《物理化学》课后习题第一章答案
物理化学第一章课后答案

物理化学核心教程(第二版)参考答案第一章气体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状采用了什么原理答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。
采用的是气体热胀冷缩的原理。
2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
试问,这两容器中气体的温度是否相等答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。
当左球的温度为273 K,右球的温度为293 K时,汞滴处在中间达成平衡。
试问:(1)若将左球温度升高10 K,中间汞滴向哪边移动(2)若两球温度同时都升高10 K, 中间汞滴向哪边移动答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
(2)两球温度同时都升高10 K,汞滴仍向右边移动。
因为左边起始温度低,升高10 K所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。
4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。
请估计会发生什么现象答:软木塞会崩出。
这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。
如果软木塞盖得太紧,甚至会使保温瓶爆炸。
防止的方法是灌开水时不要太快,且要将保温瓶灌满。
5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化答:升高平衡温度,纯物的饱和蒸汽压也升高。
但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。
而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。
随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。
物理化学第四版上册课后答案天津大学第一章气体PVT关系

第一章习题解答1.1物质的体膨胀系数αV与等温压缩率κT的定义如下:试导出理想气体的、与压力、温度的关系解:对于理想气体:PV=nRT , V= nRT/P求偏导:1.2 气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg的流量输往使用车间,试问储存的气体能用多少小时?解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT , n= PV/RT n=121600300/8.314300.13 (mol)=14618.6molm=14618.662.5/1000(kg)=913.66 kgt=972.138/90(hr)=10.15hr1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g。
充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度按1 g.cm-3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(13330100 10-6)M w =30.51(g/mol)1.5 两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。
解:因加热前后气体的摩尔数不变:加热前:n=2 P1V/RT1加热后:n=P1V/RT1PV/RT2列方程:2 P1V/RT1=P1V/RT1PV/RT2P=2 T2P1/( T1T2)=2373.15100.325/(373.15 273.15)kPa=115.47kPa1.6 0℃时氯甲烷(CH3Cl)气体的密度ρ随压力的变化如下。
(完整版)物理化学课后答案

第一章气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学第一章课后习题解答

1.12 CO2 气体在 40℃时的摩尔体积为 0.381dm3 .mol-1 。设 CO2 为范德华气体,试 求其压力,并比较与实验值 5066.3kPa 的相对误差。
解: ,Vm =0.381× 10-3 m3 .mol-1 ,T=313.15K CO2 的范德华常数 a=364× 10-3 /Pa.m3 .mol-2 , b =42.67× 10-6 m3 .mol-1 代入方程得: P=5187.674KPa 相对误差=(5187.674-5066.3)/ 5066.3=2.4% 1.13 今有 0℃, 40530kPa 的 N2 气体,分别用理想气体状态方程及范德华方程计算 其摩尔体积.实验值为 70.3cm.mol-1 。 解:T=273.15K ,p=40530kPa N2 的范德华常数 a=140.8× 10-3 /Pa.m3 .mol-2 , b =39.13× 10-6 m3 .mol-1 =0.05603 m3 .mol-1
第一章
习题解答
1.1 物质的体膨胀系数α V 与等温压缩率κ T 的定义如下:
试导出理想气体的
、
与压力、温度的关系
解:对于理想气体: PV=nRT , V= nRT/P
求偏导:
1.2 气柜储存有 121.6kPa, 27℃的氯乙烯 (C2 H3 Cl) 气体 300m3 , 若以每小时 90kg 的流量输往使用车间,试问储存的气体能用多少小时? 解:将氯乙烯(Mw=62.5g/mol)看成理想气体: PV=nRT , n= PV/RT n=121600300/8.314300.13 (mol)=14618.6mol m=14618.662.5/1000(kg)=913.66 kg t=972.138/90(hr)=10.15hr 1.3 0℃,101.325kPa 的条件常称为气体的标准状况,试求甲烷在标准状况下的密 度? 解:将甲烷(Mw=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PMw/RT =101.32516/8.314273.15(kg/m3 ) =0.714 kg/m3 1.4 一抽成真空的球形容器,质量为 25.0000g。充以 4 ℃水之后,总质量为 125.0000g。 若改充以 25℃, 13.33kPa 的某碳氢化合物气体, 则总质量为 25.0163g。 -3 试估算该气体的摩尔质量。水的密度按 1 g.cm 计算。 解:球形容器的体积为 V=(125-25)g/1 g.cm-3 =100 cm3 将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M w Mw= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6 ) Mw =30.51(g的空气。为进行实验时确保安全,采用同样温度 的纯氮进行置换,步骤如下:向釜内通氮直到 4 倍于空气的压力,尔后将釜内混 合气体排出直至恢复常压,重复三次。求釜内最后排气至恢复常压时其中气体含 氧的摩尔分数。设空气中氧、氮摩尔分数之比为 1:4。 解: 根据题意未通氮之前 : ,操作 n 次后, , 操作 1 次后, ,重复三次, ,V,T 一定, 故
物理化学课后习题第一章答案

1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?
