比较线段的大小PPT课件
合集下载
线段的比ppt课件五
例题 例题 欣赏 欣赏
说说你对P94【例2 的理解和收获
ab cd 解 : (2). 成立.理由是 : b d a c 由 k, b d 得a kb, c kd. 因此 a b kb b bk 1 k 1, b b b c d kd d d k 1 k 1. d d d
你能 找到图中 比相等的 线段吗?
下面左图中的鱼是将点O(0,0),A (5,4), B(3,0),C(5,1),D(5,-1),B(3,0),E(4,-2),O(0,0) 用线段顺次连接而成的。右图中的鱼是将左图中 的鱼上每个点的横坐标、纵坐标都乘以2得到的。
y
9
y
4 3 2 1
A
8 7 6 5
实践出真知
悟
• 已知:a,b,c,d是成比例线段,其 中a=12cm,b=9cm,c=6cm. • 求a、b、c的第四比例项.
解: 因为a、b、c、d是成比例线段
a c 12 6 ,即 , b d 9 d 69 9 d cm. 12 2
至此 你悟出了什么
• 两条线段的比实际上 就是两个数的比.
合作愉快
b 3 4.如果 , 且c ab , 则 B c 2 a
4 3 2 3 A .B .C .D 3 2. 3 4
2
将所学知识 行成网络体系 c 2
解: c
c b 3 ab a c 2
19 a 2b 9 a 5.如果 ,则 13 2a b 5 b 解 5(a 2b) 9(2a b ) 去括号: 5a 10b 18a 9b
说说你对P105【例2 的理解和收获
a c 例2.(1).如图4 3, 解 : (1). 由 3, b d a c 已知 3, 得a 3b, c 3d . b d a b 3b b 4b ab cd 因此 4, 求 和 ; b b b b d c d 3d d 4d a c (2).如果 k (k为常数), d d d 4. b d ab cd 那么 成立吗? b d 例题 欣赏 为什么?
线段的比较课件
利用夹角的大小来比较两条同向线段的
相似性。
3
案例3 :找出与给定线段距离最
近的线段
通过测量线段间的垂线距离,找出与给 定线段最接近的线段。
总结
适用场合
线段比较适用于各种几何学和工程学领域,如建筑 设计和航空航天工程。
注意事项
在比较线段时,要考虑各种因素,如长度、夹角和 垂线距离,以获得准确的比较结果。
Q& A
线段比较存在哪些问题?
线段比较可能存在误差,尤其是在测量和角度计算方面。
如何应用线段比较到工程实践中?
线段比较可用于优化设计、解决几何问题和进行结构分析。
2 方向
线段的方向取决于从一个端点到另一个端点的指向。
比较方法
同一个起点的 线段比较
比较不同终点的线段, 结合长度和夹角。
同一个终点的 线段比较
比较不同起点的线段, 结合长度和夹角。
同向线段比较
比较方向相同的线段, 可以通过夹角来衡量 两个线段的差异。
反向线段比较
比较方向相反的线段, 同样可以使用夹角来 进行比较。
比较标准
1 长度的对比
通过比较线段的长度,可 以确定哪个线段更长或更 短。
2 夹角的对比
夹角可以帮助我们判断两 个线段的相对方向和倾斜 程度。
3 垂线距离的对比
利用垂线距离可以测量两 个线段之间的彼此关系。
实例演练
1
案例1 :比较两个不同起点线段
的长度
案例2 :比较两个同向线段的夹角
2
通过测量两个线段的长度,找出哪个线 段更长。
线段的比较ppt课件
线段的比较,让我们一起探索线段的基本性质和比较方法,以及如何应用线 段比较到真端点连接而成的直线段,是几何学中的基本图形之一。线段的长度和方向可以帮助我们进行比较 和分析。
《线段比例尺》比例尺PPT教学课件
1cm代表实际150m
1cm代表实际1km
返回
测量并计算学校到各场馆的实际距 离,标在图上。
返回
试一试。
要准确描述示意图上各场馆的方向和位置,还需 要知道什么?
