勾股定理精华专题训练

合集下载

勾股定理知识点+专项练习50题(有答案)

勾股定理知识点+专项练习50题(有答案)

勾股定理知识点+专项练习50题(有答案)基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边cb aHG F EDCB Abacbac cabca b a bcc baE D CBA①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:AB C30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

勾股定理典型模型归纳训练

勾股定理典型模型归纳训练

1 / 3勾股定理【知识梳理】 1.勾股定理:股勾b a2.勾股定理的证明:方法一:以a 、b 为直角边,以c 为斜边做四个全等的直角三角形方法二:做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像下图那样拼成两个正方形.方法三:以a 、b 为直角边,以c 为斜边作两个全等的直角三角形3.基本训练:(1)如图,在△ABC 中,∠C=90°,AC=3,BC=4,求AB 的长.(2)如图,在△ABC 中,∠C=90°,AC=1,BC=2,求AB 的长.(3)如图,在△ABC 中,∠C=90°,AC=1,BC=3,求AB 的长.(4)如图,在△ABC 中,∠C=90°,AC=6,AB=10,求BC 的长.(5)如图,在△ABC 中,∠C=90°,BC=12,AB=13,求BC 的长.3.常见的勾股数:【探究】与勾股定理相关的问题探究1.已知直角三角形的两边求第三边,或已知直角三角形的两边比和一边长求两边. (1)如图,在△ABC 中,∠C=90°,AC=3,AB=5,求BC 的长.(2)如图,在△ABC 中,∠C=90°,AC :BC=3:4,AB=10,求AC 、BC 的长.2.求直角三角形斜边上的高. 如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,AC=3,BC=4,求CD 的长.3.求直角三角形三边的中线的长.(1)如图,在△ABC 中,∠C=90°,AC=3,AB=5,E 是BC 的中点,求AE 的长.(2)如图,在△ABC 中,∠C=90°,BC=4,AB=5,E 是AC 的中点,求BE 的长.(3)如图,在△ABC 中,∠C=90°,AC=3,BC=4,F 是AB 的中点,求CF的长.4.求直角三角形角平分线的长.(1)如图,在△ABC中,∠C=90°,AC=3,AB=5,AD平分∠CAB,求CD和AD的长.(2)如图,在△ABC中,∠C=90°,AC=3,AB=5,BD平分∠ABC,求CD和BD的长.5.含特殊角的直角三角形(1)如图,在△ABC中,∠C=90°,∠B=30°,AC=1,求AB和BC的长.(2)如图,在△ABC中,∠C=90°,∠B=30°,AB=2,求AC和BC的长.(3)如图,在△ABC中,∠C=90°,∠B=30°,BC=3,求AC和AB的长.(4)如图,在△ABC中,∠C=90°,∠B=45°,BC=2,求AC和AB的长.(5)如图,在△ABC中,∠C=90°,∠B=45°,AB=2,求AC和BC的长.6.等边三角形与直角三角形如图,△ABC是等边三角形,AB=6,AD⊥BC,求AD的长和△ABC的面积.7.含120°角的等腰三角形与直角三角形(1)如图,AB=AC,∠BAC=120°,AB=3,AD⊥BC,求AD、BC的长和△ABC的面积.(2)如图,AB=AC,∠BAC=120°,BC=6,AD⊥BC,求AD、AB的长和△ABC的面积.8.等腰三角形与直角三角形(1)如图,AB=AC=5,BC=6,AD⊥BC,求AD的长和△ABC的面积.(2)如图,AB=AC=5,BC=8,AD⊥BC,求AD的长和△ABC的面积.9.含特殊角的三角形与直角三角形(1)如图,AB=2,BC=3,求AC的长和△ABC的面积.DB CDBB2 / 33 / 360°ABC(2)如图,AB=1,BC=2,求AC 的长和△ABC 的面积.120°ABC10.折叠与直角三角形(1如图,在Rt △ABC 中,∠C=90°,沿AD 折叠,使点C 落在斜边AB 上,若AC=3,BC=4,则CD= .DCAB第(1)题 第(2)题 第(3)题 第(4)题 第(5)题(2))如图,在Rt △ABC 中,∠C=90°,BC=6cm ,AC=8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′点,那么△ADC ′的面积是 .(3)如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A重合,折痕为DE ,则DE 的长为 .(4)如图.在Rt △ABC 中,∠A=30°,DE 垂直平分斜边AC ,交AB 于D ,E 式垂足,连接CD ,若BD=1,则AC 的长是 .(5)如图所示,已知在三角形纸片ABC 中,BC =3, AB =6,∠BCA =90°,在AC 上取一点E ,以BE为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为 . (6)如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好落在边BC 的点F处.若AE=5,BF=3,则CD 的长是 .第(6)题 第(7)题 第(8)题 第(9)题 (7)如图,矩形ABCD 边AD 沿拆痕AE 折叠,使点D 落在BC 上的F 处,已知AB=6,△ABF 的面积是24,则FC 等于 .(8)如图所示,矩形纸片ABCD 中,6AB cm =,8BC cm =,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为 .(9)如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为_____cm. (10)把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC = 5 cm ,则重叠部分△DEF 的面积是 cm 2.(11)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 .第(10)题 第(11)题 第(12)题 第(13)题(12)如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为 .(13)如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .(14)矩形纸片ABCD 的边长AB=4,AD=2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积为_____________.。

