江西省赣州市中考数学模拟试卷(5月份)

合集下载

江西省赣州市2020年(春秋版)九年级数学中考模拟试卷(5月)D卷

江西省赣州市2020年(春秋版)九年级数学中考模拟试卷(5月)D卷

江西省赣州市2020年(春秋版)九年级数学中考模拟试卷(5月)D卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)一个长方体的长为4×103厘米,宽为2×102厘米,高为2.5×103厘米,则它的体积为()立方厘米.(结果用科学记数法表示)A . 2×109B . 20×108C . 20×1018D . 8.5×1082. (2分)(2018·黔西南) 据统计,近十年中国累积节能1570000万吨标准煤,1570000这个数用科学记数法表示为()A . 0157×107B . 1.57×106C . 1.57×107D . 1.57×1083. (2分)(2020·丰台模拟) 如图是某个几何体的三视图,该几何体是()A . 长方体B . 圆锥C . 圆柱D . 三棱柱4. (2分)下列四种说法;①为了了解某批灯泡的使用寿命可以用普查的方式;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一个事件发生的概率只有十亿分之一,那么它是不可能事件.其中,正确的说法是()A . ②④B . ①②C . ③④D . ②③5. (2分) (2019八上·安国期中) 点P(-5,3)关于y轴的对称点的坐标是()A .B .C .D .6. (2分)函数y=中自变量x的取值范围是()A . x>2B . x<2C . x≠2D . x≥2 .7. (2分) (2017九上·海口期中) 如图,在△ABC中,DE∥BC,DB=2AD,DE=4,则BC边的长等于()A . 6B . 8C . 10D . 128. (2分) (2019八下·郾城期末) 下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是()A . 48B . 63C . 80D . 999. (2分)(2020·新都模拟) 如图,在圆内接四边形ABCD中,∠C=110°,则∠BOD的度数为()A . 140°B . 70°C . 80°D . 60°10. (2分)(2019·惠民模拟) 一座人行天桥如图所示,坡面BC的铅直高度与水平宽度的比为1:2,为了方便市民推车过天桥,有关部门决定在保持天桥高度的前提下,降低坡度,使新坡面AC的坡度为1:3,AB=6m,则天桥高度CD为()A . 6mB . 6 mC . 7mD . 8m11. (2分)抛物线的形状、开口方向与y=x2-4x+3相同,顶点在(-2,1),则关系式为()A . y=(x-2)2+1B . y=(x+2)2-1C . y=(x+2)2+1D . y=-(x+2)2+1二、填空题 (共8题;共12分)12. (2分)在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O于点C,则∠AOC=________°.13. (2分)某校“环保小组”的学生到某居民小区随机调查了户居民一天丢弃废塑料袋的情况,统计结果如下表:请根据表中提供的信息回答:每户居民丢弃废塑料袋的个数户数这户居民一天丢弃废塑料袋的众数是________个;若该小区共有居民户,你估计该小区居民一个月(按天计算)共丢弃废塑料袋________个.14. (1分) (2016六下·新泰月考) 计算:(﹣2)﹣3=________.15. (2分)(2019·长春模拟) 如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的大小为________度.16. (1分)(2020·怀化) 某校招聘教师,其中一名教师的笔试成绩是80分,面试成绩是60分,综合成绩笔试占60%,面试占40%,则该教师的综合成绩为________分.17. (2分) (2020八下·瑞安期末) 如图,已知点在反比例函数的图象上,过点A作x轴的平行线交反比例函数的图象于点B,连结,过点B作交y轴于点C,连结,则的面积为________.18. (1分) (2017八下·垫江期末) 如图,在边长为4的正方形ABCD中,对角线AC,BD相交于点O,点E 是AD边上一点,连接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于点F,CP交BD于点G,连接PO,若PO∥BC,则四边形OFPG的面积是________.19. (1分)(2019八上·忻城期中) 观察下面的变化规律:…把上面等式的两边进行相加,得:,根据上面的结论计算:=________三、解答题 (共9题;共74分)20. (10分)(2017·岳阳模拟) 计算:﹣(4﹣π)0﹣6cos30°+|﹣2|21. (5分) (2019七下·卢龙期末)(1)化简:(3x+2)(3x-2)-5x(x-1)-(2x-1)2(2)解不等式组并在数轴上表示出它的解集.22. (15分)(2019·定安模拟) 定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.A B C笔试859590口试8085(1)请将表和图中的空缺部分补充完整;(2)图中B同学对应的扇形圆心角为________度;(3)竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为________,B同学得票数为________,C同学得票数为________;(4)若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断________当选.(从A,B,C选择一个填空)23. (10分)(2020·南昌模拟) 如图1,是某保温杯的实物图和平面抽象示意图.点,是保温杯上两个固定点,与两活动环相连,把手与两个活动环,相连,现测得,,如图2,当,,三点共线时,恰好.(1)请求把手的长;(2)如图3,当时,求的度数.(参考数据:,,)24. (10分) (2017九上·天长期末) 如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:△EDH∽△FBH;(2)若BD=6,求DH的长.25. (10分)如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.(1)求证:BD+2DE=BM.(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,则线段DG=_____;26. (2分)(2019·电白模拟) 阅读下面材料,然后解答问题:在平面直角坐标系中,以任意两点P(x1 , y1),Q(x2 , y2)为端点的线段的中点坐标为(,).如图,在平面直角坐标系xOy中,双曲线y=(x<0)和y=(x>0)的图象关于y轴对称,直线y=与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.(1)求a、b、k的值及点C的坐标;(2)若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标.27. (10分) (2019七下·白水期末) 在一次知识竞赛中,甲、乙两人进入了“必答题”环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分.(1)求a和b的值;(2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?28. (2分) (2018九上·汝阳期末) 已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.参考答案一、单选题 (共11题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共8题;共12分)12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共74分)20-1、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、。

江西省赣州市 中考数学模拟试卷(5月)含答案 (2)

江西省赣州市 中考数学模拟试卷(5月)含答案 (2)

