热点统计与概率含答案

合集下载

12第一部分 板块二 专题四 概率与统计 第1讲 概率与统计(小题)

12第一部分 板块二 专题四 概率与统计 第1讲 概率与统计(小题)

第1讲概率与统计(小题)热点一随机抽样1.随机抽样的各种方法中,每个个体被抽到的概率都是相等的.2.系统抽样又称“等距”抽样,被抽到的各个号码间隔相同.3.分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.例1(1)(2019·汉中联考)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:不喜欢喜欢男性青年观众3010女性青年观众3050现要在所有参与调查的人中用分层抽样的方法抽取n人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了6人,则n等于()A.12 B.16 C.20 D.24(2)(2019·上饶联考)某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为________.跟踪演练1(1)(2019·漳州质检)某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A .522B .324C .535D .578(2)(2019·合肥质检)某工厂生产的A ,B ,C 三种不同型号的产品数量之比为2∶3∶5,为研究这三种产品的质量,现用分层抽样的方法从该工厂生产的A ,B ,C 三种产品中抽出样本容量为n 的样本,若样本中A 型产品有10件,则n 的值为( ) A .15 B .25 C .50 D .60 热点二 用样本估计总体1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1. 3.利用频率分布直方图求众数、中位数与平均数 频率分布直方图中:(1)最高的小长方形底边中点的横坐标即众数. (2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.4.对于其他的统计图表,要注意结合问题背景分析其所表达的意思,进而解决所给问题. 例2 (1)(2019·厦门质检)下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份(2)(2019·临沂质检)已知8位学生的某次数学测试成绩的茎叶图如图,则下列说法正确的是( )A .众数为7B .极差为19C.中位数为64.5 D.平均数为64跟踪演练2(1)已知某高中的一次测验中,甲、乙两个班级的九科平均分的雷达图如图所示,下列判断错误的是()A.乙班的理科综合成绩强于甲班B.甲班的文科综合成绩强于乙班C.两班的英语平均分分差最大D.两班的语文平均分分差最小(2)(2019·黄冈模拟)学校为了了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的学生称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校约有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸热点三变量间的相关关系、统计案例高考中解决变量间的相关关系问题时需注意:(1)回归直线一定过样本点的中心(x,y).(2)随机变量K2的观测值k越大,说明“两个变量有关系”的可能性越大.例3(1)(2019·皖江联考)某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温x (℃) 18 13 10 -1 用电量y (度)24343864由表中数据得线性回归方程y ^=b ^x +a ^中b ^=-2,预测当温度为-5 ℃时,用电量的度数约为( )A .64B .66C .68D .70(2)某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如下表:使用智能手机不使用智能手机总计 学习成绩优秀 4 8 12 学习成绩不优秀16 2 18 总计201030附表:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828经计算K 2的观测值k =10,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响跟踪演练3 (1)(2019·长春质检)某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),上图为选取的15名志愿者身高与臂展的折线图,下图为身高与臂展所对应的散点图,并求得其回归方程为y ^=1.16x -30.75,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米(2)(2019·泸州模拟)随着国家二胎政策的全面放开,为了调查一线城市和非一线城市的二胎生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市 总计 愿生 45 20 65 不愿生 13 22 35 总计5842100附表:P (K 2≥k 0)0.100 0.050 0.010 0.001 k 02.7063.8416.63510.828由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算得,K 2的观测值k =100×(45×22-20×13)258×42×35×65≈9.616,参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C .有99%以上的把握认为“生育意愿与城市级别有关”D .有99%以上的把握认为“生育意愿与城市级别无关”真题体验1.(2019·全国Ⅰ,文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生2.(2018·全国Ⅰ,文,3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.(2018·全国Ⅲ,文,14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.押题预测1.某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10 ℃的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势 2.给出如下列联表患心脏病 患其他病 总 计 高血压 20 10 30 非高血压 30 50 80 总 计5060110P (K 2≥10.828)≈0.001,P (K 2≥6.635)≈0.010,参照公式k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得到的正确结论是( )A .有99%以上的把握认为“高血压与患心脏病无关”B .有99%以上的把握认为“高血压与患心脏病有关”C .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”D .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关” 3.某设备的使用年数x 与所支出的维修总费用y 的统计数据如下表:使用年数x (单位:年) 2 3 4 5 6 维修总费用y (单位:万元)1.54.55.56.57.5根据上表可得线性回归方程为y ^=1.4x +a ^.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用________年.A 组 专题通关1.(2019·河北省五个一名校联盟联考)经调查,某市骑行共享单车的老年人、中年人、青年人的比例为1∶3∶6,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中中年人数为12人,则n 等于( ) A .30 B .40 C .60D .802.某校李老师本学期负责高一甲、乙两个班的数学课,两个班都是50个学生,如图反映的是两个班的本学期5次数学测试中的班级平均分对比情况,根据图中信息,下列结论不正确的是( )A .甲班的数学平均成绩高于乙班B .乙班的数学成绩没有甲班稳定C .下次测试乙班的数学平均分高于甲班D .在第1次测试中,甲、乙两个班总平均分为783.(2019·全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.84.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2 400名学生中抽取30人进行调查.现将2 400名学生随机地从1~2 400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2 321~2 400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是( ) A .416 B .432 C .448 D .4645.(2019·郑州质检)若1,2,3,4,m (m ∈R )这五个数的平均数等于其中位数,则m 等于( ) A .0或5 B .0或52 C .5或52 D .0或5或526.(2019·长春质检)下列命题:①在线性回归模型中,相关指数R 2表示解释变量x 对于预报变量y 的贡献率,R 2越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在线性回归方程y ^=-0.5x +2中,当解释变量x 每增加一个单位时,预报变量y ^平均减少0.5个单位;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的个数是( ) A .1 B .2 C .3 D .47.(2019·衡水质检)某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图所示,则下列结论错误的是( )A .得分在[40,60)之间的共有40人B .从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5C .估计得分的众数为55D .这100名参赛者得分的中位数为658.(2019·济宁模拟)如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为( )A .0B .1C .2D .39.(2019·广东天河区普通高中测试)为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度(单位:cm),其茎叶图如图所示,则下列描述正确的是( )A .甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐B .甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐C .乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐D .乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐10.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好该项运动,得出2×2列联表,由计算可得K 2≈8.806.P (K 2≥k 0)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是( )A .有99.5%以上的把握认为“爱好该项运动与性别无关”B .有99.5%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别无关”11.已知变量x ,y 之间的线性回归方程为y ^=-0.7x +10.3,且变量x ,y 之间的一组数据如下表所示,则下列说法中错误的是( )x 6 8 10 12 y6m32A.变量x ,y 之间呈现负相关关系 B .可以预测当x =20时,y ^=-3.7 C .m =4D .由表格数据知,该回归直线必过点(9,4)12.(2019·江淮质检)为了了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A .是否倾向选择生育二胎与户籍有关B .是否倾向选择生育二胎与性别有关C .倾向选择生育二胎的人员中,男性人数与女性人数相同D .倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数13.(2019·河南省九师联盟质检)为了了解世界各国的早餐饮食习惯,现从由中国人、美国人、英国人组成的总体中用分层抽样的方法抽取一个容量为m 的样本进行分析.若总体中的中国人有400人、美国人有300人、英国人有300人,且所抽取的样本中,中国人比美国人多10人,则样本容量m =________.14.某班40名学生参加普法知识竞赛,成绩都在区间[40,100]内,其频率分布直方图如图所示,则成绩不低于60分的人数为________.15.(2019·成都模拟)节能降耗是企业的生存之本,树立一种“点点滴滴降成本,分分秒秒增效益”的节能意识,以最好的管理,来实现节能效益的最大化.为此某国企进行节能降耗技术改造,下面是该国企节能降耗技术改造后连续五年的生产利润:年号1 2 3 4 5 年生产利润y (单位:千万元)0.70.811.11.4预测第8年该国企的生产利润约为________千万元.参考公式及数据:b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2;a ^=y -b ^x ,∑i =15(x i -x )(y i-y )=1.7, i =15(x i -x )2=10.根据该折线图,下列结论正确的是________(填序号). ①月接待游客量逐月增加;②年接待游客量逐年增加; ③各年的月接待游客量髙峰期大致在7,8月份;④各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳.B 组 能力提高17.(2019·葫芦岛模拟)近日,据媒体报道称,“杂交水稻之父”袁隆平及其团队培育的超级杂交稻品种“湘两优900(超优千号)”再创亩产世界纪录,经第三方专家测产,该品种的水稻在实验田内亩产1 203.36公斤.中国工程院院士袁隆平在1973年率领科研团队开启了杂交水稻王国的大门,在数年的时间内就解决了十多亿人的吃饭问题,有力回答了世界“谁来养活中国”的疑问.2012年,在袁隆平的实验田内种植了A ,B 两个品种的水稻,为了筛选出更优的品种,在A ,B 两个品种的实验田中分别抽取7块实验田,如图所示的茎叶图记录了这14块实验田的亩产量(单位:10 kg),通过茎叶图比较两个品种的平均数及方差,并从中挑选一个品种进行以后的推广,有如下结论:①A 品种水稻的平均产量高于B 品种水稻,推广A 品种水稻;②B 品种水稻的平均产量高于A 品种水稻,推广B 品种水稻;③A 品种水稻的产量比B 品种水稻更稳定,推广A 品种水稻;④B 品种水稻的产量比A 品种水稻更稳定,推广B 品种水稻;其中正确结论的编号为( )A .①②B .①③C .②④D .①④18.(2019·南昌模拟)已知具有线性相关的五个样本点A 1(0,0),A 2(2,2),A 3(3,2),A 4(4,2),A 5(6,4),用最小二乘法得到回归直线l 1:y ^=b ^x +a ^,过点A 1,A 2的直线l 2:y =mx +n ,那么下列说法中,正确的有________.(填序号) ①m >b ^,a ^>n ; ②直线l 1过点A 3;③∑i =15(y i -b ^x i -a ^)2≥∑i =15 (y i -mx i -n )2; ④∑i =15|y i -b ^x i -a ^|≥∑i =15|y i -mx i -n |.⎝ ⎛⎭⎪⎪⎫参考公式:b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2= ∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a ^=y -b ^x。

热点攻关 “概率与统计”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)

热点攻关  “概率与统计”大题的常考题型探究(课件)2023年高考数学二轮复习(全国通用)
大题攻略05 有关预测与决策问题
例5 (2022年北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到 以上(含 )的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位: ): 甲: , , , , , , , , , . 乙: , , , , , . 丙: , , , . 假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(3)已知该地区这种疾病的患病率为 ,该地区的年龄位于区间 的人口占该地区总人口的 .从该地区中任选一人,若此人的年龄位于区间 ,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到 )
[解析] (1)平均年龄 (岁).(2)设 ,则 .(3)设 ,则由条件概率公式,得 .
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计 的数学期望 ;
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
[解析] (1) 由频率估计概率可得,甲获得优秀奖的概率为0.4.(2)设“甲获得优秀奖”为事件 ,“乙获得优秀奖”为事件 ,“丙获得优秀奖”为事件 ,由题意知 ,又 ,则 , ,
树苗高度(单位: )
树苗售价(单位:元/株)
4
6
8
(1)现从120株树苗中,按售价分层抽样抽取8株,再从中任选3株,求售价之和高于20元的概率;
(2)以样本中树苗高度的频率作为育苗基地中树苗高度的概率.若从该育苗基地银杏树树苗中任选4株,记树苗高度超过 的株数为 ,求随机变量 的分布列和期望.
[解析] (1)由题意得, ,令 ,设 关于 的线性回归方程为 ,则有 ,则 ,所以 ,又 ,所以 关于 的回归方程为 .