《勾股定理》数学专题训练(完整版)

《勾股定理》数学专题训练(完整版)

《勾股定理》专题训练一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2-a2 。

2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短。

二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()A. S1- S2= S3B. S1+ S2= S3C. S2+S3< S1D. S2- S3=S14、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

5、在直线l上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S12、、S S S S S S341234、,则+++=_____________。

《勾股定理》专项训练练习

《勾股定理》专项训练练习

60 120140 60BACC A BDE 1015《勾股定理》专项训练练习基础篇1、下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,7 2、在△ABC 中,∠C=90°,周长为60,斜边与一直角边比是13:5,•则这个三角形三边长分别是( )A .5,4,3 B .13,12,5 C .10,8,6 D .26,24,10 3、若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ). A. 3cm2B. 32cm2C. 33cm 2D. 4cm 24. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a :b :c =13∶5∶12 5. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形.6.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定7、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A .600米 B . 800米 C . 1000米 D. 不能确定8、ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( )A.1B.3C.6D.非以上答案9、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( )A. 96cm 2B. 120cm 2C. 160cm 2D. 200cm 210、已知如图,水厂A 和工厂B 、C 正好构成等边△ABC ,现由水厂A 和B 、C 两厂供水,要在A 、B 、C 间铺设输水管道,有如下四种设计方案,(图中实线为铺设管道路线),•其中最合理的方案是( )11、在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.12、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.13、如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .14、已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ABC 的面积是_____15、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .16、如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和103㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?17、小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?18、如图,铁路上A 、B 两点相距25km , C 、D 为两村庄,若DA =10km ,CB =15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.(1)求E 应建在距A 多远处? (2)DE 和EC 垂直吗?试说明理由19、如图,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A,CD=2cm,求AB 的长.第12题图 第13题图 第15题图A B D专题篇一、勾股定理与梯子问题1、如图1,一个梯子AB长2.5米,顶端A靠在墙上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,如图2,测得BD长为0.5米,求梯子顶端A下落了多少米.2、比较梯子沿墙壁滑行时其在墙壁和地面上滑行距离的大小关系例2如图3,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3米,同时梯子的顶端B下降至B′,那么BB①等于1米;②大于1米;③小于1米.其中正确结论的序号是________.(要求写出过程)二、勾股定理中的数学思想1、面积法.已知△ABC中,∠ACB=90°,AB=5㎝.BC=3㎝,CD⊥AB于点D,求CD的长.2、构造法.如图,已知△ABC中,∠B=30°,∠C=45°,AB=4,AC=22.求△ABC的面积.3、转化思想.如图3,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四边形ABCD的面积.4、分类讨论思想.已知Rt△ABC中,其中两边的长分别是3,5,求第三边的长.5、方程思想.如图4,AB为一棵大树,在树上距地面10米的D处有两只猴子,它们同时发现C处有一筐苹果,一只猴子从D往上爬到树顶A又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C.已知两只猴子所经路程都是15米.试求大树AB的高度.如图,在△ABC中,AB=15,BC=14,CA=13,求BC边上的高AD.6、逆向思维的方法如图1,在△ABC中,D为BC边上一点,已知AB=13,AD=12,AC=15,BD=5,那么DC=_____.图3DABC图4DCBAABC三、勾股定理在影响范围问题中的运用1、如图1,公路MN 和公路PQ 在点P 处交汇,且30QPN ∠=︒,点A 处有一所中学,AP =160m 。

勾股定理专题(附答案-全面、精选)