解:假设气柜内所贮存的气体可全部送往使用车间。
1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:
因此,
1.12 CO2气体在40℃时的摩尔体积为0.381 dm3·mol-1。
设CO2为范德华气体,试求其压力,并比较与实验值5066.3 kPa的相对误差。
1.18 把25℃的氧气充入40dm3的氧气钢瓶中,压力达 202 7×102kPa。
试用普遍化压缩因子图求钢瓶中氧气的质量。
氧气的T C=-118.57℃,P C=5.043MPa
氧气的T r=298.15/(273.15-118.57)=1.93, P r=20.27/5.043=4.02
Z=0.95
PV=ZnRT
n=PV/ZRT=202.7×105×40×10-3/(8.314×298.15)/0.95=344.3(mol)
氧气的质量m=344.3×32/1000=11(kg)。
《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
物理化学 答案 第一章_习题解答

-
知此气体的 Cp,m=29.10 J·K 1,求过程的ΔU、ΔH、Q 和 W 。 解: (1)等容
ΔU = n ⋅ Cv ,m (T2 − T1 ) = 1 × (29.1 − 8.314) × 75 = 1559 J ΔH = n ⋅ C p ,m (T2 − T1 ) = 1 × 29.1 × 75 = 2183 J
η = −Wr / Q1 = (T1 − T2 ) / T1 = (500 − 300) / 600 = 40%
第二个卡诺热机效率
η ′ = −Wr / Q1′ = (T1 − T2′) / T1 = (500 − 250) / 600 = 50%
∵
η =η′
∴两个热机的效率不相同
(2)第一个热机吸收的热量: Q1 =
γ =1.4,试求 Cv,m。若该气体的摩尔热容近似为常数,试求在等容条件下加热该气体至 t2=
80℃所需的热。 解:∵ γ =
C p,m Cv , m
=
Cv , m + R Cv , m
= 1.4
∴ Cv, m =
R
γ
=
8.314 = 20.79 J ⋅ K -1 ⋅ mol-1 0.4
Qv = n ⋅ Cv ,m ⋅ ΔT = =
4
3 3 ⎧ ⎧ ⎪V1 = 5dm ⎪V2 = 6dm Q (可 ) = 0 ⎯⎯⎯⎯ → ⎨ ⎨ ⎪T1 = 298.15 K ⎪T2 = 278.15 K ⎩ ⎩
由理想气体绝热可逆过程方程式可知
T2 / T1 = (V1 / V2 ) Cv ,m =
R / Cv , m
物理化学第一章 习题及答案

第一章 热力学第一定律一、 填空题1、一定温度、压力下,在容器中进行如下反应:Zn(s)+2HCl(aq)= ZnCl 2(aq)+H 2(g)若按质量守恒定律,则反应系统为 系统;若将系统与环境的分界面设在容器中液体的表面上,则反应系统为 系统。
2、所谓状态是指系统所有性质的 。
而平衡态则是指系统的状态 的情况。
系统处于平衡态的四个条件分别是系统内必须达到 平衡、 平衡、 平衡和 平衡。
3、下列各公式的适用条件分别为:U=f(T)和H=f(T)适用于 ;Q v =△U 适用于 ;Q p =△H 适用于 ; △U=dT nC 12T T m ,v ⎰适用于 ; △H=dT nC 21T T m ,P ⎰适用于 ; Q p =Q V +△n g RT 适用于 ;PV r=常数适用于 。
4、按标准摩尔生成焓与标准摩尔燃烧焓的定义,在C (石墨)、CO (g )和CO 2(g)之间, 的标准摩尔生成焓正好等于 的标准摩尔燃烧焓。
标准摩尔生成焓为零的是 ,因为它是 。
标准摩尔燃烧焓为零的是 ,因为它是 。
5、在节流膨胀过程中,系统的各状态函数中,只有 的值不改变。
理想气体经节流膨胀后,它的 不改变,即它的节流膨胀系数μ= 。
这是因为它的焓 。
6、化学反应热会随反应温度改变而改变的原因是 ;基尔霍夫公式可直接使用的条件是 。
7、在 、不做非体积功的条件下,系统焓的增加值 系统吸收的热量。
8、由标准状态下元素的 完全反应生成1mol 纯物质的焓变叫做物质的 。
9、某化学反应在恒压、绝热和只做膨胀功的条件下进行, 系统温度由T 1升高到T 2,则此过程的焓变 零;若此反应在恒温(T 1)、恒压和只做膨胀功的条件下进行,则其焓变 零。
10、实际气体的μ=0P T H〈⎪⎭⎫ ⎝⎛∂∂,经节流膨胀后该气体的温度将 。
