论设计:模拟巴特沃思低通滤波器的设计1.有技术指标可求的设计参数Q p=6000 n rad/s; Q st=12000n rad/s;Rp=2db; As=30 db2■求N;2 1g(Q p/QJ=5.369 取N=63■确定参数=1971.114. 求系统函数Han( s) =1/(1+3.8637033S+7.4641016S A2+9.141620S A3+7.4641016S A4+3.8637033S A5+S A6) 5. 去归一化(I严叶_]严xlabel( 'f(kHz)' );ylabel( 'dB' );axis([-1,12,-55,1])set(gca, 'xtickmode' , 'manual' ,‘xtick' ,[0,1,2,3,4,5,6,7,8,9,10]); Set(gca, 'ytickmode' , 'maunal' , 'ytick' ,[-50,-40,-30,-2,-10,0]);grid;输出结果N=6b=5.8650e+25a=1 7.5158e+04 2.9000e+09 7.0010e+13 1.1267e+18 1.1496e+22 5.8650e+25dbHx=2.0000 33.7692在matlab 中显示如下:a =L De+025 *0.0000 0.0000 0. 0000 0. 0000 0. 0000 0. 0011 b =5.86505.8650e+025dbHx =2.0000 33.7962程序运行结果如下故系统函数为:Ha(s)=5.8650*10A25/(s A6+7.6158*10A4s A5+2.9000*10A9s A4+7.0010*10A13s A3+1.1267*10*18 s A2+1.1496*10A32s+5.8650*10A25)(2)切贝雪夫型低通滤波器程序:clc , clear all ;OmegaR=2*pi*3000;OmegaS=2*pi*6000;Rp=2;As=30; g=sqrt((10A(As/10)-1”(10A(Rp/10)-1)); OmegaR=OmegaS/OmegaPN=ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)))OmegaC=OmegaS;[zO,pO,kO]=cheb2ap(N,As);aO=real(poly(pO))aNn=aO(N+1);p=pO*OmegaC;a=real(poly(p))aNu=a(N+1);bO=real(poly(zO));M=le ngth(bO);bNn=bO(M);z=zO*OmegaC;b=real(poly (z));bNu=b(M);k=k0*(aNu*b Nn )/(a Nn *bNu);b=k*bwO=[OmegaP,OmegaS];[H,w]=freqs(b,a);Hx=freqs(b,a,wO);dbHx=-20*log10(abs(Hx)/max(abs(H))) plot(w/(2*pi)/1000,20*log10(abs(H)));xlabel( 'f(kHz)' );ylabel( 'dB' );axis([-1,12,-55,1])set(gca, 'xtickmode' , 'manual' , 'xtick' ,[0,1,2,3,4,5,6,7,8,9,10]);Set(gca, 'ytickmode' , 'maunal' , 'ytick' ,[-50,-40,-30,-20,-10,0]);grid;输出结果:N=4b=0.0316 0 3.5954e+08 0 5.1099e+17A=1 6.6533e+04 2.2247e+09 4.3659e+13 5.1099e+17程序运行结果如下图此低通滤波器的系统函数为:Ha(s)=0.0316s A4+3.5954*10A8S A2+5.1099*10A17/(S A4+6.6533*10A4S A3+2.2247*10A9S A2+4.3659*10A13S+5.1099*10A17)三、总结和分析通过本次butterworth低通滤波器的设计,使我对低通数字滤波器的工作原理和特性有了深刻的认识和了解,实验主要用到了matlab软件。
巴特沃斯Ⅱ型低通滤波器和切比雪夫Ⅱ型低通滤波器IIR低通数字滤波器设计
![巴特沃斯Ⅱ型低通滤波器和切比雪夫Ⅱ型低通滤波器IIR低通数字滤波器设计](https://img.taocdn.com/s3/m/1889b9d367ec102de3bd89b9.png)
巴特沃斯Ⅱ型低通滤波器和切比雪夫Ⅱ型低通滤波器I I R低通数字滤波器设计(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--南华大学课程设计报告课程名称:数字通信课程设计设计名称: IIR低通数字滤波器设计姓名: XXXX学号: xxxx班级:xxxx指导教师:XXXX起止日期:南华大学电气工程学院制课程设计任务书学生班级: xxxx 学生姓名: phatonic 学号: XXXXXXXX 设计名称:IIR低通数字滤波器设计起止日期:指导教师: XX课程设计学生日志课程设计考勤表课程设计评语表IIR低通数字滤波器设一、设计目的和意义目的:1.深入理解数字信号处理基础知识的理解;2.加深对MATLAB基础知识的理解;3.掌握低通数字滤波器的设计方法;4.了解冲激响应不变法的基本原理和特点;5.了解双线性变换法的基本原理和特点;意义:通过课程设计设计可以加深我们对课本基础知识的理解,对已经学习的知识进行实践训练,起到了理论联系实践的作用。
在设计过程中,一定会遇到很多的困难和问题,在解决问题的过程中,不仅锻炼了我解决实际问题的能力,而且也培养了我设计的综合能力。
总之,理论联系实践,对我来说是非常的重要。
IIR低通数字滤波器设计是滤波器设计中很经典的问题,而滤波器设计则是是《数字信号处理》的核心内容。
所以,IIR低通数字滤波器设计是数字信号处理的经典内容。
二、设计原理1.数字滤波器原理与模拟滤波器类似,数字滤波器按频率特性划分为低通、高通、带通、带阻、全通等类型。
由于频率响应的周期性,频率变量以数字频率w来表示(w=ΩT=Ω/fs, Ω为模拟角频率,T为抽样时间间隔,fs为抽样频率),所以数字滤波器设计中必须给出抽样频率。
一般情况下,数字滤波器是一个线性移不变离散时间系统,利用有限精度算法来实现。
具体的实现方法有很多,不过主流的方法是:先设计出对应的模拟滤波器,再将模拟滤波器数字化为数字滤波器。
基于MATLAB的切比雪夫I型模拟低通滤波器设计
