2019第五讲--分数应用题之工程问题
用分数解决工程问题
工程问题(分数)计算有关工程的工作总量、工作时间、工作效率的问题叫“工程问题”。
工程问题是分数应用题的特例。
但它同整数应用题中的工程问题一样,同样是研究工作效率、工作时间、工作总量三者之间的关系。
所不同的是在整数应用题中的工程问题,工作总量、工作效率都告诉我们具体的数量,而分数应用题中的工程问题,一般不告诉具体的工作总量,也不告诉具体的工作效率。
解题的关键是根据分数的意义,把工作总量看作“1”,用完成工作总量所需时间的倒数表示工作效率。
工程问题的特点:(学会区分工作效率和工作总量)一般工程问题都是,已知独做的工作时间(或合作的工作时间),求合作的时间(或独做的工作时间)。
分析方法:从问题入手,确定是求谁来完成哪一部分工作量所需要的时间,就用要完成的那部分工作量除以谁的工作效率。
工程问题的基本数量关系式:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间甲工作效率+乙工作效率=工作效率之和总工程量—已经完成工作=剩下工作量例题1:一项工程,甲单独做需2天完成,乙单独做需3天完成。
由此填空:(1)甲的工作效率是()(2)乙的工作效率是()(3)甲乙合作的工作效率是()(4)?甲、乙队合作需要几天完成()例题2:一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的?1.一项工作,甲单独做要10天完成,乙单独做要15天完成。
甲、乙合做几天可以完成这项工作的4/5?2.一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/3?例题3:一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完?1.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?2.一项工程,甲单独做16天可以完成,乙单独做12天可以完成。
六年级奥数讲义分数应用题之工程问题2.doc
第四讲分数应用题之工程问题教学目标工程问题是分数应用题中最重要的一大类,因为处理这类问题的解题技巧独特且应用广泛,所以工程问题往往受出题者青睐,在各种数学竞赛和小升初考试中,工程问题和需要使用工程问题算术方法的类工程问题也经常出现。
1.工程问题的基本数量关系与一般解法;2.工程问题中的常见解题方法;3.工程问题算术方法在其他类型式题中的使用。
经典精讲工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种“工程习惯”,这一类问题称之为“工程问题”。
1. 解题关键是把“一项工程”看成一个单位,运用公式:工作效率×工作时间=工作总量,表示出各个工程队(人员)或其组合在统一标准和单位下的工作效率。
2. 利用常见的数学思想方法,如代换法、比例法、列表法、方程法等。
抛开“工作总量”,和“时间” ,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后利用先前的假设“把整个工程看成一个单位”,求得问题答案,一般情况下,工程问题求的是时间。
有的情况下,工程问题并不表现为两个工程队在“修路筑桥、开挖河渠” ,甚至会表现为“行程问题”、“经济价格问题”等等,工程问题不仅指一种题型,更是一种解题方法。
基本题型【例 1】 一项工程,甲单独做 20天完成,乙单独做 30天完成。
甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。
乙请假多少天 ?【分析】(法一)甲一共干了16 天,完成了 1164,还有 141,是乙做的,乙干了了2055 51 1 (天),休息了(天),请假天数为: 1611 1(天)。
16 6 1616 6 105 30 6102030(法二)假设乙没有请假,则两人合作16 天,应完成 ( 11 ) 16 4 ,20 303 超过单位“ 1”的411,则乙请假 11 10(天)。
333 30【拓展】一项工程,甲队单独干20天可以完成,甲队做了 8 天后,由于另有任务,剩下的工作由乙队单 独做 15天完成.问:乙队单独完成这项工作需多少天?【分析】甲的工作效率:1 ,甲的工作量: 1 82 ,2020 5 乙的工作量: 1 2 3,乙的工作效率: 3 15 1 ,5 5 525 所以乙单独完成这项工作需 25 天。
分数应用题 (工程问题)
分数应用题(工程问题)一、教学目标1.让学生经历程用假设法来解决分数工程问题的过,理解并掌握把工作总量看作单位”1”的分数工程问题的基本特点,解题思路和解题方法.2.通过自主探究,评价交流的学习活动,培养学生分析、比较、综合、概括能力。
3.培养学生运用所学到知识解决生活中的实际问题.二、教学重点:能利用假设法掌握分数工程问题的解题思路与方法。
三、教学难点:理解理解假设不同的数据得出的相同结果的道理.四、教学过程一、复习导入,揭示课题导入:以村里修路事件导入。
复习旧知1、工程问题有3种量,它们之间有什么关系呢?工作量=工作效率×工作时间工作时间= 工作量÷工作效率工作效率= 工作量÷工作时间2、下面各题已知什么,求什么?说出关系式,并列式计算。
1、一条路36千米,一队12天能修完,每天修多少米?2、一条路36千米,一队每天修4米,多少天可以修完?3、修一条路,一队12天能修完,每天修这条路的几分之几4、修一条路,一队每天修 1/18 ,多少天可以修完?二、引入情境,探究新知(1)一条公路长36千米。
两个工程队,一队单独修12天完成,二队单独修要18天完成。
如果两队合修,多少天能修完?求“两队合修,多少天修完?”就是求(),关系式是()。
工作量总是( ),一队的工作效率是( ),二队的工作效率是( ),一、二队合修的工作效率是( )。
(2)一条公路。
