5向量与矩阵的范数
第五章--向量范数和矩阵范数
当 x 时,|| x ||A 0 ;当 x θ 时由 A 对称
正定知 xH Ax 0 ,即 || x ||A 0 。
对于任意 k C ,有 || k x ||A (kx)T A(kx) | k | xT Ax | k | || x ||A
由于 A 为Hermite正定矩阵,故存在酉矩阵 U ,使得
|| x ||2
| x1 |2 | x2 |2
| xn |2
定义的|| ||2 是 F n上的向量范数,称为2-范数或 l2
范数,也称为 Euclid 范数。
例 7 对任意 x ( x1, x2, , xn) T F n,由
|| x ||p
1/ p n
| xi |p , p 1
i1
定义的|| ||p 是 F n 上的向量范数,称为p -范数或 lp
UT AU Λ diag( λ1, λ2, , λn)
这里 A 的特征值 λi (i 1, 2, , n) 都为正数。
从而有
A UΛUT U Λ Λ UT BT B
此时
|| x ||A xT Ax xT BT Bx (Bx)T Bx || Bx ||2
因此对任意 y C n , || x y ||A || B( x y) ||2
数 || A || 表示对于任意向量 x F n , A 可以 “拉伸”向量 x 的最大倍数,即使得不等式
|| A x || C || x || 成立的最小的数 C 。称 || A || 为范数 || || 和 || ||
j1
n
| xj
j1
yj |; yj |;
yj |;
1
yj |m m;
以及与椭圆范数类似的Mahalanobis距离:
第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
向量与方阵的范数
x2 L xn ) ∈ R n , n 维向量空间 R n 上常用的向量范数有:
T
2 2 2
(1) .2-范数: || x || 2 = x1 + x 2 L + x n ; (2) .1-范数: || x ||1 =| x1 | + | x 2 | + L + | x n | ; (3) . ∞ 范数: || x ||∞ = max{ xi };
− A → 0 (k → ∞) 。
练习
⎛ 2 − 4⎞ ⎛ 1 ⎞ 1.设 A = ⎜ ⎟,x = ⎜ ⎟ 。求: x 1 , x 2 , x ∞ , A 1 , A 2 , A ∞ 。 ⎜1 − 3⎟ ⎜ − 2⎟ ⎠ ⎝ ⎝ ⎠
2.设 A 是 n × n 矩阵,证明: n −1 A 2 ≤ n
−1 2
1≤i ≤ n
(4) . p -范数: x
p
=
p
x1 + L + xn
p
p
。
可以证明,它们满足定义 1 中的三条性质。 例1 解:
|| x || 2 = 12 + ( −3) 2 + 0 2 + 2 2 = 14 ;
计算向量 x = (1 − 3 0 2 ) 的 2-范数,1-范数, ∞ 范数和 4-范数。
n
1≤ j ≤ n
(1)1-范数: A 1 = max ∑ aij ;
i =1
(2) ∞ 范数: || A || ∞ = max ∑ aij ;
1≤i ≤ n j =1
n
(3)2-范数: || A || 2 = λ max , λ max 为 AT A 的最大特征值; (4)Frobenius 范数: || A || F =
向量范数与矩阵范数
kA max kAx k max Ax k A .
x 1
x 1
(3) 对任意的n×n矩阵 A 和 B, 有
A B max (A B)x max Ax Bx
x 1
x 1
max Ax Bx x 1
max Ax max Bx A B
正定性三角不等式积的范数小于等于范数的积矩阵范数与向量范数的相容性定义给定向量范数和矩阵范数如果对任和任意的nn矩阵a它们总满足则称所给的矩阵范数与向量范数是相容的
§1.3 向量范数与矩阵范数
为了研究线性方程组近似解的误差估 计和迭代法的收敛性,我们需要对 Rn 中 向量或 Rn×n 中矩阵的“大小”引进某种 度量----向量或矩阵的范数。向量范数是 三维欧氏空间中向量长度概念的推广,在 数值分析中起着重要作用。
1.3.1 向量范数
向量的范数是刻画向量大小的量, 又叫向量的模.