![基于MATLAB的切比雪夫I型模拟低通滤波器设计](https://img.taocdn.com/s3/m/5a7da59d02768e9950e7385a.png)
基于MATLAB的切比雪夫I型模拟低通滤波器设计课程设计名称:数字信号处理课程设计专业班级:电信0604学生姓名:学号:20064300430指导教师:课程设计时间:2009. 6. 8-2009. 6. 14数字信号处理专业课程设讣任务书学生姓名专业班级电信0604学号20064300430题U基于MATLAB的切比雪夫I型模拟低通滤波器设讣课题性质其他课题来源自拟课题指导教师同组姓名根据已学的知识并结合MATLAB来设计一个切比雪夫I型模拟低通滤波器,技术指标如下:R, ldB通带截止频率:fp二1000Hz,通带最大衰减:p主要内容A,25 dB阻带截止频率:fs二1500Hz,阻带最小衰减:s画出滤波器的幅频、相频特性曲线。
1(写出设计原理和设计思路,画出程序流程图2(用MATLAB画出幅频特性图任务要求3(用MATLAB画出相频特性图4(用MATLAB画出零极点图1(程佩青著,《数字信号处理教程》,清华大学出版社,20012 (Sanjit K. Mitra著,孙洪,余翔宇译,《数字信号处理实验指导书(MATLAB 参考文献版)》,电子工业出版社,2003年1月3(郭仕剑等,《MATLAB 7. x数字信号处理》,人民邮电出版社,2006年指导教师签字:审查意见教研室主任签字:年月日说明:本表由指导教师填写,山教研室主任审核后下达给选题学生,装订在设计(论文)首页内容包括:一设计内容与技术要求设计一个切比雪夫I型模拟低通滤波器,满足指标如下:通带截止频率:R, ldBfp二1000Hz,通带最大衰减:,阻带截止频率:fs=1500Hz,阻带最小pA, 25 dB衰减:,写出设汁原理和设计思路,画出程序流程图,用MATLABs编写程序并画出幅频特性图,相频特性图和零极点图。
二设计原理及设计思路1设计原理Chebyshev滤波器是在通带或阻带上频率响应幅度等波纹波动的滤波器。
在通带波动的为“ChebyshevI型滤波器”,在阻带波动的为“ChebyshevI I滤波器”。
基于MATLAB的巴特沃斯切比雪夫滤波器设计
![基于MATLAB的巴特沃斯切比雪夫滤波器设计](https://img.taocdn.com/s3/m/f624ba65168884868762d65f.png)
滤波器的幅频响应基本上都是理想状态,在现
作用。通过运算的方式使得信号中频率成分达到所 实情况下是无法实现的。在实际当中,我们自行设
设定的比例或直接滤掉一些频率成分的器件。数字、 计的滤波器都是在规定的基本原则下相对理想滤波
模拟滤波在理论概念上是相同的,只是对进来信号 器较为相近,这样就确保了滤波器在物理层面上是
一 滤波器的基本概念
(一) 什么是滤波器
response digital filter, 简称 IIR 滤波器)和有限冲激(脉 冲)响应数字滤波器(Finite impulse response digital filter, 简称 FIR 滤波器)两种形式。
滤波器,顾名思义,其作用是过滤信号波形的
过滤的方法以及滤波信号的形式不同。数字滤波器 可以实现并且具有较高的稳定性能。
相对来说精度方面比较高,便于携带,滤波功能比 二 模拟原型滤波器
较强大。
课 程
Байду номын сангаас
模拟滤波器只能用硬件来实现,其元件是电阻、
本节介绍常用的模拟原型滤波器的主要特点及
与
电容、电感及运算放大器等。数字滤波器实现滤波 其 MATLAB 实 现, 包 括 Butterworth、Chebyshev I,
关键词:滤波器;Matlab;巴特沃斯;切比雪夫
在无线电通信、非电量及微弱信号检测、数字 信号进行频谱分析的软件,其中的工具箱更是将复
信号处理、自动控制等电路中所能接收到的信号通 杂的设计程序简化为简单的函数调用模式,设定正
常都是很微弱的,且其中还掺杂有无用或有害的信 确的参数后,就会得到所要的结果,使用起来非常
教 学
的形式大致分为两种,一是通过编写所需要的程序 ChebyshevII, 原型低通滤波器的设计。模拟原型滤波
滤波器设计中的巴特沃斯和切比雪夫滤波器的选择
![滤波器设计中的巴特沃斯和切比雪夫滤波器的选择](https://img.taocdn.com/s3/m/bdea534e854769eae009581b6bd97f192279bf2d.png)
滤波器设计中的巴特沃斯和切比雪夫滤波器的选择在信号处理和电子电路设计中,滤波器是一种常用的工具,用于去除信号中的噪声或者选择特定频率范围内的信号。
巴特沃斯滤波器和切比雪夫滤波器是两种常见的滤波器类型,它们在滤波器设计中扮演着重要角色。
本文将探讨巴特沃斯和切比雪夫滤波器的特点,并给出在不同情况下如何选择滤波器类型的建议。
1. 巴特沃斯滤波器巴特沃斯滤波器是一种最常见和最简单的滤波器类型之一。
它具有以下特点:1.1 平坦的幅频响应巴特沃斯滤波器的幅频响应是平坦的,即在通带内具有相等的增益,不会引入额外的波动或峰谷。
这使得巴特沃斯滤波器在需要保持信号幅度的应用中非常适用。
1.2 无群延迟巴特沃斯滤波器的群延迟是线性的,意味着不同频率的信号通过该滤波器后的延迟是相等的。
这对于需要保持信号的相位一致性和高时间分辨率的应用非常重要。
1.3 递归结构巴特沃斯滤波器可以使用递归结构实现,从而提供更高的阶数和更陡的滚降斜率。
这使得它在滤波器的设计中非常灵活。
2. 切比雪夫滤波器切比雪夫滤波器是另一种常见的滤波器类型,它具有以下特点:2.1 可调的滚降斜率切比雪夫滤波器的滚降斜率可以通过调整滤波器的阶数和纹波大小来控制。
滚降斜率指的是滤波器频率响应在截止频率附近的陡峭程度。
切比雪夫滤波器在需要更陡的滚降斜率的应用中很有用。
2.2 纹波存在切比雪夫滤波器的频率响应在通带内会引入一定的纹波,这是为了实现更陡的滚降斜率所必需的。
纹波大小可以通过指定通带纹波的最大允许值来控制。
2.3 非递归结构切比雪夫滤波器通常使用非递归结构实现,这意味着它们不会导致信号的反馈。
这使得它们在需要避免信号失真和不稳定性的应用中非常有用。
3. 如何选择滤波器类型在滤波器设计中,选择巴特沃斯滤波器还是切比雪夫滤波器取决于实际需求和应用场景。
下面是一些建议:3.1 幅频响应要求如果需要保持信号的幅度一致性,巴特沃斯滤波器是一个不错的选择,因为其幅频响应是平坦的。
基于MATLAB做巴特沃斯低通滤波器