还要测量出 角度!!
返回
练一练。
根据下面的图你能说出它们的 准确方向和位置吗?
返回
说出科技馆、电影院、体育馆和少年宫的具体位置和准 确方向。
返回
2.判断 (1)一幅地图的比例尺 米表示实际距离50千米。
图中1厘
( √)
(2)线段比例尺不应该加单位名称。 ( × )
(3)在一幅图上,要把数值比例尺和线段比例
尺都标出来。
( ×)
返回
3.在一幅比例尺为
的地图上,
量得A、B间的距离是5.7厘米,那么A、B两地的实际
距离是多少?
5.7×60=340(千米) 答:A、B两地之间的实际距离是340 千米。
(3)医院在街心公园的南偏东30°的1000米处。
· 老年活
动中心
·学校
北
· 50°
街心公园
答案不唯一
· 30°
0 500 1000 m
医院
返回
2.以小红家为观测点,测量并填表。
返回
实际距离=图上距离×图上1厘米表示的实际距离。
北偏东30°
1.2
东偏北30°
2.1
北偏东30°
2.9
北偏西35°
3.3
正西
2.8
南偏西45°
4.5
960 1680 2320 2640 2240 3600
返回
1.填空。 比例尺如右图示。
变式题
(1)它表示图上1厘米的距离,相当于实际距离
6.3 线段的长短比较 教学课件 (共28张PPT)
讲授新课
作一条线段等于已知线段 已知:线段 a,作一条线段 AB,使 AB=a. 第一步:用直尺画射线 AF; 第二步:用圆规在射线 AF 上截取 AB = a. 所以线段 AB 为所求线段.
a Aa B F
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.
讲授新课
尺规作图的要点: 1.直尺只能用来画线,不能量距; 2.尺规作图要求作出图形,说明结果,并保留作图痕迹.
生活中我们常常会比较两个物体的长短。如图两支铅笔 谁长?
我们可以把两支铅笔看成两条线段,这样我们就把实际 问题转化为了几何问题.
讲授新课
思考:怎样比较两条线段的长短??
Aa B
(1)度量法 用刻度尺量出它们的 长度,再进行比较.
Cb
D
(2) 叠合法 将其中一条线段“移动”, 使其一端点与另一线段的 一端点重合,两线段的另 一端点均在同一射线上.
(2)连接两点的线段叫两点间的距离;
(3)两点之间所有连线中,线段最短;
(4)射个
C.3个
D.4个
当堂检测
2.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银
杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(
)
A.两点之间线段最短 C.垂线段最短
解:作图步骤如下:
aa b
(1)作射线 AM;
A B1 B2
BM
(2)在 AM 上顺次截取 AB1=a,B1B2=a,
B2B=b,则线段 AB=2a+b.
讲授新课 知识点三 有关线段的基本事实
探究
我要去书店 怎么走呀?
商场
礼堂
书店
讲授新课
根据生活经验,容易发现: 两点之间的所有连线中,线段最短
线段的大小比较
题型一:线段的长度计算
1.逐段计算
例:如图所示,P是线段AB上一点,M,N分别是线段AB,AP的 中点,若AB=16,BP=6,求线段MN的长.
解:AP=AB﹣BP=16﹣6=10, ∵M是AB的中点, ∴AM=BM= AB=8, ∵N是AP的中点, ∴AN= AP= (AB﹣BP)=5, ∴NM=AM﹣AN=8﹣5=3. 答:线段MN的长为3.
题型二:线段的性质
例:如图,A,B,C,D为4个居民小区,现要在4个居民小区之间 建一个购物中心,试问应把购物中心建在何处,才能使4个居民 小区到购物中心的距离之和最小?画出购物中心的位置,并说明 理由.
解:连结AC和BD,AC和BD相交于点M,则点M即是购物中心的位置. ∴MA+MC+MB+MD=AC+BD 理由是两点之间线段最短.