江西省赣州市中考数学模拟试卷(5月份)一、选择题:(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.﹣的相反数是()A.B.C.6102 D.2.如图所示,有一根黑色金属丝镶嵌在一个完全透明的正方体表面,则该正方体的左视图是()A.B.C.D.3.下列运算正确的是()A.x3﹣3x2=﹣2x B.(﹣)2=x6C.6x3÷2x﹣2=3x D.(2x﹣4)2=4x2﹣164.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD5.若x1、x2是方程x2﹣2x﹣1=0的两个根,则x1+x1x2+x2的值为()A.1 B.﹣1 C.3 D.﹣36.若关于x的二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,则k的取值范围是()A.k=0 B.k=﹣1 C.k>﹣1 D.k≠0且k=﹣1二、填空题(本大题共6小题,每小题3分,共18分)7.化简:=.8.分解因式:2a2b+4ab+2b=.9.不等式组的解集为.10.将边长相等的一个正方形与一个正五边形,按如图重叠放置,则∠1度数=.11.如图,矩形ABCD中,AD=4,AB=2,以点A为圆心,AD为半径画弧交BC于点E,所得的扇形的弧长为.12.如图,在同一个平面直角坐标系xOy中,虚半圆O是函数y=(﹣5≤x≤5)的图象,实曲线(两支)是函数y=(k≠0)的图象:已知方程=(k≠0)有一个解为x=﹣3,则该方程其余的解为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:|﹣2|﹣+(﹣)﹣1;(2)如图,直线AD∥BE∥CF,=,DE=6,求EF的长.14.先化简,再求值:(a﹣)÷,其中a=2+,b=2﹣.15.4月23日“世界读书日”期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,试一试:求出每本《英汉词典》和《读者》杂志的单价.16.赣州市中考体育测试,男生选测项目有:100米、50米、引体向上、立定跳远,男生需从四个项目中随机选取两个,要求:①100米和50米(分别记为A、B)二选一;②引体向上和立定跳远(分别记为C、D)二选一.(1)直接列出一名男生体育选测项目中所有可能选择的结果;(2)请用列表法或画树形图法,求出小华、小海两名男生在体育测试中,“选取的项目完全相同”的概率.17.在10×10的正方形网格中18.人类的血型一般可分为A,B,AB,O型四种,宁波市中心血战202X年共有8万人无偿献血,血战统计人员由电脑随机选出20人,血型分别是:O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.(1)请设计统计表分类统计这20人各类血型人数;(2)若每位献血者平均献血200毫升,一年中宁波市各医院O型血用血量约为6×106毫米,请你估计202X年这8万人所献的O型血是否够用?19.如图,已知矩形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,顶点B的坐标是(6,4),反比例函数y=(x>0)的图象经过矩形对角线的交点E,且与BC边交于点D.(1)①求反比例函数的解析式与点D的坐标;②直接写出△ODE的面积;(2)若P是OA上的动点,求使得“PD+PE之和最小”时的直线PE的解析式.20.如图1是一个新款水杯,水杯不盛水时按如图2所示的位置放置,这样可以快速晾干杯底,干净透气;将图2的主体部分的抽象成图3,此时杯口与水平直线的夹角为35°,四边形ABCD可以看作矩形,测得AB=10cm,BC=8cm,过点A作AF⊥CE,交CE于点F.(1)求∠BAF的度数;(2)求点A到水平直线CE的距离AF的长(精确到0.1cm)(参考数据sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)21.如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.五、(本大题1小题,共10分)22.在直角坐标系xOy中,定义点C(a,b)为抛物线L:y=ax2+bx(a≠0)的特征点坐标.(1)已知抛物线L经过点A(﹣2,﹣2)、B(﹣4,0),求出它的特征点坐标;(2)若抛物线L1:y=ax2+bx的位置如图所示:①抛物线L1:y=ax2+bx关于原点O对称的抛物线L2的解析式为;②若抛物线L1的特征点C在抛物线L2的对称轴上,试求a、b之间的关系式;③在②的条件下,已知抛物线L1、L2与x轴有两个不同的交点M、N,当一点C、M、N为顶点构成的三角形是等腰三角形时,求a的值.六、(本大题1小题,共12分)23.操作:如图1,正方形ABCD中,AB=a,点E是CD边上一个动点,在AD上截取AG=DE,连接EG,过正方形的中线O作OF⊥EG交AD边于F,连接OE、OG、EF、AC.探究:在点E的运动过程中:(1)猜想线段OE与OG的数量关系?并证明你的结论;(2)∠EOF的度数会发生变化吗?若不会,求出其度数,若会,请说明理由.应用:(3)当a=6时,试求出△DEF的周长,并写出DE的取值范围;(4)当a的值不确定时:①若=时,试求的值;②在图1中,过点E作EH⊥AB于H,过点F作FG⊥CB于G,EH与FG相交于点M;并将图1简化得到图2,记矩形MHBG的面积为S,试用含a的代数式表示出S的值,并说明理由.江西省赣州市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题:(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.﹣的相反数是()A.B.C.6102 D.【考点】相反数.【分析】根据相反数的定义回答即可.【解答】解:﹣的相反数是.故选;D.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.如图所示,有一根黑色金属丝镶嵌在一个完全透明的正方体表面,则该正方体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据左视图是从物体的左面看得到的图形解答.【解答】解:从左边看到的现状是A中图形,如图所示:,故选:A.【点评】此题主要考查了三视图的画法中左视图画法,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.下列运算正确的是()A.x3﹣3x2=﹣2x B.(﹣)2=x6C.6x3÷2x﹣2=3x D.(2x﹣4)2=4x2﹣16【考点】整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据同类项合并、积的乘方、整式的除法和乘法计算即可.【解答】解:A、x3与3x2不能合并,错误;B、(﹣)2=x6,正确;C、6x3÷2x﹣2=3x5,错误;D、(2x﹣4)2=4x2﹣16x+16,错误;故选B【点评】此题考查了整式的混合运算,涉及的知识有:单项式除单项式,同底数幂的乘法,合并同类项,以及积的乘方与幂的乘方,熟练掌握法则是解本题的关键.4.如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠ABC=∠EFD,BC=FD【考点】全等三角形的判定.【分析】利用三角形全等的判定方法:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、添加BC=FD,AC=ED可利用SAS判定△ABC≌△EFD,故此选项不合题意;B、添加∠A=∠DEF,AC=ED可利用SAS判定△ABC≌△EFD,故此选项不合题意;C、添加AC=ED,AB=EF不能判定△ABC≌△EFD,故此选项符合题意;D、添加∠ABC=∠EFD,BC=FD可利用ASA判定△ABC≌△EFD,故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.若x1、x2是方程x2﹣2x﹣1=0的两个根,则x1+x1x2+x2的值为()A.1 B.﹣1 C.3 D.﹣3【考点】根与系数的关系.【分析】欲求x1+x1x2+x2的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1x2=﹣1,∴x1+x1x2+x2=x1+x2+x1x2=2﹣1=1.故选:A.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.6.若关于x的二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,则k的取值范围是()A.k=0 B.k=﹣1 C.k>﹣1 D.k≠0且k=﹣1【考点】抛物线与x轴的交点;二次函数的定义.【专题】计算题.【分析】先根据二次函数的定义得到k≠0,再根据抛物线与x轴的交点问题得到△=22﹣4k×(﹣1)=0,然后解一次方程即可得到k的值.【解答】解:∵y=kx2+2x﹣1为二次函数,∴k≠0,∵二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,∴△=22﹣4k×(﹣1)=0,解得k=﹣1,∴k的值为﹣1.故选B.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:当△=b2﹣4ac>0时,抛物线与x轴有2个交点;当△=b2﹣4ac=0时,抛物线与x轴有1个交点;当△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共6小题,每小题3分,共18分)7.化简:=.【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简,即可解答.【解答】解:,故答案为:.【点评】本题考查了二次根式的性质与化简,解决本题的关键是熟记二次根式的性质.8.分解因式:2a2b+4ab+2b=2b(a+2)2.【考点】提公因式法与公式法的综合运用.【分析】根据提公因式法,可得公式,根据公式法,可得答案.【解答】解:原式=2b(a2+4a+1)=2b(a+2)2,故答案为:2b(a+2)2.【点评】本题考查了因式分解,利用了提公因式法、公式法分解因式,注意分解要彻底.9.不等式组的解集为1≤x<3.【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,然后求其公共部分.【解答】解:由①得,x≥1,由②得,x<3,故不等式组的解集为1≤x<3.故答案为1≤x<3.【点评】本题考查了解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.将边长相等的一个正方形与一个正五边形,按如图重叠放置,则∠1度数=18°.【考点】多边形内角与外角.【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【解答】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=×540°=108°,∠BAE=108°又∵EA=ED,∴∠EAD=×(180°﹣108°)=36°,∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠1=90°﹣72°=18°,故答案为:18°.【点评】本题考查了正多边形的计算,重点掌握正多边形内角和公式是关键.11.如图,矩形ABCD中,AD=4,AB=2,以点A为圆心,AD为半径画弧交BC于点E,所得的扇形的弧长为.【考点】弧长的计算;矩形的性质.【分析】根据余弦的定义求出∠BAE的度数,根据矩形的性质求出∠DAE的度数,根据弧长的公式l=计算即可.【解答】解:由题意得,AE=AD=4,cos∠BAE===,则∠BAE=30°,∴∠DAE=60°,扇形的弧长==,故答案为:.【点评】本题考查的是扇形的弧长的计算,掌握弧长的公式:l=是解题的关键.12.如图,在同一个平面直角坐标系xOy中,虚半圆O是函数y=(﹣5≤x≤5)的图象,实曲线(两支)是函数y=(k≠0)的图象:已知方程=(k≠0)有一个解为x=﹣3,则该方程其余的解为3、4、﹣4.【考点】反比例函数图象上点的坐标特征.【分析】将x=﹣3代入方程可求得k的值,然后将k的值代入方程,接下来,将方程两边同时平方,最后解关于x的分式方程即可.【解答】解:∵方程=(k≠0)有一个解为x=﹣3,∴=,解得k=12.∴方程=.∴25﹣x2=.整理得:x4﹣25x2+144=0.∴(x2﹣9)(x2﹣16)=0,即(x+3)(x﹣3)(x+4)(x﹣4)=0.解得:x1=﹣3,x2=3,x3=﹣4,x4=4.所以方程的其他解为3、4、﹣4.故答案为:3、4、﹣4.【点评】本题主要考查函数与方程的关系,通过将方程两边同时平方,将原方程转化为分式方程求解是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:|﹣2|﹣+(﹣)﹣1;(2)如图,直线AD∥BE∥CF,=,DE=6,求EF的长.【考点】平行线分线段成比例;实数的运算.【分析】(1)根据实数的运算法则计算即可;(2)根据平行线分线段成比例定理得到比例式,代入数据即可得到结论.【解答】解:(1)原式=2﹣3+(﹣2)=﹣3;(2)∵AD∥BE∥CF,=,∴,即,∴DF=9,∴EF=DF﹣DE=9﹣6=3.【点评】本题考查了实数的运算法则,平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.14.先化简,再求值:(a﹣)÷,其中a=2+,b=2﹣.【考点】分式的化简求值.【分析】先通过通分、化除法为乘法、约分进行化简,然后代入求值.【解答】解:原式=×=.∵a=2+,b=2﹣,∴a+b=4,a﹣b=2,∴将其代入,得原式==.【点评】本题考查了分式的化简求值.