勾股定理专题(附答案-全面、精选)

勾股定理一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型1、对勾股定理的理解(1)已知直角三角形的两条直角边长分别为a, b,斜边长c,则下列关于a,b,c的关系不成立的是()A、c²- a²=b²B、c²- b²=a²C、a²- c²=b²D、a²+b²= c²(2)在直角三角形中,∠A=90°,则下列各式中不成立的是()A、BC²- AB²=AC²B、BC²- AC²=AB²C、AB²+AC²= BC²D、AC²+BC²= AB²2、应用勾股定理求边长(3)已知在直角三角形ABC中,AB=10 cm, BC=8 cm, 求AC的长.(4)在直角△中,若两直角边长为a、b,且满足,则该直角三角形的斜边长为.3、利用勾股定理求面积(5)已知以直角△的三边为直径作半圆,其中两个半圆的面积为25π,16π,求另一个半圆的面积。

(6)如图(1),图中的数字代表正方形的面积,则正方形A的面积为。

(7)如图(2),三角形中未知边x与y的长度分别是x=,y=。

(8)在Rt△ABC中,∠C=90°,若AC=6,BC=8,则AB的长为()A、6B、8C、10D、12 (9)在直线l上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S12、、S S S S S S341234、,则+++=_____________。

【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导。

完整版)勾股定理培优专项练习

完整版)勾股定理培优专项练习

完整版)勾股定理培优专项练习勾股定理练(根据对称求最小值)基本模型:已知点A、B为直线m同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。

1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。

解:由于AE=1,所以DE=√3.连接BE,设∠EBN=x,则∠EBD=∠ABE-x=60°-x。

由正弦定理得:EN/ sinx = BN/sin(60°-x)。

=。

EN/BN = sinx/sin(60°-x)由于sinx/sin(60°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。

又由于XXX,所以问题转化为:在直线AD上找一点N,使得MN+EB最小。

连接AC,设交点为F,则∠ABF=∠FBD=30°,BF=AB/2=2.由于AF=AD-DF=√3-DF,所以MN+EB=BF+MN+EF=BF+FN。

由于FN=AF-AN=AF-AE=√3-1,所以MN+EB=2+MN+√3-1=MN+3+√3.因此,EN+BN的最小值为3+√3,此时x=30°。

2、已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。

解:连接BE,设∠EBN=x,则∠EBD=∠ABE-x=45°-x。

由正弦定理得:EN/sinx = BN/sin(45°-x)。

=。

EN/BN = sinx/sin(45°-x)由于sinx/sin(45°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。

又由于XXX,所以问题转化为:在对角线AC上找一点N,使得MN+EB最小。

连接BD,设交点为F,则∠ABF=∠FBD=45°,BF=AB/√2=2√2.由于AF=AD-DF=4-DF,所以MN+EB=BF+MN+EF=BF+FN。

(完整版)勾股定理专题(附答案,全面、精选)

(完整版)勾股定理专题(附答案,全面、精选)

(6) 如图(1),图中的数字代表正方形的面积,则正方形A 的面积为。

3、运用勾股定理进行计算(重难点)(12)如图,一根旗杆在离地面9米处折断倒下,旗杆顶勾股定理一、探索勾股定理【知识点1】勾股定理定理内容:在RT△中,__________________________ 勾股定理的应用:在RT△中,知两边求第三边,关键在于确定斜边或直角典型题型(7)如图(2),三角形中未知边x与y的长度分别是x= ,y= 。

(8)在RtAABC 中,/ C= 90°,若AC= 6, BO 8,则AB的长为( )A、6B、8C、10(9)在直线l上依次摆放着七个正方形已知斜放置的三个正方形的面积分别是D、12(如图4所示)。

1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S I S2 S3 S4= ------------------------ 。

1、对勾股定理的理解(1)已知直角三角形的两条直角边长分别为a, b,斜边长c,则下列关于a,b,c的关系不成立的是( )A、c2- a2=b2C、a2- c2=b2(2) 在直角三角形中,/ 立的是( )A、BC2- AB2=AC2C、AB2+AC2= BC22、应用勾股定理求边长(3) 已知在直角三角形求AC的长.B、c2- b2=a2D、a2+b2= c2A=90°,则下列各式中不成B、BC2- AC2=AB2D、AC2+BC2= AB2AB=10 cm, BC=8 cm ABC中,(4)在直角△中,若两直角边长为a、b,且满足Va- 6a +9 + |b- 4| = 0,则该直角三角形的斜边长为__________3、利用勾股定理求面积(5)已知以直角△的三边为直径作半圆,其中两个半圆的面积为25兀,16兀,求另一个半圆的面积。