❖定义 Rn 上的实值函数‖·‖称为向量范数,如果 对任意的 x, y∈Rn, 它均满足下列3条性质:
(1)正定性: || x ||,且 0 x 0;|| x || 0
(2)齐次性:对 k ,有R
|| kx |;|| k | || x ||
以及
A. F
解 x | 3| | 5| |1| 9, 1
x 32 (5)2 12 35 2
x max{| 3|,| 5|,|1|} 5,
|1| | 2 | | 3 |,
A
1
max
|
5
|
|1|
|
8
|,
第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解学习
第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p x q, B q x p,则|l p+AB| = |l q + BA|证明一:参照课本194 页,例4.3.证明二:利用AB 和BA 有相同的非零特征值的性质;从而l p+AB ,l q+BA 中不等于1 的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
nn定义:tr(A) a ii i ,etrA=exp(trA)i 1 i 1性质:1. tr( A B) tr(A) tr(B) ,线性性质;2. tr(A T ) tr(A) ;3. tr(AB) tr(BA) ;14. tr(P 1AP) tr(A) ;5. tr(x H Ax) tr(Axx H),x 为向量;nn6. tr(A) i ,tr(A k) i k;i 1 i 1从Schur 定理(或Jordan 标准形) 和(4)证明;7. A 0,则tr(A) 0 ,且等号成立的充要条件是A=0;8. A B(即A B 0),则tr(A) tr(B),且等号成立的充要条件是A=B( A B i(A) i(B) );9. 对于n阶方阵A,若存在正整数k,使得A k=0, 则tr(A)=0 (从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m x n复矩阵A和B, tr(A H B)是m x n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式2[x,y] w [x,x]. [y,y]得定理:对任意两个m x n 复矩阵A 和B|tr(A H B)|2w tr(冲A) • tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)
第五专题 矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例.证明二:利用AB 和BA 有相同的非零特征值的性质;从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2.Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5.H H tr(x Ax)tr(Axx ),x =为向量; 6. nnkk i i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A HB)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c 为一常数。
向量与矩阵范数习题
2 2
=
M (α1x1 + α2x2 + · · · + αnxn)
2 2
−
M (λ1α1x1 + λ2α2x2 + · · · + λnαnxn)
2 2
≥
M (α1x1 + α2x2 + · · · + αnxn)
2 2
−
maxi
|λi
|2
·
M (α1x1 + α2x2 + · · · + αnxn)
ν(AB) =
m i=1
n j=1
|
s k=1
αik
βkj
|
≤
m i=1
n j=1
s k=1
|αik||βkj
|
≤
m i=1
nj=1[(
s k=1
|αik|)(
s k=1
|βkj
|)
=
(
m i=1
s k=1
|αik|)(
n j=1
s k=1
|βkj |)
=AB
10
五、证明
1: A ∈ Cnn×n, λ 为其特征值,则:
U H
·
U
√ λ1
√ λ2
λn
记
M =U
√ λ1
√ λ2
... √
U H ,
λn
... √
U H
λn
则有
M = MH , A = M · M = MH · M
于是
A − BH AB = M H M − BH M H M B
对任意 x ∈ Cn,有二次型
向量与矩阵的范数
那么
n
X X H *
xi
X 1
i 1
矩阵旳谱半径及其性质
定义:设 A C mn ,A 旳 n 个特征值为 1, 2, , n ,我们称
( A) max{ 1 , 2 , , n }
为矩阵 A 旳谱半径。 例 1 :设 A C mn ,那么
( A) A
这里 A 是矩阵 A 旳任何一种范数。
F
F
于是有
AB A B
F
F
F
例 4 :对于任意 A C nn ,定义
A
[Tr
(
AH
A)]
1 2
证明如此定义旳 A 是矩阵 A 旳范数。
证明: 首先注意到这么一种基本事实,
即
[Tr( AH
1
A)] 2
(
m
n
aij
2
)
1 2
i1 j1
由一种例题可知此定义满足范数旳性质。
Frobenious范数旳性质:
(1)' n
1
(2)' n
2
1
2
(3)' n
2
引理(Hoider不等式):设
a1, a2, , an T , b1, b2, , bn T Cn
则
n
n
aibi (
ai p ) 1 p ( n
bi
q)
1 q
i 1
i 1
i 1
其中 p 1,
q1 且
1p
是矩阵范数。
证明:非负性,齐次性和三角不等式轻易 证得。目前我们考虑乘法旳相容性。设
A C nn , B C nn ,那么
n
n
AB
第五章 向量与矩阵的范数
A
F
= ( ∑∑ aij )
2 i =1 j =1
X
2
= ( ∑ xi )
i =1
n
2 12
= (X X )
H
12
根据Hoider不等式可以得到 不等式可以得到 根据
AX ≤
m 2 2
=
n
∑ ∑
i =1
m
n
2
j =1
a ij x
n
j
≤
2 j
∑
m
i =1
( ∑ a ij x j ) 2
j =1
n
∑ [( ∑
AB = n max
i, j i ,k
∑a
k =1 k, j
n
ik kj
b ≤ n max ∑ aik bkj
i, j k =1
n
≤ n ⋅ n max aik max bkj = n max aik ⋅ n max bkj
i ,k k, j
= A B
因此 的范数。 A 为矩阵 A 的范数。
例3
p
= ( ∑ ai )
p i =1
n
1
p
∑a
i =1
n
i
(2)2-范数 ) -
α 2 = ( ∑ ai ) = (α α )
2 12 H i =1
n
12
也称为欧氏范数。 也称为欧氏范数。 欧氏范数 (3)∞ -范数 α ∞ = lim α ) p →∞ 定理
p
α
∞
= max ai
1≤i ≤ n
证明 令
第五章
向量与矩阵的范数
定义: 定义: 设 V 是实数域 R (或复数域 C )上 维线性空间, 的 n 维线性空间,对于 V 中的任意一个向量 α 按照某一确定法则对应着一个实数,这个 按照某一确定法则对应着一个实数, 范数, 实数称为 α 的范数,记为 α ,并且要求 范数满足下列运算条件: 范数满足下列运算条件: (1)非负性:当 )非负性: 有且仅有当 α = 0, (2) 齐次性: ) 齐次性: 意数。 意数。
向量和矩阵的范数
A的列范数 A的“2”范 数或A的谱
范数
其中 max ( A A)为A A的最大特征值。
T T
第一章 绪论
例2
求矩阵A的各种常用范数
1 2 0 3 A 1 2 1 4 0 1 1
2
n
5
2
2
解:
A 1 max aij 1 j n
i 1
"范数"是对向量和矩阵的一种度量,实际上是二维和三维
向量长度概念的一种推广.
数域:数的集合,对加法和乘法封闭.
有理数、实数、复数数域
线性空间:可简化为向量的集合,对向量的加法和数量乘 法封闭,也称为向量空间。
第一章 绪论
5.4.1 向量范数 ( vector norms )
二维,三维的长度概念:
T 2 2 2 R 中,x R , x x1 x2,其中x x1 , x2 ; T 3 3 2 2 2 R 中, x R , x x1 x 2 x 3 , 其中x x1 , x 2 , x 3 。
② x 也是 x p 的特例
xi ( x1 因为 max 1i n
p
x2
p
xn
p
)
1
p
(n max xi )
1 i n
p
1
p
n
1
p
xi ( p ) max xi max 1i n
1 i n
x
p
x
( p 时),
所以 x 也是 x p的特例
A 4
3.0237
3.6056
A2
AF
数值分析5-5(向量和矩阵的范数)
n
1
A F ( xij 2 )2
i , j1
称为Frobennius-范数
举例:
A
1 3
2 4
计算A的各种范数.