分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本节内容而言,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.15.4月23日“世界读书日”期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,试一试:求出每本《英汉词典》和《读者》杂志的单价.【考点】二元一次方程组的应用.【分析】设每本《英汉词典》的单价为x元,每本《读者》的价格为y元,根据:10本词典和4本杂志的书款+5元快递费=349,2本词典和12本杂志的书款+5元快递费=141,列方程组可求得.【解答】解:设每本《英汉词典》的单价为x元,每本《读者》的价格为y元,根据题意,得:,解得:,答:每本《英汉词典》的单价为32元,每本《读者》的价格为6元.【点评】本题主要考查二元一次方程组的应用,准确确定蕴含的相等关系是解题的关键.16.赣州市中考体育测试,男生选测项目有:100米、50米、引体向上、立定跳远,男生需从四个项目中随机选取两个,要求:①100米和50米(分别记为A、B)二选一;②引体向上和立定跳远(分别记为C、D)二选一.(1)直接列出一名男生体育选测项目中所有可能选择的结果;(2)请用列表法或画树形图法,求出小华、小海两名男生在体育测试中,“选取的项目完全相同”的概率.【考点】列表法与树状图法.【分析】(1)首先将100米、50米、引体向上、立定跳远分别用A,B,C,D表示,然后画树状图,由树状图求得所有等可能的结果;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两名男生在体育测试中所选项目完全相同的情况,再利用概率公式求解即可求得答案.【解答】解:(1)将100米、50米、引体向上、立定跳远分别用A,B,C,D表示,画树状图得:可得所有可能选择的结果有四种AC,AD,BC,BD;(2)列表得:AC AD BC BDAC (AC,AC)(AD,AC)(BC,AC)(BD,AC)AD (AC,AD)(AD,AD)(BC,AD)(BD,AD)BC (AC,BC)(AD,BC)(BC,BC)(BD,BC)BD (AC,BD)(AD,BD)(BC,BD)(BD,BD)∵所有可能出现的结果共有16种,其中所选项目相同的有4种.∴两人所选项目相同的概率为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.在10×10的正方形网格中18.人类的血型一般可分为A,B,AB,O型四种,宁波市中心血战202X年共有8万人无偿献血,血战统计人员由电脑随机选出20人,血型分别是:O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.(1)请设计统计表分类统计这20人各类血型人数;(2)若每位献血者平均献血200毫升,一年中宁波市各医院O型血用血量约为6×106毫米,请你估计202X年这8万人所献的O型血是否够用?【考点】用样本估计总体;统计表.【分析】(1)根据统计表格进行解答即可;(2)根据样本估计总体直接解答得出答案即可.【解答】解:(1)统计表格如图:(2),6.4×106>6×106,答:O型血够用.【点评】此题主要考查了用样本估计总体,根据O型血的数量求出O型血所占的百分比是解题关键.19.如图,已知矩形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,顶点B的坐标是(6,4),反比例函数y=(x>0)的图象经过矩形对角线的交点E,且与BC边交于点D.(1)①求反比例函数的解析式与点D的坐标;②直接写出△ODE的面积;(2)若P是OA上的动点,求使得“PD+PE之和最小”时的直线PE的解析式.【考点】反比例函数综合题.【分析】(1)①连接OE,则O、E、三点共线,则E是OB的中点,即可求得E的坐标,利用待定系数法求得函数的解析式,进而求得D的坐标;②根据S△ODE=S△OBC﹣S△OCD﹣S△BDE即可求解;(2)作E关于OA轴的对称点E',则直线DE'就是所求的直线PE,利用待定系数法即可求解.【解答】解:(1)①连接OB,则O、E、B三点共线.∵B的坐标是(6,4),E是矩形对角线的交点,∴E的坐标是(3,2),∴k=3×2=6,则函数的解析式是y=.当y=4时,x=1.5,即D的坐标是(1.5,4);②S△OBC=BC•OC=×6×4=12,S△OCD=OC•CD=×4×1.5=3,S△BDE=×(6﹣1.5)×2=4.5,则S△ODE=S△OBC﹣S△OCD﹣S△BDE=12﹣3﹣3﹣4.5=4.5;(2)作E关于OA轴的对称点E',则E'的坐标是(3,﹣2).连接E'D,与x轴交点是P,此时PO+PE最小.设y=mx+n,把E'和D的坐标代入得:,解得:,则直线PE的解析式是y=﹣4x+10.【点评】本题考查了待定系数法求函数的解析式,以及图形的对称,求得函数的解析式是关键.20.如图1是一个新款水杯,水杯不盛水时按如图2所示的位置放置,这样可以快速晾干杯底,干净透气;将图2的主体部分的抽象成图3,此时杯口与水平直线的夹角为35°,四边形ABCD可以看作矩形,测得AB=10cm,BC=8cm,过点A作AF⊥CE,交CE于点F.(1)求∠BAF的度数;(2)求点A到水平直线CE的距离AF的长(精确到0.1cm)(参考数据sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)【考点】解直角三角形的应用.【分析】(1)∠D=∠BCD=90°,求出∠DAF=∠DCE=55°,即可得出结果;(2)作BM⊥AF于M,BN⊥EF于N,由三角函数得出MF=BN=BC•sin35°≈4.59(cm),AM=AB•cos35°≈8.20,(cm),即可得出结果.【解答】解:(1)∵四边形ABCD是矩形,∴∠D=∠BCD=90°,∴∠DAF=∠DCE=90°﹣35°=55°,∴∠BAF=90°﹣55°=35°;(2)作BM⊥AF于M,BN⊥EF于N,如图所示:则MF=BN=BC•sin35°=0.5736×8≈4.59(cm),AM=AB•cos35°=10×0.8192≈8.20,(cm),∴AF=AM+MF=8.20+4.59≈12.8(cm);即A到水平直线CE的距离AF的长为12.8cm.【点评】本题考查了解直角三角形的应用;通过作辅助线运用三角函数求出AM和BN是解决问题的关键.21.如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.【考点】圆的综合题.【专题】综合题.【分析】(1)要想证明△ABH是等腰三角形,只需要根据平行四边形的性质可得∠B=∠ADC,再根据圆内接四边形的对角互补,可得∠ADC+∠AHC=180°,再根据邻补角互补可知∠AHC+∠AHB=180°,从而可以得到∠ABH和∠AHB的关系,从而可以证明结论成立;(2)要证直线PC是⊙O的切线,只需要连接OC,证明∠OCP=90°即可,根据平行四边形的性质和边AB与⊙O相切于点A,可以得到∠AEC的度数,又∠PCD=2∠DAF,∠DOF=2∠DAF,∠COE=∠DOF,通过转化可以得到∠OCP的度数,从而可以证明结论;(3)根据题意和(1)(2)可以得到∠AED=90°,由平行四边形的性质和勾股定理,由AB=2,AD=,可以求得半径的长.【解答】(1)证明:∵四边形ADCH是圆内接四边形,∴∠ADC+∠AHC=180°,又∵∠AHC+∠AHB=180°,∴∠ADC=∠AHB,∵四边形ABCD是平行四边形,∴∠ADC=∠B,∴∠AHB=∠B,∴AB=AH,∴△ABH是等腰三角形;(2)证明:连接OC,如右图所示,∵边AB与⊙O相切于点A,∴BA⊥AF,∵四边形ABCD是平行四边形,∴AB∥CD,∴CD⊥AF,又∵FA经过圆心O,∴,∠OEC=90°,∴∠COF=2∠DAF,又∵∠PCD=2∠DAF,∴∠COF=∠PCD,∵∠COF+∠OCE=90°,∴∠PCD+∠OCE=90°,即∠OCP=90°,∴直线PC是⊙O的切线;(3)∵四边形ABCD是平行四边形,∴DC=AB=2,∵FA⊥CD,∴DE=CE=1,∵∠AED=90°,AD=,DE=1,∴AE=,设⊙O的半径为r,则OA=OD=r,OE=AE﹣OA=4﹣r,∵∠OED=90°,DE=1,∴r2=(4﹣r)2+12解得,r=,即⊙O的半径是.【点评】本题考查圆的综合题、平行四边形的性质、勾股定理、同弧所对的圆心角和圆周角的关系,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.五、(本大题1小题,共10分)22.在直角坐标系xOy中,定义点C(a,b)为抛物线L:y=ax2+bx(a≠0)的特征点坐标.(1)已知抛物线L经过点A(﹣2,﹣2)、B(﹣4,0),求出它的特征点坐标;(2)若抛物线L1:y=ax2+bx的位置如图所示:①抛物线L1:y=ax2+bx关于原点O对称的抛物线L2的解析式为y=﹣ax2+bx;②若抛物线L1的特征点C在抛物线L2的对称轴上,试求a、b之间的关系式;③在②的条件下,已知抛物线L1、L2与x轴有两个不同的交点M、N,当一点C、M、N为顶点构成的三角形是等腰三角形时,求a的值.【考点】二次函数综合题.【分析】(1)结合点A、B点的坐标,利用待定系数法即可求出抛物线L的函数解析式,再结合特征点的定义,即可得出结论;(2)①由抛物线L1:y=ax2+bx与抛物线L2关于原点O对称,可将y换成﹣y,将x换成﹣x,整理后即可得出结论;②根据抛物线L2的解析式可找出它的对称轴为:x=,由抛物线L1的特征点C在抛物线L2的对称轴上可得出a=,变形后即可得出结论;③结合②的结论,表示出点C、M、N三点的坐标,由两点间的距离公式可得出MN、MC、NC的长度,结合等腰三角形的性质分三种情况考虑,分别根据线段相等得出关于a的一元四次方程,解方程再结合a的范围即可得出a的值.【解答】解:(1)将点A(﹣2,﹣2)、B(﹣4,0)代入到抛物线解析式中,得,解得:.∴抛物线L的解析式为y=+2x,∴它的特征点为(,2).(2)①∵抛物线L1:y=ax2+bx与抛物线L2关于原点O对称,∴抛物线L2的解析式为﹣y=a(﹣x)2+b(﹣x),即y=﹣ax2+bx.故答案为:y=﹣ax2+bx.②∵抛物线L2的对称轴为直线:x=﹣=.∴当抛物线L1的特征点C(a,b)在抛物线L2的对称轴上时,有a=,∴a与b的关系式为b=2a2.③∵抛物线L1、L2与x轴有两个不同的交点M、N,∴在抛物线L1:y=ax2+bx中,令y=0,即ax2+bx=0,解得:x1=﹣,x2=0(舍去),即点M(﹣,0);在抛物线L2:y=﹣ax2+bx中,令y=0,即﹣ax2+bx=0,解得:x1=,x2=0(舍去),即点N(,0).∵b=2a2,∴点M(﹣2a,0),点N(2a,0),点C(a,2a2).∴MN=2a﹣(﹣2a)=4a,MC=,NC=.因此以点C、M、N为顶点的三角形是等腰三角形时,有以下三种可能:(i)MC=MN,此时有:=4a,即9a2+4a4=16a2,解得:a=0,或a=±,∵a<0,∴a=﹣;(ii)NC=MN,此时有:=4a,即a2+4a4=16a2,解得:a=0,或a=±,∵a<0,∴a=﹣;(iii)MC=NC,此时有:=,即9a2=a2,解得:a=0,又∵a<0,∴此情况不存在.综上所述:当以点C、M、N为顶点的三角形是等腰三角形时,a的值为﹣或﹣.【点评】本题考查了利用待定系数法求二次函数解析式、二次函数的性质、等腰三角形的性质以及解一元高次方程,解题的关键是:(1)利用待定系数法求二次函数解析式;(2)①明白关于原点对称点的特征;②利用二次函数的性质找出对称轴关系式;③分情况讨论求值.本题属于中档题,难度不大,解决该题型题目时,首先根据特征点的定义找出a、b之间的关系,再结合两点间的距离公式以及等腰三角形的性质找出关于a的一元高次方程,解方程即可得出结论.六、(本大题1小题,共12分)23.操作:如图1,正方形ABCD中,AB=a,点E是CD边上一个动点,在AD上截取AG=DE,连接EG,过正方形的中线O作OF⊥EG交AD边于F,连接OE、OG、EF、AC.探究:在点E的运动过程中:(1)猜想线段OE与OG的数量关系?并证明你的结论;(2)∠EOF的度数会发生变化吗?若不会,求出其度数,若会,请说明理由.应用:(3)当a=6时,试求出△DEF的周长,并写出DE的取值范围;(4)当a的值不确定时:①若=时,试求的值;②在图1中,过点E作EH⊥AB于H,过点F作FG⊥CB于G,EH与FG相交于点M;并将图1简化得到图2,记矩形MHBG的面积为S,试用含a的代数式表示出S的值,并说明理由.【考点】四边形综合题.【分析】(1)由正方形的性质得到△AOG≌△DOG即可;(2)由△AOG≌△DOG得到结论,再结合同角或等角的余角相等求出∠EOF;(3)判断出OF垂直平分EG,计算周长即可;(4)先判断出△AOF∽△CEO,得出,求出.【解答】解:(1)OE=OG,理由:如图1,连接OD,在正方形ABCD中,∵点O是正方形中心,∴OA=OD,∠OAD=∠ODC=45°,∵AG=DE,∴△AOG≌△DOG,∴OE=OG,(2)∠EOF的度数不会发生变化,理由:由(1)可知,△AOG≌△DOE,∴∠DOE=∠AOG,∵∠AOG+∠DOG=90°,∴∠DOE+∠DOG=90°,∴∠DOE=∠AOG,∵∠EOG=90°,∵OE=OG,OF⊥EG,∴∠EOF=45°,∴恒为定值.(3)由(2)可知,OE=OG,OF⊥EG,∴OF垂直平分EG,∴△DEF的周长为DE+EF+DF=AG+FG+DF=AD,∵a=6,∴△DEF的周长为AD=a=6,(0<DE<3)(4)①如图2,∵∠EOF=45°,∴∠COE+AOF=135°∵∠OAF=45°,∴∠AFO+∠AOF=135°,∴∠COE=∠AFO,∴△AOF∽△CEO,∴,∵O到AF与CE的距离相等,∴,∴()2=,∵>0,∴=,②猜想:S=a2,理由:如图3,由(1)可知,△AOF∽△CEO,∴,∴AF×CE=OA×OC,∵EH⊥AB,FG⊥CB,∠B=90°,∴S=AF×CE,∴S=OA×OC=×=a2.【点评】此题是四边形综合题,主要考查正方形的性质,线段的垂直平分线的判定和性质,相似三角形的性质和判定,解本题的关键是角度的计算.。