【知识点2】勾股定理的验证推导勾股定理的关键在于找面积相等,由面积之间的等量关系并结合图形利用代数式恒等变形进行推导。

勾股定理专题训练(培优篇)

勾股定理专题训练(培优篇)

专题:勾股定理专题分类训练【知识要点】:1.勾股定理:2.勾股定理逆定理:3.勾股数的推算公式① 罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。

② 如果k 是大于1的奇数,那么k, 212-k ,212+k 是一组勾股数。

③ 如果k 是大于2的偶数,那么k, 122-⎪⎭⎫ ⎝⎛K ,122+⎪⎭⎫⎝⎛K 是一组勾股数。

④ 如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。

4.熟悉勾股数可提高计算速度,顺利地判定直角三角形。

简单的勾股数有:3,4, _____; 5,12, _____; 7,_____,25; 8,_____,17; 9,_____,41。

【证明篇】(证法)1以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.(1876年美国总统Garfield 证明)(证法2)(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21.把这四个直角三角形拼成如图所示形状.(证法3)(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L .【应用篇】应用一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为_____________.2.已知直角三角形的两边长为3、2,则另一条边长是________________. 3.在数轴上作出表示17的点.4.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高.求 ①AD 的长;②ΔABC 的面积.5(2012,黔东南州,6)如图1,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A 、(2,0)B 、(51,0-)C 、(101,0-)D 、(5,0)c bacb a ABCD EFGHMLK应用二、利用列方程求线段的长1.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?2.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.3(2012山东省荷泽市,16(2),6)(2)如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D 、E 两点的坐标.应用三、判别一个三角形是否是直角三角形1、分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)2、15、17(4)4、5、6,其中能够成直角三角形的有ADEBC3、若三角形的三别是a 2+b 2,2ab,a 2-b 2(a>b>0),则这个三角形是 .应用四、立体图形中的最短路径1、小明家住在18层的高楼,一天,他与妈妈去买竹竿。

勾股定理专题训练及含答案

勾股定理专题训练及含答案

勾股定理专题训练一、解答题(每空?分,共?分)1、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点称为格点,请以图中的格点为顶点画一个边长为3、、的三角形.所画的三角形是直角三角形吗?说明理由.2、如图,在ΔABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法、证明),并求AD的长.3、已知a、b、c为△ABC的三边,且满足,试判断△ABC的形状.解:因为,(A)所以(B)所以(C)所以△ABC是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步骤的代号:_________;(2)错误的原因为:______________________________________;(3)请写出本题正确的解答过程及结论.4、大家都折过纸玩吗?如图所示,把矩形纸片ABCD沿BF折叠,使点C恰好落在处,已AB=9cm,BC=15cm,求FC的长。

5、如图,把矩形纸片沿折叠,使点落在边上的点处,点落在点处。

(1)求证:;(2)设,试猜想之间的一种关系,并给予证明.6、华罗庚爷爷说:数学是我国人民所擅长的学科.请同学们求解《九章算术》中的一个古代问题:“今有木长二丈,围之三尺,葛生其下,缠木七周,上与木齐.问葛长几何?” 白话译文:如图,有圆柱形木棍直立地面,高20尺,圆柱底面周长3尺.葛藤生于圆柱底部A点,等距离缠绕圆柱七周,恰好子长到圆柱上底面的B点.问葛藤的长度是多少尺?7、如图,将一个长、宽分别为8、4的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是多少?二、选择题(每空?分,共?分)8、在三边分别为下列长度的三角形中,不是直角三角形的是( )A.5,13,12 B.2,3,C.4,7,5 D.1,,9、如图,在Rt△ABC内有边长分别为的三个正方形,则满足的关系式是()A.B.C.D.(第9题)(第10题)10、如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1 B.2 C.3 D.4.811、现有两根木棒的长度分别是40cm和41cm,若要钉成一个直角三角形架,则所需要的另一根木棒的长可以为()A.7cm B.9cm C.11cm D.13cm12、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.,,C.3,4,5 D.4,,13、如图所示,AB=BC=CD=DE=1,AB⊥BC、AC⊥CD,AD⊥DE,则AE等于()A.1 B.C.D.2(第13题)(第14题)(第15题)14、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米。