高二数学--概率与统计-(1)

高二数学--概率与统计-(1)

高二数学 概率与统计考试要求1.统计(1)随机抽样① 理解随机抽样的必要性和重要性.② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. (2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.② 理解样本数据标准差的意义和作用,会计算数据标准差. ③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释. ④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题. (3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系. ② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 不要求记忆线性回归方程系数公式()()()1122211,nniiiii i nniii i x ynx y xxyyb a y bxxnxxx-------===---∑∑∑∑用最小二乘法求线性回归方程系数公式:7.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.② 了解两个互斥事件的概率加法公式. (2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率. (3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率. ②了解几何概型的意义.1.课本概念与定理详解(1)随机抽样①简单随机抽样特点为从总体中逐个抽取,适用范围:总体中的个体数较少. ②系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取,适用范围:总体中的个体数较多.③分层抽样特点是将总体分成几层,分层进行抽取,适用范围:总体由差异明显的几部分组成.(2)众数、中位数、平均数①众数:在样本数据中,出现次数最多的那个数据.②中位数:在样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.在直方图中取频率为0.5处的频数。

概率统计中的热点问题

概率统计中的热点问题

概率图模型及其在深度学习中的应用
定义
概率图模型是一种用图的形式来表达变量间概率依赖关系的模型,它提供了一种直观的方式来理解和分析复杂系 统中的不确定性。
应用
在深度学习中,概率图模型被用来引入结构化的概率分布,提高模型的表达能力和泛化性能。例如,在深度生成 模型中,利用概率图模型可以实现对复杂数据分布的建模和生成。
当前热点问题的挑战与未来趋势
高维数据分析
随着互联网和大数据技术的飞速 发展,高维数据分析成为概率统 计领域的研究热点。如何有效处 理高维数据中的稀疏性、相关性 等问题,实现降维与特征提取, 是当前面临的主要挑战。
非参数与半参数方法
传统的参数方法往往对数据分布 有严格的假定,而非参数与半参 数方法则更具灵活性。如何进一 步提高这些方法的计算效率与稳 健性,是未来的重要研究方向。
不确定性量化与贝叶斯深度学习
不确定性量化
在深度学习中,模型的预测结果往往存在一定的不确定性。不确定性量化是对这种不确定性进行度量 和评估的过程,它有助于我们更全面地理解模型的性能和局限性。
贝叶斯深度学习
贝叶斯深度学习是将贝叶斯推理引入深度学习的一种方法,它通过在模型的训练和使用过程中考虑参 数的不确定性,从而提高模型的鲁棒性和泛化性能。在贝叶斯深度学习中,模型的参数被视为随机变 量,其不确定性可以通过概率分布来表示和推理。
统计推断
通过对样本数据的分析,我们学习了参数的点估计、区间 估计以及假设检验等方法,以实现对总体特征的推断。
回归分析
回归分析是探讨变量间关系的有力工具,我们学习了线性 回归、逻辑回归等多种回归模型,并掌握了模型参数的估 计与检验方法。
时间序列分析
针对具有时序特性的数据,我们学习了平稳性检验、季节 性分析、ARIMA模型等时间序列分析方法,以揭示数据 背后的动态规律。

文科高考数学重难点05 概率与统计(解析版)

文科高考数学重难点05  概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。

高中数学人教A版必修3《概率与统计》中的高考热点问题

高中数学人教A版必修3《概率与统计》中的高考热点问题

上一页
图2
返回首页
下一页
高三一轮总复习
(1)求频率分布直方图中 a 的值; (2)估计该企业的职工对该部门评分不低于 80 的概率; (3)从评分在[40,60)的受访职工中,随机抽取 2 人,求此 2 人的评分都在[40,50) 的概率. [规范解答] (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以 a =0.006.3 分 (2)由所给频率分布直方图知,50 名受访职工评分不低于 80 的频率为(0.022 +0.018)×10=0.4,所以该企业职工对该部门评分不低于 80 的概率的估计值为 0.4.6 分
上一页
返回首页
下一页
高三一轮总复习
[规律方法] 1.本题(1)中,指针连续地变化,是几何概型,第(2)问是顾客获 得优惠券的各种可能,是有限的可以一一列举的离散问题,满足古典概型.
2.题目以“市场销售手段”为背景,认真审题,实现知识迁移,恰当选择 概型是解题的关键.
上一页
返回首页
下一页
高三一轮总复习
下一页
高三一轮总复习
[温馨提示] 1.本题的易失分点: (1)不能利用频率分布直方图的频率求出 a 值. (2)求错评分落在[50,60),[40,50)间的人数. (3)没有指出基本事件总数与事件 M 包含的基本事件个数,或者只指出事件 个数,没有一一列举出 10 个基本事件及事件 M 包含的基本事件,导致扣 3 分或 2 分.
18
30
总计
36
24
60
2分
在患“三高”疾病人群中抽 9 人,则抽取比例为396=14,
所以女性应该抽取 12×14=3(人).5 分
上一页

模块二讲重点 概率与统计(3)统计及统计案例小题-2021届高考数学二轮复习课件(新高考版)

模块二讲重点 概率与统计(3)统计及统计案例小题-2021届高考数学二轮复习课件(新高考版)

提取频率分布直方图中的数据
(1)组距、频率:频率分布直方图中每个矩形的宽表示
组距,高表示
频率 组距
,面积表示该组数据的频率,各个矩形
的面积之和为1;
(2)众数:最高小长方形底边中点的横坐标;
(3)中位数:平分频率分布直方图面积且垂直于横轴的
直线与横轴交点的横坐标;
(4)平均数:频率分布直方图中每个小长方形的面积乘
【分析】 由茎叶图,可得甲的中位数是65,从而可知乙 的中位数也是65,可得到y=5,再利用二者平均数也相等,可 求出x的值,即可得到答案.
【解析】 由茎叶图,可知甲的中位数为65,则乙的中位 数也是65,故y=5,
因为甲、乙的平均数相等, 所以56+62+65+5 74+70+x=59+61+657+65+78, 解得x=3.故选D.
小长方形底边中点的横坐标,再求和;
(5)参数:若纵轴上存在参数,则根据所有小长方形的
面积之和为1,列方程即可求得参数值.
用样本的数字特征估计总体的数字特征 (1)众数:一组数据中出现次数最多的数; (2)方差和标准差反映了数据波动程度的大小. ①方差:s2=1n[(x1--x )2+(x2--x )2+…+(xn--x )2]; ②标准差: s= n1[(x1--x )2+(x2--x )2+…+(xn--x )2]. 性质:标准差(或方差)越小,说明数据波动越小,越稳 定;标准差越大,说明数据越分散,越不稳定.
模 块 二 讲 重 点 第 1 0讲 概 率 与统 计(3) 统计及 统计案 例小题 -2021 届高考 数学二 轮复习 课件( 新高考 版)
模 块 二 讲 重 点 第 1 0讲 概 率 与统 计(3) 统计及 统计案 例小题 -2021 届高考 数学二 轮复习 课件( 新高考 版)

数学初中三年级北师大版 中考“统计与概” 热点题型分类解析(含解答)-

数学初中三年级北师大版 中考“统计与概” 热点题型分类解析(含解答)-

2006年中考“统计与概”热点题型分类解析【专题考点剖析】本专题实际应用性特别强,中考试题多为低、中档题,题量约占总题量的5%左右,题型以选择题、填空题为主,有时也有解答题.甚至设计了开放、探索题.试题源于教材,既考查双基,又涉及到统计、估计、数形结合、分类讨论等思想方法,试题所反映出的考点主要有:1.能通过具体实际问题辨认总体、个体、样本、样本容量四个基本概念.2.既要理解样本平均数、样本方差、样本标准差、中位数、•众数本身所反映的实际意义,又要会求一组数据的样本平均数、样本方差、标准差、中位数、众数,而且会运用样本估计总体的思想方法解决一类实际应用问题.3.会整理一组数据列出频率分布表,会画频率分布直方图,•知道每小时的频率是该小组的频数与数据总数的比值,各小组频率之和为1,•各小长方形面积等于该小组的频率,它们的和也是1,•能根据所给的一些信息来补全频率分布表和频率分布直方图.4.概率问题是近年中考的一大热点,它与生活联系密切,•主要的考查内容是利用概率知识来解决现实中的具体问题,如彩票中奖问题、投掷硬币、图钉等问题,从理论上来说明某些事情发生的可能性的大小.同时来对比现实,对一些迷信说法以有力的还击.5.扇形、条形、折线统计图的知识又是一个中考的热点,•关键在掌握它的画法,明确它们之间的关系,掌握它们各自的优缺点,如何从这些统计图中获取信息,然后再应用到具体问题中去是中考的一大考点.【解题方法技巧】统计与概率中的方法较多,有些是以公式出现如,如平均数、方差等,有些是以图表来表现的,如列表法、画直方图、条形图和折线图等,另外还有树状图的方法.在运用概念解决问题时,可直接运用概念、定义,另一方面,不少概念题必须用到这些概念、定义,因此,回到定义去是统计初步里的一种重要方法.在具体的统计题中,往往是多个概念的组合题.因此,我们在运用此方法解题时,不仅要准确把握各个概念的定义,而且要准确把握这些概念之间的区别与联系.【热点试题归类】题型一平均数、众数、中位数1.(2006,苏州)某校参加“姑苏晚报.可口可乐杯”中学生足球赛的年龄如下(单位:岁):13,14,16,15,14,15,15,15,16,14,则这些队员年龄的众数是_____.2.(2006,浙江)数据2、4、4、7的众数是()A.2 B.4 C.5 D.73.(2006,泉州)小明与小华本学期都参加了5次数学考试(总分均为100分),数学老师想判断这位同学的数学成绩谁更稳定,在作统计分析时,老师需比较这两人5•次数学成绩的()A.平均数B.方差C.众数D.中位数4.(2006,大连)一鞋店试销一种新款女鞋,试销期间卖出情况如下表:对于这个鞋店的经理来说最关心哪种型号鞋畅销,•则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数C.中位数D.标准差5.(2006,深圳)班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示,那么这六位学生学习时间的众数与中位数分别是()A.4小时和4.5小时B.4.5小时和4小时C.4小时和3.5小时D.4小时和4小时6.(2006,诸暨)红星学校准备开办一些学生课外活动的兴趣班,结果反应热烈.•各种班的计划招生人数和报名人数,列前三位的如下表所示:若计划招生人数和报名人数的比值越大,•表示学生开设该兴趣班相对学生需要的满足程度就越高,那么根据以上数据,满足程度最高的兴趣班是()A.计算机班B.奥数班C.英语口语班D.音乐艺术班7.(2006,成都)为了了解汽车司机遵守交通法则的意识,小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图所示,根据统计图分析,这组车速数据的众数和中位数分别是()A.60千米/小时,60千米/小时B.58千米/小时,60千米/小时C.60千米/小时,58千米/小时D.58千米/小时,58千米/小时8.(2006,南京)饮料店为了了解本店罐装饮料上半年的销售情况,•随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)•该店能销售这种饮料多少听?9.(2006,枣庄)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3环射击要中要有几次命中10•环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3环射击中是否必须至少有一次命中10环才有可能打破记录?10.(2006,晋江)为了了解2006年五一期间学生做家务劳动的时间,•某中学实践活动小组对该班50名学生进行了调查,有关数据如下表:根据上表中的数据,回答下列问题:(1)该班学生每周做家务劳动的平均时间是多少小时?(2)这组数据的中位数、众数分别是多少?(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受.11.(2006,枣庄)某单位欲从内部招聘管理人员一名,对甲、乙、•丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,•三人得票率(没有弃权票,每位职工只能推荐1人),如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3•的比例确定个人成绩,那么谁将被录用?12.(2006,黄冈)某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)•班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(•满分为100分)如图所示.(1) 根据图填写下表;(2)结合两班复赛成绩的平均数和中位数,分析哪一个班级的复赛成绩较好.(3)如果在每班参加复赛的选手中分别选出2人参加决赛,•你认为哪个班的实力更强一些,并说明理由.题型二极差、方差、频数分布直方图1.(2006,泉州)在“手拉手,献爱心”捐款活动中,某校初三年级5•个班的捐款数分别为260、220、240、280、290(单位:元),则这组数据的极差是_____元.2.(2006,晋江)一组数据-1,0,1,2,3的方差是________.3.(2006,泰州)小明和小兵两人参加学校组织的理化实验操作测试,近期的5•次测试成绩如图所示,则小明5次成绩的方差S12与小兵5次成绩的方差S22之间的大小关系为S12______S22.(填“<”、“>”、“=”)4.(2006,绍兴)某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园调查了1 000名老年人的健康状况;B.在医院调查了1 000名老年人的健康状况;C.调查了10名老年邻居的健康状况;D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况5.(2006,南安)下列调查方式,你认为正确的是()A.了解一批炮弹的杀伤半径,采用普查方式;B.了解南安市每天的流动人口数,采用抽查方式;C.要保证“神舟”六号载人飞船成功发射,对重要零部件采用抽查方式检查;D.了解南安市居民日平均用水量,采用普查方式6.(2006,南通)某市对2 400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为()A.600人B.150人C.60人D.15人7.(2006,泉州)下列调查,比较适用普查而不适用抽样调查方式的是()A.调查全省市场上某种食品的色素含量是否符合国家标准;B.调查一批灯泡的使用寿命;C.调查你所在班级全体学生的身高;D.调查全国初中生每人每周的零花钱数8.(2006,苏州)某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如图频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人;B.该班身高低于160.5cm的学生人数为15人;C.该班身高最高段的学生数为20人;D.该班身高最高段的学生数为7人9.(2006,浙江)初三某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有________名同学参加这次测验;(2)在该频数分布直方图中画出频数折线图;(3)这次测验成绩的中位数落在_____分数段内;(4)若这次测验中,成绩80分以上(不含80分)为优秀,•那么该班这次数学测验的优秀率是多少?10.(2006,烟台)下表是某居民小区五月份的用水情况:(1)计算20户家庭的月平均用水量;(2)在图中画出这20户家庭用水量的频数分布直方图;(3)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少立方米?11.(2006,广州白云区)某灯泡厂生产了100箱灯泡,从中随机抽取了10相,•发现这10箱中不合格的灯泡数分别是3,2,4,3,2,1,2,3,0,1,你能估计出这100•箱灯泡中大约有多少个坏灯泡?12.(2006,绍兴)如图表示某校七年级360位同学购买不同品牌计算器人数的扇形统计图,每位同学购买一只计算器,试回答下列问题:(1)分别求出购买各品牌计算器的人数;(2)试画出购买不同品牌计算器人数的频数分布直方图.13.(2006,泉州)某校七年级学生每人都只使用甲、乙、丙三种品牌中的计算器,如图是该年段全体学生使用三种不同品牌计算器人数的频数分布直方图.(1)求该校七年级学生的总人数;(2)你认为哪种品牌计算器的使用频率最高?并求出这个频率.14.(2006,重庆)学习了统计知识后,•班主任老师叫班长就本班同学的上学方式进行了一次调查统计.图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生.(3)在图6-10中,将表示“乘车”的部分补充完整.(1) (2)题型三扇形、条形、折线统计图1.(2006,绍兴)如图是小敏五次射击成绩的折线图,根据图示信息,•则此五次成绩的平均数是_________环.(第1题)(第2题)2.(2006,重庆)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C•三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数据如图所示.若线人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有_______套,B型玩具有_______套,C•型玩具有________套.(2)若每人组装A型玩具16套与组装C型玩具12套所花的时间相同,那么a•的值为________,每人每小时组装C型玩具______套.3.(2006,重庆)•观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图(如图),下列说法正确的是()A.2003年农村居民人均收入低于2002年;B.农村居民人均收入比上年增长率低于9%的有2年;C.农村居民人均收入最多时为2004年;D.农村居民人均收入每年比上一年的增长率有大有小,•但农村居民人均收入在持续增加。