![基于MATLAB做巴特沃斯低通滤波器](https://img.taocdn.com/s3/m/63ffc7f8700abb68a882fb07.png)
基于MATLAB设计巴特沃斯低通滤波器课程设计专业:XXXXXX姓名:XXX学号: XX指导老师:XXX2011年11 月26日通信系统仿真课程设计任务书院(系):电气信息工程学院目录1 绪论 (1)1.1 引言 (1)1.2 数字滤波器的设计原理 (1)1.3 数字滤波器的应用 (2)1.4 MATLAB的介绍 (3)1.5 本文的工作及安排 (3)2 滤波器分类及比较 (4)2.1 滤波器的设计原理 (4)2.2 滤波器分类 (4)2.3 两种类型模拟滤波器的比较 (6)3 巴特沃斯低通滤波器 (7)3.1 巴特沃斯低通滤波器简介 (7)3.2 巴特沃斯低通滤波器的设计原理 (7)4 MATLAB仿真及分析 (11)4.1 MATLAB工具箱函数 (11)4.2 巴特沃斯低通滤波器的MATLAB仿真 (11)另附程序调试运行截图: (13)5.1 总结 (13)5.2 展望 (13)1 绪论1.1 引言凡是有能力进行信号处理的装置都可以称为滤波器。
滤波器在如今的电信设备和各类控制系统里面应用范围最广、技术最为复杂,滤波器的好坏直接决定着产品的优劣。
自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。
使以数字滤波器为主的各种滤波器得到了飞速的发展,到70年代后期,数字滤波器的单片集成已被研制出来并得到应用。
80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。
90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。
当然,对数字滤波器本身的研究仍在不断进行。
[1]滤波器主要分成经典滤波器和数字滤波器两类。
从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。
本文主要对低通数字滤波器做主要研究。
1.2 数字滤波器的设计原理所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。
简述基于MATLAB设计巴特沃斯低通滤波器
![简述基于MATLAB设计巴特沃斯低通滤波器](https://img.taocdn.com/s3/m/2abfe87fa58da0116d174930.png)
基于MATLAB 设计巴特沃斯低通滤波器摘 要: 首先分析了巴特沃斯低通滤波器的特性。
然后用MATLAB 的信号处理工具箱提供的函 数设计了巴特沃斯低通滤波器,使得巴特沃斯滤波器的设计变得更加简单、快捷、直观。
巴特沃斯(Butterworth)滤波器是一种具有最大平坦幅度响应的低通滤波器,它在通信领域里已有广应用,在电测中也具有广泛的用途,可以作检测信号的滤波器。
MATLAB 语言是一种面向科学与工程计算的语言。
它编程效率高,测试程序手段丰富,扩展能力强,内涵丰富。
它的信号处理工具箱(Signal Processing Toolbox)提供了设计巴特沃斯滤波器的函数,本文充分利用这些函数,进行了巴特沃斯滤波器的程序设计,并将其作为函数文件保存,可方便地进行调用。
1. 巴特沃斯低通滤波器的特性巴特沃斯低通滤波器的平方幅度响应为: n c j H 22)(11)(ωωω+=其中,n 为滤波器的阶数,ωc 为低通滤波器的截止频率。
该滤波器具有一些特殊的性质:① 对所有的n ,都有当 ω=0时,|H(j0)|2 =1;② 对所有的n ,都有当ω=ωc 时,|H(j ωc )|2 =0.5 ,即在ωc 处有3dB 的衰减;③|H(j ω)|2 是ω的单调递减函数,即不会出现幅度响应的起伏;④ 当n →+∞时,巴特沃斯滤波器趋向于理想的低通滤波器;⑤ 在ω=0处平方幅度响应的各级导数均存在且等于0,因此|H(j ω)|2 在该点上取得最大值,且具有最大平坦特性。
图l 展示了2阶、4阶、8阶巴特沃斯低通滤波器的幅频特性。
可见阶数n 越高,其幅频特性越好,低频检测信号保真度越高。
巴特沃斯与贝塞尔(Besse1)、切比雪夫(Cheby.shev)滤波器的特性差异如图2所示。
从图2可以看出,巴特沃斯滤波器在线性相位、衰减斜率和加载特性三个方面具有特性均衡的优点,因此在实际使用中,巴特沃斯滤波器已被列为首选。
2 .巴特沃斯低通滤波器的MATLAB实现MATLAB的信号处理工具箱提供了有关巴特沃斯滤波器的函数buttap、buttord、butter。
基于matlab 的巴特沃斯低通滤波器的实现讲课教案
![基于matlab 的巴特沃斯低通滤波器的实现讲课教案](https://img.taocdn.com/s3/m/b8d379b20b1c59eef9c7b4d5.png)
基于m a t l a b的巴特沃斯低通滤波器的实现基于matlab 的巴特沃斯低通滤波器的实现一、课程设计的目的运用MATLAB实现巴特沃斯低通滤波器的设计以及相应结果的显示,另外还对多种低通滤波窗口进行了比较。
二、课程设计的基本要求1)熟悉和掌握MATLAB 的基本应用技巧。
2)学习和熟悉MATLAB相关函数的调用和应用。
3)学会运用MATLAB实现低通滤波器的设计并进行结果显示。
三、双线性变换实现巴特沃斯低通滤波器的技术指标:1.采样频率10Hz。
2.通带截止频率fp=0.2*pi Hz。
3.阻带截止频率fs=0.3*pi Hz。
4.通带衰减小于1dB,阻带衰减大于20dB四、使用双线性变换法由模拟滤波器原型设计数字滤波器程序代码:T=0.1; FS=1/T;fp=0.2*pi;fs=0.3*pi;wp=fp/FS*2*pi;ws=fs/FS*2*pi;Rp = 1; % 通带衰减As = 15; % 阻带衰减OmegaP = (2/T)*tan(wp/2); % 频率预计OmegaS = (2/T)*tan(ws/2); % 频率预计%设计巴特沃斯低通滤波器原型N = ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS))); OmegaC = OmegaP/((10^(Rp/10)-1)^(1/(2*N)));[z,p,k] = buttap(N); %获取零极点参数p = p * OmegaC ;k = k*OmegaC^N;B = real(poly(z));b0 = k;cs = k*B; ds = real(poly(p));[b,a] = bilinear(cs,ds,FS);% 双线性变换figure(1);% 绘制结果freqz(b,a,512,FS);%进行滤波验证figure(2); % 绘制结果f1=50; f2=250;n=0:63;x=sin(2*pi*f1*n)+sin(2*pi*f2*n);subplot(2,2,1);stem(x,'.'); title ('输入信号');y=filter(b,a,x);subplot(2,2,2);stem(y,'.') ;wd1=boxcar(N)';b1=hd.