23.2.2_中心对称图形同步练习(含答案)

合集下载

23.2.1-23.2.2中心对称及中心对称图形同步练习(解析版)

23.2.1-23.2.2中心对称及中心对称图形同步练习(解析版)

23.2.1中心对称及23.2.2中心对称图形同步练习一、单选题1、观察下列图形,是中心对称图形的是()A. B.C. D.2、下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3、下列图形中,既是轴对称又是中心对称图形的是()A. B.C. D.4、下列图形既是轴对称图形,又是中心对称图形的是()A. 三角B. 菱形C. 角D. 平行四边形5、如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A. 主视图B. 左视图C. 俯视图D. 主视图和左视图6、有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A. 5个B. 4个C. 3个D. 2个7、如图所示的图案中,是轴对称图形而不是中心对称图形的个数是()A. 4个B. 3个C. 2个D. 1个8、如图所示的四张扑克牌中,在旋转180°后还是和原来一样的是()A. B. C. D.9、把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A. B. C. D.10、在下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.11、把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A. 6→3B. 7→16C. 7→8D. 6→15二、填空题12、如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为______.13、在等边三角形、正方形、菱形、等腰梯形中,是中心对称图形的有______.14、下列图形:①线段;②矩形;③菱形;④正方形;⑤等边三角形.绕其重心旋转180后,仍与原图形完全重合的有______15、在等边三角形、角、平行四边形、圆这些图形中,是中心对称图形,但不是轴对称图形的是______.16、若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是______图形(填写“轴对称”、“中心对称”).17、如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是______.三、解答题18、如图,已知四边形ABCD和点O,画出四边形ABCD关于点O成中心对称的四边形A′B′C′D′.19、如图,点D是△ABC的边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.20、如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21、如图,△ABC和△DEF关于点O成中心对称.(1)作出它们的对称中心O,并简要说明作法;(2)若AB=6,AC=5,BC=4,求△DEF的周长;(3)连接AF,CD,试判断四边形ACDF的形状,并说明理由.1、答案:D分析:本题考查了中心对称图形.解答:将一个图形围绕某一点旋转180°之后能够与原图形完全重合,则这个图形就是中心对称图形.2、答案:D分析:本题考查了轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.解答:根据轴对称图形的定义,选项中轴对称图形有A、C、D,根据中心对称图形的定义,选项中的中心对称图形有B、D,综上可知,既是轴对称图形又是中心对称图形的是D,选D.3、答案:B分析:本题考查了中心对称图形以及轴对称图形.解答:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.选B.4、答案:B分析:本题考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.解答:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角是轴对称图形但不一定是中心对称图形,故本选项错误;D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误,选B.5、答案:C分析:本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.解答:观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,选C.6、答案:C分析:本题考查了中心对称图形以及轴对称图形.解答:矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.选C.7、答案:D分析:本题考查了中心对称图形以及轴对称图形.解答:选项A是轴对称图形,不是中心对称图形;选项B是轴对称图形又是中心对称图形;选项C是轴对称图形又是中心对称图形;选项D是轴对称图形又是中心对称图形.选:D8、答案:B分析:本题考查了中心对称.解答:由中心对称图形的概念,即:如果一个图形绕着一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫对称中心,可知,A. 不是中心对称图形;B. 是中心对称图形;C. 不是中心对称图形;D. 不是中心对称图形,选B.9、答案:C分析:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.解答:解:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 既不是轴对称图形,又不是中心对称图形,故本选项错误;C.既是轴对称图形又是中心对称图形,故本选项正确;D.不是轴对称图形,是中心对称图形,故本选项错误.选C.10、答案:D分析:根据轴对称图形与中心对称图形的概念求解.解答:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.选:D.11、答案:D分析:本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.解答:6→3,能使它与其余四个阴影部分的正方形组成一个轴对称图形,但不是中心对称图形,故不符合题意;B.7→16,能使它与其余四个阴影部分的正方形组成一个中心对称图形,但不是轴对称图形,故不符合题意;C.7→8,能使它与其余四个阴影部分的正方形组成一个轴对称图形,但不是中心对称图形,故不符合题意;D.6→15,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,故符合题意;选:D.二、填空题12、答案:4分析:本题考查了中心对称.解答:在Rt△ABC中,∵∠B=30°,AC=1,∴AB=2AC=2,又∵点B和点B′关于点A对称,∴BB′=2AB=4.故答案为:4.13、答案:正方形、菱形分析:本题考查了中心对称图形.解答:解:根据中心对称图形的概念,知正方形、菱形都是中心对称图形;等边三角形和等腰梯形只是轴对称图形.故答案为:正方形、菱形.14、答案:①②③④分析:掌握重心和中心对称图形的概念.线段的重心就是线段的中点.矩形、菱形、正方形的重心就是其两条对角线的交点,也是两对对边中点连线的交点.等边三角形的重心就是三边中线的交点.中心对称图形是要寻找对称中心,旋转180度后两部分重合.解答:根据重心和中心对称图形的概念,知⑤不是关于重心的中心对称图形.、②、③、④都是关于重心的中心对称图形.故绕其重心旋转180°后,仍与原图形完全重合的有①②③④.15、答案:平行四边形分析:本题考查了图形的对称性,轴对称是关于线对称,中心对称是关于点对称.解答:“等边三角形”是轴对称图形也是中心对称图形,平行四边形是中心对称图形,不是轴对称图形,圆是轴对称图形也是中心对称图形,角星轴对称图形,故答案为:平行四边形.16、答案:轴对称分析:掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,对称轴两边图形折叠后可重合.解答:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.故答案为:轴对称.17、答案:(3,-1)分析:本题考查了中心对称.解答:如图,连接AA1、CC1,则交点就是对称中心E点.观察图形知,E(3,-1).故答案为:(3,-1).三、解答题18、答案:分析:本题考查了中心对称作图.解答:四边形A′B′C′D′如图所示.19、答案:见解答分析:本题考查了中心对称.解答:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,∴△ABE的面积为8.20、答案:(1)如图所示见解答;(2)如图所示见解答;(3)如图所示见解答.分析:本题是一道画图题,考查动手能力,解题关键是掌握轴对称,中心对称等定义.解答:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作21、答案:(1)答案见解答;(2)15;(3)平行四边形.分析:本题考查了中心对称的性质.也考查了平行四边形的判定.熟练掌握中心对称的性质和平行四边形的判定方法是解答本题的关键.解答:(1)如图,点O为所作;(2)∵△ABC和△DEF关于点O成心对称,∴△ABC≌△DEF,∴DF=AC=5,DE=AB=6,EF=BC=4,∴△DEF的周长=4+5+6=15;(3)四边形ACDF为平行四边形.理由如下:∵△ABC和△DEF关于点O成心对称,∴OA=OD,OC=OF,∴四边形ACDF为平行四边形.。

人教版九年级上册数学同步练习《中心对称》(习题+答案)

人教版九年级上册数学同步练习《中心对称》(习题+答案)

