复习专题数形结合解决数学问题的重要手段

合集下载

运用“数形结合”提高学生“解决问题”能力

运用“数形结合”提高学生“解决问题”能力

学生课堂2020 年 5 月3“数形结合”,是通过数与形之间的转化来解决问题的一种重要思想方法。

在“解决问题”的教学过程中,运用数形结合的思想,能使问题简单化、直观化,帮助学生更好地解决问题,提高学生解决问题能力。

一、运用数形结合,帮助学生理解题意在数学学习中,学生经常在解决问题时出现因为不理解题目意思而出错的情况。

此时,我们可以引导学生借助学具摆一摆、画线段图、实物图等帮助理解题意,从而解决问题。

例如:在三年级:淘气家住5楼,他每上一层楼用14秒,求淘气1分钟能从一层走到家吗?多数同学的计算方法是:14×5=70(秒),不能到家。

学生由于受空间想象能力的限制,对于淘气实际爬的楼层数是总楼层数减1这一关系难以理解,所以才会出现这样的错误。

因此,在教学时,可以采用动画演示的方法(如图1)。

边演示边让学生数,数的过程中,学生形象地感受到从1楼到2楼实际只爬了1层,即用了1个14秒,以此类推到5楼实际只爬了4层,用了4个14秒,因此是14×4=56秒,能够到家。

有了图形的帮助,学生对这一关系就不难理解了。

理顺了题目的意思,问题也就迎刃而解了。

5楼4楼3楼2楼1楼图1二、运用数形结合,优化学生解题策略1.数形结合,化被动接受为主动建构解决问题很多时候都非常灵活,如果老师只是一味地灌输模式化的解题方法,学生学得很被动,缺乏深刻理解,效果不佳。

而运用“数形结合”能使学生形象、直观地理解概念、问题的内涵,学生对解题方法的印象会更深刻,效果会更理想[1]。

例如,在五年级下册学习“分数除法(一)”时,计算方法并不复杂,如果直接告诉学生被动地记住和使用算法也不难。

但是,学生就不能很好地理解算理,此时充分发挥数形结合的作用,让学生主动体会到“除以一个不为零的整数就相当于乘以这个整数的倒数”是合理的。

教材中,首先出示问题1:一张纸的4/7,平均分成2份,每份是多少?教学中,我先让学生拿出学具袋中准备好的一张长方形纸条,涂出它的4/7,然后再把涂色的4/7再平均分成2份,让学生涂一涂,并用算式表示这个过程:4/7÷2,再根据涂色的结果,求出是2/7。

中考数学专题复习 专题48 中考数学数形结合思想(教师版含解析)

中考数学专题复习 专题48 中考数学数形结合思想(教师版含解析)

中考专题48 中考专题数学数形结合思想数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。

中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。

作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。

“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。

1.数形结合思想的含义数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

2.数形结合思想应用常见的四种类型(1)实数与数轴。

实数与数轴上的点具有一一对应关系,借助数轴观察数的特点,直观明了。

(2)在解方程(组)或不等式(组)中的应用。

利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。

(3)在函数中的应用。

借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。

(4)在几何中的应用。

对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。

3.数形结合思想解题方法“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观.【经典例题1】(2020年•遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°=AC CD =12+√3=2−√3(2+√3)(2−√3)=2−√3.类比这种方法,计算tan22.5°的值为( )A .√2+1B .√2−1C .√2D .12 【标准答案】B【分析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,根据tan22.5°=AC CD 计算即可. 【答案剖析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,∴tan22.5°=AC CD =11+√2=√2−1 【知识点练习】(2019•湖北省仙桃市)不等式组的解集在数轴上表示正确的是( )A. B.C.D.【标准答案】C【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2【经典例题2】(2020年•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,方程x+5=ax+b的解是( )A.x=20 B.x=5 C.x=25 D.x=15【标准答案】A【分析】两直线的交点坐标为两直线答案剖析式所组成的方程组的解.【答案剖析】∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴直线y=x+5和直线y=ax+b相交于点P为x=20.【知识点练习】(2020年株洲模拟)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.【标准答案】4【答案剖析】本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.【经典例题3】(2020年通化模拟)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE 与△BHD面积之和的最大值,并简要说明理由.【标准答案】见答案剖析。

【高中数学】2021年高考数学复习:数形结合的解题策略

【高中数学】2021年高考数学复习:数形结合的解题策略

【高中数学】2021年高考数学复习:数形结合的解题策略
2021年
高考
将于6月7日、8日举行,高考频道编辑为广大考生整理了高考数学考试重点及常用公式,帮助大家有效记忆。

数形结合思想在解题中的应用
一、知识整合
1.数形结合是数学解题中常用的思想方法。

采用数形结合的方法,可以很容易地解决许多问题,而且求解过程简单。

所谓数形结合,是根据数形对应关系,通过数形相互转化来解决数学问题的一种重要思想方法。

数与形相结合的思想,通过“以形助数,以数解形”,简化了复杂问题,具体化了抽象问题。

它能将抽象思维转化为形象思维,有助于把握数学问题的本质。

它是数学规律性和灵活性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

3.纵观历年高考试题,熟练运用数形结合的思想方法解决一些抽象的数学问题,可以事半功倍。

数形结合的重点是研究“用形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

专题复习数形结合(含答案)

专题复习数形结合(含答案)