*wd1;wd2=hanning(N)';b2=hd.*wd2;wd3=blackman(N)';b3=hd.*wd3;wd4=hamming(N)';b4=hd.*wd4;[h1,w]=freqz(b1,1);[h2,w]=freqz(b2,1);[h3,w]=freqz(b3,1);[h4,w]=freqz(b4,1);plot(w,20*log10(abs(h1)),w,20*log10(abs(h2)),':',w,20*log10(abs(h3)),'-.',w,20*log10(abs(h4)),'--')legend('矩形窗','汉宁窗','布莱克曼窗','汉明窗');结果显示;00.51 1.52 2.53 3.5-160-140-120-100-80-60-40-20020六、总结及心得:基于matlab 的巴特沃斯低通滤波器的实现姓名:学号: S20100 专业:日期: 2010年06月08日。
基于MATLAB的巴特沃斯低通滤波器的设计
![基于MATLAB的巴特沃斯低通滤波器的设计](https://img.taocdn.com/s3/m/00accc194b35eefdc8d333bc.png)
H (s)
1
(s p(1))( s p(2))(s p(n))
所以事实上 z 为空阵。上述零极点形式可以化为:
H (s)
sn
k bni s n1
b1s b0
其中 b0
n c
,令
c
1rad / s ,得到巴特沃斯滤波器归一化结果,如表
1
所示。
表 1 n 1 ~ 8阶的巴特沃斯滤波器系数
h(n)= ha(nT) 其中 T 是抽样周期。 如果令 Ha(s)是 ha(t)的拉普拉斯变换,H(z)为 h(n)的 z 变换,利用 抽样序列的 z 变换与模拟信号的拉普拉斯变换的关系,得:
X (z) zesT
1 T
Xa
k
(s
jks )
1 T
k
X
a
s
姓名: 班级: 学号: 时间:2011 年 6 月
设计题目
基于 MATLAB 的巴特沃斯低通滤波器的设计
设计要求
1. 通过实验加深对巴特沃斯低通滤波器基本原理的理解。 2.学习编写巴特沃斯低通滤波器的 MATLAB 仿真程序 3. 滤波器的性能指标如下:通带截止频率 fp=5kHz,通带最大衰减 p =2dB,阻带截止频率 fs=12kHz,阻带最小衰减 s =30dB
滤波器的性能指标如下:通带截止频率 fp=5kHz,通带最大衰减 p =2dB,
阻带截止频率 fs=12kHz,阻带最小衰减 s =30dB
3.1MATLAB 中所需函数
ATLAB 的信号处理工具箱提供了滤波器的函数 buttap、buttord、butter。 由[z,p,k] = buttap(n)函数可设计出 n 阶巴特沃斯低通滤波器原型,其传递函数 为
DSP课程设计 MATLAB实现切比雪夫滤波器的分析与设计
![DSP课程设计 MATLAB实现切比雪夫滤波器的分析与设计](https://img.taocdn.com/s3/m/94083fb2c281e53a5902ff0c.png)
目录1 课题综述 (1)1.1 课题来源 (1)1.2预期目标 (1)1.3 面对的问题 (1)1.4 需要解决的关键技术 (1)2 系统分析 (2)2.1 涉及的基础知识 (2)2.2 解决的基本思路 (2)2.3 总体方案 (2)2.4 功能模块框图 (2)3 详细设计 (3)3.1 巴特沃斯低通滤波特性(MATLAB) (3)3.2 巴特沃斯高通滤波特性(MATLAB) (4)3.3 切比雪夫低通滤波特性(MATLAB) (4)3.4 切比雪夫高通滤波特性(MATLAB) (4)4 程序调试 (5)4.1 巴特沃斯低通滤波特性 (5)4.2 巴特沃斯高通滤波特性 (6)4.3 切比雪夫低通滤波特性 (8)4.4 切比雪夫高通滤波特性 (9)5 运行与测试 (10)5.1 选择音频文件(WAV) (10)5.2 滤波后音频特点 (10)6 全文代码设计 (10)总结 (14)致谢 (15)参考文献 (16)1 课题综述1.1 课题来源随着数字集成电路,设备和系统技术的快速进步,通过数字方法进行信号处理已变得越来越有吸引力。
大规模一般用途的计算机和特殊用途硬盘的高效性,已使得实时滤波既实用又经济。
目前主要有两类滤波器,模拟滤波器和数字滤波器,它们在物理组成和工作方式上完全不同,而模拟滤波器的技术发展已相当成熟,所以研究的重点基本上放在了数字滤波器上。
滤波器的功能是用来移除信号中不需要的部分,比如随机噪声;或取出信号中的有用部分,如位于某段频率范围内的成分。
目前随着计算机技术和数字信号处理器芯片的发展,使我们更为便利地识别和提取各种各样的信号。
因此研究不同数字滤波器的设计原理和稳定性分析对于满足军事、航空、民营等等各个领域的信号处理要求具有十分重要的意义。
1.2 预期目标能够理解并掌握无限脉冲响应数字滤波器(IIR)的机理,分析IIR滤波器的结构特性,观察IIR滤波器的频域特性。
能够通过MATLAB实现巴特沃斯,切比雪夫的高通低通滤波器的幅频响应,相频响应,以及零极点的图像的勾画。
基于MATLAB的巴特沃思和切比雪夫低通滤波器的设计
![基于MATLAB的巴特沃思和切比雪夫低通滤波器的设计](https://img.taocdn.com/s3/m/10f9fb01a6c30c2259019ee3.png)
第一章数字滤波器及MATLAB语言概述数字滤波是语音和图像处理、模式识别、谱分析等应用中的一个基本处理算法,在数字信号处理中占有极其重要的地位。
研究基于Matlab 环境下的IIR数字滤波器的设计与实现,给出了相应的Matlab函数命令,并将滤波器应用于图像噪声的去除,取得了不同的效果,就其结果做出了进一步的解释和说明。
数字滤波器是具有一定传输选择性的数字信号处理装置,其输入、输出均为数字信号,实质上是一个由有限精度算法实现的线性不变离散系统。
它的基本工作原理是利用离散系统特性对系统输入信号进行加工和变换,改变输入序列的频谱或信号波形,让有用频率的信号分量通过,抑制无用的信号输出分量。