11、公式Q P =ΔH 的适用条件是 。
12、若某化学反应,只做体积功且满足等容或等压条件,则反应的热效应只由 决定,而与 无关。
第五版物理化学第一章习题答案

第一章气体的pVT关系1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?解:假设气柜内所贮存的气体可全部送往使用车间。
1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.325⨯16/8.314⨯273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33 kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度1g·cm3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)⨯8.314⨯300.15/(13330⨯100⨯10-6)M w =30.51(g/mol)1.5 两个容积均为V 的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作p p-ρ图,用外推法求氯甲烷的相对分子质量。
1.7 今有20℃的乙烷-丁烷混合气体,充入一抽成真空的200 cm3容器中,直至压力达101.325 kPa,测得容器中混合气体的质量为0.3897 g。
物理化学(第一章)作业及答案

每次物理化学作业及答案§1.1 热力学基本概念第一周(1) 练习1“任何系统无体积变化的过程就一定不对环境作功。
”这话对吗?为什么?答:不对,应该是无体积变化的过程,系统就一定不对环境作体积功。
系统和环境之间交换能量的方式,除体积功外,还有非体积功,如电功,表面功等.2“凡是系统的温度下降就一定放热给环境,而温度不变时则系统既不吸热也不放热。
”这结论正确吗?举例说明之。
答:不正确。
系统的温度下降,内能降低,可以不放热给环境.例如: (13页例1-4) 绝热容器中的理想气体的膨胀过程,温度下降释放的能量,没有传给环境,而转换为对外做的体积功.而温度不变时则系统既不吸热也不放热。
不对, 等温等压相变过程,温度不变,但需要吸热(或放热), 如一个大气压下,373.15K 下,水变成同温同压的水蒸汽的汽化过程,温度不变,但需要吸热。
3在一绝热容器中盛有水,其中浸有电热丝,通电加热。
将不同对象看作系统,则上述加热过程的Q或W大于、小于还是等于零?⑴以电热丝为系统Q<0; W>0;⑵以水为系统; Q>0;W=0;⑶以容器内所有物质为系统Q=0; W>0;⑷将容器内物质以及电源和其它一切有影响的物质看作整个系统。
Q=0;W=0.4在等压的条件下,将1mol理想气体加热使其温度升高1K,试证明所作功的数值为R。
证明:∵等压过程则P1=P2=P e∴W=-p(V2-V1)=-p[ nR(T+1)/p- nRT/p]= -p×(nR/p)= -R51mol理想气体,初态体积为25dm3,温度为373.2K,试计算分别通过下列四个不同过程,等温膨胀到终态体积100dm3时,系统对环境作的体积功。
(1)向真空膨胀。
(2)可逆膨胀。
(3)先在外压等于体积50dm3时气体的平衡压力下,使气体膨胀到50dm3,然后再在外压等于体积为100dm3时气体的平衡压力下使气体膨胀到终态。
(4)在外压等于气体终态压力下进行膨胀。
物理化学第一章课后答案资料

物理化学核心教程(第二版)参考答案第一章气体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。
采用的是气体热胀冷缩的原理。
2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
试问,这两容器中气体的温度是否相等?答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。
当左球的温度为273 K,右球的温度为293 K时,汞滴处在中间达成平衡。
试问:(1)若将左球温度升高10 K,中间汞滴向哪边移动?(2)若两球温度同时都升高10 K, 中间汞滴向哪边移动?答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
(2)两球温度同时都升高10 K,汞滴仍向右边移动。