初中勾股定理练习题精选全文完整版

初中勾股定理练习题精选全文完整版

可编辑修改精选全文完整版第一章《勾股定理》练习题一、选择题(8×3′=24′) 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是( ) A 、2ab<c 2 B 、2ab ≥c 2 C 、2ab>c 2 D 、2ab ≤c 22、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。

其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或3607、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、4.58、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 二、填空题(12×3′=36′)9、在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=___________。

《勾股定理》专题复习(含答案)

《勾股定理》专题复习(含答案)
解:作出B点关于CD的对称点B′,连结AB′,交CD于点O,则O点就是光的ห้องสมุดไป่ตู้射点,因为B′D=DB,所以B′D=AC,∠B′DO=∠OCA=90°,∠B′=∠CAO
所以△B′DO≌△ACO(SSS),则OC=OD= AB= ×6=3米,连结OB,在Rt△ODB中,OD2+BD2=OB2,所以OB2=32+42=52,即OB=5(米),所以点B到入射点的距离为5米.
评注:这是以光的反射为背景的一道综合题,涉及到许多几何知识,由此可见,数学是学习物理的基础
例2.如果只给你一把带刻度的直尺,你是否能检验∠MPN是不是直角,简述你的作法.
分析:只有一把刻度尺,只能用这把刻度尺量取线段的长度,若∠P是一个直角,∠P所在的三角形必是个直角三角形,这就提示我们把∠P放在一个三角形中,利用勾股定理的逆定理来解决此题.
∠B=37°.AB=5km,BC=4km,若每天凿0.3km,
试计算需要几天才能把隧道AC凿通.
7.如图21,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
8.观察下列表格:
列举
猜想
3、4、5
32=4+5
5.如图14,等边三角形ABC内一点P,AP=3,BP=4,CP=5,求∠APB的度数.
6.若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状.
(1)a2+b2+c2+200=12a+16b+20c(2)a3-a2b+ab2-ac2+bc2-b3=0
7.请在由边长为1的小正三角形组成的虚线网格中,画出1 个所有顶点均在格点上,且至少有一条边为无理数的等腰三角形.

勾股定理练习题精华(含答案)

勾股定理练习题精华(含答案)

勾股定理练习题一、填空题1、若直角三角形的两边长分别是3、4,则第三边的长为 ;2、若等腰三角形的一边长为6,则另两边的长分别是3、如图:AC ⊥BC 于C ,CD ⊥AB 于D (1)若BC=8,AC=15,则CD= (2)若AB=29,AC=21,则CD=4、如图∠C=30°,AD ⊥BC ,AB ⊥AC ,BE=EC (1)若AE=4,则AD=(2)若DE=3,则BC= ;AB=;AC=5、如图,正方形ABCD ,若OD=3,OC ⊥OD ,OC=OD ,则BD= ,正方形ABCD 的面积=6、直角三角形ABC 中,若周长为30,斜边上中线长为6.5,则该三角形的面积为7、若两条线段长分别是20,25,则当第三条线段的长为时,这三条线段首尾连结可以组成直角三角形。

8、若2224618a b c a c ++=++-,则△ABC 的形状是 二、写出下列命题的逆命题,并判断真假。

1、两条直线平行,同旁内角互补。

2、若x=-3,则2230x x +-=。

3、直角三角形中,30°锐角所对直角边等于斜边的一半。

4、若一个整数的末位数字是0,则这个数能被5整除。

三、解答题1、如图:RtABC中,CA=,AM=AC=12, BN=BC=5, 求MN的长。

2、RtABC中,C=,AD平分C,AC=10cm,AB=26cm,求BD长。

3、RtABC中,C=,AC=BC, BDAB,,AD=12,求BC长。

4、直角三角形中,两条直角边的差为cm,斜边长为。

5.如图,在Rt△ABC中,∠C=90°,D为BC上一点,AB=17,BD=9,AD=10,求AC的长B6.在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,且CD=1.5,BD=2.5,求AC的长A7.如图,在Rt△ABC中,∠C=90°,AD=AC且DE∥AC,BE=,求AC,AB的长C8.在△ABC 中,AB=15,AC=13,高AD=12,求△ABC 的周长9、已知:如图四边形ABCD 中对角线AC 、BD 互相平分,相交于O ,且AC ⊥BD 。

(完整版)勾股定理应用题专项练习(经典)

(完整版)勾股定理应用题专项练习(经典)