23.2中心对称内容提要1.把一个图形绕着某一个定点旋转180︒,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.2.中心对称的性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形.3.中心对称作图的步骤:(1)首先确定对称中心和图形中的关键点;(2)作出关键点关于对称中心的对称点;(3)连接对应点部分,形成相应的图形.4.将一个图形绕着某个定点旋转180︒后能与自身重合,则这种图形叫做中心对称图形,这个定点叫做对称中心,常见的中心对称图形有:线段、平行四边形(包括:矩形、菱形、正方形)等.5.点(),--.P x y',P x y关于原点的对称点为()23.2.1中心对称基础训练1.下列说法中正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须重合C.成中心对称的两个图形全等D.旋转后能够重合的两个图形成中心对称2.如图,ABC∆关于点O成中心对称,则下列结论不成立的是()∆和'''A B CA.点A与点'A是对称点B.'=BO B OC.''∥AB A BD.'''∠=∠ACB C A B3.如下图是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()4.如图,ABC∆绕点O转了度到达∆和DEF∆关于点O中心对称,则ABCAO OD=.DEF∆,且:5.如图,把ABC∠=∆绕边AC的中点O旋转180︒到CDA∆的位置,则BC=,BAC ,ABC∆关于点O成对称.∆与CDA6.如图,直线EF经过平行四边形ABCD的对角线的交点,若3AE cm=,四边形AEFB的面积为215cm,则CF=,四边形EDCF的面积为.7.如图,已知ABC∆与ABC∆关于点P成中心对称.A B C∆,使'''∆和点P,画出'''A B C8.如图,ABC ∆和DEF ∆关于点O 成中心对称. (1)找出它们的对称中心O ;(2)若6AB =,5AC =,4BC =,求DEF ∆的周长;(3)连接AF ,CD ,试判断四边形ACDF 的形状,并说明理由.9.在平面直角坐标系中,ABC ∆的三个顶点坐标分别为()2,1A -,()3,3B -,()0,4C -. (1)画出ABC ∆关于原点O 成中心对称的111A B C ∆; (2)画出111A B C ∆关于y 轴对称的222A B C ∆.10.如图所示,已知ABC∆中,AD是中线,(1)画出以点D为对称中心,与ABD∆成中心对称的三角形;(2)猜想2AD与AB AC+的大小关系,并说明理由.23.2.2中心对称图形基础训练1.下列交通标志中,既是轴对称图形又是中心对称图形的是()2.如图,对于它的对称性表述正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形3.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.①B.②C.③D.④4.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.45.线段是中心对称图形,它的对称中心是;平行四边形是对称图形,它的对称中心是.6.正方形是轴对称图形,它的对称轴共有条.7.如图,在数轴上,A,P两点表示的数分别是1,2,1A,2A关于点O对称,2A,3A关于1点P对称,A,4A关于点O对称,4A,5A关于点P对称……依此规律,则点14A表示的数3是.8.如图,在44⨯的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形),再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形.9.图①、图②均为76⨯的正方形网格,点A,B,C在格点上.(1)在图①中确定格点D,并画出以A,B,C,D为顶点的四边形,使其为轴对称图形(画一个即可);(2)在图②中确定格点E,并画出以A,B,C,E为顶点的四边形,使其为中心对称图形(画一个即可).10.如图,将正方形ABCD中的ABD∆的位置,EF交AB于M,GF∆绕对称中心O旋转至GEF交BD于N,请猜想BM与FN有怎样的数量关系?并证明你的结论.23.2.3 关于原点对称的点的坐标基础训练1.如图所示,已知平行四边形ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为()2,3-,则点C 的坐标为( ) A .()3,2-B .()2,3--C .()3,2-D .()2,3-2.在平面直角坐标系中,点()3,4P -关于原点对称的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.如果点(),P x y 关于原点对称的点是'P ,则'P 的坐标是( ) A .(),x yB .(),x y -C .(),x y -D .(),x y --4.如图,点A ,B ,C 的坐标分别为()0,1-,()0,2,()3,0.从下面四个点()3,3M ,()3,3N -,()3,0P -,()3,1Q -中选择一个点,使以点A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( ) A .点MB .点NC .点PD .点Q5.点()2,3P -关于x 轴对称的点的坐标是 ,关于原点对称的点的坐标是 .6.以下各点中,()5,0A -,()0,2B ,()2,1C -,()2,0D ,()0,5E ,()2,1F -,()2,1G --,关于原点对称的两点是.7.点(),4A a 与点()3,B b 关于原点对称,则a =,b =.8.如图所示,PQR ∆是ABC ∆经过某种变换后得到的图形,如果ABC ∆中任意一点M 的坐标是(),a b ,那么它的对应点N 的坐标为.9.在下列网格图中,每个小正方形的边长均为1个单位,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =.(1)试在图中作出ABC ∆以A 为旋转中心,沿顺时针方向旋转90︒后的图形11AB C ∆; (2)若点B 的坐标为()3,5-,试在图中画出直角坐标系,并标出A ,C 两点的坐标; (3)根据(2)中的坐标系作出与ABC ∆关于原点对称的图形222A B C ∆,并标出2B ,2C 两点的坐标.10.直角坐标系第二象限内的点()22,3P x x +与另一点()2,Q x y +关于原点对称,试求2x y +的值.能力提高1.已知点()1,1A a -和()2,1B b -关于原点对称,则a b +的值为( ) A .1-B .0C .1D .3-2.如图,将ABC ∆绕点()0,1C 旋转180︒得到''A B C ∆,设点A 的坐标为(),a b ,则点'A 的坐标为( )A .(),a b --B .(),1a b ---C .(),1a b --+D .(),2a b --+3.下列命题:(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等图形;(3)两个全等的图形一定成中心对称.其中真命题的个数是( ) A .0个B .1个C .2个D .3个4.如图,顺次连接矩形ABCD 各边中点,得到菱形EFGH ,这个由矩形和菱形所组成的图形( )A .是轴对称图形但不是中心对称图形B .是中心对称图形但不是轴对称图形C .既是轴对称图形又是中心对称图形D .没有对称性5.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,过点O 作直线分别交AD ,BC 于点E ,F .如果四边形AEFB 的面积为8,则平行四边形ABCD 的面积是.6.已知0a <,则点()21,3P a a ---+关于原点对称的点'P 在第象限.7.如图所示,点A ,B ,C 的坐标分别是()2,4,()5,1,()3,1-.若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为.8.如图,将等腰三角形ABC 绕底边BC 的中点O 旋转180︒. (1)画出旋转后的图形.(2)旋转后得到的三角形与原三角形拼成什么图形?说明理由.(3)要使拼成的图形为正方形,那么ABC ∆还应满足什么条件?为什么?9.如图,ABC ∆三个顶点的坐标分别是()1,1A ,()4,2B ,()3,4C . (1)试画出ABC ∆向左平移5个单位长度后得到的111A B C ∆; (2)试画出ABC ∆关于原点对称的222A B C ∆;(3)在x 轴上求作一点P ,使PAB ∆周长最小,试画出PAB ∆,并直接写出点P 的坐标.拓展探究1.有一块如图所示的土地,请划出一条分界线,把这块土地平均分给两户农民.(在以下的几个图形中用三种方法进行分割)2.有两块形状完全相同的不规则的四边形木板,如图所示,两位木工师傅通过测量可知∠=∠=︒,AD CD=.现要将其拼成正方形,思考一段时间后,一位木工师傅说“我可B D90以将这两块木板拼成一个正方形.”另一位木工师傅说:“我可以将一块木板拼成一个正方形,两块木板拼成两个正方形.”两位师傅把每一块木板都只分割一次,你知道他们是怎么做的吗?画出图形,并说明理由.23.2 参考答案:23.2.1 中心对称 基础训练1.C 2.D 3.C 4.180 1:1 5.AD DCA ∠ 中心 6.3cm 215cm 7.略 8.(1)略 (2)15 (3)四边形ACDF 为平行四边形,因为它的对角线互相平分. 9.(1)111A B C ∆如图所示;(2)222A B C ∆如图所示. 10.(1)如图所示(2)2AD AB AC <+.理由:ABD ∆与ECD ∆成中心对称,ADB EDC ∴∆∆≌.CE AB ∴=. AE CE AC >+,2AD AB AC ∴<+.23.2.2 中心对称图形 基础训练1.D 2.B 3.B 4.B 5.线段的中点 中心 对角线的交点 6.4 7.25-8.答案不唯一,如图(1)、(2)、(3)、(4)中任何一个位置都行. 9.(1)如图(1);(2)如图(2).10.猜想:BM FN =.证明:在正方形ABCD 中,BD 为对角线,O 为对称中心,BO DO ∴=,45BDA DBA ∠=∠=︒.GEF ∆为ABD ∆绕O 点旋转所得,FO DO ∴=,F BDA ∠=∠,OB OF ∴=,OBM OFN ∠=∠,OBM OFN ∴∆∆≌,BM FN ∴=.23.2.3 关于原点对称的点的坐标 基础训练1.D 2.D 3.D 4.C 5.(2,3) (2,3)- 6.C 和F 7.3- 4- 8.(,)a b -- 9.如图所示的11AB C ∆;(2)建立如图所示的直角坐标系,点A 的坐标为(0,1),点C 的坐标为(3,1)-; (3)如图所示的222A B C ∆,点2B 的坐标为(3,5)-点2C 的坐标为(3,1)-.10.根据题意,得2(2)(2)0x x x +++=,3y =-.11x ∴=-,22x =-. 点P 在第二象限, 220x x ∴+<.1x ∴=-.27x y ∴+=-. 能力提高1.A 2.D 3.B 4.C 5.16 6.四 7.(0,1) 8.(1)略;(2)菱形,理由是它的四条边都相等; (3)90∠=︒,因为有一个角是直角的菱形是正方形.9.如图所示,A ,B C 向左平移5个单位后的坐标分别为(4,1)-,(1,2)-,(2,4)-,连接这三个点,得111A B C ∆.(2)如图所示,A ,B ,C 关于原点的对称点的坐标分别为(1,1)--,(4,2)--,(3,4)--连接这三个点,得222A B C ∆.(3)如图所示,(2,0)P .作点A 关于x 轴的对称点A ',连接A B '交x 轴于点P ,则点P 即为所求作的点.拓展探究1.如图2.如图(1),将两块四边形拼成正方形,连接BD ,将DBC ∆绕D 点顺时针旋转90度,即可得出B BD '∆,此时三角形BB D '是等腰直角三角形,同理可得到正方形B EBD '.如图(2)将一个四边形拼成正方形,过点D 作DE BC ⊥于点E ,过点D 作DF BA ⊥交BA 的延长线于点F ,90FDA ADE CDE ADE ∴∠+∠=∠+∠=︒,FDA CDE ∴∠=∠,(AAS)AFD CED ∴∆∆≌,FD DE ∴=.又90B F BED ∠=∠=∠=︒,∴四边形FBED 为正方形.。

人教版九年级数学上册 23.2 中心对称 同步训练(含答案)

人教版九年级数学上册 23.2 中心对称 同步训练(含答案)

