多元函数求最值问题专题 - 副本

合集下载

多元函数的极值与最值例题极其解析

多元函数的极值与最值例题极其解析

多元函数的极值与最值1.求函数z=x3+y3−3xy的极值。

步骤:1)先求驻点(另偏导数等于0,联立)2)再求ABCA=f xx(x0, y0)B=f xy(x0, y0)C=f yy(x0, y0)3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值,且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o);(2)当B2-AC>0时,f(x o, y o )不是极值;(3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论.=3x2−3y=0解:∂z∂x∂z=3y2−3x=0∂y联立得驻点为(0,0),(1,1)A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导)B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导)C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导)在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处无极值。

在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为A>0,故在此处为极小值点,极小值为F (1, 1) =x3+y3−3xy=−12.求函数f(x, y)=x2+(y−1)2的极值。

解:f x’=2x=0F y’=2y-2=0联立得驻点为(0,1)A=f xx(x0, y0) =2B=f xy(x0, y0) =0C=f yy(x0, y0) =2在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为F (0, 1) = 03.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少?解:另长宽高分别为x, y, z故xyz=a, z=axyS=xy+2(x axy +y axy)=xy+2(ay+ax)S x’=y+2(−ax2)=0S y ’= x+2(−ay2)=0解得当X=Y=Z=3√2a的时候用料最少。

多元函数极值问题解决

多元函数极值问题解决

多元函数极值问题解决在数学中,多元函数是指依赖多个自变量的函数。

研究多元函数的极值问题是数学中重要的一个方向,通过极值问题解决可以了解函数的最大值和最小值,对于优化问题等具有重要意义。

本文将介绍解决多元函数极值问题的基本方法和技巧。

1. 多元函数极值问题概述多元函数的极值包括两种情况:最大值和最小值。

要找到多元函数的极值,需要通过计算导数或二阶导数来确定。

对于多元函数f(x,y),要找到其极值,可以通过求解以下方程组来解决:$$ \\frac{\\partial f}{\\partial x} = 0, \\quad \\frac{\\partial f}{\\partial y} = 0 $$其中 $\\frac{\\partial f}{\\partial x}$ 和 $\\frac{\\partial f}{\\partial y}$ 分别表示f(x,y)对x和y的偏导数。

2. 求解多元函数极值的步骤步骤1:计算一阶偏导数首先,对多元函数f(x,y)分别对x和y求一阶偏导数,得到 $\\frac{\\partial f}{\\partial x}$ 和 $\\frac{\\partial f}{\\partial y}$。

步骤2:解方程组然后,解方程组 $\\frac{\\partial f}{\\partial x} = 0, \\quad \\frac{\\partial f}{\\partial y} = 0$,求解出使得导数为零的x和y的值。

步骤3:判别极值类型最后,通过计算二阶导数或利用二次型判断方法,判断得到的极值是极小值、极大值还是鞍点。

3. 多元函数极值问题例题下面通过一个例题来说明如何解决多元函数极值问题:例题:求函数f(x,y)=x2+2y2−2xy−2y的极值。

解:1.求解一阶偏导数:$$ \\frac{\\partial f}{\\partial x} = 2x - 2y, \\quad \\frac{\\partial f}{\\partial y} = 4y - 2x - 2 $$2.解方程组:令 $\\frac{\\partial f}{\\partial x} = 0, \\quad \\frac{\\partial f}{\\partial y} =0$,得到:$$ \\begin{cases} 2x - 2y = 0 \\\\ 4y - 2x - 2 = 0 \\end{cases} $$求解得到x=1,y=1。

第五节多元函数的极值及其求法

第五节多元函数的极值及其求法

第五节多元函数的极值及其求法的图形观察二元函数22y x e xyz +-=播放播放设函数),(y x f z =在点),(00y x 的及其附近有定义,对于点),(00y x 附近的任一点),(y x 都有),(),(00y x f y x f <,则称函数在),(00y x 有极大值;若有),(),(00y x f y x f >,则称函数在),(00y x 有极小值.一、多元函数的极值及最值极大值、极小值统称为极值.使函数取得极值的点称为极值点.(1)(2)(3)例1处有极小值.在函数)0,0(4322yx z +=例2处有极大值.在函数)0,0(22yx z +-=例3处无极值.在函数)0,0(xyz =设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零:0),(00=y x f x , 0),(00=y x f y .多元函数取得极值的条件(称驻点)例如, 点)0,0(是函数xy z =的驻点,但不是极值点.驻点极值点注意:定理1(必要条件)问题:如何判定一个驻点是否为极值点?设函数),(y x f z =在点),(00y x 的某邻域内连续,有一阶及二阶连续偏导数,设 0),(00=y x f x , 0),(00=y x f y ,定理2(充分条件)则),(y x f 在点),(00y x 处是否取得极值的条件如下:令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00, (1)02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值;(2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论.设3322(,)339f x y x y x y x =-++-,求极值. 求得驻点:)2,1(),2,3(),0,1(),0,3(--,二阶偏导数为:66,0,66+-=''=''+=''y f f x f yy xy xx ,C B A 2B AC - (-3,0)-12 0 6 - 不是极值 (1,0)12 0 6 + 极小值-5 (-3,2)-12 0 -6 + 极大值31 (1,2) 12 0 6- 不是极值 例4解,令⎪⎩⎪⎨⎧=+-='=-+='063096322y y f x x f y x多元函数的最值求最值的一般方法:将函数在D内的所有驻点处的函数值及在D的边界上的最大值和最小值相互比较,其中最大者即为最大值,最小者即为最小值.求二元函数)4(),(2y x y x y x f z --==在直线6=+y x ,x 轴和y 轴所围成的闭区域D 上的最大值与最小值. 解x y o 6=+y x D 例5先求函数在D 内的驻点,⎩⎨⎧=---='=---='0)4(),(0)4(2),(222y x y x x y x f y x y x xy y x f y x 得区域D 内唯一驻点)1,2(,且4)1,2(=f ,再求),(y x f 在D 边界上的最值,解方程组 在边界0=x 和0=y 上0),(=y x f ,在边界6=+y x 上,即x y -=6,得 4,021==x x ,,2|64=-=⇒=x x y ,64)2,4(-=f 比较后可知4)1,2(=f 为最大值, 64)2,4(-=f 为最小值.,)6(223x x -=)2)(6(2--=x x z )60(≤≤x ,0)4(6=-='x x z 得区域D 内唯一驻点)1,2(,且4)1,2(=f ,在边界0=x 和0=y 上0),(=y x f ,要做一个容积为323cm 的无盖长方体箱子,问长、宽、高各为多少时,才能使所用材料最省? 若根据实际问题,目标函数有最大值(或最小值),而在定义区域内部有唯一的极大(小)值点,则可以断定该极大(小)值点即为最大(小)值点.例6解6464(0.0)S xy x y x y =++>>设长方体的长为x ,高为y ,则宽为32.xy 则箱子所用材料的面积为令由实际问题意义知,S 必有最小值,且内部唯一驻点,故当4x y ==时,S 有最小值.即当长、宽均为4cm 时,所用材料最省.22640640x y S y x S x y ⎧'=-=⎪⎪⎨⎪'=-=⎪⎩解得唯一驻点 4.x y ==用铁皮做一个有盖的长方形水箱,要求容积为V ,问怎么做用料最省?二、条件极值拉格朗日乘数法设水箱的长、宽、高分别为z y x ,,,则目标函数:)(2zx yz xy S ++=,约束条件:xyz V =, 实际问题中,目标函数的自变量除了受到定义域的限制外, 往往还受到一些附加条件的约束,这类极值问题称条件极值问题.例7解即表面积最小.,xyV z =⇒ 代入目标函数,化为无条件极值问题:x yz令 ⎪⎪⎩⎪⎪⎨⎧=-='=-='0)(20)(222y V x S x V y S y x ,求得唯一驻点3V y x ==,从而3V z =, 内部唯一驻点,且由实际问题S 有最大值,故做成立方体表面积最小.这种做法的缺点:1.变量之间的平等关系和对称性被破坏;2.有时解出隐函数困难甚至不可能.目标函数化为:)(2yV x V xy S ++=, 0,0>>y x要找函数),(y x f z =在条件0),(=y x ϕ下的可能极值点,解出λ,,y x ,其中y x ,就是可能的极值点的坐标.拉格朗日乘数法令,0),(0),(),(0),(),(⎪⎩⎪⎨⎧=='+'='+'y x y x y x f y x y x f y y x x ϕϕλϕλ其中λ为参数,引入拉格朗日函数),(),();,(y x y x f y x F λϕλ+=如果目标函数是三元函数),,(z y x f ,且约束条件有两个,0),,(=z y x g ,0),,(=z y x h ,则构造拉格朗日函数为.),,(),,(),,(),;,,(z y x h z y x g z y x f z y x L μλμλ++=令,0),,(0),,(),,(),,(),,(0),,(),,(),,(0),,(),,(),,(⎪⎪⎪⎩⎪⎪⎪⎨⎧=='+'+'='+'+'='+'+'z y x h z y x g z y x h z y x g z y x f z y x h z y x g z y x f z y x h z y x g z y x f z z z y y y x x x μλμλμλ解出z y x ,,,就是可能的极值点的坐标.用铁皮做一个有盖的长方形水箱,要求容积为V ,问怎么做用料最省?例7目标函数:)(2zx yz xy S ++=,约束条件:xyz V =,解构作拉格朗日函数 )()(2V xyz zx yz xy L -+++=λ,令 ⎪⎪⎩⎪⎪⎨⎧==++='=++='=++='Vxyz xy y x L xz z x L yz z y L z y x 0)(20)(20)(2λλλ, 解得唯一驻点,3V z y x ===,由实际问题,即为最小值点.。