两个工程队,一队单独修12天完成,二队单独修要18天完成。
如果两队合修,多少天能修完?观察和比较1、2题有哪些相同和不同?引导学生用假设法来解决分数工程问题1.阅读与理解:①从题目中你知道了那些数学信息?学生交流对题意的理解:这道题是工程问题,工作总量就是公路的总长,工作时间就是修路的时间,工作效率就是每天修的路的长度.如果两队合修,那么工作效率就是两队的工作效率和.②要解决“两队合修,多少天修完?”这个问题,需要知道哪些信息?工作总量(这条路的总长度)和工作效率和③如果知道了这两个信息,这个问题可以怎样解决? 工作总量÷工作效率(和)=工作时间2.分析与解答① 我们需要的这两个信息题目中都没有给,怎么办?② 我们能不能先假设出这条路的长度,再计算呢?可以怎样假设?并让学生任意假设几个不同的数解决问题看能发现什么。
工程问题(2)
第五讲工程问题工程问题主要研究工作量、工作效率和工作时间三者之间的关系。
这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工程问题的三个基本数量关系式是:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间(工作效率简称功效)例1一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成这项工作的一半?例2 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?练习11.一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?2.加工一批零件,甲、乙两人合做1小时,完成了这批零件的1160,乙、丙两人接着生产1小时,又完成了320,甲、丙又合做2小时,完成了13。
剩下的任务,甲、乙、丙三人合做,还要多少小时完成?例3 有一项工作必须在一天时间内完成,如果6位师傅和12位徒弟工作一天只能完成全部工作的310,如果24位师傅和30位徒弟工作一天能完成全部工作,现在有18位师傅,那么,至少需要多少位徒弟才能保证在一天内完成任务?练习21. 修一条路,甲队每天修6小时,4天可以完成;乙队每天修8小时,5天可以完成。
现在让甲乙合修,要求两天完成,每天要修几小时?2.一项工程甲单独做需30天完成,乙队单独做需要40天完成。
甲单独做若干天后,由乙队接着做,共用35天完成了任务。
甲乙两队各做了多少天?例4 有一水池上有进水管和放水管,单开进水管12小时能把水池注满,如果同时开放两管,8小时只能注满水池的1/3,单开放水管几小时可以把半池水放完?练习31. A、B两管同时打开,9分钟能注满水池。
工程-和分数应用题
第1页第一章 工程问题顾名思义,工程问题指的是与工程建造有关的数学问题。
其实,这类题目的内容不仅仅是工程方面的问题,也包括行路、水管注水等许多内容。
在分析解答工程问题时,一般常用的数量关系式是: 工作量=工作效率×工作时间工作时间=工作量÷工作效率工作效率=工作量÷工作时间工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可以是部分工程量,常用分数表示。
例如,工程的一半表示成21,工程的三分之一表示为31。
工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。
单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。
工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。
但在不引起误会的情况下,一般不写工作效率的单位。
例1 单独干某项工程,甲队需100天完成,乙队需150天完成。
甲、乙两队合干50天后,剩下的工程乙队干需多少天?(25天)例2 某项工程,甲单独做需36天完成,乙单独做需45天完成。
如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。
问:甲队干了多少天?答:甲队干了12天。
例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。
开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。
问:甲队实际工作了几天?(3天)例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。
如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。
这批零件共有多少个?(300个)例5 一个水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水?例6 甲、乙二人同时从两地出发,相向而行。
走完全程甲需60分钟,乙需40分钟。
出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。
分数工程问题应用题解答技巧
分数工程问题应用题解答技巧
解答分数工程问题的应用题需要掌握一些技巧,下面我将从多个角度进行详细介绍。
首先,解答分数工程问题的应用题时,我们需要对分数的基本概念有清晰的理解。
分数是指一个整体被分成若干等份,每一份的大小。
在解答应用题时,要能准确理解分数的意义,比如一半、四分之三等概念,并能够将其转化为数学运算。
其次,解答分数工程问题的应用题需要善于转化问题。
有时候问题本身可能并不直接涉及分数,但我们需要将问题转化为分数的形式进行计算。
比如将一段距离按照比例划分,或者将某个量按照比例分配等情况,都需要我们善于将问题转化为分数运算。
另外,解答分数工程问题的应用题需要善于运用分数的加减乘除规则。