高考中的概率和统计问题

高考中的概率和统计问题

1.春节前夕,质检部门检查一箱装有2 500件包装食品的质量,抽查总量的2%,在这个问题中,下列说法正确的是( )A .总体是指这箱2 500件包装食品B .个体是一件包装食品C .样本是按2%抽取的50件包装食品D .样本容量是50 答案 D解析 总体、个体、样本的考查对象是同一事,不同的是考查的范围不同,在本题中,总体、个体是指食品的质量,而样本容量是样本中个体的包含个数.故答案为D.2.在可行域内任取一点,其规则如流程图所示,则能输出数对(x ,y )的概率是( )A.π8B.π4C.π6D.π2 答案 B解析 依题意可行域为正方形AOCD ,输出数对(x ,y )形成的图形为图中阴影部分,故所求概率为:P =14π⎝⎛⎭⎫22222·22=π4.3.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)等于( ) A .0.6 B .0.4 C .0.3 D .0.2 答案 C解析 ∵P (ξ<4)=0.8, ∴P (ξ>4)=0.2,由题意知图象的对称轴为直线x =2, P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3.4.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A.14 B.12 C.34 D.78 答案 C 解析设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x 、y ,x 、y 相互独立,由题意可知⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,|x -y |≤2,如图所示.所以两串彩灯第一次亮的时间相差不超过2秒的概率为P (|x -y |≤2)=S 正方形-2S △ABC S 正方形=4×4-2×12×2×24×4=1216=34.5.为了从甲、乙两名运动员中选拔一人参加某次运动会跳水项目,对甲、乙两名运动员进行培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得到茎叶图如图所示.从平均成绩及发挥稳定性的角度考虑,你认为选派________(填甲或乙)运动员合适.答案 甲解析 根据茎叶图,可得x 甲=16×(78+79+81+84+93+95)=85,x 乙=16×(75+80+83+85+92+95)=85.s 2甲=16×[(78-85)2+(79-85)2+(81-85)2+(84-85)2+(93-85)2+(95-85)2]=1333, s 2乙=16×[(75-85)2+(80-85)2+(83-85)2+(85-85)2+(92-85)2+(95-85)2]=1393. 因为x 甲=x 乙,s 2甲<s 2乙,所以甲运动员的成绩比较稳定,选派甲运动员参赛比较合适.题型一 古典概型与几何概型例1 (1)(2015·陕西)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.14-12π C.12-1π D.12+1π答案 B解析 由|z |≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,半径为1的圆及其内部,满足y ≥x 的部分为如图阴影所示,由几何概型概率公式可得所求概率为:P =14π×12-12×12π×12=π4-12π=14-12π.(2)有9张卡片分别写着数字1,2,3,4,5,6,7,8,9,甲、乙二人依次从中抽取一张卡片(不放回),试求: ①甲抽到写有奇数数字卡片,且乙抽到写有偶数数字卡片的概率; ②甲、乙二人至少抽到一张写有奇数数字卡片的概率.解 ①甲、乙二人依次从9张卡片中抽取一张的可能结果有C 19·C 18,甲抽到写有奇数数字卡片,且乙抽到写有偶数数字卡片的结果有C 15·C 14种,设“甲抽到写有奇数数字卡片,且乙抽到写有偶数数字卡片”的概率为P 1,则P 1=C 15·C 14C 19·C 18=2072=518.②方法一 甲、乙二人至少抽到一张写有奇数数字卡片的事件包含下面的三个事件:“甲抽到写有奇数数字的卡片,乙抽到写有偶数数字的卡片”有C 15·C 14种; “甲抽到写有偶数数字卡片,且乙抽到写有奇数数字卡片”有C 14·C 15种; “甲、乙二人均抽到写有奇数数字卡片”有C 15·C 14种. 设甲、乙二人至少抽到一张写有奇数数字卡片的概率为P 2,则P 2=C 15·C 14+C 14·C 15+C 15·C 14C 19C 18=6072=56. 方法二 甲、乙二人至少抽到一张奇数数字卡片的对立事件为两人均抽到写有偶数数字卡片,设为P 2,则P 2=1-P 2=1-C 14C 13C 19C 18=56.思维升华 几何概型与古典概型的本质区别在于试验结果的无限性,几何概型经常涉及的几何度量有长度、面积、体积等,解决几何概型的关键是找准几何测度;古典概型是命题的重点,对于较复杂的基本事件空间,列举时要按照一定的规律进行,做到不重不漏.(1)为了丰富学生的课余生活,促进校园文化建设,我校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文诵读比赛决赛.决赛通过随机抽签方式决定出场顺序.求: ①甲、乙两班恰好在前两位出场的概率;②决赛中甲、乙两班之间的班级数记为X ,求X 的分布列和均值. 解 ①设“甲、乙两班恰好在前两位出场”为事件A ,则P (A )=A 22×A 44A 66=115.所以甲、乙两班恰好在前两位出场的概率为115.②随机变量X 的可能取值为0,1,2,3,4.P (X =0)=A 22×A 55A 66=13,P (X =1)=4×A 22×A 44A 66=415,P (X =2)=A 24×A 22×A 33A 66=15, P (X =3)=A 34×A 22×A 22A 66=215,P (X =4)=A 44×A 22A 66=115. 随机变量X 的分布列为X 0 1 2 3 4 P1341515215115因此,E (X )=0×13+1×415+2×15+3×215+4×115=43.(2)已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解 ∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba≤1,即2b ≤a .依条件可知事件的全部结果所构成的区域为 ⎩⎨⎧⎭⎬⎫(a ,b )⎪⎪⎪⎩⎪⎨⎪⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分. 所求概率区间应满足2b ≤a .由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为(163,83),故所求事件的概率为P =12×8×8312×8×8=13.题型二 求离散型随机变量的均值与方差例2 (2015·四川)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队. (1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和均值.解 (1)由题意,参加集训的男、女生各有6名,参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为 1-1100=99100. (2)根据题意,X 的可能取值为1,2,3,P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 33C 13C 46=15,所以X 的分布列为X 1 2 3 P153515因此,X 的均值为E (X )=1×P (X =1)+2×P (X =2)+3×P (X =3) =1×15+2×35+3×15=2.思维升华 离散型随机变量的均值和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如二点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的均值和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率间的对应.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:品牌甲 乙 首次出现故障时间x (年)0<x ≤1 1<x ≤2 x >2 0<x ≤2 x >2 轿车数量(辆) 2 3 45 5 45 每辆利润(万元)1231.82.9将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.解 (1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A )=2+350=110.(2)依题意得,X 1的分布列为X 1 1 2 3 P125350910X 2的分布列为X 2 1.8 2.9 P110910(3)由(2)得E (X 1)=1×125+2×350+3×910=14350=2.86(万元), E (X 2)=1.8×110+2.9×910=2.79(万元).因为E (X 1)>E (X 2),所以应生产甲品牌轿车. 题型三 概率与统计的综合应用例3 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的均值. 解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(3)依题意可得T 的分布列为T 45 000 53 000 61 000 65 000 P0.10.20.30.4所以E (T )=45 000×0.1+思维升华 概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.甲组 乙组 9 9 0 X 8 9 111(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和均值. (注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数x =8+8+9+104=354; 方差s 2=14[(8-354)2+(8-354)2+(9-354)2+(10-354)2]=1116. (2)当X =9时,由茎叶图可知,甲组同学的植树棵数是9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16(种)可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P (Y =17)=216=18.同理可得P (Y =18)=14,P (Y =19)=14,P (Y =20)=14,P (Y =21)=18.所以随机变量Y 的分布列为Y 17 18 19 20 21 P1814141418E (Y )=17×18+18×14+19×14+20×14+21×18=19.题型四 概率与统计案例的综合应用例4 电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料是否可以认为“体育迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X .若每次抽取的结果是相互独立的,求X 的分布列、均值E (X )和方差D (X ). 附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),解 (1)由所给的频率分布直方图知,“体育迷”人数为100×(10×0.020+10×0.005)=25, “非体育迷”人数为75,从而2×2列联表如下:将2×2列联表的数据代入公式计算: χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(30×10-45×15)245×55×75×25=10033≈3.030. 因为2.706<3.030<3.841,所以有90%的把握认为“体育迷”与性别有关.(2)由频率分布直方图知,抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为14.由题意,X ~B ⎝⎛⎭⎫3,14,从而X 的分布列为E (X )=np =3×14=34,D (X )=np (1-p )=3×14×34=916.思维升华 统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.为了解大学生观看湖南卫视综艺节目“快乐大本营”是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表:喜欢看“快乐大本营”不喜欢看“快乐大本营”合计 女生 5 男生 10 合计50若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看“快乐大本营”的有6人.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢看“快乐大本营”节目与性别有关?说明你的理由;(3)已知喜欢看“快乐大本营”的10位男生中,A 1,A 2,A 3,A 4,A 5还喜欢看新闻,B 1,B 2,B 3还喜欢看动画片,C 1,C 2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B 1和C 1不全被选中的概率. 下面的临界值表供参考:P (χ2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828(参考公式:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d )解 (1)由分层抽样知识知,喜欢看“快乐大本营”的同学有50×610=30人,故不喜欢看“快乐大本营”的同学有50-30=20人,于是可将列联表补充如下:喜欢看“快乐大本营”不喜欢看“快乐大本营”合计 女生 20 5 25 男生 10 15 25 合计302050(2)∵χ2=50×(20×15-10×5)230×20×25×25≈8.333>7.879,∴有99.5%的把握认为喜欢看“快乐大本营”节目与性别有关.(3)从喜欢看“快乐大本营”的10位男生中选出喜欢看韩剧、喜欢看新闻、喜欢看动画片的各1名,其一切可能的结果组成的基本事件共有N =5×3×2=30个,用M 表示“B 1,C 1不全被选中”这一事件,则其对立事件M 表示“B 1,C 1全被选中”这一事件,由于M 由(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1),(A 4,B 1,C 1),(A 5,B 1,C 1)5个基本事件组成,所以P (M )=530=16.由对立事件的概率公式得 P (M )=1-P (M )=1-16=56.(时间:80分钟)1.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.1 7 92 0 1 5 3(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率. 解 (1)样本平均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人占的比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.(3)设事件A :“从该车间12名工人中,任取2人,恰有1名优秀工人”,则P (A )=C 14C 18C 212=1633.2.在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求: (1)取出的3件产品中一等品件数X 的分布列和均值; (2)取出的3件产品中一等品件数多于二等品件数的概率.解 (1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k7(k =0,1,2,3),那么从10件产品中任取3件,其中恰有k 件一等品的概率为P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是X 的均值E (X )=0×724+1×2140+2×740+3×1120=910.(2)设“取出的3件产品中一等品件数多于二等品件数”为事件A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3,由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340.P (A 2)=P (X =2)=740.P (A 3)=P (X =3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120.3.一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b ,c .(1)z =(b -3)2+(c -3)2,求z =4的概率;(2)若方程x 2-bx -c =0至少有一根x ∈{1,2,3,4},就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率.解 (1)因为是投掷两次,因此基本事件(b ,c ):(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个. 当z =4时,(b ,c )的所有取值为(1,3),(3,1), 所以P (z =4)=216=18.(2)①若方程一根为x =1,则1-b -c =0, 即b +c =1,不成立.②若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以⎩⎪⎨⎪⎧ b =1,c =2.③若方程一根为x =3,则9-3b -c =0,即3b +c =9,所以⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.由①②③④知(b ,c )的所有可能取值为(1,2),(2,3),(3,4),所以方程为“漂亮方程”的概率为P =316.4.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列; (3)从该流水线上任取2件产品,设X 为重量超过505克的产品数量,求X 的分布列.解 (1)根据频率分布直方图可知,重量超过505克的产品数量为[(0.01+0.05)×5]×40=12(件). (2)依题意,Y 的可能取值为0,1,2. P (Y =0)=C 228C 240=63130,P (Y =1)=C 128C 112C 240=2865,P (Y =2)=C 212C 240=11130,∴Y 的分布列为Y 0 1 2 P63130286511130(3)利用样本估计总体,该流水线上产品重量超过505克的概率为0.3, 令X 为任取的2件产品中重量超过505克的产品数量, 则X ~B (2,0.3), ∴X 的分布列为X 0 1 2 P0.490.420.095.如图所示,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率. 解 (1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意得P (A )=14.(2)依题意知,X ~B (3,14),从而X 的分布列为(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C 区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.6.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生: (1)得60分的概率;(2)所得分数X 的分布列和均值.解 (1)设“可判断两个选项是错误的”两道题之一选对为事件A ,“有一道题可以判断一个选项是错误的”选对为事件B ,“有一道题不理解题意”选对为事件C , ∴P (A )=12,P (B )=13,P (C )=14,∴得60分的概率为P =12×12×13×14=148.(2)X 可能的取值为40,45,50,55,60. P (X =40)=12×12×23×34=18;P (X =45)=C 12×12×12×23×34+12×12×13×34+12×12×23×14=1748; P (X =50)=12×12×23×34+C 12×12×12×13×34+C 12×12×12×23×14+12×12×13×14=1748; P (X =55)=C 12×12×12×13×14+12×12×23×14+12×12×13×34=748; P (X =60)=12×12×13×14=148.X 的分布列为E (X )=40×18+45×1748+50×1748+55×748+60×148=57512.。