因为左边起始温度低,升高10 K所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。
4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。
请估计会发生什么现象?答:软木塞会崩出。
这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。
如果软木塞盖得太紧,甚至会使保温瓶爆炸。
防止的方法是灌开水时不要太快,且要将保温瓶灌满。
5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物的饱和蒸汽压也升高。
但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。
而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。
随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。
《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T TQ =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR -=-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
物理化学第一章课后习题解答

第一章习题及答案8.1mol 理想气体,始态为2×101.325kPa 、11.2dm 3,经p T =常数的可逆过程压缩到终态为4×101.325kPa ,已知C V =3/2R 。
求:(1)终态的体积和温度。
(2)ΔU 和ΔH (3)所作的功。
解:(1)T 1=p 1V 1/nR 273314.8/102.112026503=××=−K 因pT =常数故T 2=p 1T 1/p 2=202.65×273/405.3=136.5KV 2=nRT -2/p 2=8.314×136.5/405.3=2.8dm 3(2)单原子理想气体C V ,m =3/2R,C p ,m =5/2RΔU =C V (T 2-T 1)=3/2×8.314×(136.5-273)=-1702J ΔH =C p (T 2-T 1)=5/2×8.314×(136.5-273)=-2837J (3)pT =B,p =B/T V=RT/p=RT 2/B,d V=(2RT/B)d TJ2270)2735.136(314.82d 2d B2B d =−××−=−=−=−=∫∫∫TR T RTT V p W 9.1mol 理想气体从373.15K 、0.025m 3经下述四个过程变为373.15K 、0.1m 3:(1)等温可逆膨胀;(2)向真空膨胀;(3)等外压为终态压力下膨胀;(4)等温下先以等外压等于气体体积为0.05m 3时的压力膨胀至0.05m 3,再以等外压等于终态压力下膨胀至0.1m 3。
求诸过程系统所作的体积功。
解:(1)∫−=−=12lnd V V nRT V p W J 4301025.01.0ln15.373314.81−=×××−=J (2))(0)(1212e V V V V p W −×−=−−==0(3))()(122122V V V nRTV V p W −×−=−−=J 2326)025.01.0(1.015.373314.81−=−×××−=J(4))]05.01.0(1.0[)025.005.0(05.0−×−+−−=nRTnRT W =-3102J 15.298.15K 的0.5g 正庚烷在等容条件下完全燃烧使热容为8175.5J·K -1的量热计温度上升了2.94℃,求正庚烷在298.15K 完全燃烧时的ΔH 。
物理化学第一章习题及答案

物理化学第一章习题及答案15,测得的QV,当298K SO2(g)氧化为SO3(g)时,m =-141.75 kJ·mol,并计算了该反应的Qp,m16、由下列化合物?CHm会计算吗?FHM(1)(COOH)2(2)C6H 5NH 2(3)CS2(L)17,将20dm3高压釜填充290千帕、100千帕氢气,加热后,将H2压力升至500千帕。