在实际问题中,我们可能需要对分数进行加减乘除运算,因此需要熟练掌握分数的加减乘除规则,并能够灵活运用到具体的问题中去。
此外,解答分数工程问题的应用题时,需要善于理解问题的实
际意义。
有些问题可能涉及到实际的长度、面积、容积等概念,我
们需要能够准确地理解这些概念,并将其转化为分数运算进行求解。
最后,解答分数工程问题的应用题需要多加练习。
只有通过大
量的练习,我们才能够熟练掌握分数的运算规则,并能够灵活运用
到实际问题中去。
总的来说,解答分数工程问题的应用题需要我们对分数的概念
有清晰的理解,善于转化问题,熟练掌握分数的加减乘除规则,并
能够理解问题的实际意义,多加练习。
希望以上的介绍能够帮助你
更好地解答分数工程问题的应用题。
2019第五讲--分数应用题之工程问题
第五讲分数应用题之工程问题工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种“工程习惯”,这一类问题称之为“工程问题”。
有的情况下,工程问题并不表现为两个工程队在“修路筑桥、开挖河渠”,甚至会表现为“行程问题”、“经济价格问题”等等。
我们可以这样认为,工程问题不仅指一种题型,更是一种解题方法。
教学目标1.回顾工程问题的基本数量关系与一般解法;2.精讲工程问题的常见解题方法:一、解题关键是把“一项工程”看成一个单位,抓住数量关系:工作效率×工作时间=工作总量,来解答。
二、要善于利用常见的数学思想方法,如假设法、转化法、代换法等。
工作的先后顺序可以改变(假设);要善于抓住工作效率之间的关系,并适当将它转化为工作时间和工作量之间的关系,这样的转化和代换,往往能化难为易。
三、一些稍复杂的分数应用题、流水行程问题,其实质也是工程问题,要善于抓住问题的本质特征,把它看作工程问题来解决。
专题回顾【例1】★★(小学数学冬令营竞赛试题)一项工程,甲单独做20天完成,乙单独做30天完成。
甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。
乙请假多少天?【例2】★★★搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。
有同样的仓库A和B ,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬运,最后同时搬完两个仓库的货物。
丙帮助甲、乙各搬运了几小时?【例3】★★★(北京市第六届“迎春杯”决赛试题)一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?专题精讲一、代换法关键是将单干与合作的实际情况,根据需要等量代换成新的条件。
【例4】★★★一池水,甲、乙两管同时开,5小时灌满,乙、丙两管同时开,4小时灌满。
2019小学奥数—分数应用题之工程问题
小学奥数分数应用题之工程问题教学目标工程问题是分数应用题中最重要的一大类,因为处理这类问题的解题技巧独特且应用广泛,所以工程问题往往受出题者青睐,在各种数学竞赛和小升初考试中,工程问题和需要使用工程问题算术方法的类工程问题也经常出现。
1.工程问题的基本数量关系与一般解法;2.工程问题中的常见解题方法;3.工程问题算术方法在其他类型式题中的使用。
经典精讲工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种“工程习惯”,这一类问题称之为“工程问题”。
1.解题关键是把“一项工程”看成一个单位,运用公式:工作效率×工作时间=工作总量,表示出各个工程队(人员)或其组合在统一标准和单位下的工作效率。
2.利用常见的数学思想方法,如代换法、比例法、列表法、方程法等。
抛开“工作总量”,和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后利用先前的假设“把整个工程看成一个单位”,求得问题答案,一般情况下,工程问题求的是时间。
有的情况下,工程问题并不表现为两个工程队在“修路筑桥、开挖河渠”,甚至会表现为“行程问题”、“经济价格问题”等等,工程问题不仅指一种题型,更是一种解题方法。
【例1】 一项工程,甲单独做20天完成,乙单独做30天完成。
甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。
乙请假多少天?【分析】(法一)甲一共干了16天,完成了11620⨯45=,还有415-=15,是乙做的,乙干了了116530÷=(天),休息了16610-=(天),请假天数为:1116116166102030⎛⎫--⨯÷=-= ⎪⎝⎭(天)。
(法二)假设乙没有请假,则两人合作16天,应完成114()1620303+⨯=,超过单位“1”的41133-=,则乙请假1110330÷=(天)。
【拓展】一项工程,甲队单独干20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?【分析】甲的工作效率:120,甲的工作量:128205⨯=,乙的工作量:23155-=,乙的工作效率:3115525÷=,所以乙单独完成这项工作需25天。
05第五讲 工程问题
第五讲工程问题(一)知识点拨工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一、工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.典例精析★典例1★修一条公路,甲队每天修8小时,15天完成;乙队每天修10小时,4天完成。
两队合作,每天工作6小时,几天可以完成?☆变式1☆一个游泳池装有甲、乙两个大小不同的水龙头,单开甲1小时30分钟可以注满空池。
工程问题
例题5:
师徒二人合作10天可以完成一批零件。现在师傅先做1天后离开,徒弟接着做5天,这时还剩下这批零件的23/30。已知土地一共比师傅多加工96个。求这批零件有多少个?