专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。

2。

」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。

初中数学学习中的解题技巧——数形结合

初中数学学习中的解题技巧——数形结合

初中数学学习中的解题技巧——数形结合数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系式等.数形结合所涉及的热点内容:在初中教材中,“数”的常见表现形式为: 实数、代数式、函数和不等式等,而“形”的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容.1. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.【思路点拨】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.第1个图形是2×3-3,第2个图形是3×4-4,第3个图形是4×5-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n^2+2n.【答案与解析】第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋(2×3-3)个;第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子(3×4-4)个;第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子(4×5-5)个;按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2).故答案为n(n+2)=n2+2n.【总结升华】这样的试题从最简单的图形入手.找出图形中黑点的个数与第n个图形之间的关系,找规律需要列出算式,一律采用原题中的数据,不要用到计算出来的结果来找规律.举一反三:【变式】用棋子按下列方式摆图形,依照此规律,第n 个图形比第(n-1)个图形多_____枚棋子.解:设第n个图形的棋子数为S1.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;第n个图形,Sn=1+4+…+3n-2;第(n-1)个图形,Sn-1=1+4+…+[3(n-1)-2];则第n个图形比第(n-1)个图形多(3n-2)枚棋子.2.已知实数a、b、c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是 .A.a+cB.-a-2b+cC.a+2b-cD.-a-c【思路点拨】首先从数轴上a、b、c的位置关系可知:c<a<0;b>0且|b|>|a|,接着可得a+b>0,c-b<0,然后即可化简|a+b|-|c-b|可得结果.具体步骤为:① a,b,c的具体位置,在原点左边的小于0,原点右边的大于0.②比较绝对值的大小.|a|<|c|<|b|.③化简原式中的每一部分,看看绝对值内部(二次根式中的被开方数的底数)的性质,若大于零,直接提出来,若小于零,则取原数的相反数.④进行化简计算,得出最后结果.【答案与解析】从数轴上a、b、c的位置关系可知:c<a<0;b>0且|b|>|a|,故a+b>0,c-b<0,即有|a+b|-|c-b|=a+b+c-b=a+c.故选A.【总结升华】此题主要考查了利用数形结合的思想和方法来解决绝对值与数轴之间的关系,进而考察了非负数的运用.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.非负数在初中的范围内,有三种形式:绝对值(|a|),完全平方式(a±b)2,二次根式.性质:非负数有最小值是0;几个非负数的和等于0,那么每一个非负数都等于0.3. 图①是一个边长为的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是A.B.C.D.【思路点拨】这是完全平方公式的几何背景,用几何图形来分析和理解完全平方公式的实质.是一个很典型的“数形结合”的例子,用图形的变换来帮助理解代数学中的枯燥无味的数学公式.根据图示可知,阴影部分的面积是边长为(m+n)的正方形的面积减去中间白色的小正方形的面积(m2+n2),即为对角线分别是2m,2n的菱形的面积.据此即可解答.【答案】B.【解析】(m+n)2-(m2+n2)=2mn.故选B.【总结升华】本题是利用几何图形的面积来验证(m+n)2-(m2+n2)=2mn,解题关键是利用图形的面积之间的相等关系列等式.举一反三【变式】如图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个空心正方形.(1)你认为图2中的阴影部分的正方形的边长是多少?(2)请用两种不同的方法求出图2中阴影部分的面积;(3)观察图2,你能写出下列三个代数式:(m+n)2、(m-n)2、mn之间的关系吗?解:(1)图②中阴影部分的正方形的边长等于(m-n);(2)(m-n)2;(m+n)2-4mn;(3)(m-n)2=(m+n)2-4mn.4.我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.这种“数形结合”的思想方法,非常有利于解决一些实际问题中的最大(小)值问题.请你尝试解决一下问题:(1)在图1中,抛物线所对应的二次函数的最大值是_____.(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线CD)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,直接给两镇送水,为使所用水管的长度最短,请你:①作图确定水塔的位置;②求出所需水管的长度(结果用准确值表示).(3)已知x+y=6,求的最小值?此问题可以通过数形结合的方法加以解决,具体步骤如下:①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA= ____DB= ____.②在AB上取一点P,可设AP= _____,BP= _____.最小值为 ___.【思路点拨】(1)利用二次函数的顶点坐标就可得出函数的极值;(2)①延长AC到点E,使CE=AC,连接BE,交直线CD 于点P,则点P即为所求;②过点A作AF⊥BD,垂足为F,过点E作EG⊥BD,交BD 的延长线于点G,则有四边形ACDF、CEGD都是矩形,进而利用勾股定理求出即可;(3)①作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=3,BD=5,②在AB上取一点P,可设AP=x,BP=y;最小值利用勾股定理求出即可.【答案与解析】(1)抛物线所对应的二次函数的最大值是4;(2)①如图所示,点P即为所求.(作法:延长AC到点E,使CE=AC,连接BE,交直线CD 于点P,则点P即为所求.说明:不必写作法和证明,但要保留作图痕迹;不连接PA不扣分;(延长BD,同样的方法也可以得到P点的位置.)②过点A作AF⊥BD,垂足为F,过点E作EG⊥BD,交BD 的延长线于点G,则有四边形ACDF、CEGD都是矩形.∴FD=AC=CE=DG=1,EG=CD=AF.∵AB=3,BD=2,∴BF=BD-FD=1,BG=BD+DG=3,∴在Rt△ABF中,AF2=AB2-BF2=8,∴AF=2EG=2.∴在Rt△BEG中,BE2=EG2+BG2=17,∴BE=(cm).∴PA+PB的最小值为cm.即所用水管的最短长度为cm.(3)图3所示,①作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=3,BD=5,②在AB上取一点P,可设AP=x,BP=y,③的最小值即为线段 PC和线段 PD长度之和的最小值,∴作C点关于线段AB的对称点C′,连接C′D,过C′点作C′E⊥DB,交BD延长线于点E,∵AC=BE=3,DB=5,AB=C′E=6,∴DE=8,..∴最小值为10.故答案为:①4;②x,y;③PC,PD,10.【总结升华】此题主要考查了函数最值问题与利用轴对称求最短路线问题,结合已知画出图象利用数形结合以及勾股定理是解题关键.作图题不要求写出作法,但必须保留痕迹.最后点题,即“xx即为所求”.5.如图,二次函数y=ax2+bx+c的图象开口向上,图象过点(-1,2)和(1,0),且与y轴相交与负半轴.以下结论(1)a>0;(2)b>0;(3)c>0;(4)a+b+c=0;(5)abc<0;(6)2a+b>0;(7)a+c=1;(8)a>1中,正确结论的序号是.【思路点拨】由抛物线的开口方向判断a与0的关系,由抛物线与y 轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【答案与解析】解:①由抛物线的开口方向向上,可推出a>0,正确;②因为对称轴在y轴右侧,对称轴为x=>0,又因为a>0,∴b<0,错误;③由抛物线与y轴的交点在y轴的负半轴上,∴c<0,错误;④由图象可知:当x=1时y=0,∴a+b+c=0,正确;⑤∵a>0,b<0,c<0,∴abc>0,错误;⑥由图象可知:对称轴x=>0且对称轴x=<1,∴2a+b >0,正确;⑦由图象可知:当x=-1时y=2,∴a-b+c=2, ---①当x=1时y=0,∴a+b+c=0, ---②①+②,得2a+2c=2,解得 a+c=1,正确;⑧∵a+c=1,移项得a=1-c,又∵c<0,∴a>1,正确.故正确结论的序号是①④⑥⑦⑧.【总结升华】考查二次函数的解析式、图象,及综合应用相关知识分析问题、解决问题的能力.二次函数y=ax2+bx+c图象与系数之间的关系:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.存在着“左同右异”,即a,b同号.对称轴在y轴的左边,a,b异号,对称轴在y轴的右边.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=±1时,ax2+bx+c就变成了a±b+c了.这道题的第7小题:当x=1时,a+b+c=0……①当x=-1时,a-b+c=2……②,①+②得,2a+2c=2,即a+c=1.举一反三【变式】已知二次函数y=ax2+bx+c的图象如图所示,x=是该抛物线的对称轴.根据图中所提供的信息,请你写出有关a,b,c的四条结论,并简单说明理由.解:①∵开口方向向上,∴a>0,②∵与y轴的交点为在y轴的正半轴上,∴c>0,③∵对称轴为x=>0,∴a、b异号,即b<0,④∵抛物线与x轴有两个交点,∴b2-4ac>0,⑤当x=1时,y=a+b+c<0,⑥当x=-1时,y=a-b+c>0.结论有:a>0,b<0,c<0,a+b+c<0,a-b+c>0等.。

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

『数形结合』在解决问题中的应用

『数形结合』在解决问题中的应用

『数形结合』在解决问题中的应用
『数形结合』是一种解决问题的方法,它将数学和几何相结合,通过使用图形和图像来解决数学问题。

数形结合在解决问题中的应用非常广泛。

它可以用于解决各种几何和代数问题,包括面积、体积、周长、相似、合并等。

在解决面积问题中,数形结合方法可以通过绘制图形来计算图形的面积。

例如,可以通过绘制一个矩形来计算一个矩形的面积,通过绘制一个圆形来计算一个圆的面积。

在解决体积问题中,数形结合方法可以通过绘制图形来计算物体的体积。

例如,可以通过绘制一个长方体来计算长方体的体积,通过绘制一个球体来计算球体的体积。

在解决周长问题中,数形结合方法可以通过绘制图形来计算图形的周长。

例如,可以通过绘制一个正方形来计算正方形的周长,通过绘制一个圆形来计算圆形的周长。

在解决相似问题中,数形结合方法可以通过绘制图形来判断图形之间是否相似。

例如,可以通过绘制两个三角形并测量其边长和角度来判断它们是否相似。

在解决合并问题中,数形结合方法可以通过绘制图形来合并几何图形。

例如,可以通过绘制两个矩形并计算它们的面积来合并它们。

总之,数形结合方法在解决问题中非常有用,尤其是在解决几何和代数问题时。

它可以通过利用图形和图像来帮助我们更好地理解和解决数学问题。

数形结合的措施

数形结合的措施

数形结合的措施引言在数学教学中,数形结合是一种重要的教学策略。

通过将抽象的数学概念与具体形状相结合,可以帮助学生更好地理解和应用数学知识。

本文将探讨数形结合的措施,包括使用几何图形辅助数学教学、利用数学模型解决几何问题以及运用数学工具进行几何测量,旨在提高学生对数学的学习兴趣和理解能力。

使用几何图形辅助数学教学数学教学中,几何图形是数形结合教学中不可或缺的重要工具。

通过将抽象的数学概念与具体的几何图形相联系,可以帮助学生更好地理解数学知识。

例如,在教授平行线的性质时,可以使用两个平行线与一条截线所形成的内外夹角以及同位角的关系来解释概念,同时通过几何图形的示意图直观地呈现给学生,提高他们对平行线的理解和记忆。