高中数学经典概率与统计(解析版)

高中数学经典概率与统计(解析版)

概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。

2020高考数学解答题核心素养题型《专题11 概率与统计综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题11 概率与统计综合问题》+答题指导)(解析版)

专题11 概率与统计综合问题【题型解读】几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件、互斥事件常作为解答题的一问考查,也是进一步求分布列、期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】 (2018·天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16,现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ①用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;②设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【答案】见解析【解析】(1)由题意得,甲、乙、丙三个部门的员工人数之比为3∶2∶2.由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人、2人、2人. (2)①随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k 4C 3-k3C 37(k =0,1,2,3).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×35=7.②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥. 由①知,P (B )=P (X =2),P (C )=P (X =1), 故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以事件A 发生的概率为67.【素养解读】本题考查分层抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式,考查分析问题和解决问题的能力,体现了数学运算和数据分析等核心素养.试题难度:中.【突破训练1】 (2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】见解析【解析】(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为所以E (X )=0×4+1×24+2×4+3×24=12.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到了1个红灯的概率为1148.▶▶题型二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,常有解答题的考查,属于中档题.复习中应强化应用类习题的理解与掌握,弄清随机变量的所有取值,它是正确求随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中应强化解答题的规范性训练.【例2】 (2018·北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,“ξk =0”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.【答案】见解析【解析】 (1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A . 因为第四类电影中获得好评的电影有200×0.25=50(部), 所以P (A )=50140+50+300+200+800+510=502 000=0.025.(2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B ,则P (B )=0.25×(1-0.2)+(1-0.25)×0.2=0.35.(3)由题意可知,定义随机变量如下:ξk =⎩⎪⎨⎪⎧0,第k 类电影没有得到人们喜欢,1,第k 类电影得到人们喜欢,则ξk 显然服从两点分布,故Dξ1=0.4×(1-0.4)=0.24,Dξ2=0.2×(1-0.2)=0.16, Dξ3=0.15×(1-0.15)=0.127 5,Dξ4=0.25×(1-0.25)=0.187 5, Dξ5=0.2×(1-0.2)=0.16, Dξ6=0.1×(1-0.1)=0.09.综上所述,Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6.【素养解读】本题考查统计中的概率计算、随机变量的方差计算,考查运算求解能力,体现了数据分析、数学运算等核心素养.试题难度:中.【突破训练2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列.(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【答案】见解析【解析】(1)由题意知,X 所有可能取值为200,300,500, 由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4, P (X =500)=25+7+490=0.4, 因此X 的分布列为当300≤n ≤500时,若最高气温不低于25,Y =6n -4n =2n ; 若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以当n=300时,Y的数学期望达到最大值,最大值为520元.▶▶题型三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下.(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面的列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;附:K 2=(a +b)(c +d)(a +c)(b +d).【答案】见解析【解析】(1)记B 表示事件“旧养殖法的箱产量低于50 kg”,C 表示事件“新养殖法的箱产量不低于50 kg”. 由题意知P (A )=P (BC )=P (B )P (C ). 旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故P (C )的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得如下列联表.K 2=100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法箱产量的中位数的估计值为 50+0.5-0.340.068≈52.35(kg).【素养解读】本题考查频率分布直方图、独立性检验、中位数、相互独立事件的概率,考查学生的阅读理解能力、数据处理能力.主要体现了数据分析,数学运算等核心素养.【突破训练3】 (2017·北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小(只需写出结论). 【答案】见解析【解析】(1)由题图知,在服药的50名患者中,指标y 的值小于60的有15人. 所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为1550=0.3.(2)由题图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.P (ξ=0)=C 22C 24=16,P (ξ=1)=C 12C 12C 24=23,P (ξ=2)=C 22C 24=16.所以ξ的分布列为故ξ的期望E (ξ)=0×6+1×3+2×6=1.(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据方差. 题型四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差等)的考查,解答题中也有所考查.【例4】 (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t . (1)分析利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?请说明理由. 【答案】见解析【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施资源额的预测值为y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势,2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年的数据建立基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. (以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.)【素养解读】本题以统计图为背景,考查线性回归方程,考查运算求解能力和数形结合思想,体现了数学运算的核心素养.【突破训练4】 下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17(y i -y -)2=0.55,∑i =17(t i -t -)(y i -y -)=∑i =17t i y i -t -∑i =17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y -=9.327≈1.331及(1)得b ^=∑i =17(t i -t -)(y i -y -)∑i =17(t i -t -)2=2.8928≈0.103,a ^=y --b ^t -=1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程,得y ^=0.92+0.10×9=1.82.所以预测2019年我国生活垃圾无害化处理量约为1.82亿吨.。

专题概率与统计热点问题-2024年高考数学六大题解满分解题技巧秘籍

专题概率与统计热点问题-2024年高考数学六大题解满分解题技巧秘籍

概率与统计是高考数学中的一个重要的知识点,也是考察学生分析问题、统计数据以及进行概率计算的能力。

下面是2024年高考数学中概率与统计方面的热点问题解题指导,希望能对你备考有所帮助。

1.求二项式分布的期望和方差二项式分布可以描述在n次独立重复试验中,出现其中一事件的次数的概率分布。

求二项式分布的期望和方差是常见的题型。

对于n次独立重复试验中,事件A出现的次数X,其期望和方差分别为E(x) = np,Var(x) = np(1-p),其中p为单次试验中事件A发生的概率。

2.求事件的概率求事件的概率是概率与统计中的基本题型。

根据题目给出的条件,利用概率公式进行计算即可。

常见的题型有求交、并、互斥事件的概率,以及条件概率等。

3.求样本的点估计和区间估计在统计学中,样本是用来推断总体特征的重要依据。

对于样本中一些统计量,如平均值、比例等,可以利用它们作为总体特征的点估计。

而对于总体特征的区间估计,可以利用样本统计量的分布特性,计算出一个区间,该区间包含了总体特征的真值。

4.利用正态分布进行计算正态分布是概率与统计中最重要的概率分布之一,也是高考数学中的重点内容。

在许多情况下,可以使用正态分布来近似计算一些事件的概率或样本统计量的分布。

利用标准正态分布的概率表或计算器,可以方便地计算出正态分布的概率或分布的特征。

5.判断两个事件是否独立判断两个事件是否独立,可以利用概率的定义和条件概率的性质进行推导。

如果两个事件相互独立,则它们的联合概率等于事件的概率的乘积。

反之,如果联合概率不等于概率的乘积,则说明两个事件不独立。

6.利用抽样方法进行调查在概率与统计中,抽样是一种重要的数据收集方法。

通过合理地设计抽样方法和调查问卷,可以获得可靠的调查数据。

在解题时,需要注意抽样误差和样本的代表性等问题,以确保所得到的调查结果具有较高的可靠性。

以上是2024年高考数学概率与统计方面的热点问题解题指导。

在备考过程中,要牢固掌握概率与统计的基本概念和常用方法,多做相关的题目,提高解题能力。

统计概率与数列综合经典题(含详解答案)

统计概率与数列综合经典题(含详解答案)

统计概率与数列综合经典题(含详解答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March高考数学热点难点:统计概率与数列综合经典题1.随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x =1”表示2015年,“x =2”表示2016年,依次类推;y 表示人数):(1)试根据表中的数据,求出y 关于x 的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是12,方格图上标有第0格、第1格、第2格、…、第20格。

遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从k 到1k +)若掷出偶数遥控车向前移动两格(从k 到2k +),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。