多元函数的极值和最优化问题

多元函数的极值和最优化问题

多元函数的极值和最优化问题多元函数是指同时含有两个或更多个变量的函数。

在数学中,研究多元函数的极值和最优化问题是一项重要的工作。

通过寻找函数取得最大值或最小值的点,可以在各种实际问题中找到最优解。

对于多元函数,极值点可以是极大值或极小值。

极值点可以通过求偏导数和解方程组来求解。

在求解时,首先需要计算函数的偏导数,然后令偏导数等于零,解此方程组可以得到极值点。

为了更好地理解多元函数的极值问题,下面以一个简单的例子进行解释。

假设有一个函数 f(x, y) = x^2 + y^2 ,我们的目标是找到这个函数的极值点。

首先,我们计算函数 f(x, y) 对 x 和 y 的偏导数。

偏导数是指在其他变量保持不变的情况下,对某一变量求导。

对于本例中的函数 f(x, y),我们有以下偏导数:∂f/∂x = 2x∂f/∂y = 2y接下来,我们令偏导数等于零,并解这个方程组:2x = 02y = 0从方程组可以得到 x = 0,y = 0。

因此,函数的极值点为 (0, 0)。

同时,我们还需要判断这个极值点是极大值还是极小值,或者是鞍点。

为了做出判断,我们可以利用二阶偏导数的判定方法。

通过计算二阶偏导数的行列式,判断其正负性来确定。

在本例中,我们计算函数 f(x, y) 的二阶偏导数:∂²f/∂x² = 2∂²f/∂y² = 2二阶偏导数的行列式为H = (∂²f/∂x²)(∂²f/∂y²) - (∂²f/∂x∂y)² = (2)(2) - 0 = 4由于 H 大于零,所以函数的极值点 (0, 0) 是极小值点。

除了求取多元函数的极值点外,最优化问题也是多元函数的重要应用之一。

最优化问题的目标是找到函数取得最大值或最小值的点,并且通常还需要满足一些约束条件。

最常见的最优化问题是线性规划和非线性规划问题。

在线性规划问题中,目标函数和约束条件都是线性的。

多元函数微分学求最值,直接建立拉格朗日乘数法

多元函数微分学求最值,直接建立拉格朗日乘数法

多元函数微分学求最值,直接建立拉格朗日乘数法【多元函数微分学求最值,直接建立拉格朗日乘数法】引言在高等数学中,多元函数微分学是一个重要的分支,它研究多元函数的极值与最值问题。

其中一种常见的求最值的方法是通过建立拉格朗日乘数法。

本文将从简单到复杂的角度,逐步探讨多元函数微分学求最值的方法,并结合拉格朗日乘数法来解决实际问题。

一、多元函数的极值1.1 极值概念在单变量函数中,我们通过求导数,令导数为零来判断函数的极值点。

而在多元函数中,我们需要通过求偏导数来判断函数的极值点。

对于一个n元函数$f(x_1,x_2,…,x_n)$,偏导数用$\frac{\partial f}{\partial x_i}$表示。

1.2 极值的判断条件多元函数的极值点与一元函数类似,也需要满足导数为零的条件。

对于一个n元函数$f(x_1,x_2,…,x_n)$,如果在某一点$(a_1,a_2,…,a_n)$处,满足以下条件:$\frac{\partial f}{\partial x_1}(a_1,a_2,…,a_n)=0\\\frac{\partial f}{\partial x_2}(a_1,a_2,…,a_n)=0\\……\\\frac{\partial f}{\partial x_n}(a_1,a_2,…,a_n)=0$那么该点就是函数的极值点。

但这仅仅是极值的必要条件,并不一定是充分条件。

二、最值问题的解决方法2.1 直接法在一元函数中,我们通过求导数来解决最值问题,而在多元函数中,我们也可以直接计算偏导数,并令其为零来解决最值问题。

举例说明:设有一个二元函数$f(x,y)=2x^2+3y^2$,我们要求在$x^2+y^2=1$的条件下,函数$f(x,y)$的最小值。

解法:根据条件$x^2+y^2=1$,我们可以得到一个方程组:$2x-λ\cdot2x=0\\2y-λ\cdot2y=0\\x^2+y^2-1=0$其中,λ为拉格朗日乘子。

例谈求解多元函数最值问题的三种措施

例谈求解多元函数最值问题的三种措施

备考指南多元函数最值问题中往往涉及了多个变量,无法直接运用简单基本函数的性质、图象来求得最值,因而此类问题一般较为复杂,需灵活运用基本不等式及其变形式,通过三角换元、数形结合来求得问题的答案.下面结合实例来探讨一下求解多元函数最值问题的三种措施.一、利用基本不等式及其变形式基本不等式是指若a,b>0,则a+b≥2ab.在求解多元函数最值问题时,通常需用到基本不等式及其变形式,如21a+1b≤ab≤a+b2≤(a、b>0)、a2+b2≥2ab、a+b+c≥3ab3c、n∑i=1n1x i≤∏i=1n x i n≤∑i=1n x i n≤.利用基本不等式及其变形式求解多元函数最值问题需注意几个条件:(1)每个变量是否都为正数;(2)是否可配凑出几个变量的和或积,并使其中之一为定值;(3)几个变量相等时等号是否成立.例1.已知a<b,若不等式ax2+bx+c≥0对任意实数都成立,则M=a+2b+4cb-a的最小值为______.解:因为a>0,b-a>0,b2-4ac≤0,所以c≥b24a,故M≥a+2b+4∙b24ab-a=a2+2ab+b2a()b-a,则a 2+2ab+b2a()b-a=[]2a+()b-a2a()b-a=()b-a2+4a()b-a+4a2a()b-a=b-a a+4a b-a+4b-a a+4a b-a+4≥24=8,则M≥a2+2ab+b2a()b-a≥8,当a=3b时等号成立,故M的最小值为8.目标式中含有三个变量,需先找出变量之间的关系,通过恒等变换减少变量的个数,将目标式放缩为关于a、b的函数式;然后根据该式的结构特点,将其变形为几个简单分式的和,并使其中每两个式子的积为定值,即可根据基本不等式a+b≥2ab求得M的最值.例2.若x,y,z为正实数,x2+y2+z2=1,则yz x+ xzy+xyz的最小值为_____.解:由基本不等式可得:y2z2x2+x2z2y2+x2y2z2=12æèçöø÷y2z2+z2y2x2+12æèçöø÷x2z2+z2x2y2+12æèçöø÷x2y2+y2x2z2≥x2+y2+z2,则æèçöø÷yzx+xz y+xyz2=y2z2x2+x2z2y2+x2y2z2+2(x2+y2+z2)≥3()x2+y2+z2=3,即yzx+xz y+xyz≥3,当且仅当x=y=z=等号成立,故当x=y=z时,yzx+xz y+xyz有最小值3.对于本题,需运用基本不等式的变形式a2+b2≥2ab以及a+b+c≥3ab3c,才能顺利求得最值.在多次使用基本不等式及其变形式时,需确保在各个变量相等时,由基本不等式及其变形式得到的每个不等式的等号成立.二、三角换元由于多元函数最值问题中的变量较多,所以常常需通过三角换元,将问题中的变量化为关于某个角的三角函数,这样就能将问题转化为单变量函数最值问题来求解.通常可先根据题目中所给的条件,用三角函数sinα、cosα、tanα替换问题中的变量;然后通过三角恒等变换化简目标函数式,利用三角函数的图象、性质来求得最值.例3.已知实数x,y满足x2+y2≤1,求||x2+2xy-y2的最大值.解:令x=r cosθ、y=r sinθ,且0<r≤1,则||x2+2xy-y2=r2||cos2θ-sin2θ+2sinθcosθ=r2||cos2θ+sin2θ=2r2||||||sinæèöø2θ+π4,因为sinæèöø2θ+π4∈[]-1,1,所以||x2+2xy-y2=||||||sinæèöø2θ+π4≤2r2≤2,故||x2+2xy-y2的最大值为2.54由x 2+y 2≤1可联想到同角的三角函数关系式sin 2θ+cos 2θ=1,于是令x =r cos θ、y =r sin θ,且0<r ≤1,即可通过三角换元,将目标式转化为三角函数式.最后根据正弦函数的有界性求出三角函数的最大值.例4.已知实数x ,y ∈R ,x 2-92y 2=2,求||2x +3y 的最小值.解:设ìïx =2sec θ,=2tan θ,S =||2x +3y =||22sec θ+2tan θ=||,∴||cos θS =22+2sin θ,∴||cos θS -2sin θ=22,∴S 2+4cos ()θ+ϕ=22≤S 2+4,∴S 2≥4,∵S ≥0,∴S ≥2,∴||2x +3y 的最小值为2.我们根据已知关系式x 2-92y 2=2,分别令x =2sec θ、32y =2tan θ,通过三角换元,将问题中的双变量x 、y 用单变量θ表示出来,就能将问题转化为关于θ的三角函数问题,利用辅助角公式以及正余弦函数的有界性进行求解即可.三、数形结合运用数形结合法求解多元函数最值问题,需深入挖掘目标函数式中代数式的几何意义,熟悉简单基本函数的解析式和图象,画出相应的图形,即可将问题转化为几何图形问题,通过移动点、直线、曲线的位置,确定取得最值时的临界情形,列出关系式,求得最值.例5.已知a >0,b >0,1a +1b=3,求a +b 的最小值.解:由1a +1b =3可得b =a 3a -1,因为3a -1>0,所以a ∈æèöø13,+∞,令a +b =t ,则b =-a +t ,此时可以将t 看作直线b =-a +t 的纵截距.由图1可知直线b =-a +t 与函数b =a3a -1,a ∈æèöø13,+∞相切时,直线的纵截距最小值,可得b ′=-1()3a -12=-1,即a =b =23,则a +b 的最小值为43.通过数与形之间的互相转化,将函数最值问题转化为直线b =-a +t 与函数b =a3a -1图象之间的位置关系问题,即可通过分析直线与函数图象的临界情形:相切,确定a 、b 的取值,进而求得函数的最值.图1图2例6.已知x ,y ∈R ,则f ()x ,y =()x -y 2+æèçöø÷x +1y +12的最小值是_____.解:f ()x ,y =()x -y 2+æèçöø÷x +1y +12=()x -y 2+éëêêùûúú()x +12-æèçöø÷-1y 2,不妨将该式看作两点()x ,x +1、æèçöø÷y ,-1y 之间的距离的平方,显然()x ,x +1在直线y =x +1上,点æèçöø÷y ,-1y 在双曲线xy =-1上,画出图形,如图2所示.由图2可知当AC 垂直于直线y =x +1时,两点间的距离最短.则直线AC 的斜率为-1,且过原点,所以直线AC 的方程为y =-x ,得A ()-1,1,C æèöø-12,12,则||AC 2=12,所以f ()x ,y 的最小值为12.我们先将目标函数式变形为两式的平方和,即可根据两点间的距离公式,将目标式看作两点()x ,x +1、æèçöø÷y ,-1y 之间的距离的平方;然后结合图形,确定直线上的点到双曲线xy =-1上的点的最短距离,即可解题.解答多元函数最值问题,关键是研究问题中的变量和目标式,可通过变形目标式,利用基本不等式及其变形式求解;也可通过三角换元,将多变量化为单变量的三角函数问题来求解;还可以通过数形结合,将变量视为动点的坐标,通过研究动点、动直线、动曲线的位置关系,求得最值.同学们在解题时需仔细研究变量之间的关系,明确目标函数式的结构特点,选择与之相应的思路进行求解.(作者单位:江苏省启东市东南中学)备考指南55。