MATLAB是美国MathWorks公司推出的一套用于工程计算的可视化高性能语言与软件环境。
MATLAB为数字滤波的研究和应用提供了一个直观、高效、便捷的利器。
它以矩阵运算为基础,把计算、可视化、程序设计融合到了一个交互式的工作环境中。
MATLAB推出的工具箱使各个领域的研究人员可以直观方便地进行科学研究、工程应用,其中的信号处理(signalproeessing)、图像处理(imageproeessing)、小波(wavelet)等工具箱为数字滤波研究的蓬勃发展提供了有力的工具。
数字滤波器与模拟滤波器相比,具有精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及能实现模拟滤波器无法进行的特殊滤波等优点。
本文主要介绍有限冲激响应数字滤波器(FIR)和无限冲激响应数字滤波器(IIR)的设计原理、方法、步骤以及在MATLAB中的实现,并以实例形式列出设计程序和仿真结果。
第二章 方案提取和技术要求第一节 方案提取IIR 数字滤波器是一种离散时间系统,其系统函数为假设M ≤N ,当M >N 时,系统函数可以看作一个IIR 的子系统和一个(M-N)的FIR 子系统的级联。
IIR 数字滤波器的设计实际上是求解滤波器的系数和 ,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。
基于MATLAB的切比雪夫低通滤波器设计_王建行
![基于MATLAB的切比雪夫低通滤波器设计_王建行](https://img.taocdn.com/s3/m/24c9680179563c1ec5da717b.png)
2011 年 12 月 Dec. 2011
基于 MATLAB 的切比雪夫低通滤波器设计
王建行,姚齐国
(浙江海洋学院 机电工程学院,浙江 舟山 316000)
摘 要: 讨论了 IIR 数字滤波器的设计思想,以切比雪夫低通滤波器的设计为例,讨论了用 MATLAB 软件 的设计过程,并通过与理想滤波效果比较,展示了在 MATLAB 环境下设计数字滤波器的可靠性和高效性 . 关键词: 数字滤波器; MATLAB;无限脉冲响应;仿真与分析 中图分类号: TP301.6 文献标志码: A 文章编号: 1674–3326(2011) 06–0531–03
2 ( )]1/ 2 ,其中 <1(正数 ),它与通带波 切比雪夫 I 型滤波器平方幅度响应函数为: | G ( j ) | [1 2 C N 2
纹有关, 越大,波纹也越大;CN ( ) 是切比雪夫多项式,它被定义为: C N ( ) cos(N arccos( )), | | 1,
2
MATLAB 软件简介
MATLAB 是用于数值计算和图形处理的数学计算环境,在 MATLAB 环境下,用户可集成程序设计、
数值计算、图形绘制、输入输出、文件管理等 . MATLAB 系统最初由 Cleve Moler 用 FORTRAN 语言设计, 现在的 MATLAB 程序是由 MathWorks 公司用 C 语言开发的 . 经过多年改进,不断升级,它的工具箱功能 越来越强,应用越来越广泛 . MATLAB 语言的特点可归纳如下 [5]:1)简单易学 . MATLAB 不仅是一个开发软 件,也是一门编程语言,其语法规则与结构化高级编程语言 (如 C 语言等 )大同小异,使用更为简便 . 2)计算
MATLAB 提供功能强大的、交互式的二维和三维绘图功能,可供用户绘制富有表现力的彩色图形,可
基于MATLAB的切比雪夫低通滤波器设计
![基于MATLAB的切比雪夫低通滤波器设计](https://img.taocdn.com/s3/m/b951c41f5f0e7cd18425364d.png)
e a l,d sg r c s y u ig M ATL sd s u s d x mp e e in p o e sb sn AB i ic s e .An o ae t h d a l rn fe t,i i d c mp rd wi te i e lf t ig e fcs t s h i e
种乘关系,所以,它比
计算等价 的时 域卷积快 得 多. ) ̄ 法 ,即通过对 离散 抽样 数据作 差分数学 运算 ,以达到滤 波的 目的I.无 2f 域 l 论 采用 哪种滤 波方式 ,其数值计 算都 比较 繁琐 ,因此 ,借 助 于计算 机 软件进 行辅助 设计 ,是数 字滤波 器研
De 2 l c. 0l
基 于 MA L B的切 比雪夫低通滤 波器设计 TA
王 建 行 ,姚 齐 国
( 江海 洋学院 机 电工程 学院 ,浙江 舟 山 3 6 0 浙 10 0)
摘 要 :讨论 了 IR数 字滤波 器 的设 计思 想 ,以切 比 雪夫低通 滤波 器的设 计为例 ,讨论 了用 MA L . I T AB软件 的, 设计过 程 ,并通过 与理 想滤波 效果 比较 ,展 示 了在 MA L T AB环境 下设计数 字滤波 器的可 靠性 和 高效性. 关键 词 :数字 滤波 器 ;MA L T AB;无限脉 冲响 应 ;仿 真- 析 b分 中图 分类 号 :T 3 1 P0. 6 文 献标 志 码 :A 文 章 编号 : l 7 - 3 62 1) 6 0 3 - 3 6 4 3 2 (0 1 0 - 5 l o
Ab t t h s a tce d s u s s t e d s g i g i e f fR i i lfl r a i g Ch b s e o p s l ra n s c :T i ri l ic s e h e i n n d a o I d g t t .T k n e y h v l w- a s f t sa r a a i e i e
基于Matlab的巴特沃斯IIR数字滤波器设计
![基于Matlab的巴特沃斯IIR数字滤波器设计](https://img.taocdn.com/s3/m/63d525d0360cba1aa811daaf.png)
பைடு நூலகம்
基于 Matlab 的巴特沃斯 IIR 数字滤波器设计
1.低通 Wp=0.2; Rp=1; Ws=0.3; Rs=15; [N,Wc]=buttord(Wp,Ws,Rp,Rs) [Bz,Az]=butter(N,Wc)
给出的滤波器的幅度和增益曲线。 参考曲线如下:
低通滤波器
ω/π
ω/π
幅度
增益 dB
给出的滤波器的幅度和增益曲线。 参考曲线如下:
带通滤波器
ω/π ω/π
增益 dB
幅度
4.带阻
Wp=[0.2,0.8]; Rp=1; Ws=[0.3,0.7]; Rs=15; [N,Wc]=buttord(Wp,Ws,Rp,Rs) [Bz,Az]=butter(N,Wc,'stop')