设遥控车移到第(119)n n ≤≤格的概率为n P ,试证明{}1n n P P --是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.附:在线性回归方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii nii x y nxyb ay b x xnx ==-==--∑∑. 2.冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征和严重急性呼吸综合征等较严重疾病.而今年出现新型冠状病毒是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n (n *∈N )份血液样本,有以下两种检验方式: 方式一:逐份检验,则需要检验n 次.方式二:混合检验,将其中k (k *∈N 且2k ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为1k +. 假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p (01p <<).现取其中k (k *∈N 且2k ≥)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ. (1)若()()12E E ξξ=,试求p 关于k 的函数关系式()p f k =; (2)若p 与干扰素计量n x 相关,其中12,,,n x x x (2n ≥)是不同的正实数,满足11x =且n N *∀∈(2n ≥)都有1222113221121n n n i i i x x x e x x x x --=+-⋅=-∑成立. (i )求证:数列{}n x 等比数列; (ii)当1p =的期望值比逐份检验的总次数的期望值更少,求k 的最大值3.在读书活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为12,市民之间选择意愿相互独立.(1)从问卷市民中随机抽取4人,记总得分为随机变量ξ,求ξ的分布列和数学期望;(2)(i )若从问卷市民中随机抽取(N )m m +∈人,记总分恰为m 分的概率为m A ,求数列{}m A 的前10项和;(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为n 分的概率为n B (比如:1B 表示累计得分为1分的概率,2B 表示累计得分为2分的概率,N n +∈),试探求n B 与1n B -之间的关系,并求数列{}n B 的通项公式.4.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.A 市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了100人,并将这100人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过3000元):()1由频数分布表可以认为,该市大学生网络外卖消费金额Z (单位:元)近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x (每组数据取区间的中点值,660σ=).现从该市任取20名大学生,记其中网络外卖消费金额恰在390元至2370元之间的人数为X ,求X 的数学期望;()2A 市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值100元的饭卡,并推出一档“勇闯关,送大奖”的活动.规则是:在某张方格图上标有第0格、第1格、第2格、…、第60格共61个方格.棋子开始在第0格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是12,其中01P =),若掷出正面,将棋子向前移动一格(从k 到1k +),若掷出反面,则将棋子向前移动两格(从k 到2k +).重复多次,若这枚棋子最终停在第59格,则认为“闯关成功”,并赠送500元充值饭卡;若这枚棋子最终停在第60格,则认为“闯关失败”,不再获得其他奖励,活动结束.①设棋子移到第n 格的概率为n P ,求证:当159n ≤≤时,{}1n n P P --是等比数列;②若某大学生参与这档“闯关游戏”,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<≤+=,()220.9545P μσξμσ-<+=,()330.9973P μσξμσ-<+=.5.在某次世界新能源汽车大会上着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表).(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,经计算第(1)问中样本标准差s 的近似值为50.用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<+≈,(22)0.9545P μσξμσ-<+≈,(33)0.9973P μσξμσ-<+≈.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是12,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车车向前移动一次,若掷出正面,遥控车向前移动一格(从k 到1k +),若掷出反面,遥控车向前移动两格(从k 到2k +),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,设遥控车移到第n 格的概率为n P ,试说明{}1n n P P --是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.6.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.7.一种掷硬币走跳棋的游戏:在棋盘上标有第1站、第2站、第3站、…、第100站,共100站,设棋子跳到第n 站的概率为n P ,一枚棋子开始在第1站,棋手每掷一次硬币,棋子向前跳动一次.若硬币的正面向上,棋子向前跳一站;若硬币的反面向上,棋子向前跳两站,直到棋子跳到第99站(失败)或者第100站(获胜)时,游戏结束. (1)求1,P 2,P 3P ;(2)求证:数列{}1n n P P +-(1,2,3,,98)n =⋯为等比数列; (3)求玩该游戏获胜的概率.8.某市不仅有着深厚的历史积淀与丰富的民俗文化,更有着许多旅游景点.每年来该市参观旅游的人数不胜数.其中,名人园与梦岛被称为该市的两张名片,为合理配置旅游资源,现对已游览名人园景点的游客进行随机问卷调查.若不去梦岛记1分,若继续去梦岛记2分.每位游客去梦岛的概率均为23,且游客之间的选择意愿相互独立. (1)从游客中随机抽取3人,记总得分为随机变量X ,求X 的分布列与数学期望;(2)若从游客中随机抽取m 人,记总分恰为m 分的概率为m A ,求数列{}m A 的前6项和;(3)在对所有游客进行随机问卷调查的过程中,记已调查过的累计得分恰为n 分的概率为n B ,探讨n B 与1n B -之间的关系,并求数列{}n B 的通项公式.参考答案1.解:(1)123453,5x ++++==20501001501801005y ++++==511202503100415051801920i ii x y==⨯+⨯+⨯+⨯+⨯=∑522222211234555,ii x==++++=∑故19205310042,5559b -⨯⨯==-⨯ 从而10042326,a y bx =-=-⨯=-所以所求线性回归方程为4226y x =-, 令*4226300,x x N ->∈,解得8x ≥.故预计到2022年该公司的网购人数能超过300万人(2)遥控车开始在第0格为必然事件,01P =,第一次掷骰子出现奇数,遥控车移到第一格,其概率为12,即112P =.遥控车移到第n (219n )格的情况是下列两种,而且也只有两种.①遥控车先到第2n -格,又掷出奇数,其概率为212n P -②遥控车先到第1n -格,又掷出偶数,其概率为112n P -所以211122n n n P P P --=+,1121()2n n n n P P P P ---∴-=--∴当119n 时,数列1{}n n P P --是公比为12-的等比数列 2312132111111,(),(),()2222nn n P P P P P P P -∴-=--=--=-⋅⋅⋅-=- 以上各式相加,得2311111()()()()2222nn P -=-+-+-+⋅⋅⋅+-=11()1()32n ⎡⎤---⎢⎥⎣⎦1211()32n n P +⎡⎤∴=--⎢⎥⎣⎦(0,1,2,,19n =⋅⋅⋅),∴获胜的概率2019211()32P ⎡⎤=--⎢⎥⎣⎦失败的概率1920181111232P P ⎡⎤==+⎢⎥⎣⎦() ∴设参与游戏一次的顾客获得优惠券金额为X 元,200X =或500 ∴X 的期望201919211115001()2001()1004()32322EX ⎡⎤⎡⎤⎡⎤=⨯-+⨯+=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∴参与游戏一次的顾客获得优惠券金额的期望值为1911004()2⎡⎤-⎢⎥⎣⎦,约400元.2.(1)解:由已知,1k ξ=,()11P ξ=,得()1E k ξ=,2ξ的所有可能取值为1,1k +,∴()()211kP p ξ==-,()()2111kP k p ξ=+=--.∴()()()()()2111111k k kE p k p k k p ξ⎡⎤=-++--=+--⎣⎦. 若()()12E E ξξ=,则()11kk k k p =+--,()11kp k -=,∴111kp k ⎛⎫-= ⎪⎝⎭,∴111kp k ⎛⎫=- ⎪⎝⎭.∴p 关于k 的函数关系式为()111kf k k ⎛⎫=- ⎪⎝⎭,(k *∈N ,且2k ≥).(2)(i )∵证明:当2n =时,12222213221221x x x e x x x x --⋅=-,∴1231x e x =,令12310x q e x ==>,则1q ≠,∵11x =,∴下面证明对任意的正整数n ,13n n x e -=.①当1n =,2时,显然成立; ②假设对任意的n k =时,13k k x e-=,下面证明1n k =+时,31k k x e +=;由题意,得12221113221121kk k i i i x x x e x x x x -++=+-⋅=-∑,∴12213121223113111111k k k k k k x e xx x x x x x x x e -++-+⎛⎫-⋅++++= ⎪⎝⎭-,∴11233122131212333111111k k k k k e e x e x e e x e ----++--+⎧⎫⎡⎤⎛⎫⎪⎪⎢⎥- ⎪⎪⎪⎢⎥⎝⎭-⎪⎪⎣⎦⋅+=⎨⎬⎪⎪-⋅-⎪⎪⎪⎪⎩⎭,()21231213122331111k k k k k xe x e xe e --+-++⎛⎫- ⎪ ⎪-⎝⎭+⋅=--,∴()212233331110k k k k k exe e x ----+++⎛⎫⋅+-⋅-= ⎪⎝⎭,233311110k k k k e x e x --+++⎛⎫⎛⎫-+= ⎪⎪⎝⎭⎝⎭. ∴31k k x e +=或2331k k x e -+=-(负值舍去).∴31k k x e +=成立.∴由①②可知,{}n x 为等比数列,13n n x e -=.(ii )解:由(i)知,11p ==,()()12E E ξξ>,∴()11kk k k p >+--,得()11kkp k <-=,∴1ln 3k k >.设()1ln 3f x x x =-(0x >),()33xf x x-'=,∴当3x ≥时,0fx ,即()f x 在[)3,+∞上单调减.又ln 4 1.3863≈,4 1.33333≈,∴4ln 43>;ln5 1.6094≈,5 1.66673≈.∴5ln 53<. ∴k 的最大值为4.3.解(1)ξ的可能取值为4,5,6,7,8,04411(4)C (),216P ξ=== 1134111(5)C (),24(2)P ξ=== 2224113(6)C ,2()()28P ξ===,3314111(7)C ,2()()24P ξ===4404111(8)C 2()()216P ξ=== 所有ξ的分布列为所以数学期望11311()4567861648416E ξ=⨯+⨯+⨯+⨯+⨯=. (2)(i )总分恰为m 分的概率为1()2mm A =,所以数列{}m A 是首项为12,公比为12的等比数列,前10项和101011(1)1023221102412S -==-. (ii )已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为1111,22n B B -=.因为1112n n B B -+=,即1112n n B B -=-+,所以1212()323n n B B --=--,则{23}n B -是首项为12136B -=-,公比为12-的等比数列, 所以1211()362n n B --=--,所以211()332n n B =+-. 4.解:()12500.27500.3512500.2517500.1x =⨯+⨯+⨯+⨯22500.05+⨯+27500.051050⨯=,因为Z 服从正态分布()21050,660N ,所以()()0.95450.6827390237020.95450.81862P Z P Z μσμσ-<≤=-<≤+=-=.所以()20,0.8186XB ,所以X 的数学期望为()200.818616.372E X =⨯=.()2①棋子开始在第0格为必然事件,01P =.第一次掷硬币出现正面,棋子移到第1格,其概率为12,即112P =. 棋子移到第()259n n ≤≤格的情况是下列两种,而且也只有两种:棋子先到第2n -格,又掷出反面,其概率为212n P -;棋子先到第1n -格,又掷出正面,其概率为112n P -,所以211122n n n P P P --=+,即112(1)2n n n n P P P P ----=--,且1012P P -=-, 所以当159n ≤≤时,数列{}1n n P P --是首项1012P P -=-,公比为12-的等比数列.②由①知1112P -=-,12212P P ⎛⎫-=- ⎪⎝⎭,33212P P ⎛⎫-=- ⎪⎝⎭,,112nn n P P -⎛⎫-=- ⎪⎝⎭,以上各式相加,得21111222n nP ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以21111222nn P ⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()12110,1,2,,5932n n +⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.所以闯关成功的概率为6060592121113232P ⎡⎤⎡⎤⎛⎫⎛⎫=--=-⎢⎥⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 闯关失败的概率为5959605811211111223232P P ⎡⎤⎡⎤⎛⎫⎛⎫==⨯--=+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.60595859602111111110323232P P ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-=--+=->⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以该大学生闯关成功的概率大于闯关失败的概率. 5.解:(1)0.002502050.004502550.009503050.004503550.00150405300x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(千米).(2)由~(300X N ,250).0.95450.6827(250400)0.95450.81862P X -∴<=-=.(3)遥控车开始在第0 格为必然事件,01P=.第一次掷硬币出现正面,遥控车移到第一格,其概率为12,即112P=.遥控车移到第(249)n n 格的情况是下面两种,而且只有两种:①遥控车先到第2n -格,又掷出反面,其概率为212n P -.②遥控车先到第1n -格,又掷出正面,其概率为112n P -.211122n n n P P P --∴=+. 1121()2n n n n P P P P ---∴-=--.149n ∴时,数列1{}n n P P --是等比数列,首项为1012P P -=-,公比为12-的等比数列.1112P ∴-=-,2211()2P P -=-,3321()2P P -=-,⋯⋯,11()2n n n P P --=-. 1112100111()()()()()1222n n n n n n n P P P P P P P P ----∴=-+-+⋯⋯+-+=-+-+⋯⋯-+ 1111()212[1()]1321()2n n ++--==----(0n =,1,⋯⋯,49). ∴获胜的概率504921[1()]32P =--,失败的概率49495048112111[1()][1()]223232P P ==⨯--=+.5049484950211111[1()][1()][1()]0323232P P ∴-=---+=->. ∴获胜的概率大.∴此方案能成功吸引顾客购买该款新能源汽车.6.解(1)由题意可知X 所有可能的取值为:1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:(2)0.5α=,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯= (i )()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7i i i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i ii i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=- ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+ 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为,乙药治愈率为时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.7.(1)棋子开始在第1站是必然事件,11P ∴=; 棋子跳到第2站,只有一种情况,第一次掷硬币正面向上,其概率为1,2212P ∴=;棋子跳到第3站,有两种情况,①第一次掷硬币反面向上,其概率为12;②前两次掷硬币都是正面向上,其概率为111,224⨯=3113244P ∴=+=; (2)棋子棋子跳到第2n +()*197,n n N ≤≤∈站,有两种情况:①棋子先跳到第n 站,又掷硬币反面向上,其概率为12nP;②棋子先跳到第1n +站,又掷硬币正面向上,其概率为112n P +.故211122n n n P P P ++=+.()21112n n n n P P P P +++∴-=--又2112P P -=-, 数列()1(1,2,3,n nP P n +-=…,98)是以12-为首项,12-为公比的等比数列. (3)由(2)得112nn n P P +⎛⎫-=- ⎪⎝⎭.()()9999989897P P P P P =-+-+…()211P P P +-+98971122⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭ …112⎛⎫+-+ ⎪⎝⎭99112112⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭9821332=+⋅ 所以获胜的概率为9998111332P -=-⋅ 8.解(1)X 可能取值为3,4,5,6()3113327P X ⎛⎫===⎪⎝⎭, ()21321643327P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()223211253327P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()3286327P X ⎛⎫===⎪⎝⎭, 故其分布列为()5E X =.(2)总分恰为m 的概率13mm A ⎛⎫= ⎪⎝⎭,故6611(1)36433172913S -==-. (3)已调查过的累计得分恰为n 分的概率为n B ,得不到n 分的情况只有先得1n -分,再得2分,概率为123n B -,而113B =,故1213n n B B --=,即1213n n B B -=-+,可得1323535n n B B -⎛⎫-=-- ⎪⎝⎭,134515B -=-,所以13425153n n B -⎛⎫-=-- ⎪⎝⎭可得322553nn B ⎛⎫=+⋅- ⎪⎝⎭.。