此外,利用几何图形进行实例分析也是数形结合中常用的方法。

通过选择适当的几何图形,结合实际问题,可以帮助学生更好地理解数学概念,并将其应用于解决实际问题。

例如,在教授三角函数的定义和性质时,可以选择一个直角三角形作为示例,通过计算三角形的边长和角度来帮助学生理解正弦、余弦和正切的含义,以及它们之间的关系。

利用数学模型解决几何问题数学模型是数形结合中另一个重要的工具。

通过将具体的问题抽象为数学模型,可以将复杂的几何问题简化为数学运算,帮助学生更好地解决几何问题。

例如,在解决平面几何问题时,可以使用坐标系建立几何图形与数学模型之间的关系,通过数学分析和运算来解决问题。

另外,利用数学模型还可以帮助学生更好地理解几何概念和定理的证明过程。

通过将几何问题转化为数学模型,可以通过数学推理和逻辑证明来解决问题,让学生对几何知识的证明过程有更深刻的理解。

例如,在证明平行线性质时,可以利用数学模型来证明平行线的定义、性质和判定定理,让学生通过数学推理和证明过程来认识到平行线的特殊性质和应用。

运用数学工具进行几何测量数学工具在数形结合中起着重要的作用。

通过使用数学工具进行几何测量,可以帮助学生更好地理解几何概念,并培养他们的几何思维能力。

数形结合解题方法和技巧(二)

数形结合解题方法和技巧(二)

数形结合解题方法和技巧(二)数形结合解题方法和技巧在数学解题的过程中,数形结合方法可以帮助我们更好地理解和解决问题。

通过将数学问题与具体的几何图形相结合,我们可以更直观地理解问题,找到解题的突破口。

下面将介绍一些数形结合解题的常用技巧和方法。

1. 利用图像进行问题解读•针对一些问题,我们可以利用绘制图形来更准确地理解问题的意思。

通过将问题中的信息绘制成图形,我们可以更好地分析问题,找出解题的关键点。

•例如,在解决关于三角形的问题时,我们可以绘制一个具体的三角形图形,以便更好地理解问题以及相关概念。

2. 利用几何图形的性质解题•几何图形具有一些固有的性质,这些性质可以在解题过程中发挥作用。

•例如,平行线之间的交角相等、相似三角形的对应边成比例等。

在解题中,利用这些性质可以简化问题,找到解题的线索。

3. 利用图形进行推理和证明•数形结合的方法还可以通过观察几何图形进行推理和证明。

•当我们需要证明某个命题时,可以利用图形中的一些性质进行推演,从而得到结论的证明。

4. 利用图形进行构造和划分•数形结合还可以用来进行构造和划分。

•针对某些问题,我们可以根据图形的特点进行构造,从而找到解题的思路。

•利用图形进行划分,可以将问题分解为更简单的子问题,有助于解题的进行。

5. 利用图形进行计算和比较•数形结合的方法还可以帮助我们进行一些计算和比较。

•在解决一些几何题目中,我们可以利用图形给出的信息进行计算,找到答案。

•在比较大小或者判断一些关系时,图形可以给我们提供更直观的帮助,帮助我们更好地理解和解题。

通过数形结合的方法,我们可以更全面地理解和解决数学问题。

在解题过程中,我们可以通过绘图、利用几何性质、进行推理和证明、进行构造和划分以及进行计算和比较等方法来发挥数形结合的作用。

希望这些方法和技巧可以帮助大家更好地解决问题,提升数学解题的能力。

高三数学数形结合的解题方法与技巧分析

高三数学数形结合的解题方法与技巧分析

高三数学数形结合的解题方法与技巧分析数学数形结合是高中数学中的一个重要内容,该部分主要考察学生对数学与几何的结合运用能力。

下面我们来分析一下高三数学数形结合的解题方法与技巧。

一、认真分析题目在解题之前,我们首先要认真分析题目。

需要仔细阅读题目中的条件和要求,并理清思路。

了解题目中的关键信息和条件,明确题目的要求,并分析出解题的思路和方法。

二、绘制准确图形在数学数形结合题目中,准确地绘制图形非常重要。

通过准确的图形可以更好地理解题目,有助于我们找到解题的关键点和分析问题的思路。

在解题时要注意绘制准确的图形,包括角度的大小、长度的比例、直线的平行关系等等。

三、运用数学知识分析问题在准备好图形之后,我们可以运用数学知识来分析问题。

可以使用各种已知的数学定理和原理,如相似三角形、勾股定理、平行线定理等。

通过运用数学知识,我们可以将问题转化为一些已知的性质和关系,从而更好地解决问题。

四、灵活运用解题方法在解决数学数形结合问题时,我们需要运用各种解题方法。

常见的解题方法有类比法、反证法、递推法、数学归纳法等。

我们需要根据题目的特点和要求来选择合适的解题方法。

有时还需要进行多次尝试和推理,不断调整解题方法,直至找到解决问题的方法。

五、归纳总结规律在解完题目之后,我们应该总结一下解题的思路和方法,并归纳总结一些解题规律。

通过总结规律,可以加深对数学知识的理解和运用,提高解题的效率和准确性。

在以后遇到类似的问题时,可以借鉴之前的解题思路和方法,更快地解决问题。

六、多做练习题提高解题能力是需要多做练习的。

通过多做一些数学数形结合的练习题,可以帮助我们更好地掌握解题的方法和技巧,提高解题的能力。

可以选择一些经典的练习题,并逐步提高难度,以更好地掌握解题思路和方法。

以上就是高三数学数形结合的解题方法与技巧的分析,希望能对你在数学数形结合方面的学习有所帮助。

最重要的是理解数学知识,善于分析问题,灵活运用解题方法,并多做练习,相信你在数学数形结合方面会有不错的成绩。

以“数形结合”为例浅析如何利用数学思想解决数学问题

以“数形结合”为例浅析如何利用数学思想解决数学问题

教改教研新教师教学著名的数学家高斯曾说过:“数学是打开科学大门的钥匙”;德国物理学家伦琴指出:“第一是数学,第二是数学,第三是数学。

”;由此不难看出,数学是一切其他学科发展的基础,在经济社会发展中起到重要的作用。

因此,学好数学并应用好数学是一个国家强大的重要体现。

当前,一些学生“谈数学色变”,而另一些学生则深深地为数学着迷,这与学生能否学会应用数学方法不无关系。

我国著名的数学家华罗庚就曾说过:“新的数学方法和概念,常常比解决数学问题本身更重要。

”,因此,掌握数学思想是学习数学知识的前提。

此外,数字和图形是数学发展历史上至为重要的两个研究对象,两者在一定条件下是可以相互转化的。

作为一种数学方思想,数形结合思想是讨论数字与图形之间相互对应的关系,通过两者之间相互的转化,将抽象的数字语言用更为直观的图像来表示,或是用图像来表示与之有关的数字运算关系。

数形结合是数学思想中最为基本,也是最重要的思想。

对于学生来说,个人的空间想象力决定了其运用数形结合思想的深度,巧妙地运用数形结合的思想,将会使数学问题的解决更为方便简单。

一、数形结合思想的简介(一)基本内涵数形结合是指在解决数学问题中将抽象的数字与更为直观的图像相结合,可以使抽象的数学问题更为形象生动,提高解决问题的速度和效率。

数形结合思想一般主要应用于研究函数与图像、曲线与方程以及实数与数轴等之间的关系中,运用数形结合的思想不仅能够找到更为简单的解题方法,避免了复杂的计算过程,而且在解答选择题,填空题的时候更具有优势。

在实际运用中,数形结合可以为学生学习提供很好的帮助,也为老师教学提出了新的方向,教师在教学中运用数行结合的方法,可以增加课堂的趣味,提高学生的学习积极性。

(二)数形结合思想的基本方法1.由数字转化为图形“数”和“形”两者是相互对应的,一些数字运算过于抽象,无法准确把握,而“形”相对来说则更加直观,能够表现的内容更多,更有利于解决问题。

因此,当我们无法用数量运算来解决问题时,可以考虑通过相对应的图形来解决。

初中数学专题复习数形结合(含答案)

初中数学专题复习数形结合(含答案)

专题复习三数形结合Ⅰ、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”.几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.Ⅱ、典型例题剖析【例1】(2005,嘉峪关,10分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)果你是推销员,应如何选择付费方案?解:(1)y1=20x,y2=10x+300.(2)y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销 10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y1的付费方案;否则,选择y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】(2005,某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.【例3】(2005,江西课改,8分)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3l 司所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全如图3-3-3所示的扇形统计图(要求:第二版与第三版相邻人并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。