给出的滤波器的幅度和增益曲线。 参考曲线如下:
带阻滤波器
ω/π ω/π
某输入信号如下:
N=128; t=0:N-1; fs=1000; x1=sin(2*pi*50*t/fs); x2=sin(2*pi*150*t/fs); x3=sin(2*pi*250*t/fs); xn=x1+x2+x3;
对 xn 进行滤波处理: 1)设计低通滤波器,滤除 x2 和 x3,给出的滤波器的幅度、增益曲线和输出波形;(参 考过渡带:0.15π-0.25π) 2)设计高通滤波器,滤除 x1 和 x2,给出的滤波器的幅度、增益曲线和输出波形;(参 考过渡带:0.35π-0.45π) 3)设计带通滤波器,滤除 x1 和 x3,给出的滤波器的幅度、增益曲线和输出波形;(参 考过渡带:0.15π-0.25π和 0.35π-0.45π) 4)设计带阻滤波器,滤除 x2,给出的滤波器的幅度、增益曲线和输出波形;(参考 过渡带:0.15π-0.25π和 0.35π-0.45π) 5)调解 1)中的 as,使滤波器阶数 N=4; 6)调解 4)中的过渡带,改善输出波形;
数字信号处理课程设计-基于MATLAB的巴特沃斯低通滤波器以切贝雪夫低通滤波器的设计
![数字信号处理课程设计-基于MATLAB的巴特沃斯低通滤波器以切贝雪夫低通滤波器的设计](https://img.taocdn.com/s3/m/8efd70d548d7c1c709a14548.png)
各专业全套优秀毕业设计图纸吉首大学信息科学与工程学院课程设计报告书课程:数字信号处理教程课题:基于MATLAB的巴特沃斯低通滤波器以切贝雪夫低通滤波器的设计姓名:学号:专业:通信工程年级: 2012级指导教师:基地指导教师:2014年12 月一、项目介绍与设计目的1.通过实验加深对巴特沃斯低通滤波器以及切贝雪夫低通滤波器基本原理的理解。
2.学习编写巴特沃斯低通滤波器和切比雪夫的MATLAB仿真程序。
3.滤波器的性能指标如下:通带截止频率fp=3kHz,通带最大衰减Rp=2dB,阻带截止频率fst=6kHz,阻带最小衰减As=30db二、设计方案1.项目环境要求MATLAB 软件2.设计内容一.理论设计:模拟巴特沃思低通滤波器的设计1.有技术指标可求的设计参数Ωp=6000πrad/s; Ωst=12000πrad/s;Rp=2db; As=30 db2.求N;=5.369取N=63.确定参数=1971.114.求系统函数Han(s)=1/(1+3.8637033S+7.4641016S^2+9.141620S^3+7.4641016S^4+3.8637033S^5+S^6)5.去归一化H(s)=Han(s/Ωc)=0.7648/(0.7648+3.0910s^5+6.2424s^4+7.9947S^3+6.6300S^2+0.6949)化简可得Ha(s)=5.8650*10^25/(s^6+7.6158*10^4s^5+2.9000*10^9s^4+7.0010*10^13s^3+1.12 67*10*18s^2+1.1496*10^32s+5.8650*10^25)切比雪夫低通滤波器1.由技术指标可得ε=1/(10^0.1As)=0.031N>=arcch[]/arch()取N=4系统函数为:Ha(s)=0.0316s^4+3.5954*10^8S^2+5.1099*10^17/(S^4+6.6533*10^4S^3+2.2247*10^9S^2+4.365 9*10^13S+5.1099*10^17)二.程序设计(1)巴特沃斯低通滤波器程序:clc,clear all;OmegaP=2*pi*3000;OmegaS=2*pi*6000;Rp=2;As=30;N=ceil(log10((10^(As/10)-1)/(10^(Rp/10)-1))/(2*log10(OmegaS/OmegaP)))OmegaC=OmegaP/((10^(Rp/10)-1)^(1/(2*N)));[z0,p0,k0]=buttap(N);p=p0*OmegaC;a=real(poly(p))k=k0*OmegaC^N;b0=real(poly(z0));b=k*b0w0=[OmegaP,OmegaS];[H,w]=freqs(b,a);Hx=freqs(b,a,w0);dbHx=-20*log10(abs(Hx)/max(abs(H)))plot(w/(2*pi)/1000,20*log10(abs(H)));xlabel('f(kHz)');ylabel('dB');axis([-1,12,-55,1])set(gca,'xtickmode','manual','xtick',[0,1,2,3,4,5,6,7,8,9,10]);Set(gca,'ytickmode','maunal','ytick',[-50,-40,-30,-2,-10,0]);grid;输出结果N=6b=5.8650e+25a=1 7.5158e+04 2.9000e+09 7.0010e+13 1.1267e+18 1.1496e+22 5.8650e+25 dbHx=2.0000 33.7692在matlab中显示如下:程序运行结果如下故系统函数为:Ha(s)=5.8650*10^25/(s^6+7.6158*10^4s^5+2.9000*10^9s^4+7.0010*10^13s^3+1.12 67*10*18s^2+1.1496*10^32s+5.8650*10^25)(2)切贝雪夫型低通滤波器此低通滤波器的系统函数为:Ha(s)=0.0316s^4+3.5954*10^8S^2+5.1099*10^17/(S^4+6.6533*10^4S^3+2.2247*10^9S^2+4.365 9*10^13S+5.1099*10^17)。
基于MATLAB做巴特沃斯低通滤波器
![基于MATLAB做巴特沃斯低通滤波器](https://img.taocdn.com/s3/m/1ee3b8da10661ed9ac51f3bf.png)