解:
n
A
max
1in
j1
aij
max{1 2,3 4} 7
n
A
1
max
1 jn
i 1
|
aij
|
max{1
3,2
x p ( xi p ) p
i 1
称为∞-范数或最大范数 称为1-范数 称为2-范数
称为p-范数
举例:计算向量 x=(1, -2, 3)T的各种范数.
解:
n
x 1 | xi | 6
i 1
n
1
x 2 ( xi 2 )2 14
i 1
x
max
1in
xi
3
3. 向量范数的性质
3) x y x y , x, y Rn(三角不等式)
则称‖x‖为向量的范数
2. 常用的向量范数
在 Rn上的向量x =(x1,…,xn)T∈Rn ,三种常 用的范数为:
x
max
1in
xi
n
x 1 | xi |
i 1
n
1
x 2 ( xi 2 )2
i 1
n
1
第五章 解线性方程组的直接法 §5 向量和矩阵的范数
一、向量的范数
二、矩阵的范数 三、小结
一、向量的范数
1. 向量范数的定义
设对任意向量 x∈Rn,按一定的规则有一实 数与之对应,记为‖x‖,若‖x‖满足
向量和矩阵的范数
一、向量的范数定义1 设x=(x1 ,x2,…,x n )n ,y=(y1 ,y2,…,y n )n∈R n (或C n )。
将实数(或复数),称为向量x,y的数量积。
将非负实数或称为向量x的欧氏范数。
对向量x,y的数量积有:1. (αx,y)=α(x,y).α为实数(或(x,αy)=(x,y),α为复数);2. (x,y)=(y,x)[(x,y)=(,)];3. (x1 +x2 ,y)=(x1 ,y)+(x2 ,y);4. (Cauchy-Schwarz不等式)(5.1)等式当且仅当x与y线形相关时成立。
对向量x的欧氏范数有:1. ‖x‖2≥0, ‖x‖2 =0当且仅当x=0时成立;2. ‖αx‖2=|α|‖x‖2,任意的α∈R(或α∈C),3. ‖x+y‖2≤‖x‖2 +‖y‖2 (三角不等式),(5.2)注(5.1)和(5.2)有下面的事实得到(x+ty,x+ty)=(x,x)+2(x,y)t+(y,y)t2≥0由一元二次方程根的判别定理可知(5.1)成立;取t=1,再利用(5.1)得即得(5.2)。
定义2(向量的范数) 如果向量x∈R n (或C n )的某个实值函数N(x)=‖x‖, 满足条件:(1) ‖x‖≥0(‖x‖=0当且仅当x=0)(正定条件),(2) ‖αx‖=|α|·‖x‖,任意的α∈R(或α∈C),(3) ‖x+y‖≤‖x‖+‖y‖(三角不等式),则称N(x)是R n (或C n )上的一个向量范数(或模)。
下面我们给出几种常用的向量范数。
1. 向量的∞-范数(最大范数):(5.3)2. 向量的1-范数:3. 向量的2-范数:(5.4)4. 向量的p-范数:(5.5)例6 计算向量x=(1,-2,3)T的各种范数。
解:定理6(N(x)的连续性) 设非负函数N(x)=‖x‖为R n上任一向量范数,则N(x)是x的分量x1 ,x2,…,x n的连续函数。
证明设其中e i=(0,…,1,0,…,0)T, . 只须证明当x→y时N(x)→N(y)即成。
向量与矩阵范数
9
算子范数性质
算子范数的性质
定理:设 || ·|| 是 Rn 上的任一向量范数,其对应的 算子范数也记为 || ·|| ,则有
Ax A x
定理:设 || ·|| 是任一算子范数,则 ( A) A
定理:对任意 >0, 总存在一算子范数 || ·|| ,使得
1 n
3
范数性质
范数的性质
(1) 连续性 设 f 是 Rn 上的任意一个范数,则 f 关于 x 的每个分
量是连续的
(2) 等价性 设 || · ||s 和 || ·||t 是 Rn 上的任意两个范数,则存在 常数 c1 和 c2 ,使得对任意的 xRn 有
c1 x s x t c2 x
p xi , p [1, ) ,是 Rn 上向量范数 i 1
n 1 p
p
2
向量范数
常见的向量范数 ① 1-范数 ② 2-范数
x 1 xi
i 1 n
n 2 x 2 xi i 1
1 2
③ 无穷范数(最大范数)
x
max xi
8
矩阵范数性质
矩阵范数的性质
(1) 连续性:设 f 是 Rnn 上的任一矩阵范数,则 f 关于 A
的每个分量是连续的
(2) 等价性:设 || ·||s 和 || ·||t 是 Rnn 上的任意两个矩阵 范数,则存在常数 c1 和 c2 ,使得对任意的 A Rnn 有
c1 A s A t c2 A s
本讲内容
向量范数
向量范数的定义 常见的向量范数
向量范数的性质
范数
向量的1-范数的最大值称为矩阵的行范数。
14
§6 误差分析
一个实际问题化为数学问题,初始数据往往会 有误差(观测误差和舍入误差),即有扰动,从 而使计算结果产生误差。 向量的误差可用向量范数表示:设x 是x的近似 矩阵, x x 、x x / x 分别称为x 的关于
* * * * *
范数 的绝对误差与相对误差。
16
方程组的状态与条件数