1.1已知线段AB=4.8cm,点C是线段AB的中点,点D是线段CB的 中点,点E在线段AB上,且CE= AC,画图并计算DE的长.
解:(1)当点E在线段AC上时,如图1所示. ∵AB=4.8cm,点C是线段AB的中点, ∴AC=BC= AB=2.4cm. ∵点D是线段CB的中点, ∴CD= BC=1.2cm. 又∵CE= AC, ∴CE=0.8cm, ∴DE=CD+CE=1.2+0.8=2(cm).
线段的大小比较
复习课
一、线段的大小比较方法
1.目测法 2.度量法(用刻度尺测量长度) --“数”的比较
3.叠合法(一端重合,另一端落在同侧) ——“形”的比较
二、尺规作图(无刻度的直尺和圆规)
1.作一条线段等于已知线段 2.作线段的和与差
顺截(顺次截取)画和
逆截(反向截取)画差
三、线段的分点
6.2.2线段的比较与运算 课件(共14张PPT)初中数学人教版(2024)七年级上册
(或AB=2AM=2MB)
反之也成立:因为AM=MB=
1 2
AB
(或AB=2AM=2MB)
所以M是线段AB的中点.
典例精讲
线段的运算
考点2-2
【例2】若AB=6cm,点C是线段AB的中点,点D是线段CB的中点,
求:线段AD的长是多少?
解:因为C是线段AB的中点.
A
所以AC=CB=
1 2
AB=
1 2
A.3 B.2 C.3或5 D.2或6
b
∴线段AB为所求.
A
B
CF
针对训练
线段的运算
考点3-1
1.如图1,点B,C在线段AD上则AB+BC=_A_C_,AD-CD=_A_C_,BC=_A_C_-_A_B_
=_B_D_-_C_D_. A
B
C
D
2.如图1,AB=CD,则图中另外两条相等的线段为_A_C_=_B_D__.
3.点A,B,C在同一条数轴上,其中点A,B表示的数分别是-3,1,若
方法总结:无图时求线段的长,应注意分类讨论,一般分以下 两种情况:点在某一线段上;点在该线段的延长线.
课堂小结
线段的比较与运算
中点
线段的和差
思想方法
方程思想 分类思想
知识梳理
针对训练
线段的比较与运算
查漏补缺
1.已知线段AB=6cm,延长AB到C,使BC=2AB,若D为AB的中点,则线段
DC的长为_1_5_c_m__.
BC=5,则AC=_1_1_或__1__.
目录
01
知识要点
02
线段的运算 线段的中点
精讲精练
新知探究
线段的运算---中点
《比较线段的长短》基本平面图形PPT优秀课件
北师大版 数学 七年级 上册
4.2 比较线段的长短
导入新知
如何比较两个人的身高? 我身高1.53米, 比你高3厘米.
我身高1.5米.
导入新知 看下面这三幅图片谁高谁矮?你是依据什么判断的 ?
素养目标
3. 理解线段中点、等分点的意义,能够运用线段的和、 差、倍、分关系求线段的长度.
2. 会用尺规画一条线段等于已知线段,会比较两条线 段的长短.
DB
所以
AC
=CB
=
1 2
AB
=
1 2
×6
= 3 (cm).
因为D是线段CB的中点,
所以
CD
=
1 2
CB=
1 2
×3
=
1.5 (cm).
所以 AD = AC + CD = 3 + 1.5 = 4.5 (cm).
巩固练习
变式训练
1.如图,点C 是线段AB 的中点,若AB = 8 cm,则AC = 4 cm.
A DB
E
C
巩固练习
变式训练
A DB
E
C
解:因为D 是线段AB的中点,
所以
AD
=DB
=
1 2
AB
=
1 2
×4
= 2 (cm).
因为E是线段BC的中点,
所以
BE
=
1 2
BC=
1 2
×6
=
3 (cm).
所以 DE = DB + BE = 2 + 3 = 5(cm).