概率与统计解答题精选精练16题含答案

概率与统计解答题精选精练16题含答案

1.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.2.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. (Ⅰ)求该总体的平均数;(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.3.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X 的分布列和均值(数学期望).4.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (I)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率; (II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.5.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望. 6.已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性,则在另外2只中任取l 只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.7.某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:(490,495],(495,500],(500,505],(505,510],(510,515],得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率91011 2 5 7 8 97 7 83 4为概率,回答下列问题:(Ⅰ)在上述抽取的40件产品中任取2件,设X 为合格产品的数量,求X 的分布列和数学期望()E X ; (Ⅱ)若从流水线上任取3件产品,求恰有2件合格产品的概率. 8.某省2015年全省高中男生身高统计调查数据显示:全省100000名男生的身(170.5,16)N .现从某校高三年级男生中随机抽取50名测高服从正态分布测学生身高全部介于157.5cm 和187.5cm 之间,将测量结量身高,测量发现被6组:第一组[)157.5,162.5,第二组[)162.5,167.5 ,⋅⋅⋅,果按如下方式分成[)182.5,187.5,下图是按上述分组方法得到的频率分布直第6组方图.(Ⅰ)试评估我校高三年级男生在全省高中男生中的平均身高状况; 身高在177.5cm 以上(177.5cm )的人数; (Ⅱ)求这50名男生身高在177.5cm 以上(含177.5cm )的人中任(Ⅲ)在这50名男生意抽取2人,该2人中身高排名(以高到低)在全省前130名的人数记为ξ,求ξ的数学期望.参考数据:若2~(,)N ξμσ,()0.6826P μσξμσ-<≤+=,(22)0.9544P μσξμσ-<≤+=,(33)0.9974P μσξμσ-<≤+=.要求越来越高.3D 打印通常是采用数字技术材料打印机来9未来制造业对零件的精度实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来造企业向A 高校3D 打印实验团队租用一台3D 打印设备,会有广阔的发展空间.某制用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图3所示(单位:m μ) . (Ⅰ) 计算平均值μ与标准差σ;(Ⅱ) 假设这台3D 打印设备打印出品的零件内径Z 服从正态分布()2,Nμσ,该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:m μ):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?参考数据:()220.9544P Z μσμσ-<<+=,()330.9974P Z μσμσ-<<+=,30.95440.87=,40.99740.99=,20.04560.002=.10.经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个需求量,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[)100,110X ∈,则取105X =,且105X =的概率等于需求量落入[)100,110的概率),求T 的数学期望.11.某城市随机抽取一年内100 天的空气质量指数(AQI )的监测数据,结果统计如下:(Ⅰ)若本次抽取的样本数据有30 天是在供暖季,其中有8 天为严重污染.根据提供的统计数据,完成下面的2×2列联表,并判断是否有95%的把握认为“该城市本年的空气严重污染与供暖有关”? (Ⅱ)已知某企业每天的经济损失y (单位:元)与空气质量指数x 的关系式为0, 0100,400, 100300,2000,300.x y x x ≤≤⎧⎪=<≤⎨⎪>⎩试估计该企业一个月(按30 天计算)的经济损失的数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++(此公式也可写成22112212211234()n n n n n n n n n χ++++-=)第11题【解析】(Ⅰ)根据题设中的数据得到如下2×2列联表:将2×2列联表中的数据代入公式、计算,得22100(227638) 4.57585153070K ⨯-⨯=≈⨯⨯⨯,因为4.575 3.841>4, 所以有95%的把握认为“该城市本年的空气严重污染与供暖有关”. (Ⅱ)任选一天,设该天的经济损失为X 元,则201(0)(0100)1005PX P x ==≤≤==,6513(400)(100300)10020P X P x ==<≤==, 153(2000)(300)10020P X P x ==>==,所以1133(X)04000200056052020E =⨯+⨯+⨯=. 故该企业一个月的经济损失的数学期望为30(X)16800E =元.12.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20), 给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(Ⅱ)经过多次测试后,甲每次解答一道几何题所用的时间在5—7分钟,乙每次解答一道几何题所用的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.(Ⅲ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、 乙两女生被抽到的人数为X , 求X 的分布列及数学期望E (X ). 附表及公式第12题【解析】(Ⅰ)由表中数据得2K 的观测值()225022128850 5.556 5.024*********K ⨯⨯-⨯==≈>⨯⨯⨯,所以根据统计有97.5%的把握认为视觉和空间能力与性别有关. (Ⅱ)设甲、乙解答一道几何题的时间分别为x y 、分钟, 则基本事件满足的区域为5768x y ≤≤⎧⎨≤≤⎩(如图所示),设事件A 为“乙比甲先做完此道题” 则满足的区域为x y >,∴由几何概型11112()228P A ⨯⨯==⨯ 即乙比甲先解答完的概率为18. (Ⅲ)由题可知在选择做几何题的8名女生中任意抽取两人,抽取方法有2828C =种,其中甲、乙两人没有一个人被抽到有2615C =种;恰有一人被抽到有1126=12C C ⋅种;两人都被抽到有221C =种,X ∴可能取值为0,1,2,15(0)28P X ==, 123(1)287P X ===, 1(2)28P X ==, X 的分布列为:151211()0+1+22828282E X ∴=⨯⨯⨯=.13.某中药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕.基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为20万元;有雨时收益为10万元.额外聘请工人的成本为a 万元.已知下周一和下周有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36. (Ⅰ)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益; (Ⅱ)该基地是否应该外聘工人,请说明理由.14.某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量yx11O的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为变量.(Ⅰ)求Z 的分布列和均值;(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率. 15.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =,w =1881ii w=∑(Ⅰ)根据散点图判断,y=a +bx 与y =c +宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x.根据(Ⅱ)的结果回答下列问题: (ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()niii nii u u v v u u β==---∑∑,=v u αβ-16某市一高中经过层层上报,被国家教育部认定为2015年全国青少年足球特色学校.该校成立了特色足球队,队员来自高中三个年级,人数为50人.视力对踢足球有一定的影响,因而对这50人的视力作一调查.测量这50人的视力(非矫正视力)后发现他们的视力全部介于4.75和5.35之间,将测量结果按如下方式分成6组:第一组[4.75,4.85),第二组[4.85,4.95),…,第6组[5.25,5.35],如图是按上述分组方法得到的频率分布直方图.又知:该校所在的省中,全省喜爱足球的高中生视力统计调查数据显示:全省100000名喜爱足球的高中生的视力服从正态分布N (5.01,0.0064).(1)试评估该校特色足球队人员在全省喜爱足球的高中生中的平均视力状况; (2)求这50名队员视力在5.15以上(含5.15)的人数;(3)在这50名队员视力在5.15以上(含5.15)的人中任意抽取2人,该2人中视力排名(从高到低)在全省喜爱足球的高中生中前130名的人数记为ξ,求ξ的数学期望. 参考数据:若ξ~N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=0.6826,P (μ-2σ<ξ≤μ+2σ)=0.9544,P (μ-3σ<ξ≤μ+3σ)=0.9974参考答案第1题【标准答案】(Ⅰ)设A 表示事件“三种粽子各取到l 个”,则由古典概型的概率计算公式有1112353101()4C C C C P A ==. (Ⅱ)X 的所有可能值为0,1,2,则383107(0)15C P X C ===,12283107(1)15C C P X C ===,21283101(2)15C C P X C ===, 所以X 的分布列为故()0121515155E X =⨯+⨯+⨯=个. 第2题【解析】(Ⅰ)总体平均数为1(5678910)7.56x =+++++=.(Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5” . 从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),;(67),,(68),,(69),,(610),;(78),,(79),,(710),;(89),,(810),;(910),.共15个基本结果.事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),共有7个基本结果.所以所求的概率为7()15P A =. 第3题【答案】(Ⅰ)310;(Ⅱ)350. 故X 的分布列为1200300400350101010EX =⨯+⨯+⨯=. 【考点定位】1.概率;2.随机变量的分布列与期望.【名师点睛】高考中常常通过实际背景考查互斥事件、对立事件、相互独立事件、独立重复试验的概率计算及离散型随机变量的分布列和数学期望的计算,同时也考查二项分布、超几何分布等特殊的概率模型.解读此类问题时要注意分清类型,运用相应的知识进行解答.本题易犯的错误是事件之间的关系混乱,没有理解题中给定的实际意义. 第4题【答案】(I)635;(II) 随机变量X 的分布列为【解析】(I)由已知,有 所以事件A 发生的概率为635. (II)随机变量X 的所有可能取值为1,2,3,4 所以随机变量X 的分布列为所以随机变量X 的数学期望()31512341477142E X =⨯+⨯+⨯+⨯= 【考点定位】古典概型、互斥事件、离散型随机变量的分布列与数学期望.【名师点睛】本题主要考查古典概型、互斥事件、离散型随机变量的分布列与数学期望.把实际生活中的乒乓球比赛与数学中的古典概型相结合,体现了数学的实际应用价值与研究价值,也体现了数学中概率、期望对实际生活中的一些指导作用. 第5题【答案】(1)107;(2)详见解析. 【解析】试题分析:(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},则可知1A与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,再利用概率的加法公式即可求解;(2)分析题意可知1(3,)5XB ,分别求得00331464(0)()()55125P X C ===,11231448(1)()()55125P X C ===,22131412(2)()()55125P X C ===,3303141(3)()()55125P X C ===,即可知X 的概率分布及其期望.试题解析:(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},由题意,1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,∵142()105P A ==,251()102P A ==,∴11212211()()()()525P B P A A P A P A ===⨯=, 21211(1)(1)52522=⨯-+-⨯=,故所求概率为1212117()()()()5210P C P B B P B P B =+=+=+=;(2)顾【考点定位】1.概率的加法公式;2.离散型随机变量的概率分布与期望.【名师点睛】本题主要考查了离散型随机变量的概率分布与期望以及概率统计在生活中的实际应用,这一直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计的联系越来越密切,与统计中的抽样,频率分布直方图等基础知识综合的试题逐渐增多,在复习时应予以关注.第6题答案【解析】(Ⅰ)设1ξ、2ξ已分别表示依方案甲和依方案乙需化验的次数,P 表示对应的概率,则方案甲中1ξ的分布列为方案乙中2的分布列为(Ⅱ)3212()1023 2.4555E ξ=⨯+⨯+⨯==. 第7题【解析】(Ⅰ)由样本的频率分布直方图得,合格产品的频率为0.0450.0750.0550.8⨯+⨯+⨯=.所以抽取的40件产品中,合格产品的数量为400.832⨯=. 则X 可能的取值为0,1,2,所以()2824070195C P X C ===;()11832240641195C C P X C ===;()2322401242195C PX C ===, 因此X 的分布列为故X 数学期望()0121951951951955E X =⨯+⨯+⨯==. (Ⅱ)因为从流水线上任取1件产品合格的概率为40.85=, 所以从流水线上任取3件产品,恰有2件合格产品的概率为223144855125P C ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.第8题【解析】(Ⅰ)由直方图,经过计算我校高三年级男生平均身高为1600.11650.21700.31750.21800.11850.1171x =⨯+⨯+⨯+⨯+⨯+⨯=,高于全省的平均值170.5cm .(Ⅱ)由频率分布直方图知,后两组频率为0.2,人数为0.25010⨯=, 即这50名男生身高在177.5cm 以上(含177.5cm )的人数为10人.(Ⅲ) 4 997.0)435.170435.170(=⨯+≤<⨯-ξP ,0013.029974.01)5.182(=-=≥∴ξP ,0.0013100000130⨯=. 所以,全省前130名的身高在182.5cm 以上,这50人中182.5cm 以上的有5人.随机变量ξ可取0,1,2,于是924510)0(21025====C C P ξ,954525)1(2101515====C C C P ξ,924510)2(21025====C C P ξ, 1922951920=⨯+⨯+⨯=∴ξE .第9题:解 (Ⅰ)97979810210510710810911311410510μ+++++++++==m μ,()()()()2222222222288730234893610σ-+-+-+-++++++==,所以6σ=m μ.(Ⅱ)结论:需要进一步调试.解法一:理由如下:如果机器正常工作,则Z 服从正态分布()2105,6N ,()()33871230.9974P Z P Z μσμσ-<<+=<<=,零件内径在()87,123之外的概率只有0.0026,而()8687,123∉,根据3σ原则,知机器异常,需要进一步调试. 解法二:理由如下:如果机器正常工作,则Z 服从正态分布()2105,6N ,()()33871230.9974P Z P Z μσμσ-<<+=<<=.正常情况下5个零件中恰有一件内径在()87,123外的概率为:1450.00260.997450.00260.990.001287P C =⨯⨯=⨯⨯=,为小概率事件,而()8687,123∉,小概率事件发生,说明机器异常,需要进一步调试. 解法三:理由如下:如果机器正常工作,则Z 服从正态分布()2105,6N ,()()22931170.9544P Z P Z μσμσ-<<+=<<=.正常情况下5件零件中恰有2件内径在()93,117外的概率为:22350.004560.9544100.0020.870.0174P C =⨯⨯=⨯⨯=,此为小概率事件,而()8693,117∉,()11893,117∉,小概率事件发生,说明机器异常,需要进一步调试.所以()450000.1530000.2610000,3650000.459400E T =⨯+⨯+⨯+⨯=. 第11题【解析】(Ⅰ)根据题设中的数据得到如下2×2列联表:将2×2列联表中的数据代入公式、计算,得22100(227638) 4.57585153070K ⨯-⨯=≈⨯⨯⨯,因为4.575 3.841>4, 所以有95%的把握认为“该城市本年的空气严重污染与供暖有关”. (Ⅱ)任选一天,设该天的经济损失为X 元,则201(0)(0100)1005P X P x ==≤≤==,6513(400)(100300)10020P X P x ==<≤==, 153(2000)(300)10020P X P x ==>==,所以1133(X)04000200056052020E =⨯+⨯+⨯=. 故该企业一个月的经济损失的数学期望为30(X)16800E =元. 第12题【解析】(Ⅰ)由表中数据得2K 的观测值()225022128850 5.556 5.024*********K ⨯⨯-⨯==≈>⨯⨯⨯,所以根据统计有97.5%的把握认为视觉和空间能力与性别有关.(Ⅱ)设甲、乙解答一道几何题的时间分别为x y、分钟,则基本事件满足的区域为5768xy≤≤⎧⎨≤≤⎩(如图所示),设事件A为“乙比甲先做完此道题” 则满足的区域为x y>,∴由几何概型11112()228P A⨯⨯==⨯即乙比甲先解答完的概率为18.(Ⅲ)由题可知在选择做几何题的8名女生中任意抽取两人,抽取方法有2828C=种,其中甲、乙两人没有一个人被抽到有2615C=种;恰有一人被抽到有1126=12C C⋅种;两人都被抽到有221C=种,X∴可能取值为0,1,2,15(0)28P X==,123(1)287P X===,1(2)28P X==,X的分布列为:151211()0+1+22828282E X∴=⨯⨯⨯=.第13题【解析】(Ⅰ)设下周一有雨的概率为P,由题意,20.36,0.6P P==,基地收益X的可能取值为20,15,10,7.5,则(20)0.36,(15)0.24,(10)0.24,(7.5)0.16, P X P X P X P X========所以基地收益X的分布列为:基地的预期收益()200.36150.24100.247.50.1614.4E X=⨯+⨯+⨯+⨯=,所以,基地的预期收益为14.4万元.(Ⅱ)设基地额外聘请工人时的收益为Y万元,则其预期收益()200.6100.416E Y a a=⨯+⨯-=-(万元),()() 1.6E Y E X a-=-,综上,当额外聘请工人的成本高于1.6万元时,不外聘工人;成本低于1.6万元时,外聘工人;yx11O成本恰为1.6万元时,是否外聘工人均可以.第14题=+y关于年宣传费用x的回归方程类型;第15题【答案】(Ⅰ)y cy=+46.24(Ⅱ)100.6【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w=先求出建立y关于w的线性回归方程,即可y关于x的回归方程;(Ⅲ)(ⅰ)利用y关于x的回归方程先求出年销售量y的预报值,再根据年利率z与x、y的关系为z=0.2y-x即可年利润z的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值,列出关于x的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.=+适合作为年销售y关于年宣传费用x的试题解析:(Ⅰ)由散点图可以判断,y c回归方程类型. ……2分故宣传费用为46.24千元时,年利润的预报值最大.……12分【考点定位】非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识【名师点睛】本题考查了非线性拟合及非线性回归方程的求解与应用,是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程,再利用回归方程进行预报预测,注意计算要细心,避免计算错误. 第16题。