分析:把这批零件看成单位1,师徒二人的工作效率的和为1/10。现在“师傅先做1天后离开,徒弟再接着做5天”可以转化为“师徒二人合作1天后,徒弟再接着单独做4天”完成了这批零件的1-23/30=7/30 师徒二人合作1天完成了1/10 可见徒弟单独做4天一共完成了这批零件的7/30-1/10=2/15 徒弟每天完成2/15÷4=1/30 师傅的工作效率为1/10-1/30=1/15 徒弟一共做了5天,一共完成了1/30×5=1/6 师傅1天1共完成了1/15×1=1/15 所以徒弟比师傅一共多完成了这批零件的1/6-1/15=1/10…….徒弟比师傅多完成的分率对应 徒弟比师傅多完成的量96个零件。
4、再根据公式 工作总量÷工作效率=工作时间 来解题。
分数应用题里面有一个非常重要的公式
对应量÷对应分率=单位1
举个例子:
现在有一条公路要修,甲工程队5天可以修完。又知道甲工程队星期一修了600米,请问这条公路全长多少米?
分析:首先把这条公路全长看成单位1。5天修完,那么每天就修1/5,这个1/5是每天修的,是用分率表示的工作效率,而题目中还告诉我们甲工程队每天(星期一就是一天的时间)可以修600米,这个600米的工作效率是一个具体的数量,其实1/5和600米都是讲的甲工作队的工作效率,是甲工程队的工作效率的两种不同表示方法,一个是分率一个是量。两者是对应的关系。
利用 对应量÷对应分率=单位1
96÷1/10=960(个)…...单位1即这批零件的个数总数。
例题6:
分数工程问题
工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是 工作总量=工作效率×工作时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子:一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,因此甲的工作效率是101,乙的工作效率是151,我们想求两人合作所需时间,就要先求两人合作的工作效率151101+,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天).两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的. 为了计算整数化(尽可能用整数进行计算),可把工作量多设份额.如上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天) 实际上我们把111()1015÷+这个算式,先用30乘了一下,都变成整数计算,就方便些. 10天与15天,体现了甲、乙两人工作效率之间比例关系11:3:21015=.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也是非常实用的.根据3:2,两人合作时,甲应完成全部工作的33325=+,所需时间是31065⨯=(天). 因此,在下面例题的讲述中,我们可以采用 “把工作量设为整体1”的做法,也可以“整数化”或“从比例角度出发”、“列方程”等,这样会使我们的解题思路更灵活一些.例1. 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?例2. 有一工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。
2019五年级奥数..工程问题-有答案
工程问题(二)工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.熟练掌握工程问题的基本数量关系与一般解法;(1)工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;(2)根据题目中的实际情况能够正确进行单位“1”的统一和转换;(3)工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.一、 周期性工程问题【例 1】 一件工程,甲单独做要6小时,乙单独做要10小时,如果接甲、乙、甲、乙...顺序交替工作,每次1小时,那么需要多长时间完成?【考点】工程问题 【难度】4星 【题型】解答【解析】 甲1小时完成整个工程的16,乙1小时完成整个工程的110,交替干活时两个小时完成整个工程的11461015+=,甲、乙各干3小时后完成整个工程的443155⨯=,还剩下15,甲再干1小时完成整个工程的16,还剩下130,乙花13小时即20分钟即可完成.所以需要7小时20分钟来完成整个工程. 【答案】7小时20分钟【巩固】 一项工程,甲单独完成需l2小时,乙单独完成需15小时。
学解应用题工程问题思路指点
学解应用题工程问题思路指点工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。