x1 x2 2 x1 2 例:方程组 . x1 1.00001x2 2 x2 0 x1 x2 2 x1 1 而方程组 . x1 1.00001x2 2.00001 x2 1 比较这两个方程组可以看出,他们只是右端项有微小的差 1 别,最大相对误差为 105 , 但它们的解却大不相同,解分量 2 1 的相对误差至少为 。 2
x A1 A( x x ) A1 A ( x x ) x( 1 A1 A ) A1 A x x
x A
1 1
如果 A充分小,使得 A1 A 1, 则由上式得
A A
A A
1
A
A
1 A
1 A A
1
A
A
上式表明,当系数矩阵有扰动时,解的扰动仍与 A A1 有关。一般地, A A1 越大,解的扰动也越大。
15
矩阵的误差可用矩阵算子范数表示:设A 是A的 近似矩阵,A A 、A A / A 分别称为A 的关
* * * *
*
于范数 的绝对误差与相对误差。 由于范数等价,用何种向量范数都是合理 的。关键是容易计算。 理论分析,谱范数是非常有效的。但在计算 上行范数和列范数更方便。 比较:向量1-范数--列范数, 向量-范数--行范数。
向量与矩阵的范数
3.5 向量与矩阵的范数
一、. 向量范数: 对n维实空间Rn中任一向量X ,按一定规则有一
确定的实数与其相对应,该实数记为||X||,若||X||满足 下面三个性质: (1)(非负性)||X||0,||X||=0当且仅当X=0。 (2)(齐次性)对任意实数 ,|| X||=| | ||X||。 (3)(三角不等式)对任意向量YRn,||X+Y||||X||+||Y||
解:A=[1,2,3,4;2,3,4,1;3,4,1,2;4,1,2,9]; n1=norm(A,1), n2=norm(A), n3=norm(A,inf),n4=norm(A, 'fro') n1=16,n2=12.4884,n3=16,n4=13.8564
计算方法三⑤
15/35
•矩阵范数的性质:
|λE-A’A|=0 λ2-30λ+4=0
——弗罗贝尼乌斯 (Frobenius)范数 简称F范数
12/35
几种常用的矩阵范数:
弗罗贝尼乌斯 (Frobenius) 范数简称F范数
计算方法三⑤
13/35
Matlab中计算矩阵的范数的命令(函数):
(1) n = norm(A) 矩阵A的谱范数(2范数), = A’A的最大特征值的算术根
定义:设A非奇异,称||A-1|| ||A|| 为矩阵A的条件数, 记为Cond (A),即Cond (A)= ||A-1||||A||.
当cond(A)>>1,则方程组称为“病态”的; 当cond(A)较小时,则方程组称为“良态”的。
计算方法三⑤
28/35
>>cond(a,p)
通常使用的条件数有:
证:设λ为A的任意一个特征值, X为对应的特征向量 AX=λX
矩阵与向量相乘的范数
矩阵与向量相乘的范数矩阵与向量相乘的范数是线性代数中的重要概念。
在矩阵与向量的乘法中,范数指的是向量的大小或量级。
范数的概念被广泛应用于机器学习、优化等领域。
一、向量的范数在介绍矩阵与向量相乘的范数之前,我们需要先了解向量的范数。
向量的范数表示向量的大小或长度,常用的向量范数有L1范数、L2范数和L∞范数。
1. L1范数:L1范数是向量中各个元素的绝对值之和。
表示为:||x||1= ∑|xi|。
2. L2范数:L2范数是向量中各个元素的平方和的平方根。
表示为:||x||2=√(∑xi^2)。
3. L∞范数:L∞范数是向量中绝对值最大的元素。
表示为:||x||∞=max|xi|。
以上三种范数是最常用的向量范数,它们的应用场景不同。
二、矩阵与向量相乘的范数矩阵与向量相乘的范数同样有L1范数、L2范数和L∞范数等几种常用的范数。
下面我们来详细了解一下这些范数。
1. L1范数对于一个矩阵A与一个向量x相乘,其L1范数表示为||Ax||1=∑|Ai·x|,其中|·|表示求绝对值。
L1范数的应用很广泛,比如用于稀疏矩阵的正则化、Lasso回归等。
2. L2范数对于一个矩阵A与一个向量x相乘,其L2范数表示为||Ax||2=√(∑(Ai·x)^2),其中|·|表示求绝对值。
可以看到,L2范数是矩阵与向量之间内积的平方根。
L2范数常常被用在最小二乘问题中。
3. L∞范数对于一个矩阵A与一个向量x相乘,其L∞范数表示为||Ax||∞= max|Ai·x|。
L∞范数表示的是矩阵与向量之间内积的最大值,也称为Chebyshev范数或无穷范数。
在矩阵论中,L∞范数通常用于矩阵的幂级数。
三、总结本文主要介绍了矩阵与向量相乘的范数,分别介绍了L1范数、L2范数和L∞范数。
这些范数广泛应用于机器学习、优化等领域。
了解这些范数的应用场景,有助于我们更好地理解矩阵与向量相乘的结果。
范数及条件数
(i 1, 2,L , n) 称
i
(A) max i 为A的谱半径。 1in
定理:(A) A , A 为 A 的任意矩阵范数
( Ax x x , Ax A x x A x A (A) A )
例:设A = (aij)nn,||A||为其算子 范数,如果||A|| < 1,则 I – A可逆,
x 1
x 1
max( Ax Bx ) max Ax max Bx
x 1
x 1
x 1
A B.
