中考数学专题《旋转》综合检测试卷及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、旋转真题与模拟题分类汇编(难题易错题)
1.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.
(1)求证:△CDE是等边三角形;
(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;
(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
【答案】(1)见解析(2)见解析(3)存在
【解析】
试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;
(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到
C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;
(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到
∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.
试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,
∴∠DCE=60°,DC=EC,
∴△CDE是等边三角形;
(2)存在,当6<t<10时,
由旋转的性质得,BE=AD,
∴C△DBE=BE+DB+DE=AB+DE=4+DE,
由(1)知,△CDE是等边三角形,
∴DE=CD,
∴C△DBE=CD+4,
由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,
此时,CD3cm,
∴△BDE的最小周长=CD3;
(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,
∴当点D与点B重合时,不符合题意;
②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,
∴∠BED=90°,
由(1)可知,△CDE是等边三角形,
∴∠DEB=60°,
∴∠CEB=30°,
∵∠CEB=∠CDA,
∴∠CDA=30°,
∵∠CAB=60°,
∴∠ACD=∠ADC=30°,
∴DA=CA=4,
∴OD=OA﹣DA=6﹣4=2,
∴t=2÷1=2s;
③当6<t<10s时,由∠DBE=120°>90°,
∴此时不存在;
④当t>10s时,由旋转的性质可知,∠DBE=60°,
又由(1)知∠CDE=60°,
∴∠BDE=∠CDE+∠BDC=60°+∠BDC,
而∠BDC>0°,
∴∠BDE>60°,
∴只能∠BDE=90°,
从而∠BCD=30°,
∴BD=BC=4,
∴OD=14cm,
∴t=14÷1=14s.
综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.
点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.
2.如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.
(1)求证:MN⊥CE;
(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出DE EN DN
==,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证
CF CN NF
△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;
(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE≌△BCG,推出BG=CE,即可得出答案.
试题解析:
(1)证明:延长DN交AC于F,连BF,
∵N为CE中点,
∴EN=CN,
∵△ACB和△AED是等腰直角三角形,∠AED=∠ACB=90°,DE=AE,AC=BC,
∴∠EAD=∠EDA=∠BAC=45°,
∴DE∥AC,
∴△EDN∽△CFN,
∴DE EN DN
==,
CF CN NF
∵EN=NC,
∴DN=FN,FC=ED,
∴MN是△BDF的中位线,
∴MN∥BF,
∵AE=DE ,DE=CF ,
∴AE=CF ,
∵∠EAD=∠BAC=45°,
∴∠EAC=∠ACB=90°,
在△CAE 和△BCF 中,
CA BC CAE BCF AE CF ⎧⎪∠∠⎨⎪⎩
=== , ∴△CAE ≌△BCF (SAS ),
∴∠ACE=∠CBF ,
∵∠ACE+∠BCE=90°,
∴∠CBF+∠BCE=90°,
即BF ⊥CE ,
∵MN ∥BF ,
∴MN ⊥CE .
(2)证明:延长DN 到G ,使DN=GN ,连接CG ,延长DE 、CA 交于点K ,
∵M 为BD 中点,
∴MN 是△BDG 的中位线,
∴BG=2MN ,
在△EDN 和⊈
CGN 中, DN NG DNE GNC EN NC ⎧⎪∠∠⎨⎪⎩
===,
∴△EDN ≌△CGN (SAS ),
∴DE=CG=AE ,∠GCN=∠DEN ,
∴DE ∥CG ,
∴∠KCG=∠CKE ,
∵∠CAE=45°+30°+45°=120°,
∴∠EAK=60°,