基于MATLAB设计巴特沃斯低通滤波器课程设计专业:XXXXXX姓名:XXX学号: XX指导老师:XXX2011年11 月26日通信系统仿真课程设计任务书院(系):电气信息工程学院目录1 绪论 (1)1.1 引言 (1)1.2 数字滤波器的设计原理 (1)1.3 数字滤波器的应用 (2)1.4 MATLAB的介绍 (3)1.5 本文的工作及安排 (3)2 滤波器分类及比较 (4)2.1 滤波器的设计原理 (4)2.2 滤波器分类 (4)2.3 两种类型模拟滤波器的比较 (6)3 巴特沃斯低通滤波器 (7)3.1 巴特沃斯低通滤波器简介 (7)3.2 巴特沃斯低通滤波器的设计原理 (7)4 MATLAB仿真及分析 (11)4.1 MATLAB工具箱函数 (11)4.2 巴特沃斯低通滤波器的MATLAB仿真 (11)另附程序调试运行截图: (13)5.1 总结 (13)5.2 展望 (13)1 绪论1.1 引言凡是有能力进行信号处理的装置都可以称为滤波器。
滤波器在如今的电信设备和各类控制系统里面应用范围最广、技术最为复杂,滤波器的好坏直接决定着产品的优劣。
自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。
使以数字滤波器为主的各种滤波器得到了飞速的发展,到70年代后期,数字滤波器的单片集成已被研制出来并得到应用。
80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。
90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。
当然,对数字滤波器本身的研究仍在不断进行。
[1]滤波器主要分成经典滤波器和数字滤波器两类。
从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。
本文主要对低通数字滤波器做主要研究。
1.2 数字滤波器的设计原理所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章数字滤波器及MATLAB语言概述数字滤波是语音和图像处理、模式识别、谱分析等应用中的一个基本处理算法,在数字信号处理中占有极其重要的地位。
研究基于Matlab 环境下的IIR数字滤波器的设计与实现,给出了相应的Matlab函数命令,并将滤波器应用于图像噪声的去除,取得了不同的效果,就其结果做出了进一步的解释和说明。
数字滤波器是具有一定传输选择性的数字信号处理装置,其输入、输出均为数字信号,实质上是一个由有限精度算法实现的线性不变离散系统。
它的基本工作原理是利用离散系统特性对系统输入信号进行加工和变换,改变输入序列的频谱或信号波形,让有用频率的信号分量通过,抑制无用的信号输出分量。
MATLAB是美国MathWorks公司推出的一套用于工程计算的可视化高性能语言与软件环境。
MATLAB为数字滤波的研究和应用提供了一个直观、高效、便捷的利器。
它以矩阵运算为基础,把计算、可视化、程序设计融合到了一个交互式的工作环境中。
MATLAB推出的工具箱使各个领域的研究人员可以直观方便地进行科学研究、工程应用,其中的信号处理(signalproeessing)、图像处理(imageproeessing)、小波(wavelet)等工具箱为数字滤波研究的蓬勃发展提供了有力的工具。
数字滤波器与模拟滤波器相比,具有精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及能实现模拟滤波器无法进行的特殊滤波等优点。
本文主要介绍有限冲激响应数字滤波器(FIR)和无限冲激响应数字滤波器(IIR)的设计原理、方法、步骤以及在MATLAB中的实现,并以实例形式列出设计程序和仿真结果。
第二章 方案提取和技术要求第一节 方案提取IIR 数字滤波器是一种离散时间系统,其系统函数为假设M ≤N ,当M >N 时,系统函数可以看作一个IIR 的子系统和一个(M-N)的FIR 子系统的级联。
IIR 数字滤波器的设计实际上是求解滤波器的系数和 ,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。
如果在S 平面上去逼近,就得到模拟滤波器;如果在z 平面上去逼近,就得到数字滤波器。
设计高通、带通、带阻等数字滤波器通常可以归纳为如图所示的两种常用方法: 方法1方法2图一 数字滤波器设计的两种方法方法1: 首先设计一个模拟原型低通滤波器,然后通过频率变换成所需要的模拟高通、带通或带阻滤波器,最后再使用冲激不变法或双线性变换成相应的数字高通、带通或带阻滤波器。
方法2 :先设计一个模拟原型低通滤波器,然后采用冲激响应不变法或双线性变换法将它转换成数字原型低通滤波器,最后通过频率变换把数字原型低通滤波器变换成所需要的数字高通、带通或带阻滤波器。
方法一的缺点是,由于产生混叠是真,因此不能用冲激不变法来变换成高通或阻带滤波器,故采用第二种方法进行设计。
本课程设计先用脉冲响应不变法设计巴特沃思数字低通滤波器,再利用双线性变换法设计一个切比雪夫滤波器。
第二节 设计要求给定技术指标如下:1)(9.0≤≤ωj e Hπω2.0≤2.0)(≤ωj eH πωπ≤≤3.0用脉冲响应不变法设计一个巴特沃思数字低通滤波器。
技术指标同上,用双线性变换法设计一个切比雪夫数字低通滤波器,通带内等波纹。
第三章 滤波器设计第一节 脉冲响应不变法设计巴特沃思数字低通滤波器顾名思义,脉冲响应不变法就是要求数字滤波器的脉冲响应序列h(n)与模拟滤波器的脉冲响应)(t h a 的采样值相等,即h(n)=)(t h a nTt ==)(nT h a其中,T 为抽样间隔。
根据模拟信号的拉普拉斯变换与离散序列的Z 变换之间的关系,我们知道H(z)STez ==T1∑Ω-ks jk S Ha )(此式表明,)(t h a 的拉普拉斯变换在s 平面上沿虚轴,按照周期sΩ=2π/T 延拓后,按式z=STe ,进行Z 变换,就可以将Ha(s)映射为H(z)。
事实上,用脉冲响应不变法设计IIR 滤波器,只适合于Ha(s)有单阶极点,且分母多项式的阶次高于分子多项式阶次的情况。
将Ha(s)用部分分式表示:Ha(s)=LT[h)(t a]=∑=-Ni iis s A 1式中,LT[·]代表拉普拉斯变换,i s为的单阶极点。
将Ha(s)进行拉普拉斯反变换,即可得到)(t h a =∑=Ni tS it u eA i 1)(式中,u(t)是单位阶跃函数。
则)(t h a 的离散序列h(n)=)(nT h a =∑=Ni nTS inT u eA i 1)(对h(n)进行z 变换之后,可以得到数字滤波器的系统函数H(z)H(z)=∑∞=-0)(n nzn h = ∑=--Ni TS izeA i 111在利用脉冲响应不变法将模拟滤波器转换为数字滤波器时,由于模拟频率ω与数字频率Ω之间呈线性关系,即Ω=T ω,所以在模拟滤波器的频率响应是带限或阻带衰减较大的情况下,数字滤波器能较好地保持模拟滤波器的幅度响应。