高中数学多元函数最值问题(十二大题型)

高中数学多元函数最值问题(十二大题型)

多元函数最值问题目录题型一:消元法题型二:判别式法题型三:基本不等式法题型四:辅助角公式法题型五:柯西不等式法题型六:权方和不等式法题型七:拉格朗日乘数法题型八:三角换元法题型九:构造齐次式题型十:数形结合法题型十一:向量法题型十二:琴生不等式法方法技巧总结解决多元函数的最值问题不仅涉及到函数、导数、均值不等式等知识,还涉及到消元法、三角代换法、齐次式等解题技能.必考题型归纳题型一消元法1(2023·全国·高三专题练习)已知正实数x,y满足ln x=ye x+ln y,则y-e-x的最大值为.2(2023·广东梅州·高三五华县水寨中学校考阶段练习)已知实数m,n满足:m⋅e m=(n-1)ln(n-1)=t(t >0),则ln tm(n-1)的最大值为.3(2023·天津和平·高三天津一中校考阶段练习)对任给实数x>y>0,不等式x2-2y2≤cx(y-x)恒成立,则实数c的最大值为.题型二判别式法1(2023·重庆渝中·高一重庆巴蜀中学校考期中)若x,y∈R,4x2+y2+xy=1,则当x=时,x+y取得最大值,该最大值为.2(2023·全国·高三竞赛)在△ABC中,2cos A+3cos B=6cos C,则cos C的最大值为.3(2023·高一课时练习)设非零实数a,b满足a2+b2=4,若函数y=ax+bx2+1存在最大值M和最小值m,则M-m=.1(2023·江苏·高三专题练习)若正实数x,y满足(2xy-1)2=(5y+2)(y-2),则x+12y的最大值为.2(2023·全国·高三专题练习)设a,b∈R,λ>0,若a2+λb2=4,且a+b的最大值是5,则λ=.题型三基本不等式法1设x、y、z是不全是0的实数.则三元函数f x,y,z=xy+yzx2+y2+z2的最大值是.2(2023·天津和平·高三耀华中学校考阶段练习)若实数x,y满足2x2+xy-y2=1,则x-2y5x2-2xy+2y2的最大值为.3(2023·全国·高三专题练习)已知正数a,b,c,则ab+bc2a2+b2+c2的最大值为.1(2023·江苏苏州·高三统考开学考试)设角α、β均为锐角,则sinα+sinβ+cosα+β的范围是.2y=cos(α+β)+cosα-cosβ-1的取值范围是.题型五柯西不等式法1(2023·广西钦州·高二统考期末)已知实数a i,b i∈R,(i=1,2⋯,n),且满足a21+a22+⋯+a2n=1,b21+b22 +⋯+b2n=1,则a1b1+a2b2+⋯+a n b n最大值为()A.1B.2C.n2D.2n2(2023·陕西渭南·高二校考阶段练习)已知x,y,z是正实数,且x+y+z=5,则x2+2y2+z2的最小值为.3(2023·江苏淮安·高二校联考期中)已知x2+y2+z2=1,a+3b+6c=16,则x-a22+y-b2+z-c 的最小值为.1(2023·全国·高三竞赛)已知x、y、z∈R+,且s=x+2+y+5+z+10,t=x+1+y+1+ z+1,则s2-t2的最小值为.A.35B.410C.36D.452(2023·全国·高三竞赛)设a、b、c、d为实数,且a2+b2+c2-d2+4=0.则3a+2b+c-4d 的最大值等于.A.2B.0C.-2D.-221(2023·甘肃·高三校联考)已知x>0,y>0,且12x+y+1y+1=1,则x+2y的最小值为 .2已知实数x,y满足x>y>0且x+y=1,则2x+3y+1x-y的最小值是3已知a>1,b>1,则a2b-1+b2a-1的最小值是.1已知x,y>0,1x+22y=1,则x2+y2的最小值是.题型七拉格朗日乘数法1x>0,y>0,xy+x+y=17,求x+2y+3的最小值.2设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是.题型八三角换元法1(2023·山西晋中·高三祁县中学校考阶段练习)已知函数f(x)=-3x3-3x+3-x-3x+3,若f(3a2)+f(b2 -1)=6,则a1+b2的最大值是2(2023·浙江温州·高一校联考竞赛)2x2+xy+y2=1,则x2+xy+2y2的最小值为.题型九构造齐次式1(2023·江苏·高一专题练习)已知x>0,y>0,则2xyx2+8y2+xyx2+2y2的最大值是.2(2023·河南·高三信阳高中校联考阶段练习)已知实数a,b>0,若a+2b=1,则3ab+1ab的最小值为()A.12B.23C.63D.83(2023·天津南开·高三统考期中)已知正实数a,b,c满足a2-2ab+9b2-c=0,则abc的最大值为.题型十数形结合法1(2023·全国·高三专题练习)函数f x =x2+ax+b(a,b∈R)在区间[0,c](c>0)上的最大值为M,则当M取最小值2时,a+b+c=2(2023·江苏扬州·高三阶段练习)已知函数f x =x ln x,x>02x+4e,x≤0,若x1≠x2且f x1 =f x2 ,则x1-x2的最大值为()A.2e-1e B.2e+1 C.5e D.52e3(2023·全国·高三专题练习)已知函数f x =x ln x,x>0x+1,x≤0,若x1≠x2且f x1 =f x2 ,则x1-x2的最大值为()A.22B.2C.2D.11(2023·江苏·高三专题练习)已知函数f x =x,0≤x≤1,ln2x,1<x≤2,若存在实数x1,x2满足0≤x1<x2≤2,且f x1=f x2,则x2-x1的最大值为()A.e2B.e2-1 C.1-ln2 D.2-ln4向量法1(2023·江苏南通·高一海安高级中学校考阶段练习)17世纪法国数学家费马在给朋友的一封信中曾提出一个关于三角形的有趣问题:在三角形所在平面内,求一点,使它到三角形每个顶点的距离之和最小,现已证明:在△ABC 中,若三个内角均小于120°,则当点P 满足∠APB =∠APC =∠BPC =120°时,点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上知识,已知a为平面内任意一个向量,b 和c 是平面内两个互相垂直的向量,且|b |=2,|c |=3,则|a -b |+|a +b |+|a -c |的最小值是.2(2023·浙江嘉兴·高一统考期末)已知平面向量a ,b ,c 满足a =1,b =2,|a |2=a ⋅b ,c ⋅c -b2=0,则|c -a |2+|c -b|2的最小值为.3(2023·湖北武汉·高一湖北省武昌实验中学校联考期末)已知向量a ,b 满足a +b ⋅b =0,a+4b =4,则a +b+b 的最大值为.琴生不等式法1(2023·福建龙岩·高三校考阶段练习)若函数f x 的导函数f x 存在导数,记f x 的导数为f x .如果对∀x ∈a ,b ,都有f x <0,则f x 有如下性质:f x 1+x 2+⋅⋅⋅+x nn ≥f (x 1)+f (x 2)+⋅⋅⋅+f (x n )n .其中n ∈N *,x 1,x 2,⋯,x n ∈a ,b .若f x =sin x ,则在锐角△ABC 中,根据上述性质推断:sin A +sin B +sin C 的最大值为.2(2023·全国·高三竞赛)半径为R 的圆的内接三角形的面积的最大值是.3(2023·北京·高三强基计划)已知正实数a ,b 满足a +b =1,求a +1a b +1b的最小值.多元函数最值问题目录题型一:消元法题型二:判别式法题型三:基本不等式法题型四:辅助角公式法题型五:柯西不等式法题型六:权方和不等式法题型七:拉格朗日乘数法题型八:三角换元法题型九:构造齐次式题型十:数形结合法题型十一:向量法题型十二:琴生不等式法方法技巧总结解决多元函数的最值问题不仅涉及到函数、导数、均值不等式等知识,还涉及到消元法、三角代换法、齐次式等解题技能.必考题型归纳题型一消元法1(2023·全国·高三专题练习)已知正实数x ,y 满足ln x =ye x +ln y ,则y -e -x 的最大值为.【答案】1e2/e -2【解析】由ln x =ye x +ln y 得ln x y =ye x ,所以x y ln x y =xe x ,则xe x=ln x y ⋅e ln xy ,因为x >0,e x>0,eln xy>0,所以lnxy>0,令f (x )=xe x x >0 ,则f (x )=e x (x +1)>0,所以f x 在0,+∞ 上单调递增,所以由xe x=ln x y ⋅e ln xy ,即f x =f ln x y,得x =ln x y ,所以y =x e x ,所以y -e -x =x e x -1e x =x -1e x,令g (x )=x -1e xx >0 ,则g (x )=2-xe x,令g (x )>0,得0<x <2;令g (x )<0,得x >2,所以g (x )在0,2 上单调递增,在2,+∞ 上单调递减,所以g (x )max =g (2)=1e 2,即y -e -x 的最大值为1e2.故答案为:1e2.2(2023·广东梅州·高三五华县水寨中学校考阶段练习)已知实数m ,n 满足:m ⋅e m =(n -1)ln (n -1)=t (t >0),则ln tm (n -1)的最大值为.【答案】1e【解析】由已知得,m >0,n -1>0,ln n -1 >0,令f x =xe x (x >0),则f x =x +1 e x >0,∴f x 在0,+∞ 上单调递增,又因为m ⋅e m =(n -1)ln (n -1),所以f m =f ln n -1 ,∴m =ln n -1 ,∴m n -1 =(n -1)⋅ln n -1 =t ,∴ln t m n -1=ln t t ,令g t =ln tt(t >0),所以g t =1-ln tt 2,则当t ∈(0,e )时,g (t )>0,g (t )单调递增;当t ∈(e ,+∞)时,g (t )<0,g (t )单调递减;所以g (t )max =g (e )=1e.故答案为:1e.3(2023·天津和平·高三天津一中校考阶段练习)对任给实数x >y >0,不等式x 2-2y 2≤cx (y -x )恒成立,则实数c 的最大值为.【答案】22-4【解析】因为对任给实数x >y >0,不等式x 2-2y 2≤cx (y -x )恒成立,所以c ≤x 2-2y 2xy -x 2=xy2-2x y-x y 2,令x y =t >1,则c ≤t 2-2t -t 2=f (t ),f(t )=t 2-4t +2t -t 2 2=(t -2+2)(t -2-2)t -t 22,当t >2+2时,f (t )>0,函数f (t )单调递增;当1<t <2+2时,f (t )<0,函数f (t )单调递减,所以当t =2+2时,f (t )取得最小值,f (2+2)=22-4,所以实数c 的最大值为22-4故答案为:22-4题型二判别式法1(2023·重庆渝中·高一重庆巴蜀中学校考期中)若x ,y ∈R ,4x 2+y 2+xy =1,则当x =时,x +y 取得最大值,该最大值为.【答案】 1530/1301541515/41515【解析】令x +y =t ,则y =t -x ,则4x 2+y 2+xy =4x 2+t -x 2+x t -x =4x 2-tx +t 2=1,即4x 2-tx +t 2-1=0,由Δ=t 2-16t 2-1 ≥0,解得:-41515≤t ≤41515,故x +y ≤41515,故x +y =415154x 2+y 2+xy =1,解得:x =1530,y =71530,所以当且仅当x =1530,y =71530时,等号成立,故答案为:1530,415152(2023·全国·高三竞赛)在△ABC 中,2cos A +3cos B =6cos C ,则cos C 的最大值为.【答案】14-16【解析】令cos A =x ,cos B =y ,cos C =z ,则2x +3y =6z ,即y =2z -23x .因为cos 2A +cos 2B +cos 2C +2cos A cos B cos C =1,所以x 2+2z -23x 2+z 2=1-2x 2z -23x z ,整理得139-43z x 2+4z 2-83z x +5z 2-1=0,Δ=4z 2-83z 2-45z 2-1 139-4z3≥0,化简得(z +1)(z -1)4z 2+4z 3-139≥0,于是4z 2+4z 3-139≤0,得z ≤14-16,所以cos C 的最大值为14-16.故答案为:14-16.3(2023·高一课时练习)设非零实数a ,b 满足a 2+b 2=4,若函数y =ax +bx 2+1存在最大值M 和最小值m ,则M -m =.【答案】2【解析】化简得到yx 2-ax +y -b =0,根据Δ≥0和a 2+b 2=4得到b -22≤y ≤b +22,解得答案.y =ax +bx 2+1,则yx 2-ax +y -b =0,则Δ=a 2-4y y -b ≥0,即4y 2-4yb -a 2≤0,a 2+b 2=4,故4y 2-4yb +b 2-4≤0,2y -b +2 2y -b -2 ≤0,即b -22≤y ≤b +22,即m =b -22,M =b +22,M -m =2.故答案为:2.1(2023·江苏·高三专题练习)若正实数x ,y 满足(2xy -1)2=(5y +2)(y -2),则x +12y的最大值为.