2024届江西省赣州市赣县重点中学中考数学五模试卷含解析

2024届江西省赣州市赣县重点中学中考数学五模试卷含解析

2024届江西省赣州市赣县重点中学中考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.在Rt△ABC中,∠C=90°,如果AC=2,cosA=23,那么AB的长是()A.3 B.43C.5D.132.2cos 30°的值等于()A.1 B.2C.3D.23.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)4.若代数式22xx有意义,则实数x的取值范围是()A.x=0 B.x=2 C.x≠0D.x≠25.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°6.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1 2 3 5方案2 3 2 5方案32.5 2.5 5则最省钱的方案为( ) A .方案1 B .方案2C .方案3D .三个方案费用相同7.下列调查中,最适合采用普查方式的是( ) A .对太原市民知晓“中国梦”内涵情况的调查 B .对全班同学1分钟仰卧起坐成绩的调查 C .对2018年央视春节联欢晚会收视率的调查 D .对2017年全国快递包裹产生的包装垃圾数量的调查 8.函数y=13x -中,自变量x 的取值范围是( ) A .x >3 B .x <3C .x=3D .x≠39.计算 22x x x+-的结果为( ) A .1B .xC .1xD .2x x+ 10.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。

2022年江西省赣州市中考数学适应性试卷(5月份)及答案解析

2022年江西省赣州市中考数学适应性试卷(5月份)及答案解析

2022年江西省赣州市中考数学适应性试卷(5月份)一、选择题(本大题共6小题,共18.0分。

在每小题列出的选项中,选出符合题目的一项)1. 化简−(−6)的结果为( )A. 6B. −6C. 16D. −162. 下列2022年北京冬奥会吉祥物冰墩墩的图形中,是轴对称图形的是( )A. B. C. D.3. 如图1,是七巧块,又叫立体七巧板,它是利用七块不相同的立体积件组成的立体图形;那么图2不可能是下列哪个积件的视图( )A. B. C. D.4. 用一张宽为x的矩形纸片剪成四个全等的直角三角形,如图1,然后把这四个全等的直角三角形纸片拼成一个赵爽弦图;如图2,若弦图的大正方形的边长为6,中间的小正方形面积为S,请探究S与x之间是什么函数关系( )A. 一次函数B. 二次函数C. 反比例函数D. 其它函数5. 若关于x的不等式组{2x+1>6x−a≤0恰有2个整数解,则实数a的取值范围是( )A. 4<a<5B. 4<a≤5C. 4≤a≤5D. 4≤a<56. 用绘图软件绘制出函数y=ax的图象,如图,则根据你学习函数图象的经验,下列对(x+b)2a,b大小的判断,正确的是( )A. a>0,b<0B. a>0,b>0C. a<0,b>0D. a<0,b<0二、填空题(本大题共6小题,共18.0分)7. 分解因式:x2+2xy+y2−1=______.8. 光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米,将数9500000000000用科学记数法表示应为______.9. 已知α,β是方程x2−2x−4=0的两根,则α2−α+β=______.10. 我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是______.11. 如图,矩形ABCD中,AB=8cm,AD=6cm,矩形ABCD绕它的对称中心O旋转一周,边AD扫过的面积是______cm2.12. 如图,矩形ABCD中,AB=6,AD=2,点E是边CD的中点,点P在AB边上运动,点F为DP的中点;当△DEF为等腰三角形时,则AP的长为______.三、计算题(本大题共1小题,共6.0分)13. (1)计算:4cos30°+|√3−4|−(12)−2;(2)如图,一把直尺与一块三角板如图放置,若∠1=24°,求∠2的度数.四、解答题(本大题共10小题,共78.0分。

江西省赣州市章贡区2021年中考数学5月适应性试题(含答案与解析)

江西省赣州市章贡区2021年中考数学5月适应性试题(含答案与解析)
9.关于x的方程x2﹣kx+2=0有一个根是1,则方程的另一个解为___.
10.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托:折回索子却量竿,却比竿子短一托,”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是_________.
tan67.4°≈2.40,tan15.5°=0.278,tan74.5°≈3.60):
(2)当夹子的开口最大(即点C与点D重合)时,求A,B两点间的距离.
21.如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O 半径.
甲大棚20串葡萄的重量分别为:
545,560,414,565,640,560,590,542,425,560,
630,580,466,530,487,625,490,513,508,540,
乙大棚20串葡萄的重量在C组中的数据是:520,545,530,520,533,522
甲、乙两大棚随机抽取的葡萄的质量数据统计表如图表所示:
【详解】解:A、 ,错误,故不符合题意;
B、 ,错误,故不符合题意;
C、 ,正确,故符合题意;
D、 ,错误,故不符合题意;
故选C.
【点睛】本题主要考查零次幂、负指数幂及幂的乘方,熟练掌握零次幂、负指数幂及幂的乘方是解题的关键.
4.如图的两个几何体各由5个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )
22.如图1,菱形ABCD中,AB=6.∠B=60°,四边形EFGB的项点E,G分别在边BC和AB上,EF∥CD,FG∥AD,连接FD.