我们通常所说的:“工程问题”,一般是把工作总量作为单位“1”,因此工作效率就是工作时间的倒数。
它们的基本关系式是:工作总量÷工作效率=工作时间。
工程问题是小学分数应用题中的一个重点,也是一个难点。
下面列举有关练习中常见的几种题型,分别进行思路分析,并加以简要的评点,旨在使同学们掌握“工程问题”的解题规律和解题技巧。
例1一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?[思路说明]①把这项工程的工作总量看作“1”。
甲队修建需要12天,修建1天完成这项工程的1/12;乙队修建需要20天,修建1天完成这项工程的1/20。
甲、乙两队共同修建1天,完成这项工程的1/12+1/20=2/15,工作总量“1”中包含了多少个2/15,就是两队共同修建完成这项工程所需要的天数。
1÷(1/12+1/20)=1÷2/15=15/2(天)②设这项工程的全部工作量为60(12和20的最小公倍数),甲队一天的工作量为60÷12=5,乙队一天的工作量为60÷20=3,甲、乙两队合建一天的工作量为5+3=8。
用工作总量除以两队合建一天的工作量,就是两队合建的天数。
60÷(60÷12+60÷20)=60÷(5+3)=60÷8=15/2(天)评点这是一道工程问题的基本题,也是工程问题中常见的题型。
上面列举的两种解题方法,前者比较简便。
这种解法把工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。
工程问题一般采用这种方法求解。
练习:一段公路,甲队单独修要10天完成,乙队单独修要12天完成,丙队单独修要15天完成,甲、乙、丙三队合修,需要几天完成?例2一项工程,甲队独做8天完成,乙队独做10天完成,两队合做,多少天完成全部工程的3/4?[思路说明]①把这项工程的工作总量看作“1”,甲队独做8天完成,一天完成这项工程的1/8;乙队独做10天完成,一天完成这项工程的1/10。
小升初小学数学分数问题应用题专题练习《工程问题》答案详解
分数问题—专题练习《工程问题》一.选择题1.(2019•株洲模拟)王师傅计划加工一批零件,如果实际工作时效率比计划提高20%,那么可提前1小时完成任务;如果王师傅要想比计划提前2小时完成任务,那么王师傅的工作效率就要比计划提高( ) A .40%B .50%C .60%D .70%【分析】从开始提高20%,那么工作效率是原来的6120%5+=,工作时间与工作效率成反比例,工作时间是原来的56,工作时间提前了16,它对应的时间是1小时,由此求出原来用的时间;如果王师傅要想比计划提前2小时完成任务,可以求出现在的工作时间和工作效率,对比计划的效率即可求出现在比计划提高了多少.【解答】解:6120%5+=因为工作总量一定,工作效率与工作时间成反比,所以工作时间变为原来的56计划用的时间:51(1)66÷-=(小时)现在的时间:624-=(小时) 现在的工作效率:1144÷= 计划的工作效率:1166÷=111()100%50%466-÷⨯= 所以工作效率比计划提高了50%. 故选:B .2.(2019•防城港模拟)一件工作,甲独做12小时可以完成,现在甲、乙合做3小时后,甲因事外出,剩下的工作乙又用了154小时完成,如果这件工作全部由乙做,需要( )小时可完成.A .10B .11C .8D .9【分析】甲单独做需要12小时完成,则甲每小时完成总工作量的112,甲乙合作3小时,则甲完成了全部的1312⨯,乙完成了全部的11312-⨯,又这一过程中乙始终在工作,工作了1354+小时,所以乙单独完成需11(35)(13)412+÷-⨯小时.【解答】解:11 (35)(13)412 +÷-⨯18.25(1)4=÷-38.254=÷11=(小时)答:如果这件工作全部由乙做,需要11小时.故选:B.3.(2019•株洲模拟)在一次学校义务劳动中,安排20人挖土,28人抬土.据观察发现1人挖出的土,需2人才能及时抬走,那么应从挖土人员中抽调()人到抬土队伍中来.A.2人B.4人C.6人D.8人【分析】设x人去挖土,则有(48)x-人运土,正好能使挖出的土及时运走可列方程求解.【解答】解:设x人去挖土,248x x=-248x x+=16x=20164-=(人)答:应从挖土人员中抽调4人到抬土队伍中来.故选:B.4.(2018•溧阳市)甲、乙两个工程队修一段120米的公路,如果甲工程队单独修,18天可以完成;乙工程队单独修,15天可以完成.甲、乙两个工程队合修,每天一共完成这项工程的()A.111815+B.1201201815+C.5665+【分析】把这项工程的工作量看成单位“1”,甲工程队单独修,18天可以完成,那么甲每天可以完成这项工程的118,乙工程队单独修,15天可以完成,乙每天完成这项工程的115,把它们相加即可求出两队合修每天一共完成这项工程的几分之几.【解答】解:1111 181590 +=答:每天一共完成这项工程的11 90.