矩阵的范数性质(续1)
4,对任意n维非零向量x,
有 Ax A 即 Ax A x . x
故有 AB max ( AB)x max A(Bx)
x 1
x 1
max A Bx max A B x
1
A 为矩阵的谱范数或欧几里德范数。 2
推论 设A为对称矩阵,则 || A ||2 | max( A) |,
又若A非奇异, 则
||
A1
||2
||
1 m in
(
A)
||。
对称矩阵范数
证明:由AT A知
|| A ||22 max( AT A) max( A2 ) | max( A) |2 所以有 || A ||2 | max( A) |
因为AT
A
2 1
2 2
4
2
1 8
4
10
10
17
由 | I AT A | 8
10 0
10 17
解得1 23.466, 2 1.534,故 || A ||2 23.466 4.844。
1
|| A ||F [22 (1)2 (2)2 42 ]2 5
第五章矩阵分析(改)
第五章矩阵分析(改)第五章矩阵分析本章将介绍矩阵微积分的⼀些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,简要介绍向量与矩阵范数的有关知识.§5.1 向量与矩阵的范数从计算数学的⾓度看,在研究计算⽅法的收敛性和稳定性问题时,范数起到了⼗分重要的作⽤.⼀、向量的范数定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的⼀个实值函数,如果该函数关系还满⾜如下条件:1)⾮负性对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有x =0;2)齐次性对V 中任意向量x 及F 中任意常数k ,有;x k kx = 3)三⾓不等式对任意V y x ∈,,有y x y x +≤+,则称此函数x (有时为强调函数关系⽽表⽰为?)为V 上的⼀种向量范数.例1 对n C 中向量()T n x x x x ,,,21 =,定义222212nx x x x+++=则2x 为n C 上的⼀种向量范数[i x 表⽰复数i x 的模].证⾸先,2n x C 是上的实值函数,并且满⾜1)⾮负性当0x ≠时,0x >;当0x =时,0x =; 2)齐次性对任意k C ∈及n x C ∈,有22||||||kx k x ==;3)三⾓不等式对任意复向量1212(,,,),(,,,)T T n n x x x x y y y y ==,有222221122||||||||()n n x y x y x y x y +=++++++2221122()()()n n x y x y x y ≤++++++22111||2||||||nnni i i i i i i x x y y ====++∑∑∑(由Cauchy-ВуНЯКОВСКИЙ不等式)222222222||||2||||||||||||(||||||||),x x y y x y ≤++=+因此 222||||||||||||x y x y +≤+所以 2||||x 确为n C 上的⼀种向量范数例2 对n C [或n R ]上向量12(,,,)T n x x x x =定义112||||||||||n x x x x =+++,1max i i nxx ∞≤≤=,则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数.证仅对后者进⾏证明. 1)⾮负性当0x ≠时,max 0i ixx ∞=>,⼜显然有00∞=;2)齐次性对任意向量()T n x x x x ,,,21 =及复数k ,max max ;i i iikxkx k x k x ∞∞===3)三⾓不等式对任意向量1212(,,,),(,,,),T T n n x x x x y y y y ==()i i ii i iy x y x yx +≤+=+∞max maxi ii iy x max max +≤ =∞∞+y x .综上可知∞x 确为向量范数.上两例中的∞x x x ,,21是常⽤的三种向量范数.⼀般地,对于任何不⼩于1的正数p ,向量()T n x x x x ,,,21 =的函数pni p i px x11??=∑= 也构成向量范数,称为向量的p -范数.注(1)当1p =时,1;pxx =(2)当2p =时,2x 为2-范数,它是⾣空间范数;当i x 为实数时,12221()ni i x x ==∑为欧⽒空间范数;由p -范数的存在,可知向量的范数有⽆穷多种,⽽且,向量的范数并不仅限于p -范数.在验证向量的范数定义中,三⾓不等式的过程中常涉及到两个著名的不等式,即:1、H?lder 不等式设正实数,p q 满⾜111,p q+=则对任意的,,n x y C ∈有11111()()nnnpq pqi ii i i i i x yx y ===≤∑∑∑2、Minkowski 不等式对任意实数1p ≥,及,,n x y C ∈有(111111()()()nnnpp ppppi i i i i i i x y x y ===+≤+∑∑∑).例3 设()T n 1,,1,1 =为n 维向量,则1,,21===∞xn x n x各种范数值差距很⼤.但是,各种范数之间却存在着内在的制约关系,称为范数的等价性.定理1 设βα??,为有限维线性空间V 的任意两种向量范数(它们不限于p -范数),则存在正的常数12,C C ,使对⼀切向量x ,恒有βαβx C x xC 21≤≤ (1)证如果范数x α和x β都与⼀固定范数譬如2-范数2x 满⾜式(1)的关系,则这两种范数之间也存在式(1)的关系,这是因为若存在正常数12,C C ''和12,C C '''',使 1222122,C x x C x C xx C x αββ''≤≤''''≤≤成⽴,则显然有1122||||||||||||C C x x C C x βαβ''''''≤≤ 令111222,C C C C C C ''''''==,则得式(1),因此只要对2β=证明或(1)成⽴即可.