感悟数形结合思想 发展数学核心素养——“解直角三角形中的数形结合”专题复习教学及反思

感悟数形结合思想 发展数学核心素养——“解直角三角形中的数形结合”专题复习教学及反思

一、内容和内容解析1.内容“解直角三角形中的数形结合”专题复习课包括图1本节课为第1课时,以解直角三角形及其应用为载体,在综合运用相关知识解决问题的过程中,提炼运用数形结合思想方法解题的操作步骤、作用、注意要点等.2.内容解析(1)地位和作用.代数和几何是初中数学的主要研究对象.数形结合是通过数与形的相互转化达到认识和解决问题的一种思想和方法.通过“以形助数”和“以数解形”,准确把握数与形的关联点,可以使抽象的问题形象化、直观的问题精细化,从而快速获取解题思路,逻辑清晰地解决问题.运用数形结合思想解决问题的过程也是学生发展直观想象、数学运算、数学抽象、逻辑推理、数学建模等素养的过程.数形结合在数学学习和研究中占有重要地位,它不仅是一种重要思想,也是一种常用的解题策略与方法.本节课是运用数形结合思想解决相关问题的专题复习课,从具体的锐角三角函数问题的解决开始,总结提炼数形结合思想方法的作用、操作步骤和注意要点,并用于解决综合性问题.锐角三角函数是数形结合的产物,它的概念的产生和应用都与图形有着密切的联系,在历年中考试题中都占有一定的比重.因此,学好本节课的内容对中考备考有重要作用.(2)概念的解析.运用数形结合思想方法解决问题的操作步骤、注收稿日期:2021-01-16基金项目:河南省教育科学规划2020年度一般课题——基于“互联网+信息技术”的初中数学解题教学实践研究(2020YB0980).作者简介:赵智勇(1963—),男,中学高级教师,主要从事中学数学教育教学研究.——“解直角三角形中的数形结合”专题复习教学及反思赵智勇摘要:文章以锐角三角函数知识内容为载体,着眼于数形结合思想方法的深层感悟,实现数与形的双向沟通.通过“解直角三角形中的数形结合”专题复习课的教学,引导学生概括数形结合解决问题的基本思路,体会其作用,归纳其注意要点;引导学生应用概括出的数形结合思想的基本思路解决问题,实现数形结合思想的巩固和迁移;引导学生融合不同的思想方法解决综合性问题,实现思想方法的融合.关键词:数形结合;锐角三角函数;专题复习;教学研究感悟数形结合思想发展数学核心素养··47意要点、作用如下.操作步骤:分析问题结构—构想数形关联—实施数形转换—获得问题答案.注意要点:考虑数形结合解决问题的必要性、可行性和简洁性;解决几何证明题需要几何直观分析、代数抽象分析对应进行;代数性质与几何图形的对应互换.作用:运用数形结合思想方法解决问题能够使抽象的问题形象化,使复杂的关系得到直观、具体的表示,对理解题意、挖掘题目中的各种信息、发现蕴含的条件和关系、获得解题的灵感和方法等都具有重要意义.(3)思想方法.数形结合的实质是把抽象的数量关系与直观的图形表示结合起来,或把几何中的定性结论转化为可计算的定量结果,或以直观图形辅助抽象的代数运算与推理.(4)知识类型.本专题内容属于程序性知识,还是策略性知识,由知识类型所决定.在教学中,教师要注重以问题为引导,以学生活动为主,在独立思考、合作交流中,师生共同提炼数形结合思想方法的操作步骤和核心要点,进一步体会数形结合思想方法的作用;在应用中注重引导学生用数形结合思想方法去分析问题和解决问题.(5)教学重点.基于以上分析,确定本节课的教学重点为:提炼数形结合思想解题的一般步骤和注意要点.二、目标和目标解析1.目标(1)通过解直角三角形及其应用问题,了解数形结合思想的内涵和作用.(2)经历问题解决过程,能抽象概括出用数形结合思想解决问题的操作步骤、注意要点和作用.(3)能正确进行数形互化,运用数形结合思想解决有一定综合性的问题,形成解题策略.2.目标解析达成目标(1)的标志:知道数形结合研究数的精确与形的直观之间的转化,可使解题思路变得简单明了,从而化繁为简、化难为易.达成目标(2)的标志:明确运用数形结合解决问题一般需要经历“分析、构想、建立、求解”四个步骤.数与形的对应转换是运用数形结合解决问题的关键,明确以形助数、以数解形的具体操作步骤.知道在运用数形结合解决问题时,要考虑可行性等,不能用形的显然替代推理论证,既需要进行几何直观分析,又需要通过符号抽象、运算和推理进行量化研究.达成目标(3)的标志:在解决相关问题的过程中,能有意识借助形的几何直观性来阐述数之间的普遍关系和一般规律,借助数的精确性阐述形的某些属性和一般规律;能运用数形结合思想方法解决一些有一定难度的中考试题.三、教学问题诊断分析1.已具备的认知基础学生已经学习了直角三角形的两锐角互余、勾股定理、锐角三角函数等知识,并能运用直角三角形的性质解直角三角形;经历了数轴、坐标系、函数等概念的学习,对数形结合有一定的认识,对数与形的对应和转换有一定的模仿经验,具有一定的解决问题的能力,这为本节课的学习奠定了基础.2.与本课目标的差距分析(知识、能力)初中生运用数形结合解决问题,需要具备以下能力:敏锐的观察能力;准确的语言表达能力;灵活的思维能力;较强的综合应用能力.运用数形结合思想解决有一定难度的综合问题时,需要进一步培养学生敏锐的观察能力和灵活的思维能力.3.可能存在的问题运用数形结合思想解决综合性较强的题目时,纵横联系的知识点多,这对学生的数形结合能力提出了较高的要求.对于某些问题,学生有可能误用形的直观替代严谨的推理论证,也可能抓不住数的特征构建适当的形.4.应对策略本节课需要通过具体实例多次展现数形结合的具体操作步骤,使学生获取更多活动经验,提升学生对数形结合思想的认识和理解.首先,创设问题情境,引导学生利用数形结合思想解决问题;其次,引导学··48生对上述问题分解并进行反思总结,组织学生进行思想方法的交流和一般性思考;最后,通过对例题进行有针对性地指导,使学生经历数形结合解决问题的过程,既进行几何直观分析,又对应进行代数抽象探究,提升学生的认知加工水平和解题能力.基于以上分析,确定本节课的教学难点为:进行数与形的等价转化,并运用数形结合思想解决有一定难度的综合问题.四、教学支持条件分析利用希沃白板制作课件、互动授课;借助希沃授课助手拍照上传、进行投屏等,灵活展示和点评学生的学习成果,呈现课堂细节;结合GeoGebra 软件辅助构图操作,提升课堂效率.五、教学过程设计1.课前检测——针对强化,提升实效检测题1:△ABC 在正方形网格中的位置如图2所示,则sin α的值为().(A )34(B )43(C )35(D )45A BCαACB图3图2补测题:△ABC 在正方形网格中的位置如图3所示,则sin B 的值为.检测题2:如图4,已知在Rt△ABC 中,∠C =90°,tan ∠DBC =13,AD =3,AB =5,则cos A 的值为.A C D B图4DA BC图5补测题:如图5,在Rt△ABC 中,∠C =90°,∠BAC =30°,延长CA 至点D ,使AD =AB ,则tan D 的值为.【设计意图】通过课前检测题,了解学生对本节课的相关基础知识的掌握情况,可以根据检测的结果决定是否需要补测题,为后续提炼数形结合步骤和要点及进一步利用数形结合解决问题做好铺垫.2.解决问题——经历过程,感悟应用问题1:如图6,已知在△ABC中,AB =BC =5,tan∠ABC =43.(1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为点D ,求AD AB的值.师生活动:教师引导学生审清题意,从数与形两个方面的关联分析问题.第(1)小题中,作高构建数所对应的形,根据形所对应的数量关系确定求AC 的长的方法(设未知数,将求AC 的长转化为解方程问题求解).第(2)小题中,从图形特征关联图形对应的数量关系,确定求比值的方法.在引导学生审题和分析问题的过程中,教师结合学生的回答给出如表1所示的数形关联表,然后通过追问使学生理解“图形的形状确定,则图形中对应的数量关系也随之确定”.因此,求图形中两条线段的比值时,不必关注具体的数量,而把目光聚焦到图形中元素间的数量关系上,则求解过程更为简捷.表1追问1:你是如何使用“tan∠ABC =43”这个条件的?AB C图6··49追问2:条件“边BC的垂直平分线与边AB的交点为点D”对应的图形和数量关系表达式是什么?追问3:若将“AB=BC=5”改为“AB=BC”,你还能求出ADAB的值吗?为什么?【设计意图】通过解决第(1)小题,使学生经历以数解形的思考与解决问题的过程,将图形信息转换为具体的数量关系,借助图形的直观性,增加问题解决的准确性,使问题求解更加简明.通过解决第(2)小题,使学生经历以形助数的思考与解决问题的过程,让学生感悟借助图形的几何直观来解决数的问题,常常可以避免复杂的推理计算,使问题化难为易,使抽象的问题具体化.解决问题后,借助数形关联表,通过问题串促进学生对解决问题的过程进行反思总结,提炼运用数形结合解决问题的一般步骤、注意要点和作用,提升学生的思维能力.3.交流提炼——合作交流,提炼方法问题2:结合课前检测和问题1,你能总结一下利用数形结合思想解决问题的一般步骤和作用吗?师生活动:引导学生回顾课前检测题2的问题解决过程,师生共同建立如表2所示的数形关联表.表2结合问题1的解决过程和如表1、表2所示的数形关联表,师生共同归纳上述问题的解题思路和方法,总结提炼数形结合的一般操作步骤、作用和转化策略.作用:实现数与形的相互转化,使抽象思维与形象思维相结合,从而化繁为简、化难为易.一般操作步骤如下.(1)分析问题结构——审题,得到数的关系和形的特征.(2)构想数形关联——从数的角度想象和表示图形特征,从形的角度想象和描述数量关系,找到数与形的关联点,如几何度量(如距离、角度等)或坐标.(3)实施数形转换——构建数所对应的形,对形所对应的数量或数量关系进行符号抽象、运算和推理.