故选:A.5.(2018•成都)加工一批零件,前一半时间加工的零件个数和后一半时间加工的个数之比是3:2,则加工前一半零件所需的时间是加工后一半零件所需时间的( ) A .57B .23 C .112D .无法确定【分析】运用赋值法,令零件总数是10个,共用时间是2分钟,那么第一分钟加工了6个,第二分钟加工了4个;前6个零件用1分钟,那么一共零件就用16分钟,由此求出前5个零件用的时间,用2分钟减去前5个零件用的时间就是后5个零件用的时间;然后用前5个零件用的时间除以后5个零件用的时间即可. 【解答】解:令零件总数是10个,共用时间是2分钟; 325+=;第1分钟加工零件数:31065⨯=(个),每个零件用时16分钟; 15566⨯=(分钟); 55(2)66÷-, 5766=÷, 57=;答:加工前一半零件所需的时间是加工后一半零件所需时间的57.故选:A . 二.填空题6.(2019•上街区)加工西服要三道工序,专做第一、二、三工序的工人毎小时分别能完成西服30套、24套、20套,现有90名工人,要使每天三道工序完成的套数相同,每道工序人数分别是 24名 、 、 名.【分析】要使每天三道工序完成的套数相同,30235=⨯⨯,242223=⨯⨯⨯,20225=⨯⨯,那么30、24和20的最小公倍数是22235120⨯⨯⨯⨯=,然后用这个最小公倍数分别除以30、24、20,求出每道工序的人数比,然后再根据按比分配的方法进行解答.【解答】解:30235=⨯⨯,242223=⨯⨯⨯,20225=⨯⨯; 那么30、24和20的最小公倍数是22235120⨯⨯⨯⨯=; 120304÷= 120245÷=120206÷=要使每天三道工序完成的套数相同,那么第一、二、三工序的人数比是4:5:6;第一道工序的人数是:49024456⨯=++(名) 第二道工序的人数是:59030456⨯=++(名) 第三道工序的人数是:69036456⨯=++(名)答:第一、二、三道工序人数分别是24名、30名、36名. 故答案为:24名、30名、36.7.(2019•湖南模拟)一项工程,甲乙合作每小时完成全工程的16,如果甲先做4小时,乙再做3小时,还剩工程的25没完成.那么如果甲单独做,几小时能完成任务? 【分析】由题意,甲先做4小时,乙再做3小时,可以看作是甲乙合作3小时后甲又做了1小时,完成了工程的2(1)5-,由此用21(1)356--⨯可求得甲的工作效率,由要求甲单独做几小时能完成任务,根据“工作量÷工作效率=工作时间”列式解答即可. 【解答】解:211[(1)3]56÷--⨯ 311[(]52=÷- 1110=÷10=(小时)答:如果甲单独做,10小时能完成任务.8.(2019•宁波)粗蜡烛和细蜡烛长短一样.粗蜡烛可以点5小时,细蜡烛可以点4小时.同时点燃这两支蜡烛,点了一段时间后,粗蜡烛长是细蜡烛长的2倍.问这两支蜡烛点了103时间? 【分析】本题的等量关系为:剩余的粗蜡烛长度2=⨯剩余的细蜡烛长度,由此可列出方程. 【解答】解:设这两支蜡烛已点燃了x 小时,由题意得: 1112(1)54x x -=⨯-, 1111125222x x x x -+=-+,31210x +=,3112110x +-=-,3110x =,103x =. 答:这两支蜡烛已点燃了103小时. 故答案为:103.9.(2019•郑州)一项工程,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成,那么丙一个人来做,完成这项工作需要 48 天.【分析】要求丙一个人来做完成这项工作需要的天数,就要求出丙的工作效率,根据题意,丙的工作效率的2倍为111()9188+-,则丙的工作效率为1111()2918848+-÷=;则丙一个人来做,完成这项工作需要1148÷,计算解决问题.【解答】解:111()29188+-÷ 1224=÷148= 114848÷=(天)答:丙一个人来做,完成这项工作需要48天. 故答案为:48.10.(2018•东莞市模拟)一项工程,甲队单独做10天完成,已知甲队2天的工作量等于乙队3天的工作量,那么两队合作 6 天能完成.【分析】把这项工程看作单位“1”,甲队单独做要10天,甲1天的工作量为110,已知甲队2天的工作量等于乙队3天的工作量,所以乙1天的工作量为12310⨯÷,再用单位“1”除以两队的工作效率和,即可得两队合作几时小天可以完成这项工程. 【解答】解:111(23)1010÷⨯÷+ 116=÷6=(天)答:两队合作 6天能完成.故答案为:6.11.(2017•长沙)一个蓄水池有两根进水管和一根放水管,单开一根进水管20分钟能放满一池水,单开一根放水管15分钟能放完一池水,现在满满一池水,先开一根进水管和放水管,当水池还剩下水13时,然后再打开另外一根进水管,15分钟后关闭放水管,直到水池重新放满水,则这个过程中共用时 2363分钟.