假设H2为理想气体,计算过程的:(1)q;(2)H2最终状态的温度18,1摩尔单原子分子理想气体b,通过可逆过程从300千帕,100.0千帕达到最终状态,压力为200.0千帕,q = 1000.0 j为过程,δh = 2078.5j(1)计算最终状态的温度、体积和W,δU(2)假设气体首先经历等压可逆过程,然后通过等温可逆过程达到最终状态,这个过程的Q,W,δU,δH是什么?19.CV,m=3/2R,初始状态202.6千帕,1摩尔单原子分子的理想气体11.2立方米通过p/T = C(常数)的可逆过程压缩到最终状态,压力405.2千帕计算:(1)最终体积和温度;(2)δU和δh;(3)工作完成情况8,综合题1,工业用乙炔火焰切割金属,请计算乙炔与压缩空气混合燃烧时的最高火焰温度。
将环境温度设置为25℃,压力设置为100千帕。
空气中氮与氧的比例是4: 125C的数据如下:物质△ fhm (kj mol) CP,m(J mol K)CO2(g)-393.51 37.1 H2O(g)-241.82 33.58 C2 H2(g)226.7 43.93 N2(g)0 29.122,乙烯制冷压缩机的入口条件为-101℃,1.196×10Pa,出口压力为19.25×10Pa(1)等温可逆压缩;(2)绝热可逆压缩(γ = 1.3)计算在上述两个过程中每压缩1磅乙烯所消耗的功3.在298K时,1摩尔的一氧化碳与0.5摩尔的氧气按照下式反应:一氧化碳+1/2 O2 = =二氧化碳生成1摩尔二氧化碳。
[理学]物理化学答案——第一章-热力学第一定律
![[理学]物理化学答案——第一章-热力学第一定律](https://img.taocdn.com/s3/m/61a935d34a7302768f993939.png)
第一章 热力学第一定律一、基本公式和基本概念 基本公式1. 功 'W W W δδδ=+体积,W 体积:体积功;'W :非体积功 热力学中体积功为重要的概念: W p dV δ=-外体积 本书规定:系统对环境做功为负,相反为正。
如果p 外的变化是连续的,在有限的变化区间可积分上式求体积功d W p V =-⎰外在可逆过程中,可用系统的压力p 代替外压p 外,即p p =外 d W p V =-⎰一些特定条件下,体积功计算如下: 恒外压过程 W p V =-∆外 定容过程 d 0W p V =-=⎰外 理想气体定温可逆过程 212112lnln V V V p W pdV nRT nRT V p =-=-=-⎰理想气体自由膨胀(向真空膨胀)过程 0W = 2. 热力学第一定律 U Q W ∆=+ 3. 焓 H U pV ≡+焓是状态函数,容量性质,绝对值无法确定。
理想气体的热力学能和焓只是温度的单值函数。
4. 热容 QC dTδ=(1)定压热容 ()pp p Q H C dTTδ∂==∂ 注意:()p p HC T∂=∂的适用条件为封闭系统,无非体积功的定压过程。
而对于理想气体无需定压条件。
(2) 定容热容 ()d VV V Q U C TTδ∂==∂ 同样,()V V UC T∂=∂的适用条件为封闭系统,无非体积功的定容过程。
对于理想气体来说,则无需定容条件。
任意系统:p V T pU V C C p V T ⎡⎤∂∂⎛⎫⎛⎫-=+⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦ 理想气体:p V C C nR -= 摩尔热容与温度的经验公式2,p m C a bT cT =++ 2,''p m C a b T c T -=++5. 热定容热: d ;V V Q U Q U δ==∆ 条件为封闭系统无其他功的定容过程 定压热: d ;p p Q H Q H δ==∆ 条件为封闭系统无其他功的定压过程相变热: p H Q ∆= 条件为定温定压条件下系统的相变过程 6. 热力学第一定律在理想气体中的应用 (1) 理想气体,U ∆ H ∆的计算定温过程:0,U ∆= 0,H ∆= 2112ln ln V p Q W nRT nRT V p -==-=- 无化学变化、无相变的任意定温过程21,d T V m T U nC T ∆=⎰,21,d T p m T H nC T ∆=⎰(2) 理想气体绝热可逆过程方程绝热可逆过程方程:11pV TVp T γγγγ--===常数;常数;常数 (p VC C γ=)理想气体绝热功: 1211221()()1V W C T T p V p V γ=--=--- 理想气体绝热可逆或不可逆过程:21,0,d d T V m T Q U W p V nC T =∆==-=⎰外理想气体绝热可逆过程:2212,,,1121lnln ,lnln V m p m V m V T V pR C C C V T V p =-= 7. 