(4)获得问题答案——有逻辑地表达解题过程.转化策略:关注具有显著特征的对象,基于基本的几何度量(距离和角度)找出数量关系与几何图形的关联点.【设计意图】概括数学思想方法,需要把数形结合思想的操作过程模型化、程序化、一般化.组织学生相互讨论交流,进一步挖掘数形结合思想的本质内涵,使学生对数形结合思想的认识从内隐转化为外显,实现运用数形结合思想解决问题操作策略的明朗化. 4.迁移应用——知识迁移,能力拓展问题3:如图7,我国两艘海监船A,B在南海海域巡航.某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向.已知A船的航速为30海里/时,B船的航速为25海里/时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,2≈1.41.)图7AB45°53°C师生活动:学生按以下步骤进行独立探索,并在学案上构建数形关联表,解决问题3.第一步:分析问题结构.过点C作AB所在直线的垂线,垂足为点D,由已知AD=DC,∠CBD=53°,··50AB=5.根据两艘船的速度,求等待时间,就要求AC 和BC的长.已知两角和一边,求另外两条边的长,这其实就是解直角三角形问题.第二步:构想数形关联.当已知角和边的条件时,利用锐角三角函数解决问题,通常要构建直角三角形.第三步:实施数形转换.设未知数,根据图形结构列出方程.第四步:获得问题答案.检验解的意义,得到实际问题的答案.教师在学生的分析、思考过程中,关注学生对数形结合解决问题一般步骤的操作表现,并利用希沃授课助手(手机APP结合电脑端)对学生完成的较规范的数形关联表和解题过程进行拍照上传、展示点评.结合学生的思考,师生共同构建如表3所示的数形关联表,解决问题3.表3【设计意图】通过对问题3的解决,进一步明确运用数形结合解决问题的思考步骤和注意要点,感知数与形之间的关联性,挖掘数与形之间的联系,促使学生自觉运用数形结合思想,提升分析问题和解决问题的能力.问题4:如图8,在△ABC中,AB=AC,AD是边BC上的高,E是AB的中点,F是边AC上一个动点,EF与AD相交于点G,AC=10,cos∠DAC=45.当△AGF为等腰三角形时,求EG的长.师生活动:首先,引导学生关注问题中的特殊元素,如两个中点E,D,连接ED构造△AGF∽△DGE;其次,解题需要关注主要构图对象,借助GeoGebra软件中的“复选框”功能简化图形,最终将问题转化为“在△DEG中,DE=5,cos∠EDG=45,当△DEG为等腰三角形时,求EG的长”.再运用GeoGebra软件中的“滑动条”控制动点F在边AC上移动,通过分类讨论,师生共同构建如表4所示的数形关联表,利用数形结合解决问题.代数关系式由BD=DC,BE=EA,得△AGF∽△DGE.由△AGF为等腰三角形,得△DGE为等腰三角形.得DE=5,cos∠EDG=45情况1:DE=EG;情况2:DE=DG;情况3:EG=DG对应的几何图形EDG(舍去)情况1EGDEGD(方法1)(方法2)情况2EGDEGD(方法1)(方法2)情况3AEFGDB CEGD5表4AEFGDB C图8··51追问1:此题还有其他解法吗?追问2:“EG=ED”这种情况不存在,我们还可以怎样说明?追问3:当EG=DG时,E G的长有限制吗?【设计意图】通过对问题4的解决,以数形结合、分类讨论思想为基础,引导学生在分析问题、规划思路时,将目光聚焦在特殊的视角和特殊的对象(等腰、中点、平行线)上,根据已有的数学活动经验合理寻求解决问题的突破口,体会利用数形结合进行推理得到的结论具有一般性,掌握目标导向的认知策略,使学生进一步感知数与形之间的关联性,挖掘数与形之间的必然联系,提升分析问题和解决问题的能力.追问4:结合以上问题,你能总结一下利用数形结合解决问题的注意要点和转化策略吗?注意要点如下.(1)代数性质与几何图形要对应互换.(2)考虑数形结合解决问题的必要性、可行性和简洁性.(3)不能用图形的直观代替严密的逻辑推理,既需要几何直观分析,又需要进行对应的代数抽象分析.5.反思总结——回顾思考,深化思维(1)数形结合的作用是什么?(2)运用数形结合解决问题可以分为哪些步骤?(3)运用数形结合解决问题的过程中最关键是哪一步?需要注意什么?(4)你还有哪些收获?师生共同总结出如图9所示的框图.数形结合作用实现数与形的相互转化,使抽象思维与形象思维相结合化繁为简,化难为易1.分析问题结构2.构想数形关联3.实施数形转换4.获得问题答案转化策略:找出数量关系与几何图形的关联点操作步骤注意要点1.考虑数形结合解决问题的必要性、可行性和简洁性2.几何证明题需几何直观分析、代数抽象分析对应进行3.代数性质与几何图形的对应互换图9【设计意图】回顾本节课的学习历程,并再次总结数形结合思想的解题思路、操作步骤、要点和作用,深化学生对数形结合思想的理解,强化目标导向的认知策略.六、目标检测——自我检测,巩固反馈1.新冠肺炎疫情期间,教育部号召各地各类学生居家学习.为支持小明学习,妈妈特意买了新台灯.图10(1)是放置在水平桌面上的台灯,图10(2)是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,AC 可以绕点A上下调节一定的角度,CD可以绕点C上下调节一定的角度.使用时发现:当灯臂与底座构成的夹角∠CAB=53°,∠ACD=157°时,台灯光线最佳.求光线最佳时点D到桌面的距离为多少?(结果保留一位小数.参考数据:sin53°≈45,cos53°≈35.)A BCD(2)(1)图102.如图11,在Rt△ABC中,∠C=90°,sin B=45,AC=4.D是BC的延长线上的一个动点,∠EDA=∠B,AE∥BC.当△ADE为等腰三角形时,求AE的长.AB C DE图11【设计意图】巩固利用数形结合思想解决问题的过程与方法,对应知应会的核心知识进行检测,为下节课的解题课奠定基础.通过解决问题,进一步体现数形结合思想应用的广泛性和有效性,提高学生对数学思想的感悟层次,提升学生分析问题和解决问题的能力,感受数形结合的育人价值.··52七、教学反思教学设计是静态的,而课堂生成是动态的.通过对数形结合的设计和实施教学,笔者认为,在教学中,教师引导学生感悟数形结合思想方法,发展数学学科核心素养应注意以下几点.1.进行单元整体教学从整体上把握教学内容,整体构思单元各课时的教学内容,注重知识的前后联系,以及对后续学习的重要作用,体现数学知识的整体性、逻辑的连贯性、思想的一致性和方法的一般性.在相互联系中引导学生感悟其中蕴涵的数学思想方法,发展学生的数学素养,有利于深化学生对数形结合思想的理解,培养理性精神和探究精神,提升中考数学备考能力.2.发挥一般观念的引领作用本节课的教学设计和实施是在一般观念的指导下,以数学知识的内在逻辑构建自然而然的研究过程.以解直角三角形内容为载体,根据题目条件和数学知识的内在逻辑关系设计系列问题串,自然引出数形关联表,利用问题串和数形关联表引导学生概括总结问题的解决思路和方法,提炼数形结合的作用、一般操作步骤、转化策略,形成基本套路,提升教学的整体性和思想性,帮助学生体会数形结合思想方法,使学生透过现象看本质,从复杂问题中抓住关键要素,从而化繁为简,形成数学的思维方式,提升发现问题、提出问题、分析问题和解决问题的能力. 3.遵循数学思想方法教学的原理数学思想方法的学习要经历“解决问题—概括提炼—迁移应用—联系发展”这四个阶段.本节课以此为依据进行教学设计.首先,通过具体问题的解决,体会数形结合思想;其次,将如何分析问题结构、构想数形关联、实施数形转换这一操作过程显性化,明确其作用、操作步骤和要点,提炼和概括数形结合思想;最后,让学生用概括出来的数形结合思想解决新的问题,感悟利用数形结合解决问题的关键是从数的角度观察图形特征,从形的角度实现数量代换,找到数与形的关联点,使学生内化数形结合思想,形成数学活动的经验.例如,在回顾检测题2和问题1时,给表格加个题目“数形关联表”,在对照表格进行引导时用“数量关系关联的几何图形”和“几何图形关联的数量关系”等语言,可以促进学生使用“关联”进行概括.4.精选样例引导学生感悟数形结合思想方法,重要的是精选适当的题目,利用题目归纳操作流程.巩固操作流程可以利用相关的变式题目和拓展题目进行迁移训练,使学生在合作探究中内化数形结合的操作流程,在反思总结中形成有结构的知识经验.5.坚持以学为中心在以学生活动为主、以感悟数形结合思想为目标的复习教学中,教师需要注意鼓励学生积极思考、提出有价值的问题,关注学生是否能够用数学的思维方式观察、分析、解决问题,使学生感受数与形之间的相互转化,使抽象思维与形象思维相结合;合理运用信息技术手段,有利于增强学生的学习兴趣,提高课堂学习效果.教学时,若教师不揭示方法的本质,学生只会看到简单的数学操作,看不到问题的本质.数学思想是对数学知识的更高层次的概括与提炼,是培养学生的数学能力、发展数学学科核心素养的重要环节.数学思想方法的教学对解题教学具有十分重要的指导作用,有助于提升学生的解题能力和应用能力,发展学生的理性思维和科学精神,有效发挥数学学科的育人价值.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[3]吴增生.科学用脑高效复习:初中数学总复习教学设计[M].杭州:浙江科技出版社,2018.[4]吴增生.整体建构核心素养导向下的总复习教学策略体系[J].中国数学教育(初中版),2019(7/8):3-11,37.[5]王华鹏.“四个理解”指导下的教学设计新思路:以“位似”教学设计为例[J].中国数学教育(初中版),2019(9):3-8,13.··53。