【答案】322-1【解析】令x +12y =t ,(t >0),则(2xy -1)2=(2yt -2)2=(5y +2)(y -2),即(4t 2-5)y 2+(8-8t )y +8=0,因此Δ=(8-8t )2-32(4t 2-5)≥0⇒2t 2+4t -7≤0,解得:0<t ≤-1+322,当t =-1+322时,y =4t -44t 2-5=62-817-122>0,x =35-242122-16>0,因此x +12y 的最大值为322-1故答案为:322-12(2023·全国·高三专题练习)设a ,b ∈R ,λ>0,若a 2+λb 2=4,且a +b 的最大值是5,则λ=.【答案】4【解析】令a +b =d ,由a +b =da 2+λb 2=4消去a 得:(d -b )2+λb 2=4,即(λ+1)b 2-2db +d 2-4=0,而b ∈R ,λ>0,则Δ=(2d )2-4(λ+1)(d 2-4)≥0,d 2≤4(λ+1)λ,-2λ+1λ≤d ≤2λ+1λ,依题意2λ+1λ=5,解得λ=4.故答案为:4题型三基本不等式法1设x 、y 、z 是不全是0的实数.则三元函数f x ,y ,z =xy +yzx 2+y 2+z 2的最大值是.【答案】22【解析】引入正参数λ、μ.因为λ2x 2+y 2≥2λxy ,μ2y 2+z 2≥2μyz ,所以,xy ≤λ2x 2+12λy 2,yz ≤μ2y 2+12μz 2.两式相加得xy +yz ≤λ2x 2+12λ+μ2 y 2+12μz 2.令λ2=12λ+μ2=12μ,得λ=2,μ=12故xy +yz ≤22x 2+y 2+z 2.因此,f x ,y ,z =xy +yz x 2+y 2+z2的最大值为22.2(2023·天津和平·高三耀华中学校考阶段练习)若实数x ,y 满足2x 2+xy -y 2=1,则x -2y5x 2-2xy +2y 2的最大值为.【答案】24【解析】由2x 2+xy -y 2=1,得(2x -y )(x +y )=1,设2x-y=t,x+y=1t,其中t≠0.则x=13t+13t,y=23t-13t,从而x-2y=t-1t,5x2-2xy+2y2=t2+1t2,记u=t-1t,则x-2y5x2-2xy+2y2=uu2+2,不妨设u>0,则1u+2u≤12u×2u=24,当且仅当u=2u,即u=2时取等号,即最大值为24.故答案为:2 4.3(2023·全国·高三专题练习)已知正数a,b,c,则ab+bc2a2+b2+c2的最大值为.【答案】6 4【解析】∵ab+bc2a2+b2+c2=ab+bc2a2+13b2+23b2+c2≤ab+bc223ab+223bc=1223=64(当且仅当2a=3 3b,63b=c时取等号),∴ab+bc 2a2+b2+c2的最大值为64.故答案为:6 4.题型四辅助角公式法1(2023·江苏苏州·高三统考开学考试)设角α、β均为锐角,则sinα+sinβ+cosα+β的范围是.【答案】1,3 2【解析】因为角α、β均为锐角,所以sinα,cosα,sinβ,cosβ的范围均为0,1,所以sinα+β=sinαcosβ+cosαsinβ<sinα+sinβ,所以sinα+sinβ+cosα+β>sinα+β+cosα+β=2sinα+β+π4因为0<α<π2,0<β<π2,π4<α+β+π4<3π4,所以2sinα+β+π4>2×22=1,sinα+sinβ+cosα+β=sinα+sinβ+cosαcosβ-sinαsinβ=1-sinβsinα+cosαcosβ+sinβ≤1-sinβ2+cos2β+sinβ=21-sinβ+sinβ,当且仅当1-sinβcosα=sinαcosβ时取等,令1-sinβ=t,t∈0,1,sinβ=1-t2,所以=21-sinβ+sinβ=2t+1-t2=-t-2 22+32≤32.则sinα+sinβ+cosα+β的范围是:1,3 2.故答案为:1,3 22y=cos(α+β)+cosα-cosβ-1的取值范围是.【答案】-4,1 2【解析】y=cosαcosβ-sinαsinβ+cosα-cosβ-1=(cosβ+1)cosα-(sinβ)sinα-(cosβ+1)=(cosβ+1)2+sin2βsin(α+φ)-(cosβ+1)=2+2cosβsin(α+φ)-(cosβ+1)因为sin(α+φ)∈[-1,1],所以-2+2cosβ-(cosβ+1)≤y≤2+2cosβ-(cosβ+1),令t=1+cosβ,则t∈[0,2],则-2t-t2≤y≤2t-t2,所以y≥-2t-t2=-t+2 22+12≥-4,(当且仅当t=2即cosβ=1时取等);且y≤2t-t2=-t-2 22+12≤12,(当且仅当t=22即cosβ=-12时取等).故y的取值范围为-4,1 2.题型五柯西不等式法1(2023·广西钦州·高二统考期末)已知实数a i,b i∈R,(i=1,2⋯,n),且满足a21+a22+⋯+a2n=1,b21+b22 +⋯+b2n=1,则a1b1+a2b2+⋯+a n b n最大值为()A.1B.2C.n2D.2n【答案】A【解析】根据柯西不等式,a21+a22+⋯+a2nb21+b22+⋯+b2n≥a1b1+a2b2+⋯+a n b n2,故a1b1+a2b2+⋯+a nb n≤1,又当a1=b1=a2=b2=...=a n=b n=1n时等号成立,故a1b1+a2b2+⋯+a n b n最大值为1故选:A2(2023·陕西渭南·高二校考阶段练习)已知x,y,z是正实数,且x+y+z=5,则x2+2y2+z2的最小值为.【答案】10【解析】由柯西不等式可得x2+2y2+z212+122+12≥(x+y+z)2,所以52x2+2y2+z2≥25,即x2+2y2+z2≥10,当且仅当x1=2y12=z1即x=2y=z也即x=2,y=1,z=2时取得等号,故答案为:103(2023·江苏淮安·高二校联考期中)已知x2+y2+z2=1,a+3b+6c=16,则x-a2+y-b2+z-c2的最小值为.【答案】9【解析】∵a +3b +6c =16≤12+32+6 2a 2+b 2+c 2=4a 2+b 2+c 2∴a 2+b 2+c 2≥4,当且仅当a 1=b 3=c6时等号成立,即a =1,b =3,c =6,∵x -a 2+y -b 2+z -c 2=1-2xa +by +cz +a 2+b 2+c 2≥1-2x 2+y 2+z 2a 2+b 2+c 2+a 2+b 2+c 2=1-2a 2+b 2+c 2+a 2+b 2+c 2=a 2+b 2+c 2-1 2≥9,当且仅当a x =b y =c z 时等号成立,可取x =14,y =34,z =64故答案为:91(2023·全国·高三竞赛)已知x 、y 、z ∈R +,且s =x +2+y +5+z +10,t =x +1+y +1+z +1,则s 2-t 2的最小值为.A.35 B.410C.36D.45【答案】C【解析】由s +t =x +2+x +1 +y +5+y +1 +z +10+z +1 ,s -t =1x +1+x +2+4y +1+y +5+9z +1+z +10.知s 2-t 2=s +t s -t ≥1+2+3 2=36.当x +1+x +2=12y +1+y +5 =13z +1+z +10 时,取得最小值36.故答案为C2(2023·全国·高三竞赛)设a 、b 、c 、d 为实数,且a 2+b 2+c 2-d 2+4=0.则3a +2b +c -4d 的最大值等于.A.2B.0C.-2D.-22【答案】D【解析】由题意得a 2+b 2+c 2+22=d 2,所以42d 2=a 2+b 2+c 2+22 32+22+12+2 2 ≥3a +2b +c +22 2(利用柯西不等式).从而,4d ≥3a +2b +c +22 ≥3a +2b +c +2 2.故3a +2b +c -4d ≤-2 2.当且仅当a =32,b =22,c =2,d =±42时,等号成立.题型六权方和不等式法1(2023·甘肃·高三校联考)已知x >0,y >0,且12x +y +1y +1=1,则x +2y 的最小值为.【答案】3+12【解析】设x +2y =λ1(2x +y )+λ2(y +1)+t ,可解得λ1=12,λ2=32,t =-32,从而x +2y =12(2x +y )+32(y +1)-32=12(2x +y )+32(y +1) 12x +y +1y +1-32≥3+12,当且仅当x =12+33,y =33时取等号.故答案为:3+12.2已知实数x ,y 满足x >y >0且x +y =1,则2x +3y +1x -y的最小值是【答案】3+222【解析】2x +3y +1x -y ≥2+1 22x +2y =3+222.当2x +3y =1x -y 时,x =2-12,y =32-2取等号.3已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【解析】a +b -2=t >0,a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥8.当a +b -2=2a b -1=ba -1时,即a =2,b =2,两个等号同时成立.1已知x ,y >0,1x +22y=1,则x 2+y 2的最小值是.【答案】33【解析】1=1x +22y=132x 212+232y 212≥1+232x 2+y 212=33x 2+y2.即当1x 2=2y 21x +22y=1时,即x =3,y =32,有x 2+y 2的最小值为33.题型七拉格朗日乘数法1x >0,y >0,xy +x +y =17,求x +2y +3的最小值.【解析】令F (x ,y ,λ)=x +2y +3-λ(xy +x +y -17)F x ′=1-λy -λ=0,F y ′=2-λx -λ=0,F λ′=-(xy +x +y )+17=0,联立解得x =5,y =2,λ=13,故x +2y +3最小为12.2设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是.【答案】2105【解析】令L =2x +y +λ(4x 2+y 2+xy -1),由L x =2+8λx -3λy =0L y =1+2λy -3λx =0L λ=4x 2+y 2+xy -1=0,解得x =±1010y =±105,所以2x +y 的最大值是2⋅1010+105=2105.三角换元法1(2023·山西晋中·高三祁县中学校考阶段练习)已知函数f (x )=-3x 3-3x +3-x -3x +3,若f (3a 2)+f (b 2-1)=6,则a 1+b 2的最大值是【答案】33【解析】设g (x )=f (x )-3,所以g (x )= -3x 3-3x +3-x -3x ,所以g (-x )=-3(-x )3+3x +3x -3-x ,∴g (-x )+g (x )=0,所以g (-x )=-g (x ),所以函数g (x )是奇函数,由题得g (x )=-9x 2-3-3-x ln3-3x ln3<0,所以函数g (x )是减函数,因为f 3a 2 +f b 2-1 =6,所以f 3a 2 -3+f b 2-1 -3=0,所以g 3a 2 +g b 2-1 =0,所以g 3a 2 =g (1-b 2),所以3a 2=1-b 2,∴3a 2+b 2=1,设a =33cos θ,b =sin θ,不妨设cos θ>0,所以a 1+b 2=33cos θ1+sin 2θ=33(1+sin 2θ)cos 2θ=33(1+sin 2θ)(1-sin 2θ)=331-sin 4θ≤33,所以a 1+b 2的最大值为33.故答案为332(2023·浙江温州·高一校联考竞赛)2x 2+xy +y 2=1,则x 2+xy +2y 2的最小值为.【答案】-42+97【解析】根据条件等式可设x =2cos θ7,y =sin θ-cos θ7,代入所求式子,利用二倍角公式和辅助角公式化简,根据三角函数的性质可求出最值.∵2x 2+xy +y 2=1,则7x 24+x 24+xy +y 2=1,即7x 2 2+x 2+y 2=1,设7x 2=cos θ,x 2+y =sin θ,则x =2cos θ7,y =sin θ-cos θ7,∴x 2+xy +2y 2=2cos θ7 2+2cos θ7⋅sin θ-cos θ7 +2sin θ-cos θ72=4cos 2θ7-2sin θcos θ7+2sin 2θ=471+cos2θ2 -sin2θ7+1-cos2θ=-17sin2θ-57cos2θ+97=427sin 2θ+φ +97,其中φ是辅助角,且tan φ=357,当sin 2θ+φ =-1时,原式取得最小值为-42+97.故答案为:-42+97.题型九构造齐次式1(2023·江苏·高一专题练习)已知x >0,y >0,则2xy x 2+8y 2+xyx 2+2y 2的最大值是.【答案】23【解析】由题意,2xy x 2+8y 2+xy x 2+2y 2=3x 3y +12xy 3x 4+10x 2y 2+16y 4=3x y+4yxx y2+16yx 2+10=3x y+4yxx y+4y x2+2=3x y+4yxx y+4y x+2x y+4y x,设t =x y +4y x ,则t =x y +4y x ≥2x y ⋅4y x =4,当且仅当x y =4y x,即x =2y 取等号,又由y =t +2t 在[4,+∞)上单调递增,所以y =t +2t 的最小值为92,即t +2t ≥92,所以3x y+4yxxy +4y x+2x y+4y x≤3t +2t=23,所以2xy x 2+4y 2+xy x 2+2y 2的最大值是23.