设V 是n 维的,它的⼀个基是12,,,n x x x ,于是V 中的任意向量x 可表⽰为1122n n x x x x ξξξ=+++从⽽,1122n n x x x x ααξξξ=+++可视为n 个变量12,,,n ξξξ的函数,记为12(,,,)n x α?ξξξ=,易证12(,,,)n ?ξξξ是连续函数,事实上,若令1122nn x x x x V ξξξ''''=+++∈,则 12(,,,)nx α?ξξξ''''=. 1212(,,,)(,,,)n n x x x x αααξξξ?ξξξ'''''-=-≤- 11111()()nn n nn n x x x x αααξξξξξξξξ''''=-++-≤-++-. 由于ix α(1,2,,)i n =是常数,因此i ξ'与i ξ充分接近时,12(,,,)nξξξ'''就与12(,,,)n ?ξξξ充分接近,所以12(,,,)n ?ξξξ是连续函数.所以在有界闭集{1212(,,,)1n S ξξξξξξ=+++=上,函数12(,,,)n ?ξξξ可达到最⼤值2C 及最⼩值1C .因此在S 中,i ξ不能全为零,所以10C >.记向量1212222nn y x x x xxxξξξ=+++,则其坐标分量满⾜22212122221nx x xxxξξξ+因此,y S ∈.从⽽有 11122220,,n C yC xx x αξξξ<≤=≤ ? ???. 但2,xy x =故 122x C C x α'≤≤. 即 12222C x x C x ≤≤.⼆、矩阵的范数定义 2 设V 是数域F 上所有n m ?矩阵的集合,A 是定义在V 上的⼀个实值函数,如果该函数关系还满⾜如下条件:对V 中任意矩阵A 、B 及F 中任意常数k 总有1)⾮负性 0≥A 并且仅当0=A 时,才有0=A ; 2)齐次性 A kkA =;3)三⾓不等式 B A B A +≤+;则称()?A是V 上的⼀种矩阵范数.例4 对n m C ?(或n m R ?)上的矩阵A ()ij a =定义∑∑===mi nj ij M a A111,∑∑===m i nj ijM aA1122,11max ij M i m j nA a ∞≤≤≤≤=,则∞M M M ,,21都是n m C ?(或n m R ?)上的矩阵范数.实⽤中涉及较多的是⽅阵的范数,即m n =的情形.定义 3 设F 是数域,?是n n F ?上的⽅阵范数.如果对任意的,n n A B F ?∈,总有AB A B ≤?,则说⽅阵范数?具有乘法相容性.注意:在某些教科书上,往往把乘法相容性直接纳⼊⽅阵范数的定义中作为第4个条件,在读书时,只要注意到各⾃定义的内涵就可以了.例 5 对n n C ?上的矩阵][A ij a =定义ij nj i a n A ≤≤?=,1max ,则?是⼀种矩阵范数,并且具备乘法相容性.证⾮负性与齐次性显然成⽴,另两条证明如下:三⾓不等式ij ij b a n B A +?=+max()max max ij ij n a b ≤+ B A +=;乘法相容性≤?=∑∑==n k kj ik nk kj ik b a n b a n AB 11max max()()B A b n a n ij ij =?≤max max ,证得A 为矩阵范数且具有乘法相容性.并不是所有的⽅阵范数都具有乘法相容性.例如对于22?R 上的⽅阵范数.M ∞就不具备相容性条件.此时ij j i M a A2,1m ax ≤≤=∞.取 1110,0111A B== ? ?????,∞M M BA ,⽽ 2M M M ABA B∞∞∞=>.定义4 如果n 阶矩阵A 的范数A 与n 维向量x 的范数x ,使对任意n 阶矩阵A 及任意n 维向量x 均有x A Ax ≤,则称矩阵范数A 与向量范数x是相容的.定理2 设x 是某种向量范数,对n 阶矩阵A 定义AxxAx A x x 1max max=≠==(2)则A 为⽅阵范数,称为由向量范数x 导出的矩阵范数,⽽且它具有乘法相容性并且与向量范数x 相容.证⾸先可证,由(2)式定义的函数关系||||A 满⾜与向量范数||||x 的相容性.对于任意n 阶矩阵A 及n 维向量x ,当0x ≠时,有0||||||||max ||||||||||||y Ax Ay A x y ≠≤=,即 ||||||||||||;Ax A x ≤(3)⽽当0x =时,||||0||||||||Ax A x ==,于是总有(3)式成⽴.容易验证||||A 满⾜范数定义中的⾮负性、齐次性及三⾓不等式三个条件,因⽽A 是⼀种⽅阵范数.并且,对任意n 阶矩阵,A B ,利⽤(2)式和(3)式可得maxmaxmaxx x x A BxABx Bx AB A A B xxx即说矩阵范数A 具备乘法相容性.⼀般地,把由向量p -范数p x 导出的矩阵范数记作p A .下⾯看常⽤的三种矩阵范数:例6 证明:对n 阶复矩阵[]i j A a =,有 1)11max nij j ni Aa ∞≤≤==∑,称为A 的列和范数.2)11max nij j nj Aa ∞≤≤==∑,称为A 的⾏和范数.证 1)设111max nnijikj ni i w a a≤≤===∑∑.若A 按列分块为12(,,,)n A ααα=则111max k j j nw αα≤≤==.任意n 维向量12(,,)T n x x x x =,有112211221111112111()max .n n n nn jj nAx x x x x x x x x x x w ααααααα≤≤+++≤+++≤+++≤=于是,对任意⾮零向量x 有11Ax w x ≤. 