人教版九年级数学上册23.2 中心对称同步训练一、选择题1. 下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形2. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()3. 在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限4. 2019·长春德惠期末如图,△ABC与△A′B′C′关于点O中心对称,下列结论中不一定成立的是()A.∠ABC=∠A′C′B′ B.OA=OA′C.BC=B′C′ D.OC=OC′5. 如图,将△ABC以点O为旋转中心旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后变为线段E′D′.已知BC=4,则线段E′D′的长度为()A.2 B.3 C.4 D.1.56. 如图,两个半圆分别以P,O为圆心,它们成中心对称,点A1,P,B1,B2,O,A2在同一条直线上,则对称中心为()A.A2P的中点B.A1B2的中点C.A1O的中点D.PO的中点7. 如图示,在Rt△ABC中,∠ACB=90°.P是半圆AC的中点,连接BP交AC于点D.若半圆所在圆的圆心为O,点D,E关于圆心O对称,则图两个阴影部分的面积S1,S2之间的关系是()A.S1<S2B.S1>S2C.S1=S2D.不确定8. 2020·河北模拟如图所示,A1(1,3),A2(32,32),A3(2,3),A4(3,0).作折线OA1A2A3A4关于点A4中心对称的图形,得折线A8A7A6A5A4,再作折线A8A7A6A5A4关于点A8中心对称的图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线以每秒1个单位长度的速度运动,设运动时间为t秒.当t=2020时,点P的坐标为()A.(1010,3) B.(2020,3 2)C.(2016,0) D.(1010,3 2)二、填空题9. 王老师、杨老师两家所在的位置关于学校对称.如果王老师家距学校2千米,那么他们两家相距________千米.10. 若点A(x+3,2y+1)与点A′(y-5,1)关于原点对称,则点A的坐标是________.11. 如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个四边形,则能拼出______个中心对称图形.12. 点P(1,2)关于原点的对称点P′的坐标为__________.13. 如图,直线a,b垂直相交于点O,曲线C是以点O为对称中心的中心对称图形,点A的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积为________.14. 如图所示,在△ABC中,已知∠ACB=90°,AC=BC=2.若以AC的中点O 为旋转中心,将这个三角形旋转180°,点B落在点B′处,则BB′=________.15. 如图,将等边三角形AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是________.16. 如图,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,设点A 的坐标为(a ,b ),则点A ′的坐标为____________.三、解答题17. 如图,在矩形ABCD 中,点E 在AD 上,EC 平分∠BED . (1)试判断△BEC 是不是等腰三角形,并说明理由;(2)在原图中画△FCE ,使它与△BEC 关于CE 的中点O 中心对称,此时四边形BCFE 是什么特殊平行四边形?请说明理由.18. 如图,△ABO 与△CDO 关于点O 中心对称,点E ,F 在线段AC 上,且AF=CE .求证:DF =BE .19. [材料阅读]在平面直角坐标系中,以任意两点P (x 1,y 1),Q (x 2,y 2)为端点的线段的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.[运用](1)已知点A(-2,1)和点B(4,-3),则线段AB的中点坐标是________;已知点M(2,3),线段MN的中点坐标是(-2,-1),则点N的坐标是________.(2)已知平面上四点A(0,0),B(10,0),C(10,6),D(0,6).直线y=mx-3m+2将四边形ABCD分成面积相等的两部分,则m的值为________.(3)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D,可使以点A,B,C,D为顶点的四边形为平行四边形,求点D的坐标.20. 如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于点O对称;(2)点A,B,C,A′,B′,C′能组成哪几个平行四边形?请用符号表示出来.人教版九年级数学上册23.2 中心对称同步训练-答案一、选择题1. 【答案】D2. 【答案】C3. 【答案】D4. 【答案】A5. 【答案】A[解析] ∵ED是△ABC的中位线,BC=4,∴ED=2.又∵△A′B′C′和△ABC关于点O中心对称,∴E′D′=ED=2.6. 【答案】D[解析] 因为P,O是对称点,所以PO的中点是对称中心.7. 【答案】C [解析] ∵P 是半圆AC 的中点,∴半圆关于直线OP 对称,且点D ,E 关于圆心O 对称,因而S 1,S 2在直径AC 上面的部分面积相等.∵OD =OE ,∴CD =AE .∵△CDB 的底边CD 与△AEB 的底边AE 相等,高相同,∴它们的面积相等,∴S 1=S 2.8. 【答案】A二、填空题9. 【答案】4 [解析] ∵王老师、杨老师两家所在的位置关于学校对称, ∴王老师、杨老师两家到学校的距离相等. ∵王老师家距学校2千米, ∴他们两家相距4千米. 故答案为4.10. 【答案】(6,-1) [解析] 依题意,得⎩⎨⎧x +3=-(y -5),2y +1=-1,解得⎩⎨⎧x =3,y =-1.∴点A 的坐标为(6,-1).11. 【答案】3[解析] 在这里具有中心对称图形特征的是平行四边形,所以两个三角形中对应相等的两条边重合只能拼一个.因为三角形只有三条边,所以只有三种情况.12. 【答案】(-1,-2)13. 【答案】6[解析] 如图,过点A ′作A ′B ′⊥a ,垂足为B ′,由题意可知,①与②关于点O 中心对称,所以阴影部分的面积可以看作四边形A ′B ′OD 的面积.又A ′D ⊥b 于点D ,直线a ,b 互相垂直,可得四边形A ′B ′OD 是矩形,所以其面积为3×2=6.14. 【答案】2 5[解析] ∵△ABC绕AC的中点O旋转了180°,∴OB=OB′,∴BB′=2OB.又∵OC=OA=12AC=1,BC=2,∴在Rt△OBC中,OB=OC2+BC2=12+22=5,∴BB′=2OB=2 5.15. 【答案】(-2 3,-2)[解析] 过点B作BH⊥y轴于点H,如图.∵△OAB 为等边三角形,A(0,4),∴OH=AH=2,∠BOA=60°,∴BH=3OH=2 3,∴点B的坐标为(2 3,2).∵将△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(-2 3,-2).16. 【答案】(-a,-b+2)[解析] 如图,过点A作AD⊥y轴于点D,过点A′作A′D′⊥y轴于点D′,则△ACD≌△A′CD′,∴A′D′=AD=a,CD′=CD=-b +1,∴OD′=-b+2,∴点A′的坐标为(-a,-b+2).三、解答题17. 【答案】解:(1)△BEC是等腰三角形.理由:∵在矩形ABCD中,AD∥BC,∴∠DEC=∠BCE.∵EC平分∠BED,∴∠DEC=∠BEC,∴∠BEC=∠BCE,∴BC=BE,∴△BEC是等腰三角形.(2)连接BO 并延长至点F ,使OF =OB ,连接FE ,FC ,△FCE 即为所求.四边形BCFE 是菱形.理由: ∵OB =OF ,OE =OC , ∴四边形BCFE 是平行四边形. 又∵BC =BE , ∴▱BCFE 是菱形.18. 【答案】证明:∵△ABO 与△CDO 关于点O 中心对称, ∴BO =DO ,AO =CO.∵AF =CE ,∴AO -AF =CO -CE , 即FO =EO.在△FOD 和△EOB 中,⎩⎨⎧FO =EO ,∠FOD =∠EOB ,DO =BO ,∴△FOD ≌△EOB(SAS), ∴DF =BE.19. 【答案】解:(1)(1,-1) (-6,-5) (2)12(3)设点D 的坐标为(x ,y).若以AB 为对角线,AC ,BC 为邻边的四边形为平行四边形,则AB ,CD 的中点重合,∴⎩⎪⎨⎪⎧1+x 2=-1+32,4+y 2=2+12,解得⎩⎨⎧x =1,y =-1;若以BC 为对角线,AB ,AC 为邻边的四边形为平行四边形,则AD ,BC 的中点重合,∴⎩⎪⎨⎪⎧-1+x 2=3+12,2+y 2=1+42,解得⎩⎨⎧x =5,y =3;若以AC 为对角线,AB ,BC 为邻边的四边形为平行四边形,则BD ,AC 的中点重合,∴⎩⎪⎨⎪⎧3+x 2=-1+12,1+y 2=2+42,解得⎩⎨⎧x =-3,y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).20. 【答案】解:(1)如图所示.(2)▱ABA′B′,▱BCB′C′,▱CA′C′A.。

九年级数学上册23-2-2中心对称图形同步测试(新版)新人教版

九年级数学上册23-2-2中心对称图形同步测试(新版)新人教版

九年级数学上册23-2-2中心对称图形同步测试(新版)新人教版1.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( A )2.下列图形中,既是轴对称图形又是中心对称图形的是( D )①线段②角③等边三角形④圆⑤平行四边形⑥矩形A.③④⑥B.①③⑥C.④⑤⑥ D.①④⑥3.如图22-2-12(1)所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到4张扑克牌如图22-2-12(2)所示,他很快确定了哪一张牌被旋转过.这张牌是( A )图22-2-12A.方块4 B.黑桃5C.梅花6 D.红桃74.把下列每个字母都看成一个图形,那么中心对称图形有( B )O L Y M P I CA.1个B.2个C.3个D.4个【解析】根据中心对称图形的定义,O和I旋转180度之后能与原图形重合,因此共有2个中心对称图形.5.如图23-2-13,▱ABCD的对角线交于点O,下列结论错误的是( C )A.▱ABCD是中心对称图形B.△AOB≌△CODC.△AOB≌△BOCD.△AOB与△BOC的面积相等图23-2-13【解析】平行四边形是以对角线交点为对称中心的中心对称图形,故A正确;利用三角形全等可证明B正确;C不正确;因为OA=OC及等底等高的两个三角形面积相等知D正确.6.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使图中阴影部分构成中心对称图形,该小正方形的序号是__②__.图23-2-147.如图23-2-15,方格纸中的每个小正方形的边长均为1.(1)观察图(1),(2)中所画的“L”型图形,然后各补画一个小正方形,使图(1)中所成的图形是轴对称图形,图(2)中所成的图形是中心对称图形;图23-2-15(2)补画后,图(1),(2)中的图形是不是正方体的表面展开图:(填“是”或“不是”)答:(1)中的图形________,(2)中的图形________.【解析】图(1)有两种可能,其中图(1)-1不是正方体的表面展开图,图(1)-2是正方体的表面展开图,图(2)是正方体的表面展开图.解:答案不唯一,略.8.如图23-2-16,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD 关于点D 的中心对称图形;(2)根据图形说明线段CD 长的取值范围.图23-2-16解:(1)所画图形如下所示:△ADE 就是所作的图形.(2)由(1)知:△ADE ≌△BDC ,则CD =DE ,AE =BC ,∴AE -AC <2CD <AE +AC ,即BC -AC <2CD <BC +AC ,∴2<2CD <10,解得1<CD <5.9.如图23-2-17,将正方形ABCD 中的△ABD 绕对称中心O 旋转至△GEF 的位置,EF 交AB 于M ,GF 交BD 于N.请猜想BM 与FN 有怎样的数量关系?并证明你的结论. 图23-2-17解:猜想:BM =FN.证明:∵在正方形ABCD 中,BD 为对角线,O 为对称中心,∴BO =DO ,∠BDA =∠DBA =45°.∵△GEF 为△ABD 绕O 点旋转所得,∴FO =DO ,∠OFN =∠BDA ,∴OB =OF ,∠OBM =∠OFN.在 △OMB 和△OFN 中,⎩⎪⎨⎪⎧∠OBM=∠OFN,OB =OF ,∠BOM=∠FON,∴△OBM ≌△OFN ,∴BM =FN.10.如图23-2-18所示,▱ABCD中,∠BAC=90°,AB=1,BC=,对角线AC,BD 交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形.(2)试说明在旋转过程中,线段AF与EC总保持相等.(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.图23-2-18解:(1)当∠AOF=90°时,AB∥EF.又∵AF∥BE,∴四边形ABEF为平行四边形.(2)∵四边形ABCD为平行四边形,∴AO=CO,∠FAO=∠ECO,∠AOF=∠COE,∴△AOF≌△COE,∴AF=EC.(3)四边形BEDF可能是菱形.理由:如图,连接BF,DE.由(2)知△AOF≌△COE,∴OE=OF,∴EF与BD互相平分.当EF⊥BD时,四边形BEDF为菱形.在Rt△ABC中,AC==2,∴OA=1=AB.又AB⊥AC,∴∠AOB=45°,∴∠AOF=45°,∴AC绕点O顺时针旋转45°时,四边形BEDF为菱形.。