热力学第一定律在化学变化中的应用 反应进度:(0)B B Bn n ξν-=mol(1) 化学反应热效应化学反应摩尔焓变:,B r m p m BHH H Q n νξ∆∆∆===∆∆ 当1mol ξ∆=时的定压热 化学反应摩尔热力学能变化:,B r m V m BUU U Q n νξ∆∆∆===∆∆ 当1mol ξ∆=时的定容热 (2) 化学反应的r m H ∆与r m U ∆的关系无气相物质参与的化学反应系统:,,,r m T r m T r m T H U pV U ∆=∆+∆≈∆ 有气相物质(理想气体)参与的化学反应系统:,,,,r m T r m T r m T B g H U pV U RT ν∆=∆+∆=∆+∑(3) 化学反应定压热效应的几种计算方法 利用标准摩尔生成焓值:(298.5)()r m Bf m B H K H B θθν∆=∆∑利用标准摩尔燃烧焓值:(298.5)()r m Bc m BH K H B θθν∆=-∆∑(4) 化学反应焓变与温度的关系---基尔霍夫方程2121,()()()d T r m r m Bp m T BH T H T C B T ν∆=∆+∑⎰基本概念1. 系统和环境热力学中,将研究的对象称为系统,是由大量微观粒子构成的宏观系统。
物理化学习题答案(1-5章)

第一章 热力学定律思考题1. 设有一电炉丝浸入水槽中(见下图),接上电源,通以电流一段时间。
分别按下列几种情况作为体系,试问ΔU 、Q 、W 为正、为负,还是为零?①以水和电阻丝为体系; ②以水为体系; ③以电阻丝为体系; ④以电池为体系;⑤以电池、电阻丝为体系; ⑥以电池、电阻丝和水为体系。
答:该题答案列表如下。
2. 任一气体从同一始态出发分别经绝热可逆膨胀和绝热不可逆膨胀达到体积相同的终态,终态压力相同吗?答:不同。
膨胀到相同体积时,绝热可逆与绝热不可逆的终态温度和压力不同。
3. 熵是量度体系无序程度大小的物理量。
下列情况哪一种物质的摩尔熵值更大?(1)室温下纯铁与碳钢; (2)100℃的液态水与100℃的水蒸气; (3)同一温度下结晶完整的金属与有缺陷的金属;(4)1000℃的铁块与1600℃铁水。
答:温度相同的同一种物质,气、液、固态相比(例如水蒸气、液态水和冰相比),气态的微观状态数最大,固态的微观状态数最小,液态居中,因此,摩尔熵气态最大,液态次之,固态最小;同类物质,例如,氟、氯、溴、碘,分子量越大摩尔熵越大;分子结构越复杂熵越大;分子构象越丰富熵越大;同素异形体或同分异构体的摩尔熵也不相同。
(1)、(2)、(3)和(4)均是后者摩尔熵值大。
4. 小分子电解质的渗透压与非电解质的渗透压哪个大?为什么?电解质的稀溶液是否有依数性?其渗透压公式是怎样的?答:非电解质的渗透压大。
因为非电解质不能电离,通过半透膜的几率就小,这样就造成膜两侧的浓差增大,使渗透压增大。
小分子电解质的稀溶液有依数性,但不显著。
稀溶液以浓度代替活度,()RT RT 212c 1c 1c 2c +=∆=π,若c 1>>c 2,RT 1c 2=π;若c 2>>c 1,RT 1c =π,c 1、c 2分别为溶液一侧和溶剂一侧的浓度。
5. 下列物理量中,哪一组是广度性质的状态函数?(1). C p ,C v ,S ,H m (2). U m ,T ,P ,V m (3). V m ,H m ,μ,U (4). H ,V ,U ,G答:(4)组,即H ,V ,U ,G 是广度性质的状态函数。
物理化学课后习题答案(全)

−
300)
+
0.263 × (5002 2
− 3002
)
−
84 ×10 −6 3
× (5003
−
300
3ቤተ መጻሕፍቲ ባይዱ
⎤ )⎥
⎦
J
= 37.6×103 J = 37.6 kJ
11. 将 101325 Pa 下的 100 g 气态氨在正常沸点 (-33.4℃) 凝结为 液体,计算 Q 、 W 、 ΔU 、 ΔH 。已知氨在正常沸点时的蒸发焓为 1368 J ⋅ g −1 ,气态氨可作为理想气体,液体的体积可忽略不计。
第 1 章 物质的 pVT 关系和热性质
习题解答
1. 两只容积相等的烧瓶装有氮气,烧瓶之间有细管相通。若两只
烧瓶都浸在 100℃的沸水中,瓶内气体的压力为 0.06MPa。若一只烧瓶
浸在 0℃的冰水混合物中,另一只仍然浸在沸水中,试求瓶内气体的压
力。
解:
n = n1 + n2 p1 ⋅ 2V = p2V + p2V