故答案为:23.2(2023·河南·高三信阳高中校联考阶段练习)已知实数a ,b >0,若a +2b =1,则3a b +1ab的最小值为()A.12 B.23C.63D.8【答案】A 【解析】由3a b +1ab,a +2b =1,a ,b >0,所以3a b +1ab =3ab +a +2b 2ab=3a b +a 2+4ab +4b 2ab =3a b +a b+4+4b a =4a b+4b a +4≥24a b ⋅4b a +4=8+4=12,当且仅当4a b=4b a ⇒a =b =13时,取等号,所以3a b +1ab 的最小值为:12,故选:A .3(2023·天津南开·高三统考期中)已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则abc的最大值为.【答案】14/0.25【解析】由a 2-2ab +9b 2-c =0,得c =a 2-2ab +9b 2,∵正实数a ,b ,c∴则ab c =ab a 2-2ab +9b 2=1a b+9b a -2则a b+9b a ≥2a b ⋅9b a =6,当且仅当a b=9ba ,且a ,b >0,即a =3b 时,等号成立a b+9b a -2≥4>0则1a b +9b a -2≤14所以,ab c 的最大值为14.故答案为:14.题型十数形结合法1(2023·全国·高三专题练习)函数f x =x 2+ax +b (a ,b ∈R )在区间[0,c ](c >0)上的最大值为M ,则当M 取最小值2时,a +b +c =【答案】2【解析】解法一:因为函数y =x 2+ax +b 是二次函数,所以f x =x 2+ax +b (a ,b ∈R )在区间[0,c ](c >0)上的最大值是在[0,c ]的端点取到或者在x =-a2处取得.若在x =0取得,则b =±2;若在x =-a 2取得,则b -a 24=2;若在x =c 取得,则c 2+ac +b =2;进一步,若b =2,则顶点处的函数值不为2,应为0,符合题意;若b =-2,则顶点处的函数值的绝对值大于2,不合题意;由此推断b =a 24,即有b =2,a +c =0,于是有a +b +c =2.解法二:设g x =x 2,h x =-ax -b ,则f x =g x -h x .首先作出g x =x 2在x ∈0,c 时的图象,显然经过(0,0)和c ,c 2 的直线为h 1x =cx ,该曲线在[0,c ]上单调递增;其次在g x =x 2图象上找出一条和h 1x =cx 平行的切线,不妨设切点为x 0,x 20 ,于是求导得到数量关系2x 0=c .结合点斜式知该切线方程为h 2x =cx -c 24.因此M min =120--c 24 =2,即得c =4.此时h x =cx -c 28,即h x =4x -2,那么a =-4,b =2.从而有a +b +c =2.2(2023·江苏扬州·高三阶段练习)已知函数f x =x ln x ,x >02x +4e ,x ≤0,若x 1≠x 2且f x 1 =f x 2 ,则x 1-x 2的最大值为()A.2e -1eB.2e +1C.5eD.52e 【答案】D【解析】当x >0时,f x =x ln x ,求导f x =ln x +1,令f x =0,得x =1e当x ∈0,1e 时,f x <0,f x 单调递减;当x ∈1e,+∞ 时,f x >0,f x 单调递增;作分段函数图象如下所示:设点A 的横坐标为x 1,过点A 作y 轴的垂线交函数y =f x 于另一点B ,设点B 的横坐标为x 2,并过点B作直线y =2x +4e 的平行线l ,设点A 到直线l 的距离为d ,x 1-x 2 =52d ,由图形可知,当直线l 与曲线y =x ln x 相切时,d 取最大值,令f x =ln x +1=2,得x =e ,切点坐标为e ,e ,此时,d =2e -e +4e5=5e ,∴x 1-x 2 max =52×5e =52e ,故选:D3(2023·全国·高三专题练习)已知函数f x =x ln x ,x >0x +1,x ≤0 ,若x 1≠x 2且f x 1 =f x 2 ,则x 1-x 2 的最大值为()A.22B.2C.2D.1【答案】B【解析】设点A 的横坐标为x 1,过点A 作y 轴的垂线交函数y =f x 于另一点B ,设点B 的横坐标为x 2,并过点B 作直线y =x +1的平行线l ,设点A 到直线l 的距离为d ,计算出直线l 的倾斜角为π4,可得出x 1-x 2 =2d ,于是当直线l 与曲线y =x ln x 相切时,d 取最大值,从而x 1-x 2 取到最大值.当x >0时,f x =x ln x ,求导f x =ln x +1,令f x =0,得x =1e当x ∈0,1e 时,f x <0,f x 单调递减;当x ∈1e ,+∞ 时,f x >0,f x 单调递增;如下图所示:设点A 的横坐标为x 1,过点A 作y 轴的垂线交函数y =f x 于另一点B ,设点B 的横坐标为x 2,并过点B 作直线y =x +1的平行线l ,设点A 到直线l 的距离为d ,x 1-x 2 =2d ,由图形可知,当直线l 与曲线y =x ln x 相切时,d 取最大值,令f x =ln x +1=1,得x =1,切点坐标为1,0 ,此时,d =1-0+12=2,∴x 1-x 2 max =2×2=2,故选:B .1(2023·江苏·高三专题练习)已知函数f x =x ,0≤x ≤1,ln 2x ,1<x ≤2, 若存在实数x 1,x 2满足0≤x 1<x 2≤2,且f x 1 =f x 2 ,则x 2-x 1的最大值为()A.e 2B.e 2-1 C.1-ln2 D.2-ln4【答案】B 【解析】f x =x ,0≤x ≤1,ln 2x ,1<x ≤2的图象如下存在实数x 1,x 2满足0≤x 1<x 2≤2,且f x 1 =f x 2 ,即x 1=ln 2x 2∴x 2∈1,e 2,则x 2-x 1=x 2-ln 2x 2 令g x =x -ln 2x ,x ∈1,e 2,则gx =x -1x∴g x 在1,e 2 上单调递增,故g x max =g e 2 =e2-1故选:B 向量法1(2023·江苏南通·高一海安高级中学校考阶段练习)17世纪法国数学家费马在给朋友的一封信中曾提出一个关于三角形的有趣问题:在三角形所在平面内,求一点,使它到三角形每个顶点的距离之和最小,现已证明:在△ABC 中,若三个内角均小于120°,则当点P 满足∠APB =∠APC =∠BPC =120°时,点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上知识,已知a为平面内任意一个向量,b 和c 是平面内两个互相垂直的向量,且|b |=2,|c |=3,则|a -b |+|a +b |+|a -c |的最小值是.【答案】3+23【解析】以b 为x 轴,c 为y 轴,建立直角坐标系如下图,设a=x ,y ,则b =2,0 ,c =0,3 ,a -c =x 2+y -3 2,a -b =x -2 2+y 2,a +b =x +2 2+y 2,∴a -c +a -b +a +b即为平面内一点x ,y 到0,3 ,2,0 ,-2,0 三点的距离之和,由费马点知:当点P x ,y 与三顶点A 0,3 ,B -2,0 ,C 2,0 构成的三角形ABC 为费马点时a -c+a -b +a +b最小,将三角形ABC 放在坐标系中如下图:现在先证明△ABC 的三个内角均小于120°:AB =BC =22+32=13,BC =4,cos ∠BAC =AB2+AC 2-BC 22AB ∙AC=1113>0,cos ∠ABC =cos ∠ACB =AB2+BC 2-AC 22AB ∙BC=113>0,∴△ABC 为锐角三角形,满足产生费马点的条件,又因为△ABC 是等腰三角形,点P 必定在底边BC 的对称轴上,即y 轴上,∠BPC =120°,∴∠PCB =30°,PO =OC ∙tan ∠PCB =2×33=233,即P 0,233 ,现在验证∠BPA =120°:BP =22+233 2=43,AP =3-233,cos ∠BPA =BP 2+AP 2-AB 22BP ∙AP =-12,∴∠BPA =120°,同理可证得∠CPA =120°,即此时点P 0,233 是费马点,到三个顶点A ,B ,C 的距离之和为BP +CP +AP =2×43+3-233=3+23,即a -c +a -b +a +b 的最小值为3+23;故答案为:3+23.2(2023·浙江嘉兴·高一统考期末)已知平面向量a ,b ,c 满足a =1,b =2,|a |2=a ⋅b ,c ⋅c -b 2=0,则|c -a |2+|c -b |2的最小值为.【答案】72-3【解析】令OA =a ,OB =b ,OC =c ,OB 中点为D ,OD 中点为F ,E 为AB 的中点,由|a |=1,|b |=2,|a |2=a ⋅b ,得1=1×2×cos <a ,b >,则cos <a ,b >=12,<a ,b >=60°即∠AOB =60°,所以AB =OA 2+OB 2-2OA ⋅OB cos ∠AOB =22+12-2×2×1×12=3,所以AO 2+AB 2=OB 2,即∠OAB =90°,∠ABO =30°,所以EF =BF 2+BE 2-2BF ⋅BE cos ∠ABO =32 2+32 2-2×32×32×32=32,因为c ⋅c -b 2=0,所以OC ⋅OC -12OB =0,即OC ⋅OC -OD =0,所以OC ⋅DC =0,所以点C 的轨迹为以OD 为直径的圆,∵2(|c -a |2+|c -b |2)=2(|CA |2+|CB |2)=4|CE |2+|AB |2=4|CE |2+3 2=4|CE |2+3≥4EF -122+3=7-23,当且仅当C 、E 、F 共线且C 在线段EF 之间时取等号.∴|c -a |2+|c -b |2的最小值为72-3.故答案为:72-3.3(2023·湖北武汉·高一湖北省武昌实验中学校联考期末)已知向量a ,b 满足a +b ⋅b =0,a +4b =4,则a +b +b 的最大值为.【答案】4103/4310【解析】取平行四边形OACB ,连接OC设OA =a ,OB =b ,则OC =a +b ,因为向量a ,b 满足a +b ⋅b =0,所以a +b ⊥b ,即OC ⊥OB ,设OB =m ,OC =n ,m ,n >0,如图以O 为原点,OB ,OC 所在直线为x ,y 轴建立平面直角坐标系,则O 0,0 ,B m ,0 ,C 0,n ,A -m ,n 所以a =OA =-m ,n ,b =OB =m ,0 ,则a +4b =-m ,n +4m ,0 =3m ,n =9m 2+n 2=4,故9m 2+n 2=16,所以a +b +b =0,n +m ,0 =n +m因为9m 2+n 2=16,又sin 2θ+cos 2θ=1,可设3m =4sin θ,n =4cos θ,θ∈0,π2 即m =43sin θ,n =4cos θ,所以m +n =43sin θ+4cos θ=43 2+42sin θ+φ =4103sin θ+φ ,其中tan φ=443=3,φ∈0,π2 ,所以θ+φ∈0,π ,所以sin θ+φ ∈0,1 ,故m +n 的最大值为4103,即a +b +b 的最大值为4103.故选:4103.题型十二琴生不等式法1(2023·福建龙岩·高三校考阶段练习)若函数f x 的导函数f x 存在导数,记f x 的导数为f x .如果对∀x ∈a ,b ,都有f x <0,则f x 有如下性质:f x 1+x 2+⋅⋅⋅+x n n ≥f (x 1)+f (x 2)+⋅⋅⋅+f (x n )n.其中n ∈N *,x 1,x 2,⋯,x n ∈a ,b .若f x =sin x ,则在锐角△ABC 中,根据上述性质推断:sin A +sin B +sin C 的最大值为.【答案】332/323.【解析】f x =sin x ,则f (x )=cos x ,f (x )=-sin x .在锐角△ABC 中,A ,B ,C ∈0,π2,则f (x )=-sin x <0∴ sin A +sin B +sin C 3≤sin A +B +C 3 =sin π3=32,∴ sin A +sin B +sin C 的最大值为332.故答案为:332.2(2023·全国·高三竞赛)半径为R 的圆的内接三角形的面积的最大值是.【答案】334R 2【解析】设⊙O 的内接三角形为△ABC .显然当△ABC 是锐角或直角三角形时,面积可以取最大值(因为若△ABC 是钝角三角形,可将钝角(不妨设为A )所对边以圆心为对称中心作中心对称成为B C ).因此,S △AB C >S △ABC .下面设∠AOB =2α,∠BOC =2β,∠COA =2γ,α+β+γ=π.则S △ABC =12R 2sin2α+sin2β+sin2γ .由讨论知可设0<α、β、γ<π2,而y =sin x 在0,π 上是上凸函数.则由琴生不等式知sin2α+sin2β+sin2γ3≤sin 2α+β+γ 3=32.所以,S △ABC ≤12R 2×3×32=334R 2.当且仅当△ABC 是正三角形时,上式等号成立.故答案为334R 23(2023·北京·高三强基计划)已知正实数a ,b 满足a +b =1,求a +1a b +1b的最小值.【解析】设f (x )=ln x +1x ,0<x <1,则f (x )=x 2-1x 3+x,从而f (x )=-x 4+4x 2+1x 3+x2>0,故f (x )在(0,1)下凸,因此f (a )+f (b )2≥f a +b 2,即a +1a b +1b ≥254,当且仅当a =b =12时等号成立.所以a +1a b +1b的最小值为华254.。