人教版九年级数学上册《23-2-2 中心对称图形》作业同步练习题及参考答案

人教版九年级数学上册《23-2-2 中心对称图形》作业同步练习题及参考答案

23.2.2 中心对称图形1.下列四张扑克牌图案,属于中心对称的是( )2.(2018·黑龙江绥化中考)下列图形中,既是中心对称图形又是轴对称图形的有( )A.4 个B.3 个C.2 个D.1 个3.下列图案都是由字母“m”经过变形、组合而成的.其中不是中心对称图形的有( )4.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中,既是轴对称图形又是中心对称图形的有( )A.2 个B.3 个C.4 个D.5 个5.如图,已知BC 为等腰三角形纸片ABC 的底边,AD⊥BC,∠ABC≠90°,将此三角形纸片沿AD 剪开,得到两个三角形.若把这两个三角形拼成一个平面四边形,则能拼出几个中心对称图形?把拼成的中心对称图形画出来.6.经过长方形对称中心的任意一条直线,把长方形分成面积分别为S1,S2 的两部分,则( )A.S1<S2B.S1=S2C.S1>S2D.S1 与S2 的关系由直线的位置确定7.图1 和图2 中所有的小正方形都全等,将图1 的正方形放在图2 中①②③④的某一位置,使它与原来7 个小正方形组成的图形是中心对称图形,这个位置是( )A.①B.②C.③D.④8.有一块方角形的钢板如图所示,请你用一条直线将其分为面积相等的两个部分(不写作法,保留作图痕迹,在图中直接画出).★9.用9 根长度相同的小棒搭成如图所示的图形,你能移动若干根小棒使这9 根小棒搭成的图形成中心对称图形吗?若能,至少要移动多少根小棒?画出移动后所得的图形.参考答案夯基达标1.B2.D3.B4.B 线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形只是中心对称图形,等腰三角形只是轴对称图形,故选B.5.解能拼出3 个中心对称图形,如图.培优促能6.B7.C8.解答案不唯一.例如下面的图①,图②,图③.创新应用9.解至少移动两根小棒,如图是移动后所得的图形:。

23.2.2 中心对称图形 达标训练(含答案)

23.2.2 中心对称图形 达标训练(含答案)

23.2.2 中心对称图形达标训练题号一1 二2 三3 四4 五5 六6 七7 八8得分任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、基础·巩固·达标1、如图23-2-15所示,不是中心对称图形的是()图23-2-152、如图23-2-16所示,是中心对称图形的是()图23-2-163、图23-2-17中,不是中心对称图形的是()图23-2-174、如图23-2-18,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.图23-2-185、下列图形中,既是轴对称图形又是中心对称图形的是()图23-2-196、平行四边形是中心对称图形,它的对称中心是什么?7、已知:如图23-2-20,四边形ABCD是矩形,请画图找出它的对称中心O.图23-2-20二、综合·应用·创新8、下列图形中(图23-2-21),既是轴对称图形又是中心对称图形的是()图23-2-219、下列图形中,不是中心对称图形的是()A. 圆B. 菱形C. 矩形D. 等边三角形10、下列图形中(图23-2-22),既是轴对称图形又是中心对称图形的是()图23-2-2211、如图23-2-23,是我国古代数学家赵爽所著的《勾股圆方图注》中所画的图形,它是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是()图23-2-23A.它是轴对称图形,但不是中心对称图形;B.它是中心对称图形,但不是轴对称图形C.它既是轴对称图形,又是中心对称图形;D.它既不是轴对称图形,又不是中心对称图形12、已知:如图23-2-24,ABCD为平行四边形.图23-2-24(1)画出A1B1C1D1,使A1B1C1D1与ABCD关于直线MN对称;(2)画出A2B2C2D2,使A2B2C2D2与ABCD关于点O中心对称;(3)A1B1C1D1与A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.参考答案一、基础·巩固·达标1、如图23-2-15所示,不是中心对称图形的是()图23-2-15提示:根据中心对称图形的概念进行判别.答案:B2、如图23-2-16所示,是中心对称图形的是()图23-2-16提示:根据中心对称图形的概念:把一个图形绕着某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.答案:A3、图23-2-17中,不是中心对称图形的是()图23-2-17提示:根据中心对称图形的概念判断.答案:B4、如图23-2-18,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.图23-2-18提示:将△ADP绕点D旋转90°,这时,点P移到点F的位置,点A与点C重合.此时,四边形PDFB恰好为正方形,因为四边形的面积为18,所以DP=18=32.答案:325、下列图形中,既是轴对称图形又是中心对称图形的是()图23-2-19提示:根据中心对称图形和轴对称图形的概念及性质判断.答案:B6、平行四边形是中心对称图形,它的对称中心是什么?提示:平行四边形绕着对角线的交点旋转180°后能够与原来的平行四边形重合.所以,对称中心是对角线的交点.答案:平行四边形的对称中心是对角线的交点.7、已知:如图23-2-20,四边形ABCD是矩形,请画图找出它的对称中心O.图23-2-20提示:根据矩形的性质以及中心对称图形的概念画图找出它的对称中心O.答案:连接AC、BD,交点就是矩形ABCD的对称中心O.二、综合·应用·创新8、下列图形中(图23-2-21),既是轴对称图形又是中心对称图形的是()图23-2-21提示:根据轴对称图形和中心对称图形的概念判断.答案:C9、下列图形中,不是中心对称图形的是()A. 圆B. 菱形C. 矩形D. 等边三角形提示:根据中心对称图形的概念判断.圆、菱形、矩形是中心对称图形.答案:D10、下列图形中(图23-2-22),既是轴对称图形又是中心对称图形的是()图23-2-22提示:由轴对称图形和中心对称图形的概念进行判断.答案:B11、如图23-2-23,是我国古代数学家赵爽所著的《勾股圆方图注》中所画的图形,它是由四个相同的直角三角形拼成的,下面关于此图形的说法正确的是()图23-2-23A.它是轴对称图形,但不是中心对称图形;B.它是中心对称图形,但不是轴对称图形C.它既是轴对称图形,又是中心对称图形;D.它既不是轴对称图形,又不是中心对称图形提示:根据轴对称图形和中心对称图形的概念判断.答案:B12、已知:如图23-2-24,ABCD为平行四边形.图23-2-24(1)画出A 1B 1C 1D 1,使A 1B 1C 1D 1与ABCD 关于直线MN 对称; (2)画出A 2B 2C 2D 2,使A 2B 2C 2D 2与ABCD 关于点O 中心对称;(3)A 1B 1C 1D 1与A 2B 2C 2D 2是对称图形吗?若是,请在图上画出对称轴或对称中心. 提示:根据轴对称和中心对称的性质来画对称图形,关键是找对称点. 答案:(1)如图:A ′B ′C ′D ′与ABC D 关于直线MN 对称;(2)A ″B ″C ″D ″与ABCD 关于点O 中心对称;(3)A 1B 1C 1D 1与A 2B 2C 2D 2是对称图形,对称轴为直线HL .可以编辑的试卷(可以删除)This document is collected from the Internet, which is convenient for readers to use. If there is any infringement, please contact the author and delete it immediately.。

人教版2021年九年级上册:23.2.2 中心对称图形同步练习(含答案)

人教版2021年九年级上册:23.2.2 中心对称图形同步练习(含答案)