答:DE 的长为 5 cm.
探究新知
你能举出这条性质在生活中的应用吗?
探究新知
议一议 如图,这是 A,B 两地之间的公路,在公路工程 改造计划时,为使 A,B 两地行程最短,应如何 设计线路?请在图中画出,并说明理由.
4.2 比较线段的长短
导入新知
如何比较两个人的身高? 我身高1.53米, 比你高3厘米.
我身高1.5米.
导入新知 看下面这三幅图片谁高谁矮?你是依据什么判断的 ?
素养目标
3. 理解线段中点、等分点的意义,能够运用线段的和、 差、倍、分关系求线段的长度.
2. 会用尺规画一条线段等于已知线段,会比较两条线 段的长短.
DB
所以
AC
=CB
=
1 2
AB
=
1 2
×6
= 3 (cm).
因为D是线段CB的中点,
所以
CD
=
1 2
CB=
1 2
×3
=
1.5 (cm).
所以 AD = AC + CD = 3 + 1.5 = 4.5 (cm).
巩固练习
变式训练
1.如图,点C 是线段AB 的中点,若AB = 8 cm,则AC = 4 cm.
A DB
E
C
巩固练习
变式训练
A DB
E
C
解:因为D 是线段AB的中点,
所以
AD
=DB
=
1 2
AB
=
1 2
×4
= 2 (cm).
因为E是线段BC的中点,
所以
BE
=
1 2
BC=
1 2
×6
=
3 (cm).
所以 DE = DB + BE = 2 + 3 = 5(cm).
答:DE 的长为 5 cm.
探究新知
你能举出这条性质在生活中的应用吗?
探究新知
议一议 如图,这是 A,B 两地之间的公路,在公路工程 改造计划时,为使 A,B 两地行程最短,应如何 设计线路?请在图中画出,并说明理由.
江苏省徐州市王杰中学苏科版七年级上册数学课件:612线段的大小比较(共19张PPT)
求:(1)AD的长; (2)DE的长.
解:(1)∵AC=5 cm,D 是 AC 的中点, ∴AD=CD=12AC=52 cm. (2)∵AB=9 cm,AC=5 cm, ∴BC=AB-AC=9-5=4(cm). ∵E 是 BC 的中点, ∴CE=12BC=2 cm, ∴DE=CD+CE=52+2=92(cm).
第2课时 线段的大小比较
学习目标
目标一 会计算线段的和、差 目标二 会画线段的和、差 目标三 会计算与线段中点有关的问题
知识点一 线段的大小比较
线段大小比较的方法有_度__量__法、_叠__合_法和截取法.
[说明] (1)度量法是从“数”的角度进行比较,即用刻度尺 量出线段的长度,根据长度(数量)的大小而做出判断.同学 们对于“数”的大小比较熟悉,通过“数”的大小而反映线 段的大小,数形结合,容易操作,也容易理解. (2)叠合法是从“形”的角度进行比较,把其中的一条线段 移到另一条线段上加以比较.
(3)不正确.错在只考虑了点C在线段AB上的情况,实际上,线段BC 是在直线AB上,因此,点C还有可能在线段AB的延长线上,故应分情况讨 论.产生这种错误的根本原因是没有透彻理解“在直线AB上画线段BC” 这一句话.正确的结论是线段AC的长为5 cm或11 cm.
例3 如图,C是线段AB上一点,D是线段ACm.
例2 如图,已知线段a,b(a>b),求作一条线段c,使c=a-b.
解:如图所示. (1)画射线AF; (2)在射线AF上截取AB=a; (3)在线段AB上截取CB=b.则线段AC就是所要画的线段.
【归纳总结】 线段和、差的画法: 作两条线段的和,在其中一条线段的延长线上画出另一条线段;作两条 线段的差,在较长的线段上截取较短的线段.