【分析】将满满一池水看作单位“1”,一根进水管的工作效率是120,一根排水管的工作效率是115,根据题意,先开一根进水管和放水管,计算“当水池还剩下水13时”的时间,“然后再打开另外一根进水管,15分钟后关闭放水管”计算出注入水池的水量,再计算“直到水池重新放满水”用的时间,则可以求出这个过程中共用时的时间. 【解答】解:111()31520÷- 11360=÷ 20=(分钟)111(1)(2)1532015--⨯-⨯ 2132=- 16=则15分钟后池内还差16才能注满, 11(2)620÷⨯ 11610=÷ 53=(分钟) 520153++2363=(分钟)答则这个过程中共用时2363分钟.答案为:236312.(2019•长沙)在A 地植树1000棵,B 地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A 地,乙在B 地,丙在A 与B 两地之间来回帮忙,同时开始,同时结束,丙在A 地植树 300 棵. 【分析】先求出甲、乙、丙三人每天植树多少棵(三人每天的工作效率和),再求出A 、B 两块地一共植树多少棵(工作量),根据工作时间(三人合作的时间)=工作量÷工作效率和,求出一共需要多少天完成,然后用A 地植树的棵数减去甲25天植树的棵数就是丙在A 地植树的棵数,据此列式解答. 【解答】解:28323090++=(棵), (10001250)90+÷ 225090=÷ 25=(天), 10002825-⨯ 100700=- 300=(棵),答:丙在A 地植树300棵. 故答案为:300.13.(2019春•海淀区月考)长度相等,粗细不同的两枝蜡烛,其中的一枝可燃3小时,另一枝可燃4小时.将这两枝蜡烛同时点燃,当余下的长度中,一枝是另一枝的3倍时,蜡烛点燃了83小时. 【分析】根据题意,两枝蜡烛燃烧的时间和燃烧的长度成正比例关系,所以设蜡烛点燃了x 小时,比例为:11(1):(1)1:334x x --=,解得:83x =. 【解答】解:设时间为x 小时,则有 11(1):(1)1:334x x --=1314x x-=- 324x =83x =答:蜡烛点燃了83小时. 故答案为:83.14.(2019•江西模拟)一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成;如果甲、乙合做,那么 1133天可以完成.【分析】两种情况下得到甲做15天与乙做12天的工作量一样多,用除法计算出甲做1天相当于乙做的分率,这样把第一种情况下甲做的5天代换成乙需要做的天数,再加上20就是乙独做完成的天数,然后计算出甲独做完成的天数,用工作总量除以工作效率和即可求出合做的工作时间.【解答】解:20515-=(天),20812-=(天),甲做15天与乙做12天做的一样多, 412155÷=,甲做1天相当于乙45天做的一样多,乙一个人做需要:4520245÷+=(天), 甲独做需要424305÷=(天)合做: 111()2430÷+3140=÷1133=(天)故答案为:1133.15.(2018•东莞市)一项工程如由甲、乙合作需要8天完成,现由甲先做3天,乙再做5天,才完成工程的716,那么由乙单独做需 32 天完成. 【分析】把这项工程看成单位“1”,甲乙合作的工作效率是18,由甲先做3天,乙再做5天,可以看成甲乙合作了3天,乙再做2天,所以先用合作的工作效率乘3,求出合作3天的工作量,再用716减去合作3天的工作量,即可求出乙2天的工作量,再除以2即可求出乙的工作效率,进而求出乙独做需要的时间. 【解答】解:713168-⨯ 73168=- 116=11(2)16÷÷ 1132=÷32=(天)答:由乙单独做需 32天完成. 故答案为:32.16.(2018•广州)一艘轮船从长江三峡大坝到上海要4个昼夜,而从上海到三峡大坝逆流而上需要6个昼夜.如果从三峡大坝放一个漂流瓶顺水漂到上海要 24 昼夜.【分析】从题中可知从长江三峡大坝到上海是顺流,从上海到三峡大坝是逆流,从而可以得出水的流速,从而得出答案.【解答】解:设轮船的速度为x ,水流为y ,三峡大坝到上海的距离为m , 因为4mx y =+,6m x y =-,所以4()6()x y x y +=-, 可得5x y =, 又4mx y =+, 所以24my =.答:从三峡大坝放一个漂流瓶顺水漂到上海要24昼夜.17.(2017•长沙)一项工程,甲单独做要12小时,乙单独做要15小时,如果按照甲、乙、甲、乙的顺序每小时轮换一次地轮流工作,完成这项工作一共需要 1134小时.【分析】由题意知,把某项工作的工作总量看作单位“1”,乙的工效是115,甲的工效是112,“按照甲,乙,甲,乙,⋯的顺序轮流工作,每次1时”,那么甲乙各做1小时,即2个小时,则完成113151220+=,3216203÷=(小时)后,即6个循环后(即12个小时),则完成3962010⨯=,还剩下9111010-=,由甲、乙来完成,求得甲、乙再做的时间,再加上12小时即是完成这项工作共需要的时间. 