多元函数的极值与最优化问题

多元函数的极值与最优化问题

要点二
算法改进
在算法方面,我们可以进一步改进现 有的最优化算法,以提高它们的效率 和稳定性。此外,我们也可以探索新 的算法,以更好地处理大规模和高维 度的数据。
要点三
应用拓展
在应用方面,我们可以进一步拓展我 们的研究到更多的领域,包括但不限 于机器学习、数据科学、统计学、运 筹学等。此外,我们也可以将我们的 研究应用到实际问题中,以解决实际 问题并产生实际价值。
极值的判定条件
必要条件
如果$f(x_0)$是极小值,那么$f_{xx}(x_0) geq 0$;如果$f(x_0)$是极大值,那 么$f_{xx}(x_0) leq 0$。
充分条件
如果$f_{xx}(x_0) > 0$,则$f(x_0)$为极小值;如果$f_{xx}(x_0) < 0$,则 $f(x_0)$为极大值。
投资组合优化
在金融领域,投资者需要选择一组资产进行投资,以实现风险和收益的平衡。这需要解 决多元函数的极值问题,找到最优的投资组合。
在工程领域的应用
结构优化设计
在机械、建筑等领域,工程师需要通过优化设计,使 得结构在满足强度、刚度等要求的前提下,重量最轻 、成本最低。这需要求解多元函数的极值问题,找到 最优的设计方案。
应用领域
我们的研究在许多领域都有广泛的应用,包括机器学习、数据科学、统计学、运筹学等。这些领域中的 许多问题都可以转化为多元函数的极值和最优化问题,我们的研究为解决这些问题提供了重要的理论依 据和工具。
研究展望
要点一
新的理论工具
尽管我们已经取得了一些重要的成果 ,但仍然有许多挑战需要解决。例如 ,我们可以进一步探索新的理论工具 ,以更好地理解和解决多元函数的极 值和最优化问题。