解:(1)∵AC=5 cm,D 是 AC 的中点, ∴AD=CD=12AC=52 cm. (2)∵AB=9 cm,AC=5 cm, ∴BC=AB-AC=9-5=4(cm). ∵E 是 BC 的中点, ∴CE=12BC=2 cm, ∴DE=CD+CE=52+2=92(cm).
第2课时 线段的大小比较
学习目标
目标一 会计算线段的和、差 目标二 会画线段的和、差 目标三 会计算与线段中点有关的问题
知识点一 线段的大小比较
线段大小比较的方法有_度__量__法、_叠__合_法和截取法.
[说明] (1)度量法是从“数”的角度进行比较,即用刻度尺 量出线段的长度,根据长度(数量)的大小而做出判断.同学 们对于“数”的大小比较熟悉,通过“数”的大小而反映线 段的大小,数形结合,容易操作,也容易理解. (2)叠合法是从“形”的角度进行比较,把其中的一条线段 移到另一条线段上加以比较.
(3)不正确.错在只考虑了点C在线段AB上的情况,实际上,线段BC 是在直线AB上,因此,点C还有可能在线段AB的延长线上,故应分情况讨 论.产生这种错误的根本原因是没有透彻理解“在直线AB上画线段BC” 这一句话.正确的结论是线段AC的长为5 cm或11 cm.
例3 如图,C是线段AB上一点,D是线段ACm.
例2 如图,已知线段a,b(a>b),求作一条线段c,使c=a-b.
解:如图所示. (1)画射线AF; (2)在射线AF上截取AB=a; (3)在线段AB上截取CB=b.则线段AC就是所要画的线段.
【归纳总结】 线段和、差的画法: 作两条线段的和,在其中一条线段的延长线上画出另一条线段;作两条 线段的差,在较长的线段上截取较短的线段.
6.3线段的长短比较
6.3线段的长短比较
走进生活
(1)如图:这是A、B两地之间的公路,在公路工 程改造计划时,为使A、B两地行程最短,应如何 设计线路?在图中画出。你的理由是
__两__点__之___间__线__段__最___短_____
6.3线段的长短比较
走进生活
村庄A 两点之间线段最短
大桥P 村庄B
河流
(2)如图,村庄A, B之间有一条河流,要 在河流上建造一座大桥P, 为了使村庄A, B之 间的距离最短,请问:这座大桥P应建造在 哪里。为什么?请画出图形。
B • D
6.3线段的长短比较
(2)
• A
•
C
• B
• D
比较方法:如图,端点A和C重合,观察 端点B和D的位置关系.
A
B
•
••
C
D
结论:AB > CD.
6.3线段的长短比较
(3)
• A
•
C
• B
• D
比较方法:如图,端点A和C重合,观察 端点B和D的位置关系.
A
B
•
••
C
D
结论:AB < CD.
走进生活
4cm
C”(C)
C B
C’(C)
A
那将“立方体的铁丝框”改成“立方体 的纸盒”,上述两题结论又该如何呢?
6.3线段的长短比较
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
6.3线段的长短比较
走进生活
B
4cm
A
6.3线段的长短比较
走进生活
B
4cm
A
6.3线段的长短比较
走进生活
4cm
走进生活
(1)如图:这是A、B两地之间的公路,在公路工 程改造计划时,为使A、B两地行程最短,应如何 设计线路?在图中画出。你的理由是
__两__点__之___间__线__段__最___短_____
6.3线段的长短比较
走进生活
村庄A 两点之间线段最短
大桥P 村庄B
河流
(2)如图,村庄A, B之间有一条河流,要 在河流上建造一座大桥P, 为了使村庄A, B之 间的距离最短,请问:这座大桥P应建造在 哪里。为什么?请画出图形。
B • D
6.3线段的长短比较
(2)
• A
•
C
• B
• D
比较方法:如图,端点A和C重合,观察 端点B和D的位置关系.
A
B
•
••
C
D
结论:AB > CD.
6.3线段的长短比较
(3)
• A
•
C
• B
• D
比较方法:如图,端点A和C重合,观察 端点B和D的位置关系.