误差
=
−
(1699
− 1.044) 1673
− (1673 − 1.044
−
1.044)
=
−
26 1672
=
−1.6
%
(4) W = − p外[V (g) − V (l)] ≈ − p外V (g) = − pV (g) ≈ −nRT
8. 在 0℃和 101325 Pa 下,1mol H2O (s)熔化为 H2O (l),求此过程 中 的 功 。 已 知 在 此 条 件 下 冰 与 水 的 密 度 分 别 为 0.9175 g ⋅ cm−3 与
6. 1mol N2 在 0℃时体积为 70.3cm3,计算其压力,并与实验值 40.5 MPa 比较: (1) 用理想气体状态方程; (2) 用范德华方程; (3) 用压
物理化学课后复习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T TQ =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR -=-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
3. 已知100℃,101.325kPa 下水的θm vap H ∆=40.67kJ •mol -1,水蒸气与水的摩尔体积分别为)(g V m =30.19dm 3•mol -1,)(l V m =18.00×10-3 dm 3•mol -1,试计算下列两过程的Q 、W 、U ∆及H ∆。
(1) 1mol 水于100℃,101.325kPa 下可逆蒸发为水蒸气;(2) 1mol 水在100℃恒温下于真空容器中全部蒸发为蒸气,而且蒸气的压力恰好为101.325kPa 。
解:(1)恒压下的可逆变化 Q =H ∆=θm vap H n ∆=40.67kJ W =-V p ∆外=-)(液气外V V p -=-[101325(30.19-18.00×10-3)×10-3]J=-3.06kJU ∆=Q +W =(40.67-3.061)kJ =37.61kJ (2) 向真空中蒸发,所以W =0由于两过程的始终态相同故H ∆和U ∆与(1)相同 Q =U ∆-W =37.61kJ4. 1mol 乙醇在其沸点时蒸发为蒸气,已知乙醇的蒸发热为858J •g -1,1g 蒸气的体积为607cm 3,忽略液体的体积,试求过程的Q 、W 、U ∆及H ∆。
解: 因为是恒压蒸发p Q =(46×858) J =17.16kJW =)12V V p -(外⨯-=(-1.013×105×670×10-6×46) J =-3.122kJ U ∆=Q +W =14.04kJ 恒压过程 H ∆=p Q =14.04kJ5. 在101.325kPa 下,把一块极小冰粒投入100g 、-5℃的过冷水中,结果有一定数量的水凝结为冰,体系的温度则变为0℃。
过程可看作是绝热的。
已知冰的熔化热为333.5J •g -1,在-5~0℃之间水的比热容为4.230J •K -1•g -1。
投入极小冰粒的质量可以忽略不计。
(1) 确定体系的初、终状态,并求过程的H ∆。
(2) 求析出冰的量。
解:(1)体系初态:100g 、-5℃、过冷水 终态: 0℃、冰水混合物因为是一个恒压绝热过程,所以H ∆=Q =0(2)可以把这个过程理解为一部分水凝结成冰放出的热量用以体系升温至0℃。
设析出冰的数量为m ,则: t C m p ∆水=H m fus ∆ 100×4.230×5=m ×333.5 得 m =6.34g6. 0.500g 正庚烷放在氧弹量热计中,燃烧后温度升高3.26℃,燃烧前后的平均温度为25℃。
已知量热计的热容量为8176J •K -1,计算25℃时正庚烷的恒压摩尔燃烧热。
解:反应方程式 C 7H 16(l )+11O 2(g) → 7CO 2(g)+8H 2O(l) 反应前后气体化学计量数之差n ∆=-4 V Q =t C ∆量热计=(8176×2.94)J =24.037kJ m r U ∆=243070500100v Q ..n=kJ =5150.88kJ m r H ∆=m r U ∆+nRT ∆=(5150.88-4×8.314×298.15×10-3)kJ =5141 kJ7. B 2H 6(g)的燃烧反应为:B 2H 6(g)+3O 2(g) → B 2O 3(s)+3H 2O(g)。
在298.15K 标准状态下每燃烧1mol B 2H 6(g)放热2020kJ ,同样条件下2mol 元素硼燃烧生成1mol B 2O 3(s)时放热1264kJ 。