但由于实际应用中模拟滤波器一般都不满足带限条件,数字滤波器的频率响应都存在一定程度的混叠。
对模拟低通和带通滤波器,可通过减小抽样间隔或者增大模拟滤波器在阻带的衰减,使混叠引起的误差出于可以接受的范围内。
对模拟高通和阻带滤波器,由于存在严重的混叠,所以不能用脉冲相应不变法将模拟高通和阻带滤波器转换为数字滤波器。
第二节 双线性变换法设计切比雪夫滤波器双线性变换法的基本思想是,在将模拟滤波器H(s)转换为数字滤波器H(z)时,不是直接从s 域到z 域,二十先将非带限的H(s)映射为带限的H(s ’),再通过脉冲不变法将s ’映射到z 域,即H(s)→H(s ’) →H(z)。
从频域来看,模拟频率ω与数字频率Ω的关系需通过ω’建立,即ω→ω’→ Ω。
先将无限范围内取值ω映射在[-π/T, π/T]范围取值的ω’,再由Ω=ω’T 建立模拟频率与数字频率之间的关系。
为了将S 平面的整个虚轴j Ω压缩到S1平面j Ω1轴上的-π/T 到π/T 段上,可以通过以下的正切变换实现式中,T 仍是采样间隔。
当Ω1由-π/T 经过0变化到π/T 时,Ω由-∞经过0变化到+∞,也即映射了整个j Ω轴。
将式上写成将此关系解析延拓到整个S 平面和S1平面,令j Ω=s ,j Ω1=s1,则得再将S1平面通过以下标准变换关系映射到Z 平面⎪⎭⎫⎝⎛Ω=Ω2tan 21T T 2/2/2/2/11112T j T j T j T j eee e Tj Ω-ΩΩΩ+-⋅=ΩT s Ts T s T s T s T s ee T T s T e e e e T s 1111111122tanh 2212/2/2/2/----+-⋅=⎪⎭⎫ ⎝⎛=+-⋅=从而得到S 平面和Z 平面的单值映射关系为:以上两式是S 平面与Z 平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双线性变换其次,将s=σ+j Ω代入上式,得 因此由此看出,当σ<0时,|z|<1;当σ>0时,|z|>1。
也就是说,S 平面的左半平面映射到Z 平面的单位圆内,S 平面的右半平面映射到Z 平面的单位圆外,S 平面的虚轴映射到Z 平面的单位圆上。
因此,稳定的模拟滤波器经双线性变换后所得的数字滤波器也一定是稳定的。
双线性变换法优缺点:双线性变换法与脉冲响应不变法相比,其主要的优点是避免了频率响应的混叠现象。
这是因为S 平面与Z 平面是单sTs T sT s T z -+=-+=222121Ω--Ω++=j Tj Tz σσ22222222||Ω+⎪⎭⎫ ⎝⎛-Ω+⎪⎭⎫ ⎝⎛+=σσT T z 11112--+-=zz T s值的一一对应关系。
S 平面整个j Ω轴单值地对应于Z 平面单位圆一周,即频率轴是单值变换关系,这个关系如下:上式表明,S 平面上Ω与Z 平面的ω成非线性的正切关系,如图二所示。
由图二看出,在零频率附近,模拟角频率Ω与数字频率ω之间的变换关系接近于线性关系;但当Ω进一步增加时,ω增长得越来越慢,最后当Ω→∞时,ω终止在折叠频率ω=π处,因而双线性变换就不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,从而消除了频率混叠现象。
图二 双线性变换法的频率变换关系但是双线性变换的这个特点是靠频率的严重非线性关系而得到的,由于这种频率之间的非线性变换关系,就产生了新的问题。
首先,一个线性相位的模拟滤波器经双线性变换后得到非线性相位的数字滤波器,⎪⎭⎫ ⎝⎛=Ω2tan 2ωT不再保持原有的线性相位了;其次,这种非线性关系要求模拟滤波器的幅频响应必须是分段常数型的,即某一频率段的幅频响应近似等于某一常数(这正是一般典型的低通、高通、带通、带阻型滤波器的响应特性),不然变换所产生的数字滤波器幅频响应相对于原模拟滤波器的幅频响应会有畸变,如图三所示。
图三双线性变换法幅度和相位特性的非线性映射对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各个分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸来加以校正。
也就是将临界模拟频率事先加以畸变,然后经变换后正好映射到所需要的数字频率上。
所以双线性变化法一般适合于设计幅度响应为分段常数的数字滤波器,不适合设计数字微分器等幅度响应为非常数的数字滤波器。
第四章 MATLAB程序及仿真第一节 MATLAB程序一脉冲响应不变法设计巴特沃思数字低通滤波器Wp=0.2*pi;Ws=0.3*pi;Ap=1;As=14;Fs=1;wp=Wp*Fs;ws=Ws*Fs;N=buttord(wp,ws,Ap,As,'s');wc=wp/(10^(0.1*Ap)-1)^(1/2/N);[numa,dena]=butter(N,wc,'s');[numd,dend]=impinvar(numa,dena,Fs);w=linspace(0,pi,512);h=freqz(numd,dend,w);norm=max(abs(h));numd=numd/norm;plot(w/pi,20*log10(abs(h)/norm));w=[Wp Ws];h=freqz(numd,dend,w);fprintf('Ap= % .4f\n',-20*log10(abs(h(1))));fprintf('As= % .4f\n',-20*log10(abs(h(2))));二双线性变换法设计切比雪夫滤波器wp=0.2*pi;ws=0.3*pi;Ap=1;As=14;T=2;Fs=1/T;Wp=(2/T)*tan(wp/2); Ws=(2/T)*tan(ws/2);[N,Wc]=cheb1ord(Wp,Ws,Ap,As,'s');[num,den]=cheby1(N,Ap,Wc,'s');[numd,dend]=bilinear(num,den,Fs);w=linspace(0,pi,512);h=freqz(numd,dend,w);norm=max(abs(h));numd=numd/norm;plot(w/pi,20*log(abs(h)/norm));grid;xlabel('ChebyshevI BS DF');ylabel('Gain,dB');第二节 MATLAB 波形图00.10.20.30.40.50.60.70.80.91-80-70-60-50-40-30-20-10图四 巴特沃思数字低通滤波器的增益响应图五切比雪夫数字低通滤波器的增益响应第五章设计总结又一次的课程设计,与原来的不同,看到题目后没有原来那种茫然了,相信只有熟悉了题目相关的知识,就不会很难。