A
B
•
••
C
D
结论:AB < CD.
走进生活
4cm
C”(C)
C B
C’(C)
A
那将“立方体的铁丝框”改成“立方体 的纸盒”,上述两题结论又该如何呢?
6.3线段的长短比较
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
6.3线段的长短比较
走进生活
B
4cm
A
6.3线段的长短比较
走进生活
B
4cm
A
6.3线段的长短比较
走进生活
4cm
线段的比ppt课件四
回顾 & 思考
☞
如果选用一个长度单位量得两条线段a ,b 的长度分别为 m ,n .那么两条线段的比 a∶b = m∶n 或a m
b n
其中a,b分别叫做这个线段比的前项和后项.
如果把
m n
表示成比值k , 那么
a b
k , 或a k b.
回顾 & 思考
☞
1.两条线段比是一个正数,它没有单位. 2.两条线段比与所选的长度单位无关. 3.求两条线段比时.如果单位不同.那么必须先化 成同一单位.再求它们的比 . 生活常识: 同一时刻物高与影长成比例. 图上长度与实际长度的比通常称为比例尺.
当堂训练
1.已知a、b、c、d是成比例线段,且a=4cm, 6cm b=6cm,d=9cm,则c=____
2.如果2 x 5 y.那么
x y
3.把mn pq写成比例式.写错的是D
A. m q p n
B. p m n q
C. q m n
D. m n p q
p
选做题
小结
思考:
由 ad=bc ,你还能 得到什么比例式?
例题
欣赏
解 : ( 2 ). a b b 由 a b a b c d a b c d b b d d a b c d 1 1 c d d 成立 .理由是 :
例2.(1).如图4 3, 已知 a b 求 ab b ( 2).如果 a b 那么 ab b 为什么? c d 和 cd d c d cd d
探究 & 学习
已知 : 如图, AB AD
☞
BE EF ,
AB 10cm, AD 2cm, BC 7.2cm, E是BC 中点, 求 : EF , BF 的长 ?
☞
如果选用一个长度单位量得两条线段a ,b 的长度分别为 m ,n .那么两条线段的比 a∶b = m∶n 或a m
b n
其中a,b分别叫做这个线段比的前项和后项.
如果把
m n
表示成比值k , 那么
a b
k , 或a k b.
回顾 & 思考
☞
1.两条线段比是一个正数,它没有单位. 2.两条线段比与所选的长度单位无关. 3.求两条线段比时.如果单位不同.那么必须先化 成同一单位.再求它们的比 . 生活常识: 同一时刻物高与影长成比例. 图上长度与实际长度的比通常称为比例尺.
当堂训练
1.已知a、b、c、d是成比例线段,且a=4cm, 6cm b=6cm,d=9cm,则c=____
2.如果2 x 5 y.那么
x y
3.把mn pq写成比例式.写错的是D
A. m q p n
B. p m n q
C. q m n
D. m n p q
p
选做题
小结
思考:
由 ad=bc ,你还能 得到什么比例式?
例题
欣赏
解 : ( 2 ). a b b 由 a b a b c d a b c d b b d d a b c d 1 1 c d d 成立 .理由是 :
例2.(1).如图4 3, 已知 a b 求 ab b ( 2).如果 a b 那么 ab b 为什么? c d 和 cd d c d cd d
探究 & 学习
已知 : 如图, AB AD
☞
BE EF ,
AB 10cm, AD 2cm, BC 7.2cm, E是BC 中点, 求 : EF , BF 的长 ?
人教版七年级数学上册6.2.2线段的比较与运算课件
2
2
∴CD=OC-OD= 1 (OA-OB)=1 AB1=
2
22
×4=2.
C.AC-BC=AC+BD
D.AD-AC=BD-BC
解析 AC-BC=AB,而AC+BD≠AB,故C选项错误.故选C.