江西省赣州市章贡区2020年九年级数学5月适应性模拟试题

江西省赣州市章贡区2020年九年级数学5月适应性模拟试题

章贡区2019-2020学年第二学期中考适应性考试九年级数学参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.D 2.D3.C4.C5.A6.C二、填空题(本大题共6小题,每小题3分,共18分)7.a (a +b )(a ﹣b )8.15° 9.2:3 10.1)9171(=+x 11.3412.43或1 三、(本大题共5小题,每小题6分,共30分)(2)解:∵△BCD ≌△ACE , ∴S △BCD =S △ACE ,∴S 四边形AECD =S △BCD +S △ACD =S △ABC . ∵S △ABC =4×4÷2=8, ∴S 四边形AECD =8.…………6分14.解:,由①得,x ≤1,由②得,x >﹣3,……4分故不等式组的解集为:﹣3<x ≤1.在数轴上表示为:.…………6分15.解:(1)如图1,直线AF 为所求作的直线,(2)如图2点P 为所求作的点 每一个答对得3分16.(解:(1)(14P 猜对)= ………………………………2分 ﹙2﹚………………………………4分P (恰好同一天考语文、数学)=124=31………………………………6分 17.解………………2分……………………6分语 数 外语 数 物语 外 物数 外 物语 数 外 物下午上午四、(本大题共3小题,每小题8分,共24分) 18.解:(1);……2分(2)根据扇形统计图的特点可得A 所占的比例为; 因为总垃圾量为; 所以A 处所占的垃圾量=640×12.5%=80; 补全条形统计图如下: ……5分(3)因为,所以;所以费用为75×0.005×80=30(元)。

答:运垃圾所需的费用为30元. ……8分19. (1)如图,连接OC 、AB ,延长OC 交AB 于点D , ∵OA =OB ,CA =CB ,OC =OC , ∴ ∆OAC ≌∆OBC , ∴∠COA =∠COB ,∵OA =OB , ∴OD ⊥AB (三线合一),又∵CA =CB ,∠ACB =120°,∴∠ACD =∠BCD =60°∴AD =32,∴OD=()462321422=-≈13.56cm ,=x 37440383634=+++%5.12%5.37%501=--640%50320=ACAB=︒37tan 7510075.0=⨯≈AB O即点O 到直线AB 的距离为13.56cm ;…………………4分 (2)∵OD ⊥AB ,OD=13.56cm ,OA=14cm , ∴cos∠AOD =97.01456.13≈=OA OD , ∴ ∠AOD ≈14.33°,∴∠AOB =2∠AOD ≈28.66°;………………………6分 (3)∵∠AOB ≈28.66°,∴日历从台历正面翻到背面所经历的圆心角为360°-28.66°=331.34°,此时点B 所经历的路径长为92.801801414.334.331≈⨯⨯………8分20解:(1)连结AD ,则∠ADO =∠B =600,在Rt△ADO 中,∠ABO =600,点A 的坐标为(30),, ∴OD =OA ÷tan∠ODA =3÷3=3.∴D 点的坐标是(0,3).…………3分(2)∵∠AOD =900,∠ADO =600,DO =3∴AD =23∴△AOB 的外接圆的半径=21AD =3…………5分 (3)猜想是CD 与圆相切,∴∠AOD 是直角,∴AD 是圆的直径.又∵若点C 的坐标为(10)-,, ∴tan∠CDO =ODCO =3, ∠CDO =300. ∴∠CDA =∠CDO +∠ADO =900,即CD ⊥AD .∴CD 切外接圆于点D .…………………………8分五、(本大题共2小题,每小题9分,共18分)21.解:(1)由于反比例函数k p m =甲甲过了点(200,0.5),代入200,0.5m p ==甲可得:100k =甲元; ……………………………………1分由于p 乙始终为0.4,代入k p m =乙乙,可得=0.4k m 乙元; …………………………………………………………………2分(2)由(1)及优惠率p 的含义可知:当购买总金额都为m 元在200400m ?条件下,甲家商场采取的促销方案是:优惠100元; ……………………………………3分 乙家商场采取的促销方案是:打6折促销; ……………………………………5分(1) 由(2)可知当200400m ?时,甲家商场需花(100)m -元, 乙家商场需花0.6m 元,由1000.6m m -=时可得250m =,即当250m =时, 两家商场需花钱一样多; …………………………………7分 观察函数图象可得:当200250m ?时,甲家商场更优惠; ……………………………………8分 当250400m <<时,乙家商场更优惠. ……………………………………9分22. 解:(1)当∠BAD =120°,∠EAF =60°时,EF =BE +DF 不成立,应为EF <BE +DF .理由如下:∵在菱形ABCD 中,∠BAD =120°,∠EAF =60°,∴AB =AD ,∠1+∠2=60°,∠B =∠ADC =60°,∴把△ABE 绕点A 逆时针旋转120°至△ADE ′,如图(2),连结E ′F ,∴∠EAE ′=120°,∠1=∠3,AE ′=AE ,DE ′=BE ,∠ADE ′=∠B =60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,……………………3分∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180°,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∴△AEF≌△AE′F(SAS ),∴EF=E′F,∴EF=DE′+DF=BE+DF;……………………7分归纳:在四边形ABCD 中,点E 、F 分别在BC 、CD 上,当AB=AD ,∠B+∠D=180°,∠EAF =21∠BAD 时,EF=BE+DF .……………………9分六、(本大题共12分)23.解:(1)∵抛物线C 1:y 1=a (x -1)2+k 1(a ≠0)交x 轴于点(0,0),对称轴为直线x =1, ∴抛物线与x 轴的另一个交点为(2,0),∴b 1=2.……………………2分(2)由与(1)相同的方法可得b 2=4,b 3=8,b 4=16,按此规律可得b n =2n ,∴A n-1A n =b n -b n-1=2n -2n-1=2n-1.……………………5分(3)①k n 与a 、n 的数量关系为:k n =-4n-1a ,理由如下:由(1)将(0,0)代入y 1=a (x -1)2+k 1,可得k 1=-a ,∵b 1=2,∴C 2:y 2=a (x -b 1)2+k 2可化为C 2:y 2=a (x -2)2+k 2,∵抛物线C2:y2=a(x-2)2+k2交x轴与点(0,0),∴0=a(0-2)2+k2,∴4a+k2=0,即k2=-4a.用同样的方法可知,k3=-16a,k4=-64a,按此规律可知,k n与a、n的数量关系为:k n=-4n-1a.……………………10分②抛物线族的顶点坐标S和T所满足的函数关系式为:S=-aT2(T≥0)………12分。

赣州市中考数学5月模拟考试试卷

赣州市中考数学5月模拟考试试卷

赣州市中考数学5月模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·偃师期中) 若x的相反数是3,=5,则x+y的值为()A . -8B . 2C . -8或2D . 8或-22. (2分)下列计算,正确的是A .B .C .D .3. (2分) (2016九上·沙坪坝期中) 如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠DAB等于()A . 30°B . 45°C . 60°D . 90°4. (2分)(2017·东胜模拟) 某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A .B .C .D .5. (2分)为了改善住房条件,小亮的父母考察了某小区的A、B两套房.B房的面积比A房的面积大24平方米,两套楼房的总房价,A房和B房每平米的价格分别是平均价格的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A房的面积为x平方米,B房的面积为y平方米,根据以上信息得出了下列方程组,其中正确的是()A .B .C .D .6. (2分)把不等式组的解集表示在数轴上,正确的是()A .B .C .D .7. (2分)(2017·姑苏模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .8. (2分)在正方形ABCD中,点E为AD中点,DF=CD,则下列说法:(1)BE⊥EF;(2)图中有3对相似三角形;(3)E到BF的距离为AB;(4)=.其中正确的有()A . 4个B . 3个C . 2个D . 1个9. (2分) (2016九上·老河口期中) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②当x>2时,y>0;③3a+c>0;④3a+b>0.其中正确的结论有()A . ①②B . ①④C . ①③④D . ②③④10. (2分)菱形具有而矩形不一定具有的性质是()A . 内角和等于360°B . 对角相等C . 对边平行且相等D . 对角线互相垂直二、填空题 (共6题;共9分)11. (1分)函数中,自变量x的取值范围是112. (1分)(2019·抚顺) 据报道,某节日期间某市地铁二号线载客量达到17340000人次,再创历史新高.将数据17340000用科学记数法表示为________.13. (2分)分解因式:x2﹣2xy+y2=________.14. (1分) (2017九下·张掖期中) 如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB′C′,若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.(结果保留π).15. (2分)(2018·孝感) 如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为________ .16. (2分)(2019·江汉) 在平面直角坐标系中,已知抛物线C:y=ax2+2x-1(a≠0)和直线l:y=kx+b ,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数y=ax2+2x-1的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.三、计算题 (共2题;共10分)17. (5分)计算:(﹣)﹣2﹣(π﹣3)0+sin30°﹣()()18. (5分)(2020·衢州) 先化简,再求值;,其中a=3。