以形助数 以数解形——数形结合思想在小学数学复习课上的有效运用

以形助数 以数解形——数形结合思想在小学数学复习课上的有效运用

2021年第28期教育教学5SCIENCE FANS 以形助数 以数解形——数形结合思想在小学数学复习课上的有效运用周 岁(江苏省东海县牛山街道中心小学,江苏 连云港 222000)【摘 要】数形结合思想能在有效帮助学生掌握数学知识,如抽象理论、数学概念与数学关系的同时,提升学生的数学思维与学习能力。

本文主要探讨如何在小学数学复习课上应用数形结合思想引导学生进行复习。

【关键词】小学数学;复习课;数形结合思想【中图分类号】G623.5 【文献标识码】A 【文章编号】1671-8437(2021)28-0125-02复习是一个重新整理知识的过程,在小学数学教学中,科学的复习方式能够帮助学生掌握数学难点,解决学习过程中存在的疑难问题,在提高教学的有效性的同时,能够加快学生吸收数学知识的速度。

但就目前的小学数学复习课来看,以运算、解题为核心的数学教学很难发挥其应有的价值。

教师应调整教学方法,尝试应用数形结合思想开展复习指导活动,实现抽象到具象的有机转化,这样能让复习更有效率,也能提高教学质量。

1 运用数形结合思想引出复习问题在以往的小学数学复习课中,复习活动大多围绕解题、计算开展。

从学生的成绩表现上来看,学生确实能准确解答数学问题,但学生的数学学习能力却没有提升:没有掌握数学方法,不会举一反三,对数学知识点的理解也不够透彻。

而借助数形结合思想,教师能够帮助学生解决在数学复习中所遇到的问题,进而培养学生的数学思维,帮助其掌握多元化的数学学习方法[1]。

以苏教版小学数学三年级上册“千克与克”的复习课为例,笔者通过数形结合思想开展教学活动,帮助学生完成数学学习任务。

笔者给出图形与数学符号,将生活中的素材与引入数学课堂。

笔者给出秤钩与“g”的符号,如图1所示:图1结合有关图片材料,学生很快给出结论:这个“秤钩”和5很像。

教师可针对学生的结论提出问题:秤钩除了像5之外,还有什么用?学生凭借生活经验,能够得出“秤钩能够勾起重物”的结论。

高三数学第二轮专题讲座复习:数形结合思想

高三数学第二轮专题讲座复习:数形结合思想

张喜林制[选取日期]高三数学第二轮专题讲座复习:数形结合思想高考要求数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决 运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征 重难点归纳应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象(3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合典型题例示范讲解例1设A ={x |–2≤x ≤a },B ={y |y =2x +3,且x ∈A },C ={z |z =x 2,且x ∈A },若C ⊆B ,求实数a 的取值范围命题意图 本题借助数形结合,考查有关集合关系运算的题目知识依托 解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C 进而将C ⊆B 用不等式这一数学语言加以转化错解分析 考生在确定z =x 2,x ∈[–2,a ]的值域是易出错,不能分类而论 巧妙观察图象将是上策 不能漏掉a <–2这一种特殊情形技巧与方法 解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决解 ∵y =2x +3在[–2, a ]上是增函数∴–1≤y ≤2a +3,即B ={y |–1≤y ≤2a +3}作出z =x 2的图象,该函数定义域右端点x =a 有三种不同的位置情况如下①当–2≤a ≤0时,a 2≤z ≤4即C ={z |a 2≤z ≤4}要使C ⊆B ,必须且只须2a +3≥4得a ≥21与–2≤a <0矛盾 ②当0≤a ≤2时,0≤z ≤4即C ={z |0≤z ≤4},要使C ⊆B ,由图可知必须且只需⎩⎨⎧≤≤≥+20432a a 解得21≤a ≤2③当a >2时,0≤z ≤a 2,即C ={z |0≤z ≤a 2},要使C ⊆B 必须且只需⎩⎨⎧>+≤2322a a a 解得2<a ≤3 ④当a <–2时,A =∅此时B =C =∅,则C ⊆B 成立综上所述,a 的取值范围是(–∞,–2)∪[21,3] 例2已知a cos α+b sin α=c , a cos β+b sin β=c (ab ≠0,α–β≠k π, k ∈Z )求证22222c o sb a +=-βα 命题意图 本题主要考查数学代数式几何意义的转换能力知识依托 解决此题的关键在于由条件式的结构联想到直线方程 进而由A 、B 两点坐标特点知其在单位圆上错解分析 考生不易联想到条件式的几何意义,是为瓶颈之一 如何巧妙利用其几何意义是为瓶颈之二技巧与方法 善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几何意义,这样才能巧用数形结合方法完成解题证明:在平面直角坐标系中,点A (cos α,sin α)与点B (cos β, sin β)是直线l :ax +by =c 与单位圆x 2+y 2=1的两个交点如图从而 |AB |2=(cos α–cos β)2+(sin α–sin β)2=2–2cos(α–β) 又∵单位圆的圆心到直线l 的距离22||ba c d +=由平面几何知识知|OA |2–(21|AB |)2=d 2即 b a c d +==---2224)cos(221βα∴22222cos ba c +=-βα 例3曲线y =1+24x - (–2≤x ≤2)与直线y =r (x –2)+4有两个交点时,实数r 的取值范围解析 方程y =1+24x -的曲线为半圆,y =r (x –2)+4为过(2,4)的直线答案 (43,125] 例4设f (x )=x 2–2ax +2,当x ∈[–1,+∞)时,f (x )>a 恒成立,求a 的取值范围 解法一 由f (x )>a ,在[–1,+∞)上恒成立 ⇔x 2–2ax +2–a >0在[–1,+∞)上恒成立考查函数g (x )=x 2–2ax +2–a 的图象在[–1,+∞]时位于x 轴上方 如图两种情况不等式的成立条件是(1)Δ=4a 2–4(2–a )<0⇒a ∈(–2,1)(2)⇒⎪⎩⎪⎨⎧>--<≥∆0)1(10g a a ∈(–3,–2], 综上所述a ∈(–3,1)解法二 由f (x )>a ⇔x 2+2>a (2x +1)令y 1=x 2+2,y 2=a (2x +1),在同一坐标系中作出两个函数的图象如图满足条件的直线l 位于l 1与l 2之间,而直线l 1、l 2对应的a 值(即直线的斜率)分别为1,–3, 故直线l 对应的a ∈(–3,1) 学生巩固练习1 方程sin(x –4π)=41x 的实数解的个数是( ) A 2 B 3 C 4 D 以上均不对2 