求298.15K 下B 2H 6(g)的标准摩尔生成焓。
已知25℃时θm f H ∆(H 2O ,l)=-285.83kJ • mol -1,水的m vap H ∆=44.01kJ •mol -1。
解:2mol 元素硼燃烧生成1mol B 2O 3(s)时放热1264kJ , 2B(s)+1.5 O 2 B 2O 3(s)θmr H ∆=-1264kJ ,此反应是B 2O 3(s)的生成反应,则θm f H ∆(B 2O 3)=-1264kJ 由反应方程式可得:θm r H ∆=θm f H ∆(B 2O 3,s)+3[θm f H ∆(H 2O,l)+m vap H ∆]-θm f H ∆(B 2H 6,g)θmf H ∆( B 2H 6,g)=θm f H ∆(B 2O 3)+3(θm f H ∆(H 2O ,l )+m vap H ∆)-θm r H ∆ θm f H ∆(B 2O 3)=-1264kJ, θm r H ∆=-2020kJ可求得θm f H ∆( B 2H 6,g)=30.54kJ •mol -18. 试求反应CH 3COOH(g) → CH 4(g )+CO 2(g)在727℃的反应焓。
已知该反应在25℃时的反应焓为-36.12kJ •mol -1。
CH 3COOH(g)、CH 4(g )与CO 2(g)的平均恒压摩尔热容分别为52.3、37.7与31.4J •mol -1•K -1。
解:反应的p r C ∆=37.7+31.4-52.3=16.8 J •mol -1•K -1由基尔霍夫方程可得:)K 1000(m r H ∆=)K 298(m r H ∆+t C p ∆∆=(-36.12+16.8×702×10-3)kJ •mol -1=-24.3kJ •mol -19. 反应H 2(g)+2O 21(g)=H 2O(l),在298K 时,反应热为-285.84kJ •mol -1。
试计算反应在800K的热效应θm r H ∆(800K)。
已知:H 2O(l)在373K 、θp 时的蒸发热为40.65kJ •mol -1;m p C ,(H 2)=29.07-0.84×10-3T/K m p C ,(O 2)=36.16+0.85×10-3T/K m p C ,(H 2O,l)=75.26m p C ,( H 2O,g)=30.0+10.71×10-3T/Km p C ,单位均为J •K •mol -1,等式左边均除以该量纲。
解:设计如下的过程: 298K H 2(g) + 2O 21(g) = H 2O(l) (1)3H ∆H 2O(l) 373.15K 1H ∆ 2H ∆ H v a p ∆H 2O(g) 373.15K4H ∆800K H 2(g) +2O 21(g) = H 2O(g) (2) 由此可得:θm r H ∆(800K).=θm r H ∆(298K)+3H ∆+H vap ∆+4H ∆-1H ∆-2H ∆=[-285.84+75.26×(373.15-298)×10-3+40.65+t t d )1071.100.30(380015.373-⨯+⎰-t t d 1084.007.29(8002983)⎰-⨯+-t t d )1085.016.36(218002983⎰-⨯+]J/mol =-247.4kJ •mol -110. 1mol 、20℃、101.325kPa 的空气,分别经恒温可逆和绝热可逆压缩到终态压力506.625kPa ,求这两过程的功。
空气的m p C ,=29.1J •K •mol -1。
空气可假设为理想气体。
解:恒温可逆过程W =)/ln(21p p nRT=[8.314×293.15×ln(101325/506625)]J •mol -1=3.922kJ •mol -1绝热可逆过程,设终态温度为2T则 rrp pT T -=12112)( 其中4.1314.81.291.29,,=-==mV m p C C r可以求得2T =464.3K则W =U ∆=)(12,T T nC m V -=[1×(29.1-8.314)×(464.3-293.15)]J=3.56kJ11. 在一带理想活塞的绝热气缸中,放有2mol 、298.15K 、1519.00kPa 的理想气体,分别经(1)绝热可逆膨胀到最终体积为7.59dm 3;(2)将环境压力突降至506.625kPa 时,气体作快速膨胀到终态体积为7.59dm 3。