6.(2024甘肃武威第十六中期末)如图,点C,D在线段AB上,若 AD=CB,则 ( B )
A.AC=CD
B.AC=DB
C.AD=2DB
D.CD=CB
解析 ∵AD=CB,∴AD-CD=CB-CD, ∴AC=DB,故B正确,故选B.
14.(教材变式·P166T3)(2023河北秦皇岛海港期末,21,★★☆) 已知A、B、C三点在同一直线上,AB=8,BC=6,则AC的长为
2或14 . 解析 分两种情况: 当点C在线段AB的延长线上时,AC=AB+BC=14; 当点C在线段AB上时,AC=AB-BC=2. 故答案为2或14.
15.(2024河南淮滨期末,19,★★☆)如图,已知点C为AB上一 点,AC=30 cm,BC= 2 AC,D,E分别为AC,AB的中点,求DE的长.
备用图
解析 (1)因为P是BC的中点,所以CP= 1 BC,
2
因为BC=AB-AC=12-3=9(cm), 所以CP= 1 ×9=4.5(cm),
2
所以CP的长是4.5 cm. (2)①当D在线段AC上时,如图:
因为BD=CD+BC,所以CD+BD=2CD+BC=11 cm, 所以CD= 1 ×(11-9)=1 cm.
7.如图所示.
(1)AC=BC+ AB ;
(2)CD=AD- AC ;
(3)CD= BD
人教版七年级数学上 直线、射线、线段之线段大小的比较教学ppt(18张)
2
答:线段AM,MB的长都为3cm。
(2) ∵点M是线段AB的中点
∴AB=2 AM=2 ×4=8 答:线段AB的长为8cm
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
练习 3、已知线段AB = 4cm,延长AB到C,使BC = 2AB,
若D为AB的中点,则线段DC 的长为__1_0_cm。
4cm
8cm
AD B
C
2cm 2cm + 8cm = 10cm
练习
如图,已知线段a,b。作一条线段,使它等于2a-b。 a
b
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
பைடு நூலகம்
线段的中点
点M把线段AB分成相等的两条 线段AM与MB,点M叫做线段AB 的中点。
A
MB
几何语言:∵点M是线段AB的中点
1
∴ AM=MB= AB
2
或AB=2 AM=2 MB
1
反之也成立 ∵
AM=MB= AB
2
或AB=2 AM=2 MB
∴点M是线段AB的中点
答:线段AM,MB的长都为3cm。
(2) ∵点M是线段AB的中点
∴AB=2 AM=2 ×4=8 答:线段AB的长为8cm
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
练习 3、已知线段AB = 4cm,延长AB到C,使BC = 2AB,
若D为AB的中点,则线段DC 的长为__1_0_cm。
4cm
8cm
AD B
C
2cm 2cm + 8cm = 10cm
练习
如图,已知线段a,b。作一条线段,使它等于2a-b。 a
b
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
(经典教学PPT)人教版七年级数学上 4.2 直线、射线、线段之线段大小的比较 教学课 件(18 张PPT)- 导学课 件(示 范)
பைடு நூலகம்
线段的中点
点M把线段AB分成相等的两条 线段AM与MB,点M叫做线段AB 的中点。
A
MB
几何语言:∵点M是线段AB的中点
1
∴ AM=MB= AB
2
或AB=2 AM=2 MB
1
反之也成立 ∵
AM=MB= AB
2
或AB=2 AM=2 MB
∴点M是线段AB的中点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比较 线段大小 的方法
思考 6 通过上面的讨论,你能说出比较线段大小有哪
些方法了吗?
(1) 度量法
(2) 重合比较法
用 度 量 法 比较线段的大段的长短。
注意控制误差。
用 重合法 比较两线段的大小
生活中比较两根筷子的长短,采用的是重合法: 先移动一根筷子,与另一根筷子一头对齐,两根棒靠紧, 观察另一头的位置,多出一段的较长。
A
B
C
E
D
线段的中点
中点的概念 :
若点M把线段AB分成相等的两条线段AM和 BM, 则点M叫线段AB的中点。
A
M
B
1 AB AM = BM = 2
例题解析
例1.