以下证明存在⾮零向量k e 使11k kAe w e =.事实上,设k e 是第k 个分量为1⽽其余分量全为0的向量,则1k e =1,且1k ik i Ae a w =∑n=1=,即11k kAe w e =.2)的证明与1)相仿,留给读者去完成. 例7 证明对n 阶复矩阵A ,有21max i i nA σ≤≤=,这⾥()n i i ,,2,1 =σ是A 的奇异值,称此范数为A 的谱范数.证设H A A 的全部特征根为12,,n λλλ不妨设11max i i nλλ≤≤=.于是11max i i nσσ≤≤==.因为H A A 为H -矩阵,故有⾣矩阵U ,使得,,H H U A AV diag λλλ=Λ=12n (,).如设12(,,,)n U u u u =则i u 是H A A 相应于特征根i λ的单位特征向量,即有,H i i i A A u u λ= 21iu =.对任意满⾜2||||1x =的复向量12(,,,)T n x x x x = ,有22||||()()H H Ax Ax Ax x ==H令H y U x =,则222222||||||||||||1H y U x x ===,说明y 亦为单位向量.若设12(,,,)T n y y y y =,则2221||||||1nii y y ===∑于是 22211||||||nHi i i Ax y y y λλ==Λ=≤∑.即有12Ax σ≤.由x 的任意性,便得21221max x A Ax σ==≤特别取1x u =,则有211111112H H H Au u A Au u u λλ===,即112Au σ=.这说明2Ax 在单位球⾯{}21,n x x x C =∈上可取到最⼤值1σ,从⽽证明了21221max x A Ax σ===各种矩阵范数之间也具有范数的等价性定理 3 设,a A A β是任意两种矩阵范数则有正实数12,,C C 使对⼀切矩阵A 恒有12a C A A C A ββ≤≤§5.2 向量与矩阵序列的收敛性在这⼀节⾥,我们将把数列极限的概念,扩展到向量序列与矩阵序列上去.可数多个向量(矩阵)按顺序成⼀列,就成为⼀个向量(矩阵)序列,()12(,,,)k k k Tk n x x x x =,1,2,3,k=是⼀个n 维向量序列,记为{}k x ,诸k x 的相应分量则形成数列{}k i x .定义5 设有向量序列()()()12{}:(,,,)k k k Tk k n x x x x x =.如果对1,2,i n =,数列(){}k i x 均收敛且有()lim k i i k x x →∞=,则说向量序列{}k x 收敛.如记12(,,,)T n x x x x =,则称x 为向量序列{}k x 的极限,记为lim k k x x →∞=,或简记为k x x →.如果向量序列{}k x 不收敛,则称为发散.类似于数列的收敛性质,读者不难证明向量序列的收敛性具有如下性质.设{},{}k k x y 是n C 中两个向量序列,,a b 是复常数,n ,m A C ?∈如果lim ,lim k k k k x x y y →∞→∞==,则1lim();2lim .k k k k k ax by ax by Ax Ax →∞→∞>+=+>=定理 4 对向量序列{}k x ,x x k =∞→k lim 的充分必要条件是0lim =-∞→x x k k ,其中?是任意⼀种向量范数.证明1)先对向量范数i ni x x=1max 证明定理成⽴.有i k i k k k x x x x =?=∞→∞→)(lim lim ,n i ,...,2,1=;,0lim )(=-?∞→i k i k x x n i ,...,2,1=;0max lim )(1=-?≤≤∞→i k i ni k x x ;0lim =-?∞∞→xx k k .2)由向量范数等价性,对任⼀种向量范数?,有正实数21,b b ,使∞∞-≤-≤-x x b x x xx b k k k 21.令∞→k 取极限即知lim 0lim 0k k k k x x x x∞→∞→∞-=?-=.于是定理对任⼀种向量范数都成⽴.根据上述定义,向量序列有极限的根本之处在于各分量形成的数列都有极限.由于m n C ?中矩阵可以看作⼀个mn 维向量,其收敛性可以和mn C 中的向量⼀样考虑.因此,我们可以⽤矩阵各个元素序列的同时收敛来规定矩阵序列的收敛性.定义 6 设有矩阵序列{}n m k ij k k a A A ?=][:)(,如果对任何,(1,1)i j i m j n ≤≤≤≤,均有ij k ij k a a =∞→)(lim 则说矩阵序列{}k A 收敛,如令n m ij a A ?=][,⼜称A 为{}k A 的极限.记为,lim A A k k =∞→或A A k →.矩阵序列不收敛时称为发散.→lim ,则()aA A a k k k =∞→lim .特别,当a 为常数时,()k k k k A a aA ∞→∞→=lim lim .2) 若A A k k =∞→lim ,B B k k =∞→lim ,则()B A B A k k k ±=±∞→lim .3) 若A A k k =∞→lim ,B B k k =∞→lim ,则()AB B A k k k =∞→lim .4) 若A A k k =∞→lim 且诸k A 及A 均可逆,则{}1-k A 收敛,并且11lim --∞→=A A k k .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d1
A
A d2
A,
A C mn
诱导范数
定 数义 ,: 如设果对X于任是何向矩量阵范A数与,向A量
是矩阵范
X 都有
AX A X
则称矩阵范数 的。
A 与向量范数
X 是相容
例 1 :矩阵的Frobenius范数与向量的2-范
数是相容的.