多元函数的极值和最值

多元函数的极值和最值

练习题
一、填空题: 1、函数 f ( x, y) (6x x 2 )(4 y y 2 ) 在_______点取 得极_________值为___________. 2、函数 z xy 在附加条件x y 1 下的极______值 为_____________. 3、方程 x 2 y 2 z 2 2x 4 y 6z 2 0 所确定的 函数z f ( x, y) 的极大值是___________,极小值 是_____________.
Ay
2( x
2 y2
)
0
根据实际问题可知最小值在定义域内应存在, 因此可
断定此唯一驻点就是最小值点. 即当长、宽均为 3 2
高为
3
2 23
2
3
2
时,
水箱所用材料最省.
例4. 有一宽为 24cm 的长方形铁板 , 把它折起来做成
一个断面为等腰梯形的水槽, 问怎样折法才能使断面面
积最大.
解: 设折起来的边长为 x cm, 倾角为 , 则断面面积
若 f ( x0 , y)及 f ( x, y0 ) 在( x0 , y0 ) 点均取得 极值,则 f ( x, y)在点( x0 , y0 )是否也取得极值?
思考题解答
不是. 例如 f ( x, y) x 2 y 2,
当x 0时, f (0, y) y2在(0,0) 取极大值; 当 y 0时, f ( x,0) x 2在(0,0) 取极小值; 但 f ( x, y) x2 y2在(0,0) 不取极值.
条 件 极 值 : 对自变量除定义域限制外,
还有其它条件限制 条件极值的求法:
方法1 代入法. 例如 ,
在条件(x, y) 0下, 求函数 z f (x, y) 的极值

多元函数的极值与最值

多元函数的极值与最值

多元函数的极值与最值在微积分中,我们学习了一元函数的极值与最值问题,而当函数的自变量不止一个时,就会涉及到多元函数的极值与最值问题。

本文将对多元函数的极值与最值进行探讨和讲解。

1. 极值的概念在一元函数中,我们知道极值是指函数在某一点附近取得的最大值或最小值。

而在多元函数中,极值的概念与一元函数类似,也是指函数在某一点或某一区域内取得的最大值或最小值。

2. 极值的判定条件对于一元函数,我们通过导数的正负性来判断极值点。

而对于多元函数,判断极值点更加复杂。

我们需要利用偏导数和二阶导数的信息来进行判定。

a. 偏导数的判定方法偏导数是多元函数在某个自变量上的变化率,可以用来判断极值点的存在与否。

当偏导数为零时,可能存在极值点,但不一定。

我们需要进一步利用二阶偏导数的信息来判定。

b. 二阶偏导数的判定方法二阶偏导数是多元函数的偏导数再次求导得到的结果。

通过对二阶偏导数的判断,我们可以判定极值点的性质。

- Hessian矩阵的判定方法Hessian矩阵是由二阶偏导数组成的矩阵,通过判断Hessian矩阵的正定性、负定性或不定性,可以判断极值点的类型。

正定矩阵对应极小值点,负定矩阵对应极大值点,而不定矩阵则表示没有极值点。

3. 最值的概念除了极值点外,多元函数还有最值概念。

最值表示在给定区域内使函数取得最大值或最小值的点。

4. 最值的判定方法对于多元函数的最值问题,我们需要考虑两个因素:极值点和区域边界。

a. 极值点的判定方法和极值判定类似,我们利用偏导数和二阶偏导数的信息来判断极值点的存在与性质。

b. 区域边界的判定方法当给定区域为有界闭区域时,我们需要考虑边界上的点是否为最值点。

这一判断方法需要将边界上的点代入函数进行求值比较。

5. 实例分析接下来,我们通过一个实例来具体分析多元函数的极值与最值问题。

假设有一个二元函数 f(x, y) = x^2 + y^2 - 2x - 4y + 5,我们要求函数的极值与最值。

(整理)多元函数的极值及其求法.

(整理)多元函数的极值及其求法.

(整理)多元函数的极值及其求法.第六节多元函数的极值及其求法在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题.内容分布图示★ 引例★ 二元函数极值的概念例1-3★ 极值的必要条件★ 极值的充分条件★ 求二元函数极值的一般步骤★ 例4 ★ 例5★ 求最值的一般步骤★ 例6 ★ 例7★ 例8 ★ 例9 ★ 例10 ★ 例11★ 条件极值的概念★ 拉格郎日乘数法★ 例12★ 例13 ★ 例14 ★ 例15 ★ 例 16*数学建模举例★ 最小二乘法★ 线性规划问题★ 内容小结★ 课堂练习★ 习题6-6 ★ 返回内容提要:一、二元函数极值的概念定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果),,(),(00y x f y x f <则称函数在),(00y x 有极大值;如果),,(),(00y x f y x f >则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点.定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即.0),(,0),(0000==y x f y x f y x (6.1)与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点.定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导数,又,0),(00=y x f x .0),(00=y x f y 令.),(,),(,),(000000C y x f B y x f A y x f yy xy xx === (1) 当02>-B AC 时,函数),(y x f 在),(00y x 处有极值,且当0>A 时有极小值),(00y x f ;0(2) 当02<-B AC 时,函数),(y x f 在),(00y x 处没有极值;(3) 当02=-B AC 时,函数),(y x f 在),(00y x 处可能有极值,也可能没有极值.根据定理1与定理2,如果函数),(y x f 具有二阶连续偏导数,则求),(y x f z =的极值的一般步骤为:第一步解方程组,0),(,0),(==y x f y x f y x 求出),(y x f 的所有驻点;第二步求出函数),(y x f 的二阶偏导数,依次确定各驻点处A 、 B 、C 的值,并根据2B AC -的符号判定驻点是否为极值点. 最后求出函数),(y x f 在极值点处的极值.二、二元函数的最大值与最小值求函数),(y x f 的最大值和最小值的一般步骤为:(1)求函数),(y x f 在D 内所有驻点处的函数值;(2)求),(y x f 在D 的边界上的最大值和最小值;(3)将前两步得到的所有函数值进行比较,其中最大者即为最大值, 最小者即为最小值. 在通常遇到的实际问题中,如果根据问题的性质,可以判断出函数),(y x f 的最大值(最小值)一定在D 的内部取得,而函数),(y x f 在D 内只有一个驻点,则可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最大值(最小值).三、条件极值拉格朗日乘数法前面所讨论的极值问题,对于函数的自变量一般只要求落在定义域内,并无其它限制条件,这类极值我们称为无条件极值. 但在实际问题中,常会遇到对函数的自变量还有附加条件的的极值问题. 对自变量有附加条件的极值称为条件极值.拉格朗日乘数法设二元函数),(y x f 和),(y x ?在区域D 内有一阶连续偏导数,则求),(y x f z =在D 内满足条件0),(=y x ?的极值问题,可以转化为求拉格朗日函数),(),(),,(y x y x f y x L λ?λ+=(其中λ为某一常数)的无条件极值问题.于是,求函数),(y x f z =在条件0),(=y x ?的极值的拉格朗日乘数法的基本步骤为:(1) 构造拉格朗日函数),(),(),,(y x y x f y x L λ?λ+=其中λ为某一常数;(2) 由方程组===+==+=0),(,0),(),(,0),(),(y x L y x y x f L y x y x f L y y y x x x ?λ?λ?λ解出λ,,y x , 其中x , y 就是所求条件极值的可能的极值点.注:拉格朗日乘数法只给出函数取极值的必要条件, 因此按照这种方法求出来的点是否为极值点, 还需要加以讨论. 不过在实际问题中, 往往可以根据问题本身的性质来判定所求的点是不是极值点.拉格朗日乘数法可推广到自变量多于两个而条件多于一个的情形:四、数学建模举例例题选讲:二元函数极值的概念例1(讲义例1)函数2232y x z +=在点(0, 0)处有极小值. 从几何上看,2232y x z +=表示一开口向上的椭圆抛物面,点)0,0,0(是它的顶点.(图7-6-1).例2(讲义例2)函数22y x z +-=在点(0,0)处有极大值. 从几何上看,22y x z +-=表示一开口向下的半圆锥面,点)0,0,0(是它的顶点.(图7-6-2). 例3(讲义例3)函数22x y z -= 在点(0,0)处无极值. 从几何上看,它表示双曲抛物面(马鞍面)(图7-6-3)例4(讲义例4)求函数x y x y x y x f 933),(2233-++-=的极值.例5 证明函数y y ye x e z -+=cos )1(有无穷多个极大值而无一极小值.二元函数的最大值与最小值例6(讲义例5)求函数y xy x y x f 22),(2+-=在矩形域 |),{(y x D =}20,30≤≤≤≤y x上的最大值和最小值.。