勾股定理应用题1.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A.0.6米 B.0.7米 C.0.8米 D.0.9米2.如图1所示,有一块三角形土地,其中∠C =90°,AB =39米,BC =36米,则其面积 是( ) A.270米2 B.280米2C.290米2D.300米23.有一个长为40cm ,宽为30cm 的长方形洞口,环卫工人想用一个圆盖盖住此洞口,那么圆盖的直径至少是( ) A.35cm B.40cm C.50cm D.55cm4.下列条件不能判断三角形是直角三角形的是 ( ) A.三个内角的比为3:4:5 B.三个内角的比为1:2:3C.三边的比为3:4:5D.三边的比为7:24:255.若三角形三边的平方比是下列各组数,则不是直角三角形的是( ) A. 1:1:2 B. 1:3:4 C. 9:16:25 D. 16:25:406.若三角形三边的长分别为6,8,10,则最短边上的高是( )A.6B.7C.8D.107.如图2所示,在某建筑物的A 处有一个标志物,A 离地面9米,在离建筑物12米处有一 个探照灯B ,该灯发出的光正好照射到标志物上,则灯离标志物____米8.小芳的叔叔家承包了一个长方形鱼塘,已知其面积是48平方米, 其对角线长为10米.若要建围栏,则要求鱼塘的周长,它的周长 是____米.9.公园内有两棵树,其中一棵高13米,另一棵高8米,两树相距 12米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少 要飞_____米.10.若把一个直角三角形的两条直角边同时扩大到原来的3倍,则斜边扩大到原来的____倍.11.若△ABC 的三边长分别是2,2,2===c b a ,则∠A =____,∠B =____,∠C =____.12.某三角形三条边的长分别为9、12、15,则用两个这样的三角形所拼成的长方形的周长是______,面积是_____.13.如图4所示,AB 是一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐桃子,一只猴子从D 往上爬到树顶A ,又沿滑绳AC 滑到C 处,另一只猴子从D 处下滑到B ,又沿B 跑到C ,已知两只猴子所通过的路程均为15米,求树高AB .C B 图1B C图4AC图314.在平静的湖面上有棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐 至水面,已知水草移动的水平距离是6分米,求这里的水深是多少?15.在6米高的柱子顶端有只老鹰,看到一条蛇从距离柱子底端18米处的地方向柱子的底 端的蛇洞游来,老鹰立即扑下.若它们的速度相等,问老鹰在离蛇洞多远处能抓住蛇(假 设老鹰按直线飞行).16.如图5所示,在△ABC 中,CD 是AB 边上的高,6,8==BC AC ;在△ABC 中,DE 是AB 边上的高,7=DE .△ABE 的面积是35,求∠C 的度数.17.在△ABC 中,CD 是AB 边上的高,AC = 4,BC = 3,BD = 1.8,问△ABC 是直角三角形吗?写出证明过程图5E18、如图,在长方形ABCD中,将∆ABC沿AC对折至∆AEC位置,CE与AD交于点F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C
B
A
60 140
120
60
B
A
C
勾股定理专题训练
专题一、勾股定理的应用
1、在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.
2、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有__米.
(2)题 (3)题 (4)题 3、如图,90,4,3,12C ABD AC BC BD ︒∠=∠====,则AD= ;
4、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的
距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 .
5、如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 . 专题二、分类讨论思想
1、三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是
2、若ΔABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( )
S 3S 2
S 1
C B
A
第19题图
第3题图
A :14
B :4
C :14或4
D :以上都不对 专题三、等积法
1、已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 ;
2、ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是 专题四、平移思想
如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上 铺地毯,已知地毯每平方米18元,铺完这个楼道至少需要 元钱 专题五、整体思想
1、如图所示,以Rt △ABC 的三边向外作正方形,
其面积分别为123,,S S S ,且1234,8,S S S ===则 ; 2、已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ABC 的面积是_____
3.如图,Rt △ABC 的面积为20cm 2
,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 .
专题六、转化思想(立体图形转化成平面展开图)最短路径问题
1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这
个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是 ;
2、一只蚂蚁从长为4cm 、宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿 纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。

专题七、.方程思想
1、.如图,一棵树高4.5米,被大风刮断,树尖着地点B 距树底部C 为1.5米,求折断点A 离地高度多少米?
5m
13m
A
B
C
C
B A D E
F
2、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•
3、如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平
分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
4、等腰三角形底边上的高为8,周长为32,这个等腰三角形的面积是多少?
E B
C
A
D。

相关文档
最新文档