人教版2021年九年级上册:23.2.2中心对称图形同步练习一、选择题1.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()2.下列手机手势解锁图案中,是中心对称图形的是()3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.(2020·遂宁)下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形5.如图,该图形是中心对称图形,则对称中心是()A.点CB.点DC.线段BC的中点D.线段FC的中点6.如图,△ABC是一个中心对称图形的一部分,点O是对称中心,A和B是对应点,∠C=90°,那么将这个图形补充完整后是()A.矩形B.菱形C.正方形D.梯形7.(中考·宜昌)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()8.(2019·安顺)在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限9.(中考·河北)图甲和图乙中所有的小正方形都全等,将图甲的正方形放在图乙中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④10.(中考·宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A.①②B.②③C.①③D.①②③二、填空题11.在平行四边形、等边三角形、圆、线段中,是中心对称图形的是.12.如图是一个中心对称图形,A为对称中心.若∠C=90°,∠B=30°,BC=2√3,则BB'的长为.13.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正方形内的数字是.14.魔术师把四张扑克牌放在桌子上,如图1所示,然后蒙住眼睛,请一位观众上台把其中的一张牌旋转180°放好,魔术师解开蒙着的眼睛的布后,看到四张牌如图2所示,他很快确定了被旋转的那一张牌.则被观众旋转过的牌是.三、解答题15.如图是一个中心对称图形,点A为对称中心.若∠C=90°,∠BAC=30°,BB'=4,求BC的长.16.如图是4×4正方形网格,请在其中选取一个白色的单位正方形涂黑,使图中黑色部分是一个中心对称图形.17.某同学对下面的一组数所排列而成的方阵产生了浓厚的兴趣,他利用所学的对称性的知识很巧妙地求出了这一组数的和,请你试试看.18.(2020·宁波)图①、图②都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图①,图②中,均只需画出符合条件的一种情形)19.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2.(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.(3)在x轴上有一点P,使得P A+PB的值最小,请直接写出点P的坐标.20.如图,线段AC,BD相交于点O,且AB∥CD,AB=CD,此图形是中心对称图形吗?试说明你的理由.21.如图,点O是平行四边形ABCD的对称中心,将直线BD绕点O顺时针方向旋转,分别交CD,AB 于点E,F.(1)证明:△DEO≌△BFO;(2)若BD=2,AD=1,AB=√5,当BD绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.22.如图,在△ABC中,D是BC上一点,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)求证:四边形AEDF是中心对称图形;(2)若AD平分∠BAC,求证:点E,F关于直线AD对称.23.知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图1,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形CFED;(填“>”“<”或“=”)(2)如图2,两个正方形如图所示摆放,O为小正方形对角线的交点,作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图3所示摆放,作直线将整个图形分成面积相等的两部分.(用三种方法分割)参考答案一、选择题1.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是(D)2.下列手机手势解锁图案中,是中心对称图形的是(B)3.下列图形中,既是轴对称图形,又是中心对称图形的是(A)4.(2020·遂宁)下列图形中,既是轴对称图形,又是中心对称图形的是(C)A.等边三角形B.平行四边形C.矩形D.正五边形5.如图,该图形是中心对称图形,则对称中心是(D)A.点CB.点DC.线段BC的中点D.线段FC的中点6.如图,△ABC是一个中心对称图形的一部分,点O是对称中心,A和B是对应点,∠C=90°,那么将这个图形补充完整后是(A)A.矩形B.菱形C.正方形D.梯形7.(中考·宜昌)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是(A)8.(2019·安顺)在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在(D)A.第一象限B.第二象限C.第三象限D.第四象限9.(中考·河北)图甲和图乙中所有的小正方形都全等,将图甲的正方形放在图乙中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是(C)A.①B.②C.③D.④10.(中考·宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A.①②B.②③C.①③D.①②③【点拨】由题意知标①的两个长方形全等,标②的两个正方形全等.设长方形①的长为a,宽为c,正方形②的边长为b,正方形③的边长为d,则a+b=2b+d,即a=b+d;b+c=2c+d,即c=b-d,于是有a+c=2b.又因为大长方形的周长已知,不妨设为l,所以2(a+b+b+c)=l,即8b=l,b=l8.于是2(a+c)=4b=l2,故图形①②的周长可以确定.【答案】A二、填空题11.在平行四边形、等边三角形、圆、线段中,是中心对称图形的是平行四边形,圆,线段.12.如图是一个中心对称图形,A为对称中心.若∠C=90°,∠B=30°,BC=2√3,则BB'的长为8.13.如图是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的阴影部分构成一个中心对称图形,则这个白色小正方形内的数字是3.14.魔术师把四张扑克牌放在桌子上,如图1所示,然后蒙住眼睛,请一位观众上台把其中的一张牌旋转180°放好,魔术师解开蒙着的眼睛的布后,看到四张牌如图2所示,他很快确定了被旋转的那一张牌.则被观众旋转过的牌是方块4.三、解答题15.如图是一个中心对称图形,点A为对称中心.若∠C=90°,∠BAC=30°,BB'=4,求BC的长.解:BC=1.16.如图是4×4正方形网格,请在其中选取一个白色的单位正方形涂黑,使图中黑色部分是一个中心对称图形.解:如图是一个中心对称图形.17.某同学对下面的一组数所排列而成的方阵产生了浓厚的兴趣,他利用所学的对称性的知识很巧妙地求出了这一组数的和,请你试试看.解:∵(1+9)+(2+8)+(3+7)+(4+6)+…+(8+2)+(3+7)+(4+6)+(5+5)+(6+4)+5=10×12+5=120+5=125,∴这组数的和为125.18.(2020·宁波)图①、图②都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形. 解:轴对称图形如图①所示.(答案不唯一)(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图①,图②中,均只需画出符合条件的一种情形)解:中心对称图形如图②所示.(答案不唯一)19.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (-3,2),B (0,4),C (0,2). (1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;平移△ABC ,若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2.【思路点拨】分别利用旋转、平移的性质作图即可; 解:如图所示.(2)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标. 【思路点拨】先确定旋转角度为180°,再利用成中心对称的两个图形的性质找旋转中心; 解:旋转中心的坐标为⎝⎛⎭⎫32,-1.(3)在x 轴上有一点P ,使得P A +PB 的值最小,请直接写出点P 的坐标. 【思路点拨】利用轴对称的性质作图,即可找到点P . 解:点P 的坐标为(-2,0).20.如图,线段AC ,BD 相交于点O ,且AB ∥CD ,AB =CD ,此图形是中心对称图形吗?试说明你的理由.解:是中心对称图形,∵AB ∥CD ,∴∠A =∠C ,∠B =∠D.在△AOB 与△COD 中,{∠A =∠C,AB =CD,∠B =∠D,∴△AOB ≌△COD (ASA), ∴OA =OC ,OB =OD , ∴此图形是中心对称图形.21.如图,点O 是平行四边形ABCD 的对称中心,将直线BD 绕点O 顺时针方向旋转,分别交CD ,AB 于点E ,F.(1)证明:△DEO ≌△BFO ;(2)若BD =2,AD =1,AB =√5,当BD 绕点O 顺时针方向旋转45°时,判断四边形AECF 的形状,并说明理由.解:(1)在平行四边形ABCD 中,CD ∥AB , ∴∠CDO =∠ABO ,∠DEO =∠BFO. 又∵点O 是平行四边形ABCD 的对称中心, ∴OD =OB ,∴△DEO ≌△BFO (AAS).(2)四边形AECF 是菱形,理由:∵在△ABD 中,BD =2,AD =1,AB =√5,∴BD 2+AD 2=AB 2, ∴△ABD 是直角三角形,且∠ADB =90°. ∵OD =OB =12BD =1,∴AD =OD , ∴△OAD 是等腰直角三角形,∴∠AOD =45°.当直线BD 绕点O 顺时针旋转45°时,即∠DOE =45°,∴∠AOE =90°. ∵△DEO ≌△BFO ,∴OE =OF ,又∵点O 是平行四边形ABCD 的对称中心, ∴OA =OC ,∴四边形AECF 是菱形.22.如图,在△ABC 中,D 是BC 上一点,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F. (1)求证:四边形AEDF 是中心对称图形;(2)若AD 平分∠BAC ,求证:点E ,F 关于直线AD 对称.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴四边形AEDF是中心对称图形.(2)连接EF.∵AD平分∠BAC,∴∠BAD=∠CAD.又∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE.由(1)知四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴AD垂直平分EF,∴点E,F关于直线AD对称.23.知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图1,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB=S四边形CFED;(填“>”“<”或“=”)(2)如图2,两个正方形如图所示摆放,O为小正方形对角线的交点,作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图3所示摆放,作直线将整个图形分成面积相等的两部分.(用三种方法分割)解:(2)如图1所示.(3)如图2所示.(答案不唯一,合理即可)。

2022年人教版《中心对称》同步练习附答案

2022年人教版《中心对称》同步练习附答案

2021人教版九年级数学上册第23章 23.2《中心对称》同步练习1带答案一、科学探究题〔15分〕1.我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两局部〔如图〕探索以下问题:〔1〕在图中给出的四个正方形中,各画出一条直线〔依次是:•水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线〕,将每个正方形都分割成面积相等的两局部;〔2〕一条竖直方向的直线m 以及任意的直线n ,在由左向右平移的过程中,•将正六边形分成左右两局部,其面积分别记为S 1和S 2. ①请你在图中相应图形下方的横线上分别填写S 1与S 2的数量关系式〔用“<〞,“=〞,“>〞连接〕;②请你在图23-2-19中分别画出反映S 1与S 2三种大小关系的直线n ,•并在相应图形下方的横线上分别填写S 1与S 2的数量关系式〔用“<〞,“=〞,“>〞连接〕.〔3〕是否存在一条直线,将一个任意的平面图形〔如图23-2-20所示〕•分割成面积相等的两局部?请简略说出理由.二、开放题〔7分〕2.请你设计一幅平面图案满足以下几个要求:①由线段或圆组成;②是轴对称图形;③是中心对称图形. 三、阅读理解题2021分〕3.如下列图,石头A 和石头B 相距80cm ,且关于竹竿L 对称,•一只电动青蛙在距竹竿30cm ,距石头A60cm 的P 1处,按图中顺序循环跳跃:→ ↑↑←〔1〕请你画出青蛙跳跃的路径〔画图工具不作限制〕.〔•2〕•青蛙跳跃25•次后停下,•此时它与石头A•相距________cm ,•与竹竿L•相距_____cm .四、信息处理题〔8分〕4.为了学习方便,有人把26个英文字母分成了五类,现在还剩下5个字母.D 、M 、Q 、X 、Z 请你根据现有的发类信息把这五个字母填在相应的方格中.① F R P J L G②H I O ③N S ④B C K E⑤V A T Y W U五、方案设计题2021分〕5.如下列图,〔1〕观察图①~④中阴影局部构成的图案,请写出这四个图案都具有的两个共同特征:从P 1点以A 为对 称中心跳至P 2点 从P 2点以L 为对 称轴跳至P 3点从P 4点以L 为对 称轴跳至P 1点 从P 3点以B 为对 称中心跳至P 4点〔2〕借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答〔1〕中所给出的两个共同特征.〔注意:①新图案与图①~④的图案不能重合;②只答第〔2〕•问而没有答第〔1〕问的解答不得分〕答案:一、1.解:〔1〕如答图所示:〔2〕①S1<S2;S1=S2;S1>S2.②如答图所示:〔3〕存在.对于任意一条直线L,在直线L•从平面图形的一侧向另一侧平移的过程中,当图形被直线L分割后,直线L两侧图形的面积分别为S1,S2,两侧图形的面积由S1<S2〔或S1>S2〕,逐渐变为S1>S2〔或S1<S2〕,在这个平移过程中,一定会存在S1=S2的时刻.因此,一定存在一条直线,将一个任意的平面图形分割成面积相等的两局部.点拨:在探索过程中,我们遵循了从特殊到一般的思维方式,•先从特殊的多边形入手,再进一步推广到任意的多边形,使探究的问题得以解决.二、2.解:题目的答案不止一个,仅举一例,如答图所示.点拨:图案的设计多种多样,越有创新意识越好.三、3.解:〔1〕如答图所示,〔2〕60:50.点拨:命题很有创意,作图的过程相比照拟简单,在青蛙跳25次后,停在点P2.此时,P1A=P2A=60cm.与竹竿的距离是40×2-30=50〔cm〕.四、4.解:①Q ②X ③Z ④D ⑤M点拨:第①组字母即非中心对称图形,又不是轴对称图形,在剩下的5个字母中只有Q 符合这个条件;第②组字母既是中心对称图形,又是轴对称图形,符合条件的字母是X;第③组字母不是轴对称图形,而是中心对称图形,符合条件的字母是Z.第④组字母仅是轴对称图形,且对称轴为水平的直线,符合这个条件的字母是D.第⑤组字母仅是轴对称图形,而对称轴为竖直的直线,符合条件的字母只有M.五、5.解:〔1〕答案不唯一,例如所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③图形中不含钝角……只要写出两个即可.〔2〕答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如:同时具备特征①、②的局部图案如答图所示:点拨:本小题主要考查同学们从不同图形中寻找共同的特征的能力,及数学语言表达能力和空间观察.第二套《随机事件与概率》同步练习及答案知识点⒈在一定条件下可能发生的事件,叫随机事件。