已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( )A α<a <b <βB α<a <β<bC a <α<b <βD a <α<β<b3(4cos θ+3–2t )2+(3sin θ–1+2t )2,(θ、t 为参数)的最大值是4 已知集合A ={x |5–x ≥)1(2-x },B ={x |x 2–ax ≤x –a },当A B 时,则a 的取值范围是5 设关于x 的方程sin x +3cos x +a =0在(0,π)内有相异解α、β(1)求a 的取值范围; (2)求tan(α+β)的值6 设A ={(x ,y )|y =222x a -,a >0},B ={(x ,y )|(x –1)2+(y –3)2=a 2,a >0},且A ∩B≠∅,求a 的最大值与最小值 参考答案1 解析 在同一坐标系内作出y 1=sin(x –4π)与y 2=41x 的图象如图答案 B2 解析 a ,b 是方程g (x )=(x –a )(x –b )=0的两根,在同一坐标系中作出函数f (x )、g (x )的图象如图所示 答案 A3 解析 联想到距离公式,两点坐标为A (4cos θ,3sin θ),B (2t –3,1–2t )点A的几何图形是椭圆,点B 表示直线 考虑用点到直线的距离公式求解 答案227 4 解析 解得A ={x |x ≥9或x ≤3},B ={x |(x –a )(x –1)≤0},画数轴可得 答a >35 解 ①作出y =sin(x +3π)(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a ≠23时,曲线与直线有两个交点, 故a ∈(–2,–3)∪(–3,2)②把sin α+3cos α=–a ,sin β+3cos β=–a 相减得tan 332=+βα, 故tan(α+β)=36 解 ∵集合A 中的元素构成的图形是以原点O 为圆心,2a 为半径的半圆;集合B 中的元素是以点O ′(1,3)为圆心,a 为半径的圆 如图所示∵A ∩B ≠∅,∴半圆O 和圆O ′有公共点 显然当半圆O 和圆O ′外切时,a 最小2a +a =|OO ′|=2,∴a min =22–2当半圆O 与圆O ′内切时,半圆O 的半径最大,即2a 最大此时2a –a =|OO ′|=2,∴a max =22+2。

高中数学总复习-数形结合解题专题

高中数学总复习-数形结合解题专题

高中数学总复习-数形结合解题专题一、高中学生用“数形结合”解题的现状目前,从高中生数形结合解题能力调查可知,高中生数形结合解题意识不强,这主要体现在数学解题中数与形的分离上,即一个问题仅仅是从数的角度求解,或者是仅仅从形的角度考虑。

而且学生利用数形结合解题时容易出现问题,不易找到数形结合解题的突破口。

因此,高中数学教学如果能有效地引导学生自觉强化运用数形结合的解题意识,善于培养学生寻找数形结合解题突破口的能力,将能大大提高学生解题准确率。

二、“数形结合”的思想及重要性“数”与“形”,作为数学中最古老最重要的两个方面,一直就是一对矛盾体。

正如矛和盾总是同时存在一样,有“数”必有“形”,有“形”必有“数”。

华罗庚先生曾说过:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。

切莫忘,几何代数统一体,永远联系,切莫分离!”寥寥数语,把数形之妙说得淋漓尽致。

可见,所谓数形结合,指的是数与形之间的一一对应关系。

数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化。

“数形结合”作为数学中的一种重要思想,在高中数学中占有极其重要的地位。

近年高考数学试卷,就是一个有力的明证。

在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念及其几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

三、数形结合的具体应用及效果在多年来的高考题中,数形结合应用广泛,大多是“以形助数”。

巧用数形结合,助力问题解决

巧用数形结合,助力问题解决

巧用数形结合,助力问题解决
数形结合是一种将数学和几何图形相结合的方法。

它可以帮助我们更好地理解和解决问题。

在数学中,我们通常需要通过抽象的符号和运算来解决问题,而在几何中,我们通过图形来表示和展示问题。

将数学和几何结合起来,可以帮助我们以一种更直观、更形象的方式思考和解决问题。

数形结合可以应用于各个领域的问题。

在代数中,我们经常遇到方程式和不等式,使用数形结合方法可以通过几何图形的形式直观地展示方程和不等式的关系。

求解一元二次方程可以通过将方程表示为一个抛物线,并利用抛物线的性质来解决问题。

在不等式中,通过将不等式表示为坐标系中的区域,可以更好地理解和解决不等式问题。

在几何中,数形结合可以帮助我们推导和证明定理。

几何定理通常通过数学语言来表述,例如“两角相等”,“两边相等”等等。

通过图形可以更加形象地表示定理的含义,并利用图形的性质进行推导和证明。

通过使用数形结合方法,可以证明平行线与等距线之间的关系,以及相似三角形的性质等。

数形结合还可以应用于解决实际问题。

通过将实际问题抽象为几何图形的形式,可以更好地理解问题的本质,并找到合适的解决方法。

解决一道物理问题时,将问题抽象为几何图形可以帮助我们更清晰地理解问题的条件和要求,并找到解决问题的方案。

初中数学解题思想解题方法——数形结合

初中数学解题思想解题方法——数形结合

解题思想之数形结合一、注解:数形结合思想指将数量与图形结合起来,对题目中的给定的题设和结论既进行代数方面的分析,又从几何含义方面进行分析,将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合,也可以使图形的性质通过数量之间的计算与分析,达到更加完整、严密和准确。

在解决数学问题的过程时要善于由形思数,由数思形,数形结合,通过数量与图形的转化,把数的问题利用图形直观的表示出来,力图找到解题思路。

数形结合是数学学习的一个重要方法,通常与平面直角坐标系,数轴及其他数学概念同时使用。

二、实例运用:1.在实数中的运用【例1】如图,在所给数轴上表示出实数—3,—1,2-的点,并把这组数从小到大用“<”连接。

【例2】已知a<0,b<0,且a<b,则()A —b>—aB —b>aC —a >bD b>a2.在不等式中的运用【例3】不等式组2030xx-⎧⎨-≥⎩p的正整数解的个数为()A 1个B 2个C 3个D 4个【例4】关于x的不等式组521xx a-≥-⎧⎨-⎩f无解,则a的取值范围是。

3.在方程(组)中的运用【例5】利用图像法解方程组24212x yx y-=⎧⎨+=⎩4.在函数中的运用【例6】某水电站的蓄水池有2个进水口和1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示。