2017届江西省赣州市石城县中考数学模拟试卷(5月份)(含解析)_最新修正版

2017届江西省赣州市石城县中考数学模拟试卷(5月份)(含解析)_最新修正版

2017年江西省赣州市石城县中考数学模拟试卷(5月份)一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项1.﹣6的绝对值是()A.﹣6 B.C.﹣D.62.下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣23.如图所示的几何体的俯视图是()A.B.C.D.4.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.如图,▱ABCD中,∠C=120°,AB=AE=5,AE与BD交于点F,AF=2EF,则BC的长为()A.6 B.8 C.10 D.126.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3二、填空题(本大题共6个小题,每小题3分,共18分)7.据中古江西网报道,4月22日全省将有近15万人参加2017年省公务员录用考试笔试,数字15万用科学记数法表示为:.8.已知α、β是方程x2+x﹣6=0的两根,则α2β+αβ=.9.如图,在平面直角坐标系xOy中,A(1,1),B(2,2),双曲线y=与线段AB有公共点,则k的取值范围是.10.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.11.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为.12.在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y=上,则k值可以是.三、解答题(本大题共4个小题,每小题6分,共24分)13.(1)计算:|﹣2|﹣3tan30°+(2﹣)0+(2)如图,已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.14.先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.15.某校食堂的中餐与晚餐的消费标准如表一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A、B 类套餐菜选其中一份,这5天共消费36元,请问这位学生A、B类套餐菜各选用多少次?16.在图1、2中,⊙O过了正方形网格中的格点A、B、C、D,请你仅用无刻度的直尺分别在图1、图2、图3中画出一个满足下列条件的∠P(1)顶点P在⊙O上且不与点A、B、C、D重合;(2)∠P在图1、图2、图3中的正切值分别为1、、2.17.某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)四、解答题(本大题共3个小题,每小题8分,共24分)18.为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.19.如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.20.如图,在△ABC中,点O在边AC上,⊙O与△ABC的边AC,AB分别切于C、D两点,与边AC交于点E,弦与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是的中点,连结DF,DC,试判断△DCF的形状;(3)在(2)的条件下,若BC=a,求AE的长.五、解答题(本大题共2个小题,每小题9分,共18分)21.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.22.在▱ABCD中,点B关于AD的对称点为B′,连接AB′,CB′,CB′交AD于F点.(1)如图1,∠ABC=90°,求证:F为CB′的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B绕点A旋转的过程中,点F始终为CB′的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B′作B′G∥CD交AD于G点,只需证三角形全等;想法2:连接BB′交AD于H点,只需证H为BB′的中点;想法3:连接BB′,BF,只需证∠B′BC=90°.…请你参考上面的想法,证明F为CB′的中点.(一种方法即可)(3)如图3,当∠ABC=135°时,AB′,CD的延长线相交于点E,求的值.23.已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.2017年江西省赣州市石城县中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项1.﹣6的绝对值是()A.﹣6 B.C.﹣D.6【考点】15:绝对值.【分析】根据绝对值实数轴上的点到原点的距离,可得答案.【解答】解:|﹣6|=6,故选:D.2.下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣2【考点】4B:多项式乘多项式;44:整式的加减.【分析】对各项计算后再利用排除法求解.【解答】解:A、不是同类项,不能合并,故本选项错误;B、不是同底数幂的除法,不能次数相减,故本选项错误;C、去括号时,括号里的每一项都变号,应为a﹣(a﹣b)=b,故本选项错误;D、(a﹣1)(a+2)=a2+a﹣2,正确.故选D.3.如图所示的几何体的俯视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.4.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】求得不等式组的解集为﹣1<x≤1,所以B是正确的.【解答】解:由第一个不等式得:x>﹣1;由x+2≤3得:x≤1.∴不等式组的解集为﹣1<x≤1.故选B.5.如图,▱ABCD中,∠C=120°,AB=AE=5,AE与BD交于点F,AF=2EF,则BC的长为()A.6 B.8 C.10 D.12【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质得到∠ABC=60°,得到△ABE是等边三角形,求出BE=AB=5,根据相似三角形的性质列出比例式,计算即可.【解答】解:在▱ABCD中,∠C=120°,∴∠ABC=60°,∵AB=AE,∴△ABE是等边三角形,∴BE=AB=5,∵AD∥BC,∴==2,∴BC=10,故选:C.6.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3【考点】H5:二次函数图象上点的坐标特征.【分析】先判断出抛物线开口方向上,进而求出对称轴即可求解.【解答】解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)7.据中古江西网报道,4月22日全省将有近15万人参加2017年省公务员录用考试笔试,数字15万用科学记数法表示为: 1.5×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15万用科学记数法表示为1.5×105.故答案为:1.5×105.8.已知α、β是方程x2+x﹣6=0的两根,则α2β+αβ=12或﹣18.【考点】AB:根与系数的关系.【分析】先利用根与系数的关系得到α+β=﹣1,αβ=﹣6,所以α2β+αβ=αβ(α+1)=﹣6(α+1),再解方程解方程x2+x﹣6=0得x1=﹣3,x2=2,然后把α=﹣3和α=2分别代入计算即可.【解答】解:根据题意得α+β=﹣1,αβ=﹣6,所以α2β+αβ=αβ(α+1)=﹣6(α+1),而解方程x2+x﹣6=0得x1=﹣3,x2=2,当α=﹣3时,原式=﹣6(﹣3+1)=12;当α=2时,原式=﹣6(2+1)=﹣18.故答案为12或﹣18.9.如图,在平面直角坐标系xOy中,A(1,1),B(2,2),双曲线y=与线段AB有公共点,则k的取值范围是1≤k≤4.【考点】G6:反比例函数图象上点的坐标特征.【分析】求得A和B分别在双曲线上时对应的k的值,则k的范围即可求解.【解答】解:当(1,1)在y=上时,k=1,当(2,2)在y=的图象上时,k=4.则双曲线y=与线段AB有公共点,则k的取值范围是1≤k≤4.故答案是:1≤k≤4.10.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.【考点】KV:平面展开﹣最短路径问题;I9:截一个几何体.【分析】要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.【解答】解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).11.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为2+.【考点】T7:解直角三角形.【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB﹣OC=2﹣,在Rt△ABC中,根据tan∠ABO=可得答案.【解答】解:如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC中,OC===,∴BC=OB﹣OC=2﹣,∴在Rt△ABC中,tan∠ABO===2+.故答案是:2+.12.在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y=上,则k值可以是10或12或8.【考点】G6:反比例函数图象上点的坐标特征;KH:等腰三角形的性质;LB:矩形的性质.【分析】当PA=PO时,根据P在OA的垂直平分线上,得到P的坐标;当OP=OA=5时,由勾股定理求出CP即可;当AP=AO=5时,同理求出BP、CP,即可得出P的坐标,然后把P的坐标代入线y=,即可求得k的值.【解答】解:∵点A的坐标为(5,0),点C的坐标为(0,4),∴当PA=PO时,P在OA的垂直平分线上,P的坐标是(2.5,4);当OP=OA=5时,由勾股定理得:CP==3,P的坐标是(3,4);当AP=AO=5时,同理BP=3,CP=5﹣3=2,P的坐标是(2,4).∵点P在双曲线y=上,∴k=2.5×4=10或k=3×4=12或k=2×4=8,故答案为10或12或8.三、解答题(本大题共4个小题,每小题6分,共24分)13.(1)计算:|﹣2|﹣3tan30°+(2﹣)0+(2)如图,已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.【考点】2C:实数的运算;6E:零指数幂;J9:平行线的判定;T5:特殊角的三角函数值.【分析】(1)依据绝对值的性质、特殊锐角三角函数值、零指数幂的性质、二次根式的性质进行化简,然后再进行计算即可;(2)先证明∠2=∠BCD,最后再利用平行线的判定定理进行证明即可.【解答】解:(1)原式=2﹣3×+1+2=2﹣+1+2=3+;(2)∵BC平分∠ACD,∴∠1=∠BCD.又∵∠1=∠2,∴∠2=∠BCD.∴AB∥CD.14.先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】根据整式的乘法去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:原式=x2﹣4﹣(x2﹣2x+1)=2x﹣5,∵x=﹣,∴2x﹣5=2×(﹣)﹣5=﹣6.15.某校食堂的中餐与晚餐的消费标准如表一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A、B 类套餐菜选其中一份,这5天共消费36元,请问这位学生A、B类套餐菜各选用多少次?【考点】9A:二元一次方程组的应用.【分析】设这位学生A类套餐菜选了x次,B类套餐菜选了y次,根据该星期从学生用餐10次以及总消费36元,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这位学生A类套餐菜选了x次,B类套餐菜选了y次,根据题意得:,解得:.答:这位学生A类套餐菜选了6次,B类套餐菜选了4次.16.在图1、2中,⊙O过了正方形网格中的格点A、B、C、D,请你仅用无刻度的直尺分别在图1、图2、图3中画出一个满足下列条件的∠P(1)顶点P在⊙O上且不与点A、B、C、D重合;(2)∠P在图1、图2、图3中的正切值分别为1、、2.【考点】N4:作图—应用与设计作图;M5:圆周角定理;T7:解直角三角形.【分析】①如图1中,∠P即为所求;②如图2中,∠P即为所求;③如图3中,∠EPC即为所求;【解答】解:①如图1中,tan∠P=1.理由:∵∠P=∠DOC=45°,∴tan∠P=1.