23.2:中心对称(解答题专练)(解析版)

23.2:中心对称(解答题专练)(解析版)

23.2:中心对称(解答题专练)1.下图是一个风车图案的一部分,风车图案是一个关于点O的中心对称图形,请你把它补全.【答案】详见解析.【解析】易得旋转中心是O,旋转角度为45°,旋转方向顺时针,按此作图即可.【解答】如图,【点评】旋转作图的关键是得到旋转中心,旋转方向.2.华丰木器加工厂需加工一批矩形木门,为了安装的需要,在木门的中心要钻一个小孔,假如你是工人师傅,你应该如何确定小孔的位置.【答案】两对角线的交点即为小孔的位置【解析】矩形的两条对角线可以看作是两对对应点的连线,中心对称图形上的每一对对应点所连成的线段,都过对称中心,且被对称中心平分,而矩形的两条对角线互相平分,故两条对角线的交点,必为对称中心.【解答】解:只要画出矩形木门的两条对角线,两对角线的交点即为小孔的位置(•如答图所示的O点).【点评】本题考查了中心对称及矩形的性质,难度不大,熟练掌握矩形是中心对称图形,其对角线的交点是对称中心是解答本题的关键.3.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于原点O成中心对称的△A1B1C1,并写出A1的坐标;(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并求出点C在旋转过程中经过的路径长是多少?【答案】(1)画图见解析,A1(-2,-2);(2)画图见解析,5 2π【解析】【解析】根据题意画出相应的三角形, 确定出所求点坐标和弧长即可.【解答】解: (1)画出△ABC关于y轴对称的△A1B1C1,如图所示, 此时A1的坐标为(-2,2);(2) 画出△ABC绕点B逆时针旋转90后得到的△A2B2C2,易得5此时C点旋转过程中经过的路程l为:l=9025360oo)5.【点评】本题主要考查图形的轴对称、尺规作图和弧长公式.4.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;并写出点A2、B2、C2坐标;(3)请画出△ABC绕O逆时针旋转90°后的△A3B3C3;并写出点A3、B3、C3坐标.【答案】(1)见解析;(2)见解析,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);(3)见解析,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).【解析】(1)利用平移的性质得出对应点的位置进而得出答案(2)利用关于原点对称点的性质得出对应点的位置进而得出答案(3)利用旋转的性质得出旋转后的点的坐标进而得出答案【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);(3)如图,△A3B3C3即为所求,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).【点评】本题主要考查了二次函数平移旋转等图形变换的基本性质,掌握前后变换规律是解题关键5.如图,ABC与ADE关于点A成中心对称.(1)点A,B,C的对应点分别是什么?(2)点C,A,E的位置关系是怎样?(3)指出图中相等的线段和相等的角.【答案】(1)点A ,B ,C 的对应点分别是点A ,D ,E ;(2)点C ,A ,E 在同一条直线上;(3)AB AD =,AC AE =,BC DE =,B D ∠=∠,C E ∠=∠,BAC DAE ∠=∠.【解析】(1)根据两个图形成中心对称即可得出答案;(2)根据两个图形成中心对称即可得出答案;(3)分别找到成中心对称的两个图形对应的线段和对应角即可得出答案.【解答】(1)∵ABC 与ADE 是成中心对称的两个图形,∴点A ,B ,C 的对应点分别是点A ,D ,E .(2)根据中心对称的性质,可知点C ,A ,E 在同一条直线上.(3)AB AD =,AC AE =,BC DE =,B D ∠=∠,C E ∠=∠,BAC DAE ∠=∠.【点评】本题主要考查两个图形成中心对称,掌握中心对称的性质是解题的关键.6.画出如图所示的四边形ABCD 关于点O 成中心对称的四边形A B C D ''''.【答案】如图所示,四边形A B C D ''''即为所求;见解析.【解析】根据旋转的性质即可画出四边形ABCD 关于点O 成中心对称的四边形A B C D ''''.【解答】如图所示,四边形A B C D ''''即为所求:.【点评】本题考查了作图−旋转变换,解决本题的关键是掌握旋转的性质.7.如图,在Rt △OAB 中,∠OAB =90°,且点B 的坐标为(4,2).(1)画出OAB 关于点O 成中心对称的11OA B ,并写出点B 1的坐标;(2)求出以点B 1为顶点,并经过点B 的二次函数关系式.【答案】(1)图见解析,点()142B --,;(2)()214216y x =+-. 【解析】(1) 先由条件求出A 点的坐标, 再根据中心对称的性质求出1A 、 1B 的坐标, 最后顺次连接1OA 、1OB , △OAB 关于点O 成中心对称的△11OA B 就画好了,可求出B 1点坐标.(2) 根据 (1) 的结论设出抛物线的顶点式, 利用待定系数法就可以直接求出其抛物线的解析式.【解答】(1)如图,点()142B --,.(2)设二次函数的关系式是()242y a x =+-,把(4,2)代入上式得()22442a =+-,116a ∴=, 即二次函数关系式是()214216y x =+-. 【点评】本题主要考查中心对称的性质,及用待定系数法求二次函数的解析式,难度不大.8.如图,△ABC 的三个顶点和点O 都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.【答案】解:(1)所画△A1B1C1如图所示.(2)所画△A2B2C2如图所示.【解析】(1)图形的整体平移就是点的平移,找到图形中几个关键的点,也就是A,B,C点,依次的依照题目的要求平移得到对应的点,然后连接得到的点从而得到对应的图形;(2)在已知对称中心的前提下找到对应的对称图形,关键还是找点的对称点,找法是连接点与对称中心O 点并延长相等的距离即为对称点的位置,最后将对称点依次连接得到关于O点成中心对称的图形。

九年级数学上册 23.2 中心对称 课时同步练习习题(含答案)

九年级数学上册  23.2 中心对称 课时同步练习习题(含答案)

23.2中心对称基础题1.下列说法:(1)中心对称与中心对称图形是两个不同的概念,它们既有区别,又有联系;(2)中心对称图形是指两个图形之间的一种对称关系;(3)中心对称和中心对称图形有一个共同的特点是它们都有且只有一个对称中心;(4)任何一条经过对称中心的直线都将一个中心对称图形分成两个全等的图形,其中说法正确的序号是()A.(1)(2)B.(1)(2)(3)C.(2)(3)(4)D.(1)(3)(4)2.下列说法:(1)平行四边形是中心对称图形,其对角线的交点为对称中心;(2)只有正方形才既是中心对称图形,又是轴对称图形;(3)关于中心对称的两个图形是全等形,两个全等图形也一定成中心对称;(4)若将一个图形绕某定点旋转和另一个图形不重合,那么这两个图形不可能关于这个定点成中心对称,其中正确说法的个数是()A.1个B.2个C.3个D.4个3.国旗上的每个五角星()A.是中心对称图形而不是轴对称图形B.是轴对称图形而不是中心对称图形C.既是中心对称图形又是轴对称图形D.既不是中心对称图形,又不是轴对称图形4.下列图形中不是轴对称图形而是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形5.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是()A.2 B.3 C.4 D.56.如图将三角形绕直线旋转一周,可以得到图(E)所示的立体图形的是()A.图(A)B.图(B)C.图(C)D.图(D)7.在等腰三角形中,,,如果以的中点为旋转中心,将这个三角形旋转,点落在处,那么点与点原来位置相距____________.综合题1.如图1,在正方形中,是的中点,是延长线上的一点,.(1)求证△≌△;(2)阅读下列材料:如图2,把△沿直线平行移动线段的长度,可以变到△的位置;如图3,以为轴把△翻折,可以变到△的位置;如图4,以点为中心把△旋转,可以变到△的位置.图2 图3 图4像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图1中,可以通过平行移动、翻折、旋转中的哪一种方法使△变到△的位置,答:________________________________________________.②指出图1中,线段与之间的关系.答:________________________________________________.创新题1.两个人轮流在一张桌面(长方形或正方形或圆形)上摆放硬币.规则是每人每次摆一个,硬币不能互相重叠,也不能有一部分在桌面边缘之外,摆好之后不许移动.这样经过多次摆放,直到谁最先摆下硬币谁就认输.按照这个规则你用什么方法才能取胜呢?图1参考答案基础题1.D 2.A 3.B 4.B 5.B 6.B 7.综合题1.(1)正方形有,,、均为,,,∴,∴△≌△.(3)①答△绕点逆时针旋转到△的位置;②答:且.创新题1.你要争取先放,并把第1枚硬币放在桌面的对称中心上,以后你应该根据对方所放硬币的位置,在它关于中心对称的位置上放下一枚同样大小硬币.这样,由于对称性,只要对方能放得下一枚硬币,你就保证能在其对称位置上放下一枚同样大小的硬币,因此,失败绝对轮不到你.。

23.2:中心对称(选择题专练)(解析版)

23.2:中心对称(选择题专练)(解析版)