已知某天0点到6点进行机组试运行,试机时至少打开一个水口,且该水池的蓄水量与时间的关系如图丙所示。

给出三个判断:(1)0点到3点,只进水不出水;(2)3点到4点,不进水只出水;(3)4点到6点,不进水不出水。

则以上判断正确的是()A (1)B (2)C (2)(3)D (1)(2)(3)【例7】已知二次函数y=ax2+bx+c的图象如图所示,则在(1)a<0,(2)b>0(3)c<0(4)b2-4ac>0中,正确的判断是()A (1)(2)(3)(4)B (4)C(1)(2)(3)D(1)(4)5.在统计与概率中的运用【例8】近年来,某市旅游业蓬勃发展,吸引了大批海内外游客前来观光,下面两图分别反映了该市2001—2004年旅客总人数和旅游业总收入的情况。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B O C x
y
P
复习专题 数形结合—解决数学问题的重要手段
一、内容提要:
1、数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性。

2、一般说来,依形想数,可使几何问题代数化.由数想形,可使代数问题几何化.这样数形结合,相辅相成,既有利于开拓解题思路,又有利于发展思维能力. 二、例题分析:
例1.如图,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系.根据图像所给的信息,下列说法中 ①第3分时汽车的速度是40千米/时; ②从第3分到第6分,汽车的速度是40千米/时;
③从第3分到第6分,汽车行驶了120千米;
④从第9分到第12分,汽车的速度从60千米/时减少到0
千米/时;
正确的有_______________.(只填序号)
例2.如图,直线l 是一次函数y kx b =+的图象,点A 、B 在直线l 上.根据图象回答下列问题: (1)写出方程0=+b kx 的解;
(2)写出不等式b kx +>1的解集;
(3)若直线l 上的点P (a,b )在线段AB 上移动, 则a 、b 应如何取值?
例3、如图,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A 、C 分别在坐标轴上,P 是线段BC 上动点,设PC =m ,已知点D 在第一象限,且是两直线y 1=2x +6、y 2=2x -6中某条上的一点,若△APD 是等腰Rt △,求点D 的坐标
例4、..甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2
小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题: y 与时间x 的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)
三、思维提升:
1.已知关于x 的不等式组 ⎩⎨
⎧---0
1
25>>a x x 无解,则a 的取值范围是 .
A O
D
P
B F C
E
y (千米)
x (小时)
480 6
8
10 2
4.5
速度/(千米/时) /分
60 40 20
3
6
9
12
y
x
P
D
O
C
B
A
2.如图所示,点M 是直线y=2x+3上的动点,过点M 作MN 垂直x 轴于点N ,y 轴上是否存在点P ,使以M ,N ,P 为顶点的三角形为等腰直角三角形.小明发现:当动点M 运动到(-1,1)时,y 轴上存在点P (0,1),此时有MN=MP ,能使△NMP 为等腰直角三角形.在y 轴和直线上还存在符合条件的点P 和点M .请你写出其他符合条件的点P 的坐标_______.
3.已知直线L 1经过点A (-1,0)与点B (2,3),另一条直线L 2经过点B ,且与x 轴相交于点P (m ,0).
(1)求直线L 1的解析式;
(2)若△APB 的面积为3,求m 的值.
★★4.如图,在平面直角坐标系中,△ABC 为等腰三角形,AB AC =,AC 所在直线的解析式为3
34
y x =
+,点P 在线段AC 、CB 上运动. (1)求B 、C 两点所在直线的函数解析式; (2)当△COP 的面积等于△AOC 面积的
1
4
时,求出点P 的坐标; (3)在△ABC 中, PO 所在直线的左侧部分面积为S ,若点P 的横坐标为x ,求S 关于x 的函数解析式.
★★5.已知:如图,在直角梯形COAB 中,OC ∥AB,以O 为原点建立平面直角坐标系,A ,B ,C 三点的坐标分别是A (8,0),B (8,10),C (0,4),点D (4,7)是CB 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OAB 的路线移动,移动的时间是秒t ,设△OPD 的面积是S. (1)求直线BC 的解析式;
(2)请求出S 与t 的函数关系式,并指出自变量t 的取值范围;
(3)求S 的最大值;
(4)当9≤t<12时,求S 的范围. 参考答案:
例1.①②④.
例2.解:⑴x =-2;
⑵x >0;
⑶-2≤a ≤2, 0≤b ≤2.
例3、 (4,2),(4,14),(
340,326),(328,3
38) 例4、 (1)设乙车所行路程y 与时间x 的函数关系式为11y k x b =+,把(2,0)和
y
x
O A B
C
P ·
(10,480)代入,得11112010480
k b k b +=⎧⎨
+=⎩,解得1160
120k b =⎧⎨=-⎩,
y ∴与x 的函数关系式为60120y x =-.
(2)由图可得,交点F 表示第二次相遇,F 点横坐标为6,此时
606120240y =⨯-=,
F ∴点坐标为(6,240)
, ∴两车在途中第二次相遇时,它们距出发地的路程为240千米.
(3)设线段BC 对应的函数关系式为22y k x b =+,把(6,240)、(8,480)代入,得
2222
6240
8480k b k b +=⎧⎨
+=⎩,解得22120480k b =⎧⎨=-⎩, ∴y 与x 的函数关系式为120480y x =-.
∴当 4.5x =时,120 4.548060y =⨯-=. ∴点B 的纵坐标为60,
AB Q 表示因故停车检修, ∴交点P 的纵坐标为60.
把60y =代入60120y x =-中,有6060120x =-,解得3x =,
∴交点P 的坐标为(3,60).
Q 交点P 表示第一次相遇,
∴ 乙车出发321-=小时,两车在途中第一次相遇.
思维提升: 1、a ≥3
2、(0,0) (0,
3
4
) (0,-3) 3、【解答】(1)设直线L 的解析式为y=kx+b ,由题意得 0,2 3.k b k b -+=⎧⎨+=⎩解得1,
1.k b =⎧⎨=⎩
所以,直线L 1的解析式为y=x+1.
(2)当点P 在点A 的右侧时,AP=m -(-1)=m+1,有S △APC =1
2
×(m+1)×3=3. 解得m=1,此时点P 的坐标为(1,0);
当点P 在点A 的左侧时,AP=-1-m ,有S=×(-m -1)×3=3,解得m=-3,此时,点P 的坐标为(-3,0).
综上所述,m 的值为1或-3.
4、解:(1)∵AC 所在直线的解析式为3
34
y x =
+, ∴点A 的坐标为(-4,0),点C 的坐标为(0,3).
∴4AO =,3OC =,则5AC ==. 又∵AB AC =,
∴1OB =,即点B 的坐标为(1,0).
设直线BC 的函数解析式为y kx b =+,将B (1,0),C (0,3)代入可得,
3,3k b =-=,
∴直线BC 的函数解析式为33y x =-+.
(2)∵AOC 14362S =
⨯⨯=#,当△COP 的面积等于△AOC 面积的1
4时, 则3
2
COP S =#.
设P 点的坐标为(,)x y ,∴13
322
COP S x =⨯⨯=#,1x =.
当点P 在线段AC 上运动时,可得1x =-,9
4
y =.
当点P 在线段CB 上运动时,可得1x =, 0y =. ∴点P 的坐标为9(1,)4
-,(1,0).
(3)当点P 在线段AC 上运动时,
∵点P 到AO 的距离是3(3)4
x +, ∴133
4(3)6242
S x x =⨯⨯+=+. 当点P 在线段CB 上运动时,
∵点P 到AO 的距离是(33)x -+, ∴313
61(33)6222
S x x =+
-⨯⨯-+=+. 5、(1)设y=kx+4 B(8,10)代入得 (2)当0<t ≤8时
过D 作DE ⊥OA 于E 点,则OP=t,DE=7 12
7t
DE OP 21S -----=⨯=
当8<t ≤18时,过D 作GH ⊥BA 于H 点,交y 轴于点G ,则DG=4,DH=4
AP=t-8, BP=18-t,
S=S 梯形OABC ─S ΔOCD ─ S ΔOAP ─S ΔDPB =-2t+44
(3) 当0<t ≤8时
当t =8时S 的最大值是1282
872
7t S -----=⨯=
=
当8<t ≤18时
S 随着t 的增大而减少,所以S 无最大值,所以当t =8时S 的最大值是28 (4)9≤t <12时
-24<-2t ≤-16,20<-2t +44≤26,即20<S ≤26.。

相关文档
最新文档