压轴题07 统计与概率压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)

压轴题07 统计与概率压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)

压轴题07统计与概率压轴题题型/考向一:统计与概率题型/考向二:统计案例一、统计与概率热点一用样本估计总体1.频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.在频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数.(1)最高的小长方形底边中点的横坐标即众数.(2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.热点二概率1.古典概型的概率公式P(A)=事件A中包含的样本点数试验的样本点总数.2.条件概率公式设A,B为随机事件,且P(A)>0,则P(B|A)=P(AB)P(A).3.全概率公式设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑ni =1P (A i )P (B |A i ).○热○点○题○型一统计与概率一、单选题1.对某校中学学生的身高进行统计,并将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),则该校学生身高数据的中位数为()A .165B .165.75C .166D .166.252.如图,一组数据123910,,,,,x x x x x ⋅⋅⋅,的平均数为5,方差为21s ,去除9x ,10x 这两个数据后,平均数为x ,方差为22s ,则()A .5x >,2212s s >B .5x <,2212s s <C .5x =,2212s s <D .5x =,2212s s >3.已知数据12,,,n x x x 是某市()*5,n n n ≥∈N 个普通职工的年收入,如果再加上世界首富的年收入1n x +,组成1n +个数据,则下列说法正确的是()A .年收入的平均数可能不变,中位数可能不变,方差可能不变B .年收入的平均数大大增加,中位数可能不变,方差变大C .年收入的平均数大大增加,中位数可能不变,方差变小D .年收入的平均数大大增加,中位数一定变大,方差可能不变4.甲、乙两名篮球运动员在8场比赛中的单场得分用茎叶图表示(图1),茎叶图中甲的得分有部分数据丢失,但甲得分的折线图(图2)完好,则()A .甲的单场平均得分比乙低B .乙的60%分位数为19C .甲、乙的极差均为11D .乙得分的中位数是16.55.某省普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为,,,,A B C D E 五个等级.某高中2022年参加“选择考”总人数是2020年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平,统计了该校2020年和2022年“选择考”成绩等级结果,得到如下统计图.针对该校“选择考”情况,2022年与2020年比较,下列说法正确的是()A .获得A 等级的人数减少了B .获得B 等级的人数增加了1.5倍C .获得D 等级的人数减少了一半D .获得E 等级的人数相同6.在“2,3,5,7,11,13,17,19”这8个素数中,任取2个不同的数,则这两个数之和仍为素数的概率是()A .328B .528C .17D .3147.2022年11月30日,神舟十五号、神舟十四号乘组在太空“胜利会师”,在中国人自己的“太空家园”里留下了一张足以载入史册的太空合影.某班级开展了关于太空知识的分享交流活动,活动中有2名男生、3名女生发言,活动后从这5人中任选2人进行采访,则这2人中至少有1名男生的概率为()A .310B .25C .35D .7108.不透明箱子中装有大小相同标号为1,2,3,4,5的5个冰墩墩(北京冬奥会吉祥物),随机抽取2个冰墩墩,则被抽到的2个冰墩墩标号相邻的概率是()A .15B .25C .35D .45二、多选题9.如图是国家统计局公布的2021年5月至2021年12月的规模以上工业日均发电量的月度走势情况,则().A .2021年7月至2021年10月,规模以上工业月度日均发电量呈现下降趋势B .2021年5月至2021年12月,规模以上工业月度日均发电量的中位数为228C .2021年11月,规模以上工业发电总量约为6758亿千瓦时D .从2021年5月至2021年12月中随机抽取2个月份,规模以上工业月度日均发电量都超过230亿千瓦时的概率为32810.树人中学2006班某科研小组,持续跟踪调查了他们班全体同学一学期中16周锻炼身体的时长,经过整理得到男生、女生各周锻炼身体的平均时长(单位:h )的数据如下:男生:6.3、7.4、7.6、8.1、8.2、8.2、8.5、8.6、8.6、8.6、8.6、9.0、9.2、9.3、9.8、10.1;女生:5.1、5.6、6.0、6.3、6.5、6.8、7.2、7.3、7.5、7.7、8.1、8.2、8.4、8.6、9.2、9.4.以下判断中正确的是()A .女生每周锻炼身体的平均时长的平均值等于8B .男生每周锻炼身体的平均时长的80%分位数是9.2C .男生每周锻炼身体的平均时长大于9h 的概率的估计值为0.3125D .与男生相比,女生每周锻炼身体的平均时长波动性比较大11.已知甲袋内有a 个红球,b 个黑球,乙袋内有b 个红球,a 个黑球(),a b *∈N ,从甲、乙两袋内各随机取出1个球,记事件A =“取出的2个球中恰有1个红球”,B =“取出的2个球都是红球”,C =“取出的2个球都是黑球”,则()A .()0.75P AB +≤B .()()P A P B >C .()()P B P C <D .()()P A B P A C +=+12.某中学为了能充分调动学生对学术科技的积极性,鼓励更多的学生参与到学术科技之中,提升学生的创新意识,该学校决定邀请知名教授于9月2日和9月9日到学校做两场专题讲座.学校有东、西两个礼堂,第一次讲座地点的安排不影响下一次讲座的安排,假设选择东、西两个礼堂作为讲座地点是等可能的,则下列叙述正确的是()A .两次讲座都在东礼堂的概率是14B .两次讲座安排在东、西礼堂各一场的概率是12C .两次讲座中至少有一次安排在东礼堂的概率是34D .若第一次讲座安排在东礼堂,下一次讲座安排在西礼堂的概率是13三、解答题13.春节期间,我国高速公路继续执行“节假日高速免费政策”.某路桥公司为了解春节期间车辆出行的高峰情况,在某高速收费点发现大年初三上午9:20~10:40这一时间段内有600辆车通过,将其通过该收费点的时刻绘成频率分布直方图.其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[]80,100,例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取5辆,再从这5辆车中随机抽取3辆,则恰有1辆为9:20~10:00之间通过的概率是多少?14.我国某医药研究所在针对某种世界疾病难题的解决方案中提到了中医疗法,为证实此方法的效用,该研究所购进若干副某种中草药,现按照每副该中草药的重量大小(单位:克)分为4组:[)0,20,[)20,40,[)40,60,[]60,80,并绘制频率分布直方图如下所示:(1)估计每副该中草药的平均重量(同一组中的数据用该区间的中点值作代表);(2)现从每副重量在[)20,40,[]60,80内的中草药中按照分层抽样的方式一共抽取6副该中草药,再从这6副中草药中随机取出2副进行分析,求取出的2副中仅有1副重量在[]60,80中的概率.二、统计案例热点一回归分析求经验回归方程的步骤(1)依据成对样本数据画出散点图,确定两个变量具有线性相关关系(有时可省略).(2)计算出x -,y -,∑n i =1x 2i ,∑ni =1x i y i 的值.(3)计算a ^,b ^.(4)写出经验回归方程.热点二独立性检验独立性检验的一般步骤(1)根据样本数据列2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.χ2越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.○热○点○题○型二统计案例一、单选题1.以模型()e 0kxy c c =>去拟合一组数据时,设ln z y =,将其变换后得到线性回归方程21z x =-,则c =()A .12B .2e -C .1e -D .e2.下列说法正确的有()①对于分类变量X 与Y ,它们的随机变量2K 的观测值k 越大,说明“X 与Y 有关系”的把握越大;②我校高一、高二、高三共有学生4800人,其中高三有1200人.为调查需要,用分层抽样的方法从全校学生中抽取一个容量为200的样本,那么应从高三年级抽取40人;③若数据1x 、2x 、L 、n x 的方差为5,则另一组数据11x +、21x +、L 、1n x +的方差为6;④把六进制数()6210转换成十进制数为:()012621006162678⨯⨯⨯=++=.A .①④B .①②C .③④D .①③3.给出以下四个命题:①在回归分析中,可用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好;②回归模型中离差是实际值i y 与估计值ˆy的差,离差点所在的带状区域宽度越窄,说明模型拟合精度越高;③在一组样本数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅(2n ≥,12,,,n x x x ⋅⋅⋅不全相等)的散点图中,若所有样本点()(),1,2,,i i x y i n =⋅⋅⋅都在直线112y x =-+上,则这组样本数据的线性相关系数为12-;④对分类变量x 与y 的统计量2χ来说,2χ值越小,判断“x 与y 有关系”的把握程度越大.其中,真命题的个数为()A .1B .2C .3D .44.如图是近十年来全国城镇人口、乡村人口的折线图(数据来自国家统计局).根据该折线图,下列说法错误的是()A .城镇人口与年份呈现正相关B .乡村人口与年份的相关系数r 接近1C .城镇人口逐年增长率大致相同D .可预测乡村人口仍呈现下降趋势5.已知变量,x y 之间的线性回归方程为ˆ0.47.6yx =-+,且变量,x y 之间的一组相关数据如表所示,x681012y6m32则下列说法中错误的有()A .变量,x y 之间呈现负相关关系B .变量,x y 之间的相关系数0.4r =-C .m 的值为5D .该回归直线必过点(9,4)6.设两个相关变量x 和y 分别满足下表:x12345y128816若相关变量x 和y 可拟合为非线性回归方程ˆ2bx a y+=,则当6x =时,y 的估计值为()(参考公式:对于一组数据()11u v ,,()22u v ,,⋯,()n n u v ,,其回归直线ˆˆˆvu αβ=+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii u v nu vunu β==-⋅=-∑∑,ˆˆav u β=-;51.152≈)A .33B .37C .65D .737.通过随机询问相同数量的不同性别大学生在购买食物时是否看营养说明,得知有16的男大学生“不看”,有13的女大学生“不看”,若有99%的把握认为性别与是否看营养说明之间有关,则调查的总人数可能为()A .150B .170C .240D .1758.已知一组样本数据()()()1122,,,,,,n n x y x y x y ,根据这组数据的散点图分析x 与y 之间的线性相关关系,若求得其线性回归方程为0.8587ˆ 5.yx =-,则在样本点(165,57)处的残差为()A . 2.45-B .2.45C .3.45D .54.55二、多选题9.下列关于成对数据的统计说法正确的有()A .若当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关B .样本相关系数r 的绝对值大小可以反映成对样本数据之间线性相关的程度C .通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据D .决定系数2R 越大,模型的拟合效果越差10.某服装生产商为了解青少年的身高和体重的关系,在15岁的男生中随机抽测了10人的身高和体重,数据如下表所示:编号12345678910身高/cm 165168170172173174175177179182体重/kg55896165677075757880由表中数据制作成如下所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为 11y bx a =+ ,相关系数为1r ,决定系数为21R ;经过残差分析确定()168,89为离群点(对应残差过大),把它去掉后,再用剩下的9组数据计算得到经验回归直线2l 的方程为 22y bx a =+ ,相关系数为2r ,决定系数为22R .则以下结论中正确的有()A . 12a a >B .12bb > C .12r r <D .2212R R >11.下列命题中为真命题的是()A .用最小二乘法求得的一元线性回归模型的残差和一定是0.B .一组数按照从小到大排列后为:1x ,2x ,…,n x ,计算得:25%17n ⨯=,则这组数的25%分位数是17x .C .在分层抽样时,如果知道各层的样本量、各层的样本均值及各层的样本方差,可以计算得出所有数据的样本均值和方差.D .从统计量中得知有97%的把握认为吸烟与患肺病有关系,是指推断有3%的可能性出现错误.12.给出下列说法,其中正确的是()A .某病8位患者的潜伏期(天)分别为3,3,8,4,2,7,10,18,则它们的第50百分位数为5.5B .已知数据12,,x x 的平均数为2,方差为3,那么数据121x +,221x +,L 的平均数和方差分别为5,13C .在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定D .样本相关系数()1,1r ∈-三、解答题13.国家发改委和住建部等六部门发布通知,提到:2025年,农村生活垃圾无害化处理水平将明显提升.现阶段我国生活垃圾有填埋、焚烧、堆肥等三种处理方式,随着我国生态文明建设的不断深入,焚烧处理已逐渐成为主要方式.根据国家统计局公布的数据,对2013-2020年全国生活垃圾焚烧无害化处理厂的个数y (单位:座)进行统计,得到如下表格:年份20132014201520162017201820192020年份代码x 12345678垃圾焚烧无害化处理厂的个数y166188220249286331389463(1)根据表格中的数据,可用一元线性回归模型刻画变量y 与变量x 之间的线性相关关系,请用相关系数加以说明(精确到0.01);(2)求出y 关于x 的经验回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用(2)所求的经验回归方程预测吗?请简要说明理由.参考公式:相关系数()()ni i x x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,n ii i ni i x x yy b a y bx x x ==--==-∑∑参考数据:88882211112292,204,730348,12041i i i i i i i i i y x y x y ========∑∑∑∑,257385.84=≈≈14.为加快推动旅游业复苏,进一步增强居民旅游消费意愿,山东省人民政府规定自2023年1月21日起至3月31日在全省实施景区门票减免,全省国有A 级旅游景区免首道门票,鼓励非国有A 级旅游景区首道门票至少半价优惠.本次门票优惠几乎涵盖了全省所有知名的重点景区,据统计,活动开展以来游客至少去过两个及以上景区的人数占比约为90%.某市旅游局从游客中随机抽取100人(其中年龄在50周岁及以下的有60人)了解他们对全省实施景区门票减免活动的满意度,并按年龄(50周岁及以下和50周岁以上)分类统计得到如下不完整的22⨯列联表:不满意满意总计50周岁及以下5550周岁以上15总计100(1)根据统计数据完成以上22⨯列联表,并根据小概率值0.001α=的独立性检验,能否认为对全省实施景区门票减免活动是否满意与年龄有关联?(2)现从本市游客中随机抽取3人了解他们的出游情况,设其中至少去过两个及以上景区的人数为X ,若以本次活动中至少去过两个及以上景区的人数的频率为概率.①求X 的分布列和数学期望;②求()11P X -≤.参考公式及数据:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.()2P k αχ=≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828。