证明 : 因为
d1
b
a
d2
,
b
V
定理:有限维线性空间 V 上的任意两个向
量范数都是等价的。
利用向量范数可以去构造新的范数。
例 :设 g b是 Cm 上的向量范数,且
ACmn , rank( A) n ,则由
A , Cn
a
b
所定义的 g a是 Cn 上的向量范数。
例 : 设 V 数域 F 上的 n 维线性空间,
a (k) 21
1
r k (r
1),
那么
a (k) 22
k2 k2
k k
1 lim A(k) A 3
0
k
1 1
定理: 矩阵序列{A(k )} 收敛于 A 的充分必
要条件是
lim A(k) A 0
k
其中 A(k) A 为任意一种矩阵范数。
证明:取矩阵范数
mn
A aij
i1 j1
(1)如果 A 1 2 L n ,那么
n
A 2 F
2 i2
i 1
n
(2) A 2 TR( AH A) F
i ( AH A)
i 1
(3)对于任何 m 阶酉矩阵 U 与 n 阶酉矩阵
V 都有等式
A UA AH
F
F
F
AV UAV
F
F
关于矩阵范数的等价性定理。
定理:设 A , A 是矩阵 A 的任意两
mn
1 22
A ( F
aij )
i1 j1
n
X ( 2
xi 2 ) 12 ( X H X )1 2
i 1
根据Hoider不等式可以得到
2
mn
mn
AX 2 2
aij x j ( aij x j )2
i1 j1
i1 j1
m n
2n
2
[( aij )( x j )]
i1 j1
j 1
第五章 向量与矩阵的范数
定义: 设V 是实数域 R(或复数域 C )上 的 n 维线性空间,对于V 中的任意一个向量 按照某一确定法则对应着一个实数,这个
实数称为 的范数,记为 ,并且要求
范数满足下列运算条件:
(1)非负性:当 0, 0 只 有且仅有当 0, 0
(2) 齐次性: k k , k 为任
bkj
A B
因此 A 为矩阵 A 的范数。
例 3 :对于任意 A Cmn,定义
m n
21
A ( F
aij ) 2
i1 j1
可以证明 A 也是矩阵 A 的范数。我们称此 范数为矩阵 A 的Frobenious范数。
证明:此定义的非负性,齐次性是显然的。
利用Minkowski不等式容易证明三角不等式。 现在我们验证乘法的相容性。
于是有
n
x(
p
yi p ) 1 p
i 1
另一方面 n
1 yi p n
i 1
n
1
1
1 ( yi p ) p n p
i 1
故
n
lim(
p i1
yi p ) 1 p
1
由此可知
lim
p
p
x
max
1in
ai
定 上义 定:义设的两种a向, 量范 数b ,是如n果维存线在性两空个间与V 无关的正数 d1 , d2 使得
A(k ) A
lim k i1
a (k) ij
aij
j 1
0
那么对每一对 i, j 都有
lim
k
a (k) ij
aij
0
(i 1, 2,L , m; j 1, 2,L , n)
即
lim
k
aij
(
k
)
aij
(i 1, 2,L , m; j 1, 2,L , n)
故有
lim
k
A(k )
A
A 1 0 0 或 A 0 1 0
i 0 0
0 0 1
分别计算这两个矩阵的 A , A , A
和A 。
1
2
F
例 2 :证明:对于任何矩阵 A Cmn 都有
AH AT A
1
1
AH AT A
2
2
2
AH A A 2
2
2
A 2 A A
2
1
如何由矩阵范数构造与之相容的向量范数?
定理:设 A 是矩阵范数,则存在向量范数 X 使得 *
引理(Minkowski不等式):设
a1,a2,L ,an T , b1,b2,L ,bn T Cn
则
n
(
ai bi p ) 1 p ( n
ai p ) 1 p ( n
bi p ) 1 p
i 1
i 1
i 1
其中实数 p 1 。
几种常用的范数
定义:设向量 a1, a2,L , an T ,对任
AX A X *
证明:对于任意的非零向量 ,定义向量范
数 X X H ,容易验证此定义满足向
量范数的三个性质*,且
AX AX H A X H
*
*
*
A X *
例:已知矩阵范数
mn
A A *
aij
i1 j1
求与之相容的一个向量范数。
解:取 0 1 L 0 T 。设 X x1 x2 L xn T
意的数 p 1 ,称
n
( p
ai p ) 1 p
为向量
的
i 1
p 范数。
常用的 p 范数:
n
(1)1-范数
1
ai
i 1
(2)2-范数
n
( 2
ai
2
)
1 2
( H )1 2
i 1
也称为欧氏范数。
(3)
-范数 lim
p
p
定理:
max 1in
ai
证明:令
max
1in
ai
,则
yi ai x , i 1, 2,L , n
都收敛,则称矩阵序列{A(k )} 收敛。
进一步,如果
那么
lim
k
aij
(
k
)
aij
lim
k
A(k )
A
[aij ]
我们称矩阵 A 为矩阵序列 {A(k )} 的极限。
例 :如果设 A(k ) aij(k ) C22 ,其中
a (k) 11
k 1, 3k
a (k) 12
rk (0
r
1)
mn p
mn p
AB
aikbkj
aik bkj
i1 j1 k 1
i1 j1 k 1
mn
p
p
[( aik )( bkj )]
i1 j1 k 1
k 1
mp
np
( aik )( bkj )
i1 k 1
j1 k 1
A B
例 2 :设矩阵 A Cnn ,证明:
A
n max i, j
aij
是矩阵范数。
应的一个实数,且满足
(1)非负性:当 A 0, A 0 只有 且仅有当 A 0, A 0
(2) 齐次性: kA k A , k 为任
意复数。 (3) 三角不等式:对于任意两个同种形
状矩阵 A, B 都有
AB A B
(4)矩阵乘法的相容性:对于任意两个可以
相乘的矩阵 A, B ,都有
AB A B
设 ACml , B Cln ,则
mn l
2
mn l
AB 2 F
aikbkj
( aik bkj )2
i1 j1 k 1
i1 j1 k 1
m
n
l
[(
l
aik 2 )(
2
bkj )]
i1 j1 k 1
k 1
m
(
l
n
aik 2 )(
l
2
bkj )
i1 k 1
j1 k 1
A 2B 2
2
定理:设 A Cmn ,则
m
(1)
A 1
max( j i1
aij
),
j 1, 2,L , n
我们称此范数为矩阵A 的列和范数。
(2)
A
2
max( j
j
(
AH
A))
1 2
,
j ( AH A)
表示矩阵AH A 的第 j 个特征值。我们称此范 数为矩阵 A 的谱范数。
n
(3)
A
max( i
j 1
证。现在考虑矩阵范数的相容性。
设 B 0 ,那么
ABX
A(BX )
AB max
max(
i
X 0
X
X 0 BX
A(BX )
BX
max
max
BX 0 BX
X 0 X
AX
BX
max
max
X 0 X
X 0 X
A B
i
i