∴∠P即为所求;如图2中,tan∠P=.理由:∵∠P=∠FAC,∴tan∠P=tan∠FAC==.∴∠P即为所求.如图3中,tan∠EPC=2.理由:∵∠E=∠FAC,PE是直径,∴∠FAC+∠AFC=90°,∠E+∠EPC=90°,∴∠AFC=∠EPC,tan∠EPC=tan∠AFC==2.∴∠EPC即为所求;17.某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A 、B 、C 分别表示三位家长,他们的孩子分别对应的是a 、b 、c .(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A 、a 的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表) 【考点】X6:列表法与树状图法.【分析】(1)主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A 、a 的概率则为×=.(2)画出树形图,找到恰好是两对家庭成员的情况即可求出其概率. 【解答】解:(1)答:P (恰好是A ,a )的概率是=; (2)依题意画树状图如下:共有9种情形,每种发生可能性相等,其中恰好是两对家庭成员有(AB ,ab ),( AC ,ac ),( BC ,bc )3种,故恰好是两对家庭成员的概率是P==.四、解答题(本大题共3个小题,每小题8分,共24分)18.为了了解某校初中各年级学生每天的平均睡眠时间(单位:h ,精确到1h ),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图. 请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a 的值为 45% ,所抽查的学生人数为 60 . (2)求出平均睡眠时间为8小时的人数,并补全频数直方图. (3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W2:加权平均数;W5:众数.【分析】(1)根据题意列式计算即可;(2)根据题意即可得到结果;(3)根据众数,平均数的定义即可得到结论;(4)根据题意列式计算即可.【解答】解:(1)a=1﹣20%﹣30%﹣5%=45%;所抽查的学生人数为:3÷5%=60人;故答案为:45%,60;(2)平均睡眠时间为8小时的人数为:60×30%=18人;(3)这部分学生的平均睡眠时间的众数是7,平均数==7.2小时;(4)1200名睡眠不足(少于8小时)的学生数=×1200=780人.19.如图,已知A、B两点的坐标分别为A(0,2),B(2,0),直线AB与反比例函数y=的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)设直线AB的解析式为y=kx+b(k≠0),将A与B坐标代入求出k与b的值,确定出直线AB的解析式,将D坐标代入直线AB解析式中求出a的值,确定出D的坐标,将D坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;(2)联立两函数解析式求出C坐标,过C作CH垂直于x轴,在直角三角形OCH中,由OH与HC的长求出tan∠COH的值,利用特殊角的三角函数值求出∠COH的度数,在三角形AOB中,由OA与OB的长求出tan∠ABO的值,进而求出∠ABO的度数,由∠ABO﹣∠COH即可求出∠ACO的度数.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),将A(0,2),B(2,0)代入得:,解得:,故直线AB解析式为y=﹣x+2,将D(﹣1,a)代入直线AB解析式得:a=+2=3,则D(﹣1,3),将D坐标代入y=中,得:m=﹣3,则反比例解析式为y=﹣;(2)联立两函数解析式得:,解得:或,则C坐标为(3,﹣),过点C作CH⊥x轴于点H,在Rt△OHC中,CH=,OH=3,tan∠COH==,∠COH=30°,在Rt△AOB中,tan∠ABO===,∠ABO=60°,∠ACO=∠ABO﹣∠COH=30°.20.如图,在△ABC中,点O在边AC上,⊙O与△ABC的边AC,AB分别切于C、D两点,与边AC交于点E,弦与AB平行,与DO的延长线交于M点.(1)求证:点M是CF的中点;(2)若E是的中点,连结DF,DC,试判断△DCF的形状;(3)在(2)的条件下,若BC=a,求AE的长.【考点】MC:切线的性质.【分析】(1)根据垂径定理可知,只要证明OM⊥CF即可解决问题;(2)结论:△DFC是等边三角形.由点M是CF中点,DM⊥CF,推出DE=DF,由E是中点,推出DC=CF,推出DC=CF=DF,即可;(3)只要证明△BCD是等边三角形,即可推出∠B=60°,∠A=30°,在Rt△ABC中,BC=BD=CD=a,可得OC=OD=a,OA=a,由此即可解决问题;【解答】(1)证明:∵AB是⊙O的切线,∴OD⊥AB,∴∠ODB=90°,∵CF∥AB,∴∠OMF=∠ODB=90°,∴OM⊥CF,∴CM=MF.(2)解:结论:△DFC是等边三角形.理由:∵点M是CF中点,DM⊥CF,∴DE=DF,∵E是中点,∴DC=CF,∴DC=CF=DF,∴△DCF是等边三角形.(3)解:∵BC、BD是切线,∴BC=BD,∵CE垂直平分DF,∴∠DCA=30°,∠DCB=60°,∴△BCD是等边三角形,∴∠B=60°,∠A=30°,在Rt△ABC中,BC=BD=CD=a,∴OC=OD=a,OA=a,∴AE=OA﹣OC=a.五、解答题(本大题共2个小题,每小题9分,共18分)21.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【考点】FH:一次函数的应用.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.22.在▱ABCD中,点B关于AD的对称点为B′,连接AB′,CB′,CB′交AD于F点.(1)如图1,∠ABC=90°,求证:F为CB′的中点;(2)小宇通过观察、实验、提出猜想:如图2,在点B绕点A旋转的过程中,点F始终为CB′的中点.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:过点B′作B′G∥CD交AD于G点,只需证三角形全等;想法2:连接BB′交AD于H点,只需证H为BB′的中点;想法3:连接BB′,BF,只需证∠B′BC=90°.…请你参考上面的想法,证明F为CB′的中点.(一种方法即可)(3)如图3,当∠ABC=135°时,AB′,CD的延长线相交于点E,求的值.【考点】SO:相似形综合题.【分析】(1)证明:根据已知条件得到□ABCD为矩形,AB=CD,根据矩形的性质得到∠D=∠BAD=90°,根据全等三角形的性质即可得到结论;(2)方法1:如图2,过点B′作B′G∥CD交AD于点G,由轴对称的性质得到∠1=∠2,AB=AB′,根据平行线的性质得到∠2=∠3,∠1=∠3,根据平行线的性质得到∠4=∠D,根据全等三角形的性质即可得到结论;方法2:连接BB′交直线AD于H点,根据线段垂直平分线的性质得到B′H=HB,由平行线分线段成比例定理得到结论;方法3:连接BB′,BF,根据轴对称的性质得到AD是线段B′B的垂直平分线,根据线段垂直平分线的性质得到B′F=FB,得到∠1=∠2,由平行线的性质得到∠B′BC=90°,根据余角的性质得到∠3=∠4,于是得到结论;(3)取B′E的中点G,连结GF,由(2)得,F为CB′的中点,根据平行线的性质得到∠BAD=180°﹣∠ABC=45°,由对称性的性质得到∠EAD=∠BAD=45°,根据平行线的性质得到∠GFA=∠FAB=45°,根据三角函数的定义即可得到结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∠ABC=90°,∴□ABCD为矩形,AB=CD,∴∠D=∠BAD=90°,∵B,B′关于AD对称,∴∠B′AD=∠BAD=90°,AB=AB′,∴∠B′AD=∠D,∵∠AFB′=∠CFD,在△AFB′与△CFD中,,∴△AFB′≌△CFD(AAS),∴FB′=FC,∴F是CB′的中点;(2)证明:方法1:如图2,过点B′作B′G∥CD交AD于点G,∵B,B′关于AD对称,∴∠1=∠2,AB=AB′,∵B′G∥CD,AB∥CD,∴B′G∥AB.∴∠2=∠3,∴∠1=∠3,∴B′A=B′G,∵AB=CD,AB=AB′,∴B′G=CD,∵B′G∥CD,∴∠4=∠D,∵∠B′FG=∠CFD,在△B′FG与△CFD中,∴△B′FG≌△CFD(AAS),∴FB′=FC,∴F是CB′的中点;方法2:连接BB′交直线AD于H点,∵B,B′关于AD对称,∴AD是线段B′B的垂直平分线,∴B′H=HB,∵AD∥BC,∴==1,∴FB′=FC.∴F是CB′的中点;方法3:连接BB′,BF,∵B,B′关于AD对称,∴AD是线段B′B的垂直平分线,∴B′F=FB,∴∠1=∠2,∵AD∥BC,∴B′B⊥BC,∴∠B′BC=90°,∴∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∴FB=FC,∴B′F=FB=FC,∴F是CB′的中点;(3)解:取B′E的中点G,连结GF,∵由(2)得,F为CB′的中点,∴FG∥CE,FG=CE,∵∠ABC=135°,□ABCD中,AD∥BC,∴∠BAD=180°﹣∠ABC=45°,∴由对称性,∠EAD=∠BAD=45°,∵FG∥CE,AB∥CD,∴FG∥AB,∴∠GFA=∠FAB=45°,∴∠FGA=90°,GA=GF,∴FG=sin∠EAD•AF=AF,∴由①,②可得=.23.已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是y=﹣x2﹣3,衍生直线的解析式是y=﹣x﹣3;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)衍生抛物线顶点为原抛物线与y轴的交点,则可根据顶点设顶点式方程,由衍生抛物线过原抛物线的顶点则解析式易得,MN解析式易得.(2)已知衍生抛物线和衍生直线求原抛物线思路正好与(1)相反,根据衍生抛物线与衍生直线的两交点分别为衍生抛物线与原抛物线的交点,则可推得原抛物线顶点式,再代入经过点,即得解析式.(3)由N(0,﹣3),衍生直线MN绕点N旋转到与x轴平行得到y=﹣3,再向上平移1个单位即得直线y=﹣2,所以P点可设(x,﹣2).在坐标系中使得△POM为直角三角形一般考虑勾股定理,对于坐标系中的两点,分别过点作平行于x轴、y轴的直线,则可构成以两点间距离为斜边的直角三角形,且直角边长都为两点横纵坐标差的绝对值.进而我们可以先算出三点所成三条线的平方,然后组合构成满足勾股定理的三种情况,易得P点坐标.【解答】解:(1)∵抛物线y=x2﹣2x﹣3过(0,﹣3),∴设其衍生抛物线为y=ax2﹣3,∵y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴衍生抛物线为y=ax2﹣3过抛物线y=x2﹣2x﹣3的顶点(1,﹣4),∴﹣4=a•1﹣3,解得a=﹣1,∴衍生抛物线为y=﹣x2﹣3.设衍生直线为y=kx+b,∵y=kx+b过(0,﹣3),(1,﹣4),∴,∴,∴衍生直线为y=﹣x﹣3.(2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点,∴将y=﹣2x2+1和y=﹣2x+1联立,得,解得或,∵衍生抛物线y=﹣2x2+1的顶点为(0,1),∴原抛物线的顶点为(1,﹣1).设原抛物线为y=a(x﹣1)2﹣1,∵y=a(x﹣1)2﹣1过(0,1),∴1=a(0﹣1)2﹣1,解得a=2,∴原抛物线为y=2x2﹣4x+1.(3)∵N(0,﹣3),∴MN绕点N旋转到与x轴平行后,解析式为y=﹣3,∴再沿y轴向上平移1个单位得的直线n解析式为y=﹣2.设点P坐标为(x,﹣2),∵O(0,0),M(1,﹣4),∴OM2=(x M﹣x O)2+(y O﹣y M)2=1+16=17,OP2=(|x P﹣x O|)2+(y O﹣y P)2=x2+4,MP2=(|x P﹣x M|)2+(y P﹣y M)2=(x﹣1)2+4=x2﹣2x+5.①当OM2=OP2+MP2时,有17=x2+4+x2﹣2x+5,解得x=或x=,即P(,﹣2)或P(,﹣2).②当OP2=OM2+MP2时,有x2+4=17+x2﹣2x+5,解得x=9,即P(9,﹣2).③当MP2=OP2+OM2时,有x2﹣2x+5=x2+4+17,解得x=﹣8,即P(﹣8,﹣2).综上所述,当P为(,﹣2)或(,﹣2)或(9,﹣2)或(﹣8,﹣2)时,△POM为直角三角形.最新修正版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年江西省赣州市中考数学模拟试卷(5
月份)
一、选择题(本大题共6小题,每小题3分,共18分。