23.2:中心对称(选择题专练)1.下列图形是中心对称图形的是( )A .B .C .D .【答案】D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A 、不是中心对称图形,故此选项不合题意;B 、不是中心对称图形,故此选项不合题意;C 、不是中心对称图形,故此选项不合题意;D 、是中心对称图形,故此选项符合题意;故选:D .【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形定义.2.利用圆内接正多边形,可以设计出非常有趣的图案.下列图案中,是中心对称图形,但不是轴对称图形的是( ) A . B . C . D .【答案】B【解析】根据轴对称图形与中心对称图形的定义进行判断即可.【解答】解:A.此图形不是中心对称图形, 是轴对称图形, 故此选项错误;B.此图形是中心对称图形, 不是轴对称图形, 故此选项正确;C.,此图形不是中心对称图形, 但是轴对称图形, 故此选项错误;D.图形是中心对称图形, 也是轴对称图形, 故此选项错误.故选:B.【点评】本题主要考查轴对称图形与中心对称图形的定义,中心对称图形的定义是旋转180o 后能够与原图形完全重合即是中心对称图形,轴对称图形的定义把此图形沿着某一条直线折叠,两边能完全重合的图形. 3.点()21,4P a +与()'1,31P b -关于原点对称,则2(a b += )A .-3B .-2C .3D .2【答案】A【解析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)可得到a,b 的值,再代入2a+b 中可得到答案.【解答】解:点P(2a+1,4)与P'(1,3b-1)关于原点对称,∴2a+1=-1,3b-1=-4,∴a=-1,b=-1,∴2a+b=2⨯(-1)+(-1)=-3.所以A选项是正确的.【点评】此题主要考查了坐标系中的点关于原点对称的坐标特点.注意:关于原点对称的点,横纵坐标分别互为相反数.4.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)【答案】B【解析】根据中心对称的性质,得点P(2,-3)关于原点对称点P′的坐标是(-2,3).故选B5.下列四个图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据定义进行分析即可.【解答】不是轴对称图形,不是中心对称图形,故此选项A错误;不是轴对称图形,是中心对称图形,故此选项B错误;是轴对称图形,不是中心对称图形,故此选项C错误;既是轴对称图形又是中心对称图形,故此选项D正确;故选:D.【点评】此题主要考查了中心对称图形和轴对称图形,关键是掌握中心对称图形和轴对称图形的定义.6.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)【答案】B【解析】【解析】用关于原点的对称点的坐标特征进行判断即可.【解答】点P(-1,2)关于原点的对称点的坐标为(1,-2),故选: B.【点评】根据两个点关于原点对称时, 它们的坐标符号相反.7.己知点()1,3A ,将点A 绕原点O 顺时针旋转60后的对应点为1A ,将点1A 绕原点O 顺时针旋转60后的对应点为2A ,依此作法继续下去,则点2012A 的坐标是( )A .()1,3-B .()1,3-C .()1,3--D .()2,0- 【答案】B【解析】根据图形旋转的规律得出每旋转6次坐标一循环,求出点2012A 的坐标与点2A 坐标相同,进而可得出答案.【解答】解:将点A 绕原点O 顺时针旋转60o 后的对应点为A 1,将点A 1绕原点O 顺时针旋转60o 后的对应点为A 2,依此作法继续下去,∴得出每旋转36060=6次坐标一循环,得出2012÷6=335余2,即点A 2012的坐标与点A 2坐标相同,即可得出点A 2与点A 关于x 轴对称,∴A 2点坐标为:(1,-3).所以B 选项是正确的.【点评】此题主要考查了坐标与图形的旋转与规律问题,解答此题的关键是明确图形旋转的变化规律每旋转6次坐标一循环.8.下列图形中,是旋转对称图形,但不是中心对称图形的是( )A .等腰梯形B .等边三角形C .平行四边形D .直角梯形【答案】B【解析】A 、等腰梯形不是旋转对称图形,错误;B 、等边三角形是旋转对称图形,但不是中心对称图形,正确;C 、平行四边形是中心对称图形,错误;D 、直角梯形不是旋转对称图形,错误.故选B .9.2020年是我国完成第一个100年奋斗目标的关键之年,到2021年我国全面建成小康社会.人民生活水平越来越高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是( ) A . B . C . D .【答案】A【解析】根据中心对称图形的概念判断即可.【解答】A 是中心对称图形,C 、D 是轴对称图形,B 既不是中心对称图形也不是轴对称图形故选A.【点评】本题考查了中心对称图形的识别,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称.10.下列命题中的真命题是( )A.三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形【答案】C【解析】试题分析:根据矩形、菱形、正方形的判定以及正五边形的性质得出答案即可:A.根据四个角相等的四边形是矩形,故此命题是假命题,故此选项错误;B.根据对角线互相垂直、互相平分且相等的四边形是正方形,故此命题是假命题,故此选项错误C.顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;D.正五边形是轴对称图形不是中心对称图形,故此命题是假命题,故此选项错误.故选C.11.下列4种图形:平行四边形、矩形、菱形、正方形,其中既是中心对称图形又是轴对称图形的有()种A.1 B.2 C.3 D.4【答案】C【解析】根据中心对称图形和轴对称图形的定义判断即可.【解答】根据中心对称图形和轴对称图形的定义可知:平行四边形是中心对称图形,不符合题意;矩形既是轴对称图形,也是中心对称图形,符合题意;菱形既是轴对称图形,也是中心对称图形,符合题意;正方形既是轴对称图形,也是中心对称图形,符合题意;共有3个既是中心对称图形又是轴对称图形;故选C.【点评】此题考查中心对称图形和轴对称图形的定义,掌握中心对称图形和轴对称图形的定义是解题的关键.12.下列图形中,既是轴对称又是中心对称图形的是()A.B.C .D .【答案】B【解析】根据轴对称图形与中心对称图形的概念求解.【解答】A 、是轴对称图形,不是中心对称图形,故错误;B 、是轴对称图形,是中心对称图形,故正确;C 、不是轴对称图形,是中心对称图形,故错误;D 、是轴对称图形,不是中心对称图形,故错误.故选B .【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.13.如图,在平面直角坐标系中将ABC 绕点()0,1C -旋转180得到111A B C ,设点1A 的坐标为(),m n ,则点A 的坐标为( )A .(),m n --B .(),2m n ---C .(),1m n ---D .(),1m n --+【答案】B【解析】设点A 的坐标为(x ,y ),然后根据中心对称的点的特征列方程求解即可.【解答】设点A 的坐标为(x ,y ),∵△ABC 绕点C (0,-1)旋转180°得到△A 1B 1C 1,点A 1的坐标为(m ,n ), ∴2x m +=0,2y n +=-1, 解得x=-m ,y=-n-2,所以,点A 的坐标为(-m ,-n-2).故选B .【点评】本题考查了坐标与图形变化-旋转,熟练掌握中心对称的点的坐标特征是解题的关键.14.如图,已知△ABC 与△CDA 关于点O 成中心对称,过点O 任作直线EF 分别交AD,BC 于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称.其中正确的个数为( )A.2 B.3 C.4 D.5【答案】D【解析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,可根据上述特点对各结论进行判断.【解答】△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,则有:(1)点E和点F;B和D是关于中心O的对称点,正确;(2)直线BD必经过点O,正确;(3)四边形ABCD是中心对称图形,正确;(4)四边形DEOC与四边形BFOA的面积必相等,正确;(5)△AOE与△COF成中心对称,正确;其中正确的个数为5个,故选D.【点评】熟练掌握平行四边形的性质和中心对称图形的性质是解决此题的关键.15.从-副扑克牌中抽出梅花2 ~10 共9 张扑克牌,其中是中心对称图形的共有( )A.3 张B.4 张C.5 张D.6 张【答案】A【解析】本题考查的是中心对称的概念,本题可以根据中心对称图形的概念和扑克牌的花色特点求解.【解答】旋转180°以后,梅花2、4、10,中间的图形相对位置不改变,因而是中心对称图形;故选A.【点评】此题考查中心对称图形,解题关键在于掌握其性质.16.如图,点O是平行四边形ABCD的对称中心,EF是过点O的任意一条直线,它将平行四边形分成两部分,四边形ABFE和四边形EFCD的面积分别记为1S,2S,那么1S,2S之间的关系为()A .12S S >B .12S S <C .12S SD .无法确定【答案】C 【解析】先根据平行四边形的性质得出EDO FBO ∠=∠,OB OD =,再根据ASA 得出DEO BFO ≌△△,从而即可得到结论.【解答】解:∵四边形ABCD 是平行四边形,∴//AD BC ,∴EDO FBO ∠=∠,∵点O 是ABCD 的对称中心,∴OB OD =,在DEO 和BFO 中,,,,EDO FBO OD OB DOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DEO BFO ASA ≌,∴DEO BFO S S =△△.∵ABD CDB S S ∆=,∴12S S .故选C .【点评】此题主要考查了中心对称,平行四边形的性质以及全等三角形的判定和性质,熟练掌握相关的知识是解决问题的关键.17.若4y kx =-的函数值y 随x 的增大而增大,则(,3)k 关于原点的对称点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】根据函数的性质确定k >0,判断点(,3)k 在第一象限,根据中心对称的性质即可求解.【解答】解:∵4y kx =-的函数值y 随x 的增大而增大,∴k >0,∴点(,3)k 在第一象限,∴(,3)k 关于原点的对称点在第三象限.故选:C【点评】本题考查了一次函数的增减性,中心对称的性质,根据一次函数的增减性判断k 的符号是解题关键.18.如图,线段AC 与BD 相交于点O ,且△ABO 和△CDO 关于点O 成中心对称,则下列结论,其中正确的个数是( )①OB =OD ;②AB =CD ;③ABO CDO △≌△;④AC =BD .A .4B .3C .2D .1【答案】B 【解析】根据成中心对称的两个图形的性质解答.【解答】解:∵△ABO 和△CDO 关于点O 成中心对称,∴△ABO ≌△CDO ,∴OB =OD ,AB =CD ,而AC =BD 不一定成立,故选:B .【点评】此题考查成中心对称的两个图形的性质:成中心对称的两个图形全等,熟记性质是解题的关键. 19.如图,ABC 和111A B C 关于点E 成中心对称,则点E 坐标是( )A .() 3,1--B .() 3,3--C .() 3,0-D .() 4,1--【答案】A 【解析】先求出△ABC 和△A 1B 1C 1中对应的两点坐标,连接此两点坐标则E 点必在其中点上,求出其中点坐标即可.【解答】由图可知:因为B 、B 1点的坐标分别是:B (-5,1)、B 1(-1,-3),所以BB 1的中点坐标为(512--,132-), 即(-3,-1),则点E 坐标是(-3,-1),故选A .【点评】本题考查了坐标与图象变化-旋转,用到的知识点是图形旋转对称的性质等,图形旋转后时,其旋转中心必是其对应点连线的中点坐标.20.如图,四边形ABCD 与四边形FGHE 关于一个点成中心对称,则这个点是( )A.O1B.O2C.O3D.O4【答案】A【解析】连接任意两对对应点,连线的交点即为对称中心.【解答】如图,连接HC和DE交于O1,故选A.【点评】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.21.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.【解答】∵一个正多边形绕着它的中心旋转45°后,能与原正多边形重合,360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选C.22.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,﹣3),N(﹣1,﹣3)B.M(﹣1,﹣3),N(﹣1,3)C.M(﹣1,﹣3),N(1,﹣3)D.M(﹣1,3),N(1,﹣3)【答案】C【解答】M点与A点关于原点对称,A点与N点关于x轴对称,由平面直角坐标中对称点的规律知:M点与A点的横、纵坐标都互为相反数,N点与A点的横坐标相同,纵坐标互为相反数.所以M(-1,-3),N(1,-3).23.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误.故选B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.24.在平面直角坐标系中,点A的坐标为(﹣3,4),那么下列说法正确的是()A.点A与点C(3,﹣4)关于x轴对称B.点A与点B(﹣3,﹣4)关于y轴对称C.点A与点F(3,﹣4)关于原点对称D.点A与点E(3,4)关于第二象限的平分线对称【答案】C【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反;关于第二象限角平分线的对称的两点坐标的关系,纵横坐标交换位置且变为相反数可得答案.【解答】解:A、点A的坐标为(-3,4),则点A与点C(3,﹣4)关于原点对称,故此选项错误;B. 点A与点B(﹣3,﹣4)关于x轴对称,故此选项错误;C. 点A与点F(3,﹣4)关于原点对称,故此选项正确;D. 点A与点E(-4,3)关于第二象限的平分线对称,故此选项错误.故选:C .【点评】此题主要考查了关于x ,y 轴对称点的坐标点的规律,以及关于原点对称的点的坐标特点,关键是熟练掌握点的变化规律,不要混淆.25.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(8,4),若直线经过点D (2,0),且将平行四边形OABC 分割成面积相等的两部分,则直线DE 的表达式是( )A .y=x-2B .y=2x-4C .y=x-1D .y=3x-6【答案】A 【解析】过平行四边形的对称中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形对称中心的坐标,再利用待定系数法求一次函数解析式解答即可.【解答】解:∵点B 的坐标为(8,4),∴平行四边形的对称中心坐标为(4,2),设直线DE 的函数解析式为y=kx+b ,则4220k b k b +=⎧⎨+=⎩, 解得12k b =⎧⎨=-⎩, ∴直线DE 的解析式为y=x-2.故选:A .【点评】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.26.在如图所示的平面直角坐标系中,△11OA B 是边长为2的等边三角形,作△221B A B 与△11OA B 关于点1B 成中心对称,再作△233B A B 与△221B A B 关于点2B 成中心对称,如此作下去,则△22121n n n B A B ++(n 是正整数)的顶点21n A +的坐标是( )A .3B .3C .3D .3【答案】C【解析】根据等边三角形的性质可求得点A1、B1的坐标,然后根据中心对称的性质,分别求出点A2、A3、A4的坐标;最后总结出A n的坐标的规律,从而可得答案.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,3),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2的坐标是(3,﹣3),点B2的坐标是(4,0),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3的坐标是(5,3),点B3的坐标是(6,0),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4的坐标是(7,﹣3),……,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是3,当n为偶数时,A n的纵坐标是﹣3,∴顶点A2n+1的纵坐标是3,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,3),故选:C.【点评】本题考查了等边三角形的性质、中心对称的性质和点的坐标规律探求,属于常考题型,具有一定的难度,熟练掌握上述知识、找到规律是解题的关键.。