2006中考热点专题讲练(四)——统计与概率

2006中考热点专题讲练(四)——统计与概率

居 民家庭 全 年支 出 费用 的扇 形 统 计 图 , 据 统 根
计 图 , 能 对 甲 、 两 户 你 乙
思想方 法
居 民家 庭 全年 食 品支 出
i 数 形结 合思 想 : 多 个 统 计 图 中 读 取 数 据 信 息 , 将 这 些 . 从 并
费用 的 多 少 作 出 正 确 判 断吗 ?
维普资讯
计图中获取数据信息. 5 .根据实际 问题 情境选 择 运用恰 当的统计 图来 描述 、 表 示数据 , 能判 断出一些人 为数据造成的误导.
图 中的数 据 }3 通 过 以上 统 计结 果 , ()
图3
请你 为 商 家进 货提 出 一 条合 理化 建
() 加 , 少 ; 2 1 9 I增 减 ( ) 9 0年 、0 0年 、 0 5年 总 产 量 分 别 是 20 20
2 0 0 公 斤 、8 0 40 万 10 0万 公 斤 、 30 1 5 0万 公 斤 , 此 得 出 总 产 量 由
1 图 8是 甲 、 . 乙两 户
在逐年减少 3 合理即可. ()
( ) 力提 高 2能
例 3 (0 5 长沙) 20 某校 学生会 在“ 假社会 实践 ” 暑 活动
维普资讯
况提供 了两条看起来似乎矛盾 的统计信 息 ( 图 5 , 如 ) 结合 图中
占整 个 圆 的
信息 回答下列 问题 : 1 由图 5 1 可知 。 地 区的小 麦平均 亩 () () 该
(l ) el 3
3 为 了 解 某 中学 男 生 的身 高 情 况 , 机 抽 取 若 干名 男 生 进 . 随
行身高 测量 , 所得 到 的数据 整理 后 , 出频 数分 布直 方 图, 将 画 图7 中从 左到右依次为第 1 ~5组. 1 求抽 取了多少名男 生测 ()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热点8统计与概率
(时间:loo 分钟 总分:loo 分)
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有 一个是符合题目要求的) 1.
一组数据5, 5, 6, x , 7 7, 8,已知这组数据的平均数是
6,则这组数据的中位数是 ()
A . 7
B . 6
C . 5. 5
D . 5
2. 检测1 000名学生的身高,从中抽出 50名学生测量,在这个问题中,50名学生的身高是
()
A .个体
B .总体
C .样本容量 3.
下列事件为必然事件的是(

A .买一张电影票,座位号是偶数; C .百米短跑比赛,一定产生第一名; 4.
一次抽奖
活动中,印发的奖券有
10 000张
张,三等奖200张,鼓励奖680张,那么第 () D .总体的样本
B •抛掷一枚普通的正方体骰子 1点朝上
D .明天会下雨
其中特等奖2张,一等奖20张,?二等奖98 •
位抽奖者(仅买一张奖券) ?中奖的概率为
5.
某校把学生的笔试、实践能力、成长记录三项成绩分别按 50%、20%、30%?的比例计入
学期总评成绩,90分以上为优秀,甲、乙、丙三人的各项成绩(单位:分)如下表,学 期总评成
绩优秀的是(

A .甲
B .乙、丙
C .甲、乙
D .甲、丙
6.
甲、乙两个样本的方差分别是 s 甲2=6.06, s 乙
2
=14.31,由此可反映出(

A .样本甲的波动比样本乙的波动大; B. 样本甲的波动比样本乙的波动小;
C. 样本甲的波动与样本乙的波动大小一样; D .样本甲和样本乙的波动大小关系不确定
1
7. 已知一组数据X 1, X 2, X 3, X 4, X 5的平均数是2,方差为一,那么另一组数据
3X 1-2, 3X 2-2 ,
3
3X 3-2, 3X 4-2, 3X 5-2的平均数和方差分别是( ) 1 A . 2,—
3
&某班一次数学测验 则这个班此次测验的众数为(

1 1
1 A .
B .
C .
10
50
500
1
D .
5 000
2 B . 2, 1 C . 4,
D . 4, 3
3
,其成绩统计如下
A . 90 分
B . 15
C . 100 分
D . 50 分
9. 一组数据1, -1 , 0, -1 , 1的方差和标准差分别是()
A. 0, 0
B. 0.8, 0.64
C. 1, 1
D. 0.8, 0.8
10. 由小到大排列一组数据y i, y2, y3, y4, y,其中每个数都小于-2,则对于样本1, y i, ?-y2, y3, -y4 , y5 的中位数是( )
A.」B . 7 C.」D . I
2 2 2 2
二、填空题(本大题共8题,每题3分,共24分)
11. ?若你想设计
一个月内你家里丢弃塑料袋数目的情况?,?你一定
不能选择______ 统计图(填扇形、折线和条形).
12 •如图,是世界人口扇形统计图,关系中国部分的圆心角的度数
为_____ .
13 .在100件产品中有5件次品,则从中任取一件次品的概率为
需知道相应样本的14 .要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,
________ (填“平均数” “方差”或“频率分布”).
15 .随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是
16 .在一个有10万人的小镇上,随机调查了 2 000人,其中有250?人看中央电视台的早间
新闻,在该镇随便问一人,他看早间新闻的概率大约是 _____________ .
1
17 .已知一组数据的方差是s2= [ (X1-2.5) 2+ ( X2-2.5) 2+ ( X3-2.5) 2+ …+ (X25-2.5) 2],
25
则这组数据的平均数是__________.
18 . 一组数据的方差为s2,将这组数据的每个数据都乘2, ?所得到的一组新数据的方差是
三、解答题(本大题共46分,19〜23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)
19 .已知一组数据6, 2, 4, 2, 3, 5, 2, 4 .
(1)这组数据的样本容量是多少?( 2)写出这组数据的众数和平均数.
1 1
20 .请你设计一个转盘游戏,使获一等奖的机会为,获二等奖的机会为-,获得三等奖
12 6
1
的机会为丄,并说明你的转盘游戏的中奖概率.
4
21. 根据下表制作扇形统计图,表示各种果树占果园总树木的百分比.
(1)计算各种果树面积与总面积的百分比;
(2) 计算各种果树对应的圆心角的度数;
(3)
22..
(1)
(2) 用平均数还是用中位数描述所有员工的工资的一般水平比较恰当?
(3) 去掉经理工资以后,其他员工的平均工资是多少??是否也能反映员工工资的一般水平?
:
(2) 这20名学生的本次测验成绩的众数和中位数分别是多少?
24. 有三面小旗,分别为红、黄、蓝三种颜色.
(1)把三面小旗按不同顺序排列,共有多少种不同排法?把它们排列出来.
(2)如果把小旗从左至右排列,红色小旗排在最左端的概率是多少?
25. 中小学生的视力状况受到社会的关注,某市有关部门对全市4?万名初中生的视力状况
进行了一次抽样调查,统计所得到的有关数据绘制成频率分布直方图,如图 10-2,从左
至右五个小组的频率之比依次是
2: 4: 9: 7: 3,第五小组的频率是 30.
(1) 本次调查共抽测了多少名学生?
(2) 本次调查抽测的数据的中位数应在哪个小组?说明理由.
(3) 如果视力在4.9〜5.1 (包括4.9、5.1)均属正常,那么全市初中生视力正常约有多 少人?
答案 一、选择题 1. B 2. D 3. C
4. A
5. C
6. B
7. D 8 . A 9 . D 10 . C
二、填空题
1
3 1 2 11.扇形 12. .72°
13.
14 .频率分布 15 .—
16 . -
17 . 2.5 18 .
20
4
8
三、解答题
19.解:(1)
8.
(2) 众数为 2, 平均数为3.5 .
20•解:设计略,中奖概率为

1 1 1
.
12 6 4
2
21. 解:(1)梨树25%,苹果树50%,葡萄树12. 5%,桃树12. 5%.
(2)梨树90°,苹果树180°,葡萄树45°,桃树45°. (3)图略. 22. 解:(1)平均工资为 810元,中位数为 450.
(2)中位数.(3) 445,能反映员工工资的一般水平.
x y 12,
x 1,
23.
解:(1)由题意知 解得
80x 90y 1070, y 11.
(2)众数为90分,中位数为90分. 24.
解:(1)共有6
种不同排法,分别为红黄蓝、红蓝黄、黄红蓝、黄蓝红、
?蓝红黄、蓝
1
黄红.(2)
3 25 .解:(1)设5个小组的频率依次为 2x , 4x , 9x , 7x , 3x ,贝U 2x+4x+9x+7x+3x=1,解得
1
3 x= • 30 -
=250 (人).
25
25
(2)第三小组,理由略.(3) 4 X —=1.12万人.
25。

相关文档
最新文档