每小题只有一个正确选项)
1.(3分)计算:|0﹣2019|=()
A.0 B.﹣2019 C.2019 D.±2019
2.(3分)如图是由4个小立方块搭成的几何体,则下列说法正确的是()
A.主视图的面积最大B.俯视图的面积最大
C.左视图的面积最大D.三个视图的面积一样大
3.(3分)下列式子计算错误的是()
A.a3•a3=a6B.a2﹣a2=0 C.(﹣2a)3=﹣8a3D.a4÷a﹣2=a﹣2 4.(3分)如图,将一个Rt△ABC沿着直角边CA所在的直线向右平移得到Rt△DEF,已知BC=a,CA=b,F A=b;则四边形DEBA的面积等于()
A.ab B.ab C.ab D.ab
5.(3分)已知一元二次方程x2﹣2019x+10092=0的两个根为α,β,则求得α2β+αβ2=()
A.10093B.2×10093C.﹣2×10093D.3×10093
6.(3分)在直角坐标系xOy中,二次函数C1,C2图象上部分点的横坐标、纵坐标间的对应值如下表:
x …﹣1 0 1 2 2.5 3 4 …
y1…0 m1﹣8 n1﹣8.75 ﹣8 ﹣5 …
y2… 5 m2﹣11 n2﹣12.5 ﹣11 ﹣5 …
则关于它们图象的结论正确的是()
A.图象C1,C2均开口向下
B.图象C1的顶点坐标为(2.5,﹣8.75)
C.当x>4时,y1>y2
D.图象C1、C2必经过定点(0,﹣5)
二、填空题(本大题共6小题,每小题3分,共18分)
7.(3分)计算:﹣0.00618=.(结果用科学记数法表示)8.(3分)在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=.
9.(3分)底面圆半径为1、高为2的圆柱体,其侧面展开图的周长是.
10.(3分)如图,AB,AC分别为⊙O的内接正四边形与内接正三角形的一边,而BC恰好是同圆内接一个正n边形的一边,则n等于.
11.(3分)人教版初中数学教材在八年级下册介绍过《海伦﹣﹣﹣秦九昭公式》:如果一个三角形的三边为a,b,c,记p=,则该三角形的面积为S=……①,被称之为海伦公式;是古希腊几何学家海伦(Heron,约公元50年)提出的.
我国南宋时期数学家秦九昭(约1202~1261年),也提出了利用三角
形三边a,b,c,求三角形面积的公式S=……
②,被称之为秦九昭公式.
经过论证,公式①、②实质上是同一个公式;现已知一个三角形的三边为4,,5,依据公式,计算得到三角形面积S=.12.(3分)在直角坐标系xOy中,三个点O(0,0),A(4,2),B (0,2)到某一条直线的距离均相等,则这条直线的解析式可以是.
三、解答题(本大题共5小题,每小题6分,共30分)
13.(6分)(1)计算:+20×2﹣2﹣4sin45°
(2)解不等式:﹣2(x﹣1)+(x+2)≤1.
14.(6分)如图,在等边△ABC中,点E在边AB上,过点E作EF ∥BC交AC于点F,连接CE,以点E为顶点、CE为腰作等腰△ECD,使其底边CD落在射线CB上.
求证:△DEB≌△ECF.
15.(6分)在不透光的布袋里放入标有数字2,0,﹣3的三张的卡片(形状与质地完全相同).现在随机地抽出两张卡片,将两个数字分别记作某个点的横坐标与纵坐标.
(1)从布袋中同时抽取两张卡片时组成的所有点中,直接写出“点落入第四象限”概率是;
(2)如果抽出第一张卡片记录数字后放回布袋,再从袋中抽取第二张卡片记录数字后组成一个点,用画树状图或列表法,求出“点落在坐标轴上”的概率.
16.(6分)“读经典古诗词,做儒雅美少年”是江赣中学收看CCTV 《中国诗词大会》之后的时尚倡议.学校图书馆购进《唐诗300首》和《宋词300首》彩绘读本各若干套,已知每套《唐诗》读本的价格比每套《宋词》读本的价格贵15元,用5400元购买《宋词》读本的套数恰好是用3600元购买《唐诗》读本套数的2倍;求每套《宋词》读本的价格.
17.(6分)已知四边形ABCD内接于⊙O,且已知∠ADC=120°;请仅用无刻度直尺完成以下作图(保留作图痕迹,不写作法,写明答案).(1)在图1中,已知AD=CD,在⊙O上求作一个度数为30°的圆周角;
(2)在图2中,已知AD≠CD,在⊙O上求作一个度数为30°的圆周角.
四、解答题(本大题共3小题,每小题8分,共24分)
18.(8分)下表是2019年三月份某居民小区随机抽取20户居民的用水情况:
15 20 25 30 35 40 45
月用水量/

户数 2 4 m 4 3 0 1
(1)求出m=,补充画出这20户家庭三月份用电量的条形统计图;
(2)据上表中有关信息,计算或找出下表中的统计量,并将结果填入表中:
统计量名
众数中位数平均数

数据
(3)为了倡导“节约用水,绿色环保”的意识,江赣市自来水公司实行“梯级用水、分类计费”,价格表如下:
月用水梯级标准Ⅰ级(30吨以内)Ⅱ级(超过30吨的部分)
单价(元/吨) 2.4 4
如果该小区有500户家庭,根据以上数据,请估算该小区三月份有多少户家庭达到Ⅱ级标准?并估算这些Ⅱ级用水户的总水费是多少元?
19.(8分)小明同学想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走一段距离时到点D处,侧得∠BDF=65°.若直线AB与EF之间的距离为60米.
(1)设池塘两端的距离AB=x米,试用含x的代数式表示CD的长;(2)当CD=100米时,求A、B两点的距离(计算结果精确到个位).(参考数据:sin45°≈0.71,cos65°≈0.42,tan65°≈2.14.)
20.(8分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象相交于点A(﹣3,﹣1)和点B,与y轴交于点C,△OAC的面积为3.
(1)求反比例函数的解析式;
(2)求一次函数的解析式,并写出点B的坐标;
(3)连接BO并延长交双曲线的另一支于点E,将直线y=kx+b向下平移a (a>0)个单位长度后恰好经过点E,求a的值.
五、解答题(本大题共2小题,每小题9分,共18分)
21.(9分)如图1,已知∠MPN的角平分线PF经过圆心O交⊙O 于点E、F,PN是⊙O的切线,B为切点.
(1)求证:PM也是⊙O的切线;
(2)如图2,在(1)的前提下,设切线PM与⊙O的切点为A,连接AB交PF于点D;连接AO交⊙O于点C,连接BC,AF;记∠PFA为∠α.
①若BC=6,tan∠α=,求线段AD的长;
②小华探究图2之后发现:EF2=m•OD•OP(m为正整数),请你猜想m的数值?并证明你的结论.
22.(9分)如图1,已知抛物线L1:y=﹣x2+2x+3与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C,在L1上任取一点P,过点P作直线l⊥x轴,垂足为D,将L1沿直线l翻折得到抛物线L2,交x轴于点M,N(点M在点N的左侧).
(1)当L1与L2重合时,求点P的坐标;
(2)当点P与点B重合时,求此时L2的解析式;并直接写出L1与L2中,y均随x的增大而减小时的x的取值范围;
(3)连接PM,PB,设点P(m,n),当n=m时,求△PMB的面积.
六、解答题(本大题共12分)
23.(12分)如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF 为邻边作矩形CEFG,作其对角线相交于点H.
(1)①如图2,当点F与点B重合时,CE=,CG=;
②如图3,当点E是BD中点时,CE=,CG=;(2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明;
(3)在图1,的值是否会发生改变?若不变,求出它的值;若改变,说明理由;
(4)在图1,设DE的长为x,矩形CEFG的面积为S,试求S关于x的函数关系式,并直接写出x的取值范围.。

相关文档
最新文档