解:
在直线a上顺次截取A,B,C三点,使
得AB=4cm,BC=3cm。如果O是线段AC的中 点, 求线段OB的长。
A
OB C
a
OB= AB-AO
OB= OC-BC
1 (AB+BC) =AB- 2 1 (AB-BC) = 2 1 (cm) = 2
1 (AB+BC) -BC = 2 1 (AB-BC) = 2 1 = (cm) 2
能 力 挑 战
远的顶点处各有一只苍蝇和一只蜘蛛。 (1)蜘蛛可以从哪条最段的路 径爬到苍蝇处?说明你的理由? (2)如果蜘蛛要沿着棱爬到苍 蝇处,最短的路线有几条?
1、如图,在正方体两个相距最
我们这节学到了什么?
请同学们回顾本节课学习了哪些知识. 获得了哪些有指导意义的结论?
列表小结本节课内容: 两点之间,线段最短 两点之间的距离
比较线段 (1)重(叠)合法—从“形”的角度比 的方法 较 (2)度量法—从“数值”的角度比较
用“重合法”比较两根筷子的长短
② ②
《数学》(北师大.七年级 上册)
2
难道它 们也都懂 数学?
想一想
小狗、小猫为什么都选择直的路?
(线段的基本性质)
思考1 如图,A、B 两地间
A 有三条不同的路线可走,如果从 A地尽快赶往B地,你会选择哪条路线? B
思考 2 你上述选择的依据是什么?
说明了数学中一个怎样的基本事实? 两点之间的所有连线中,线段最短. 简单说成: 两点之间,线段最短。
想一想
筷子能很方便地移动。你能把任一条线段 移动到你纸面上吗? 如果不用刻度尺还能用什么更为简便的工具来移动它? ——用圆规!
用圆规作一条线段等于已知线段
做一做
用圆规作一条线段等于已知线段。
① 作射线AB; ② 用圆规量出已知线段的长度(记作a); ③ 在射线AB上以AO为圆心, 截取AC = a .
两点之间线段的长度,叫做这两点之间的距离。
注意
距离的含义是有实际长度的,一定要写出单位。
线段 与 距离
议一议 思考4 田径赛中的200m跑,是指跑道的起点到终点
的距离是200米吗? 这样理解对吗? 为什么?
思考3 能否说 “线段就是距离” ?
不能说线段是距离。 田径赛中的200m跑理解为 起点到终点的 距离是200米,是不对的。
则AC为 所作的线段。
a
A C B
用 重合法 比较两线段的大小
议一议
已知两线段AB与CD。 怎样用重合法比较线段AB与CD的长短?
① 用圆规量出已知线段AB的长度; ② 在射段CD上 以C为圆心, 截取CE = AB .
当CE = CD时, AB = CD 当CE < CD时, AB < CD 当CE > CD时, AB >CD
生活中的长短的比较
思考 5 请同学们思考并回答下面的问题:
(1) 怎样比较两个同学的高矮? (2) 怎样比较两根筷子的长短? 比较两根筷子的长短的方法:
① 一头对齐,两根棒靠紧, 观察另一头的位置; 多出一段的较长。 ——重合法. ② 用刻度尺分别度量出筷子的长度。 同一长度单位下,数量大的较长。——度量法. 注意:在几何里更多的用前面所说的方法进行比较。
因为田径赛中的200米 不是起点到终点的线段的长,而是曲线跑道的长。
线段是图形, 距离是长度,它是一个数量,且有长度单位。
练一练
(1)填空:两点之间的距离是指两点之 间的线段 的 ( 长度 ) (2)如图:这是A、B两地之间的公路, 在公路工程改造计划时,为使A、B两地行 程最短,应如何设计线路?在图中画出。 你的理由是 两点之间线段最短 _______________________________
①
③ ③
①
①