人教版数学九年级上册23.2《中心对称》同步练习题及答案

人教版数学九年级上册23.2《中心对称》同步练习题及答案

23.2中心对称(第三课时)附答案◆随堂检测1、下列标志既是轴对称图形又是中心对称图形的是( )A B C D2、已知点P (-b ,2)与点Q (3,2a )关于原点对称,则a +b 的值是________.3、已知0a <,则点P (2,1a a --+)关于原点的对称点P ′在( )A .第一象限B .第二象限C .第三象限D .第四象限4、如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.提示:点P (x ,y )关于原点的对称点为P ′(-x ,-y ).◆典例分析 已知△ABC ,A (-3,2),B (-2,-1),C (2,3)利用关于原点对称的点的坐标的特点,作出△ABC 关于原点对称的△A 1B 1C 1.分析:要作出△ABC 关于原点的对称图形,只要作出点A 、点B 和点C 关于原点的对称点A ′、B ′、C ′即可.依据中心对称的点的坐标特点:点P (x ,y )关于原点的对称点P ′的坐标为(-x ,-y ),可得A ′、B ′、C ′三点的坐标.解:∵点P (x ,y )关于原点的对称点为P ′(-x ,-y ),∴△ABC 的三个端点A (-3,2),B (-2,-1),C (2,3)关于原点的对称点分别为A ′(3,-2)、B ′(2,1)、C ′(-2,-3).依次连结A ′B ′、B ′C ′、C ′A ′,便可得到所求作的△A ′B ′C ′.◆课下作业●拓展提高1、下列图形中,是轴对称图形但不是中心对称图形的2、已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标为( )A 、()a b -,B 、()a b -,C 、()b a -,D 、()b a -,3、如图,四边形EFGH 是由四边形ABCD 经过旋转得到的.如果用有序数对(2,1)表示方格纸上A 点的位置,用(1,2)表示B 点的位置,那么四边形ABCD 旋转得到四边形EFGH 时的旋转中心用有序数对表示是____________.4、直线3y x =+上有一点P (3,n ),则点P 关于原点的对称点P ′为________.5、如图所示,请在网格中作出△ABC 关于点O 对称的△A 1B 1C 1,再作出△A 1B 1C 1绕点B 1逆时针旋转90°后的△A 2B 1C 2.6、如图①、②均为76⨯的正方形网格,点A B C 、、在格点上.(1)在图①中确定格点D ,并画出以A B C D 、、、为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E ,并画出以A B C E 、、、为顶点的四边形,使其为中心对称图形.(画一个即可)●体验中考1、(2009年,枣庄市)如图,方格纸中的每个小正方形的边长均为1.(1)观察图①、②中所画的“L ”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;图①图②(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)答:①中的图形 ,②中的图形 .2、(2009年,淄博市)如图,点A ,B ,C 的坐标分别为(01)(02)(30)-,,,,,.从下面四个点(33)M ,,(33)N -,,(30)P -,,(31)Q -,中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( )A .MB .NC .PD .Q参考答案:◆随堂检测1、A.2、2. ∵点P (-b ,2)与点Q (3,2a )关于原点对称,∴3,1b a ==-,∴2a b +=.3、D. ∵当0a <时,点P (2,1a a --+)在第二象限,∴则点P 关于原点的对称点P ′在第四象限.故选D.4、解:线段AB 的两个端点A (0,-1),B (3,0)关于原点的对称点分别为A ′(1,0),B ′(-3,0),连结A ′B ′,就可得到与线段AB 关于原点对称的线段A ′B ′.(图略)◆课下作业●拓展提高1、A.2、C . 画图可得点1A 的坐标为()b a -,.3、(5,2).4、(-3,-6). 将点P (3,n )代入3y x =+得,6n =,∴对称点P ′为(-3,-6).5、图略.6、解:(1)如图:(2)如图:●体验中考1、(1)如下图:(2)图①—1(不是)或图①—2(是),图②(是)2、C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.2.2中心对称图形附答案
知识点
在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这
个图形叫做中心对称图形,这个点叫做。

一.选择
1.下.图中,是中心对称图形的是( )
2.图中,既是轴对称图形又是中心对称图形的是( )
3、下列标志既是轴对称图形又是中心对称图形的是()
A B C D
4.如图(1),把4张扑克牌放在桌上,然后把其中三张扑克牌绕自身中心旋转180°后,得到如图(2).你知道哪一张扑克牌没被旋转过吗?()
(1)
(2)
A B C D
5、单词NAME的四个字母中,是中心对称图形的是()
A.N B.AC.M D.E
6.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).
A. B. C. D.
7、如图,点A ,B ,C 的坐标分别为(01)(02)(30)-,
,,,,.从下面
四个点(33)M ,
,(33)N -,,(30)P -,,(31)Q -,中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是( )
A .M
B .N
C .P
D .Q 二、填空
8..中心对称是__个图形的特殊位置关系,中心对称图形是__个具有特殊性质的图形;把中心对称的__个图形看成__,就是一个__,把中心对称图形被过对称中心的任意直线分成的两部分看成__,这两个图形就__。

9.对于正n 边形,当边数n 为奇数时,它是__图形,但不是__图形;当边数n 为偶数时,它既是__图形,又是__图形。

正n 边形有__条对称轴。

10.下图中哪些图形绕其上的一点旋转180°,旋转前后的图形能完全重合?
图____________是.
11. 在①线段、 ②角、 ③等腰三角形、 ④等腰梯形、⑤平行四边形、 ⑥矩形、 ⑦菱
形、 ⑧正方形和⑨圆中,是轴对称图形的有______________是中心对称图形的有
_______________,既是轴对称图形又是中心对称图形的有____________. 12.写出符合下列要求的汉字。

⑴成轴对称图形的汉字10个
_______________________________________________________; ⑵成中心对称图形的汉字5个
______________________________________________________; ⑶既成轴对称图形,又成中心对称图形汉字5个_______________________________________;
三、作图及解答
13、如图所示,请在网格中作出△ABC 关于点O 对称的△A 1B 1C 1,再作出△A 1B 1C 1绕点B 1
逆时针旋转90°后的△A 2B 1C 2.
14.在图15-3-7 的两个圆中,按要求分别画出与图15-3-6 中不重复的图案(用尺规画、徒手画均可,但要尽可能准确、美观) a .是轴对称图形但不是中心对称图形; b .既是轴对称图形又是中心对称图形.
15、.已知:如图AD 是△ABC 中∠A 的平分线,DE //AC 交AB 于E .DF //AB 交AC 于E . 求证:点E ,F 关于直线AD 对称.
F
E
D C
B
A
b
a
参考答案
一、1.A 2. C 3.A 4.A 5.A 6.A7.C
二、8、两、一、两、一个整体、中心对称图形、两个图形、中心对称
9、轴对称、中心对称图形、轴对称、中心对称图形、n
10、②⑤
11、_①②③④⑥⑦⑧⑨_①⑤⑥⑦⑧⑨_ __①⑥⑦⑧⑨
12、略
13、略
14、略
15、证明:∵DE//AC DF//AB
∴四边形AEDF是平行四边形
∵DF//AB∴∠1=∠3
∵AD平分∠BAC,∴∠1=∠2
∵∠1=∠3 ∴∠2=∠3 ∴AF=DF
∴AEDF是菱形
∴AD垂直平分EF
则:E, F关于AD对称。

相关文档
最新文档