多元函数求极值

多元函数求极值

解 令 F ( x , y , z ) x 3 y 2 z ( x y z 12) ,
解 将方程两边分别对 x , y 求偏导
2 x 2 z z x 2 4 z y 0 2 y 2 z z x 2 4 z y 0
由函数取极值的必要条件知, 驻点为 P (1,1) ,
将上方程组再分别对 x , y 求偏导数,
1 A z xx | P , 2 z
例7
将正数 12 分成三个正数 x , y , z 之和 使得 3 2 u x y z 为最大.
2 2 Fx 3 x y z 0 3 F 2 x yz 0 y 3 2 F x y 0 z x y z 12
仿照一元函数,凡能使一阶偏导数同时为零 的点,均称为函数的驻点. 注意: 驻点 极值点
例如, 点(0,0) 是函数z xy 的驻点, 但不是极值点.
问题:如何判定一个驻点是否为极值点?
定理 2(充分条件) 设函数 z f ( x , y ) 在点( x0 , y0 ) 的某邻域内连续, 有一阶及二阶连续偏导数,
极大值、极小值统称为极值. 使函数取得极值的点称为极值点.
例1 函数 z 3 x 2 4 y 2
在 (0,0) 处有极小值.
例2 函数 z x 2 y 2
在 (0,0) 处有极大值.
(1)
(2)
例3 函数 z xy 在 (0,0) 处无极值.
(3)
2、多元函数取得极值的条件
每天的收益为 f ( x , y )
( x 1)(70 5 x 4 y ) ( y 1.2)(80 6 x 7 y )

多元函数的极值及最值(参考)

多元函数的极值及最值(参考)

Ax 24 sin 4 x sin 2 x sin cos 0 A 24 x cos 2 x 2 cos x 2 (cos 2 sin 2 ) 0
解得:
sin 0 , x 0 12 2 x x cos 0 24 cos 2 x cos x(cos 2 sin 2 ) 0 60 , x 8 (cm) 3
24 x sin 2 x sin x cos sin ( D : 0 x 12 , 0 ) 2
x
2
2
x
24 2 x
机动 目录 上页 下页 返回 结束
24
A 24 x sin 2 x 2 sin x 2 cos sin ( D : 0 x 12 , 0 ) 2
与一元函数相类似,我们可以利用函数的 极值来求函数的最大值和最小值.
求最值的一般方法:
将函数在D内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较,其中最 大者即为最大值,最小者即为最小值.
例 1.
求二元函数
z f ( x , y ) x 2 y(4 x y ) 在直线 x y 6 , x 轴和 y 轴所围成的闭区域 D 上的最大值与最小值.
f (4,2) 64 为最小值.
x y 例 2. 求 z 2 的最大值和最小值. 2 x y 1
( x 2 y 2 1) 2 x ( x y ) 解 由 zx 0, 2 2 2 ( x y 1) ( x 2 y 2 1) 2 y( x y ) zy 0, 2 2 2 ( x y 1)
V V ( x, y, z ) xyz

812 多元函数的最值与条件最值

812 多元函数的最值与条件最值
(重点文字)
(重点文字)
画面比例16:9 排版右侧尽量三分之一留白 建议老师用这几种颜色
多元函数的最值与拉格朗日乘数法
(重点文字)
一、多元函数的最值与拉格朗日乘数法
最值求解步骤:
画面比例16:9 排版右侧尽量三分之一留白 建议老师用这几种颜色
(重点文字)
一、多元函数的最值与拉格朗日乘数法
画面比例16:9 排版右侧尽量三分之一留白 建议老师用这几种颜色
有些时候解出约束条件化为没有约束的最值问题更简单.
(重点文字)Leabharlann 应用举例画面比例16:9 排版右侧尽量三分之一留白 建议老师用这几种颜色
(重点文字)
二、应用举例
例:
解:
画面比例16:9 排版右侧尽量三分之一留白 建议老师用这几种颜色
(重点文字)
二、应用举例
画面比例16:9 排版右侧尽量三分之一留白 建议老师用这几种颜色
多元函数微分学
812 多元函数的最值与条件最值
画面比例16:9 排版右侧尽量三分之一留白 建议老师用这几种颜色
(重点文字)
多元函数的最值与条件最值
内容提要
多元函数最值的求解步骤 多元函数条件最值的拉格朗日乘数法
教学要求
掌握多元函数最值的求解步骤 熟练掌握多元函数条件最值的拉格朗日乘数法
画面比例16:9 排版右侧尽量三分之一留白 建议老师用这几种颜色

【第312期】多元函数的最值(辅导篇)

【第312期】多元函数的最值(辅导篇)

【第312期】多元函数的最值(辅导篇)
滴水穿石,不是因为力量,而是在于坚持!
多元函数的最值(辅导篇)
一、理论指导:
多元函数是高等数学中的重要概念之一,但随着新课程的改革,高中数学与大学数学知识的衔接,多元函数的值域与最值及其衍生问题在高考试题及竞赛中频频出现,因其技巧性强、难度大、方法多、灵活多变而具有挑战性,成为最值求解中的难点和热点。

同时,多元函数最值问题中蕴含着丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力。

因此,怎样求多元函数的最值,是师生们非常关注和必须解决的问题,也是必须具备的解题技能。

二、方法介绍
1.常用方法:换元法、配方法、基本不等式法、柯西不等式法、消元法、数形几何法等;
2.基本思想:化归转化、数形结合.
三、题型归纳
题型一:换元法
题型二:减元法
题型三:构造法
题型四:一题多解
四、直击考题
五、课后练习
后记:备课组安排我讲一节竞赛辅导(多元函数最值),因为自己从来没有参与过(竞赛辅导),感觉亚历山大,通过一些竞赛辅导资料和网上学习,整理了这部分内容,其中个别问题理解不到位,还
在《题组全解交流群》119439354)里请教,得到了张龙刚、章世骏、郝立涛三位老师的帮助,在此表示感谢!形成了以上初稿,其中难免有不足之处,欢迎大家批评指正,不胜感激!
另外,这里发的是备课所用教师版,如需学生版可扫描如下二维码进行下载:
也可直接打开网址https:///view/123618e0a88271fe910ef12d2af9 0242a895ab94。

多元函数求最大值

多元函数求最大值

多元函数求最大值多元函数在数学中起着重要的作用,它们能够描述多个变量之间的关系并帮助我们解决各种实际问题。

在这篇文章中,我们将讨论如何使用多元函数来求取最大值。

让我们考虑一个简单的例子。

假设我们有一个长方形的面积需要最大化,但是我们只能使用有限的材料。

我们可以用多元函数来描述这个问题。

设长方形的长为x,宽为y,那么它的面积可以表示为S(x, y) = x * y。

根据题目要求,我们需要最大化S的值。

为了找到最大值,我们可以使用微积分的方法。

首先,我们需要求出S关于x和y的偏导数,即S对x的偏导数和S对y的偏导数。

将偏导数设置为0,我们可以得到一组方程。

解这组方程,我们就可以得到x和y的值。

进一步计算,就能求得最大值。

接下来,我们考虑一个更复杂的例子。

假设我们要建造一个有固定体积的圆柱体,但是我们希望它的表面积最小。

我们可以使用多元函数来描述这个问题。

设圆柱体的半径为r,高度为h,那么它的体积可以表示为V(r, h) = πr^2h,表面积可以表示为A(r, h) = 2πr^2 + 2πrh。

为了找到最小值,我们同样可以使用微积分的方法。

首先,我们需要求出A关于r和h的偏导数,即A对r的偏导数和A对h的偏导数。

将偏导数设置为0,我们可以得到一组方程。

解这组方程,我们就可以得到r和h的值。

进一步计算,就能求得最小值。

通过这两个例子,我们可以看到多元函数在求取最大值和最小值的过程中的应用。

它们帮助我们解决了一些实际问题,并且可以通过微积分的方法来求解。

通过对多元函数的研究,我们可以更好地理解数学的应用和实际问题的解决方法。

总结一下,多元函数在数学中扮演着重要的角色。

它们能够描述多个变量之间的关系,并帮助我们解决各种实际问题。

通过微积分的方法,我们可以求取多元函数的最大值和最小值。

通过对多元函数的研究,我们可以更好地理解数学的应用和实际问题的解决方法。

希望这篇文章能够对你理解多元函数的求最大值问题有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元函数求最值问题
一.【问题背景】
多元函数是高等数学中的重要概念之一,但随着新课程的改革,高中数学与大学数学知识的衔接,多元函数的值域与最值及其衍生问题在高考试题中频频出现,因其技巧性强、难度大、方法多、灵活多变而具有挑战性,成为最值求解中的难点和热点。

同时,多元函数最值问题中蕴含着丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力。

因此,怎样求多元函数的最值,是师生们非常关注和必须解决的问题,也是高考考生们必须具备的解题技能。

二.【常见的方法】
导数法、消元法、均值不等式法(“1”代换)、换元法(整体换元 三角换元)、数形结合法、柯西不等式法、向量法等
主要思想方法:数形结合、化归思想等
三.【范例】
例1:已知实数,x y 满足0x y >>,且2x y +≤,则
213x y x y
++-的最小值为 。

例2: 已知任意非零实数x ,y 满足3x 2+4xy ≤λ(x 2+y 2)恒成立,则实数λ的最小值为____.
变式练习:()
22222x xy m x y ++≤对于一切正数,x y 恒成立,则实数m 的最小值为 。

例3:设实数,,a b c 满足22
1a b c +≤≤,则a b c ++的最小值为 。

变式练习:已知,,x y z ∈R ,且2221,3x y z x y z ++=++=,则xyz 的最大值是 。

例4:已知正实数,a b 满足2291a b +=,则
3ab a b
+的最大值为 .
四.巩固练习
1.设实数6≤n ,若不等式08)2(2≥--+n x xm 对任意[]2,4-∈x 都成立,则n m n m 34
4-的最小值为 .
2.已知{}max 32,42,16M x x y y =-+-,则M 的最小值为 。

3.已知 1,1,,,222=++=++∈c b a c b a R c b a ,则a 的最小值为___________。

4.已知{}n a 是等差数列,若221510a a +≤,则56789a a a a a ++++的最大值是 .
5.ABC ∆的三边长分别为,,a b c ,并满足a b c ≤≤,记min ,b c K a b ⎧⎫=⎨⎬⎩⎭
,则K 的取值范围是 。

相关文档
最新文档