【解答】解:113151220+=3216203÷=(小时)3962010⨯=9111010-=111()101215-÷ 116015=÷ 14=116211344⨯++=(小时)答:完成这项工作要1134小时.故答案为:1134. 三.应用题18.(2019秋•嘉陵区期末)某绿化工程,有3个工程队施工.单独完成,甲队要10天,乙队要12天,丙队要15天.若让甲、乙两队先合作2天,余下的由丙队单独做,丙队还要几天才能完工?【分析】由题意可知,用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几; 单独完成,甲队要10天,乙队要12天,丙队要15天则他们的工作效率分别是110、112、115,甲、乙两队先合作2天完成总工程的1111()2101230+⨯=,所以余下111913030-=,余下的由丙队单独做根据工作总量÷工效=工时可知1911930152÷=. 【解答】解:1111()2101230+⨯=, 111913030-=,1911930152÷=(天) 答:丙队还要192天才能完工.19.(2019秋•永州期末)一项工程,甲队单独完成需要20天,乙队单独完成需要12天.现在乙队先工作几天,剩下的由甲队单独完成.工作中各自的工作效率不变,全工程前后一共用了14天,共得劳务费2万元.如果按各自的工作量计算,甲、乙各获得多少万元?【分析】将这项工程当做单位“1”,则甲队每天完成这项工程的120,乙队每天完成这项工程的112,设甲队做了x 天,则乙队做了(14)x -天,由此可得方程:11(14)12012x x +-=,解此方程求出甲、乙各工作的天数,进一步求出甲、乙的工作量,进一步即可求解.【解答】解:设甲队做了x 天,则乙队做了(14)x -天,依题意有: 11(14)12012x x +-=35(14)60x x +-= 370560x x +-= 537060x x -=- 210x = 5x = 111520204x =⨯= 11242⨯=(万元) 112122-=(万元)答:甲获得12万元,乙获得112万元.20.(2019•郑州)甲乙两个打字员打印一批文件,如果单独打印,甲打字员需20小时,乙打字员需30小时,二人合打完成任务的34时,甲比乙多打了72页,求二人各打多少页? 【分析】把这份文件的工作量看成单位“1”,甲的工作效率就是120,乙的工作效率就是130,它们的和就是合作的工作效率,用合作的工作量34除以合作的工作效率,求出两人的工作时间,再用甲乙的工作效率分别乘工作时间,求出甲乙各打了总页数的几分之几,再求出甲比乙多打了总页数的几分之几,它对应的数量是72页,再根据分数除法的意义求出总页数,最后用总页数分别乘两人打字占总人数的分率,即可求出二人各打多少页. 【解答】解:311()42030÷+ 31412=÷9=(小时)1992020⨯= 1393010⨯= 9372()2010÷-37220=÷480=(页)948021620⨯=(页) 348014410⨯=(页)答:甲打了216页,乙打了144页.21.(2019春•湘潭月考)甲、乙、丙三人合修一条麻石路,甲、乙合修6天完成麻石路的13,乙、丙合修2天修好余下部分的14,剩下的部分三人又合修了5天才完成,共得到劳务费1800元.若按各人完成工作量的多少来分配劳务费,甲、乙、丙三人各应得劳务费多、少元?【分析】把总工作量看作单位“1”.根据“工作效率=工作量÷工作时间”,甲、乙合修6天完成麻石路的13,则甲、乙的工作效率之和为163÷;乙、丙合修2天修好余下部分的14,则乙、丙的工作效率之和为11(1)234-⨯÷.甲、乙、丙三人的工作效率之和为11(1)(1)534-⨯-÷.由此得出甲、乙、丙的工作效率,根据分数乘法的意义,用总劳务费分别乘甲、乙、丙的工作效率就是甲、乙、丙应得的劳务费. 【解答】解:甲、乙工作效率之和为: 116318÷=乙、丙的工作效率之和为: 11(1)234-⨯÷ 21234=⨯÷ 112=甲、乙、丙的工作效率之和为: 11(1)(1)534-⨯-÷ 23534=⨯÷ 110=甲的劳务费为: 111800()(65)1012⨯-⨯+118001160=⨯⨯330=(元)丙的劳务费为: 111800()(25)1018⨯-⨯+ 21800745=⨯⨯ 560=(元)乙的劳务费为:1800330560910--=(元)答:甲得劳务费330元,乙得劳务费560元,丙得劳务费910元.22.(2019春•武汉月考)修一段地铁,如果单独完成,甲工程队要10天,乙工程队要15天,丙工程队要30天.现在三个工程队共同工作,甲中途调走,结果比三个工程队合作多用了1天完成.甲工作了几天? 【分析】把总工作量看作单位“1”,三个工程队共同工作需要1111()5101530÷++=(天);根据“甲中途调走,结果比三个工程队合作多用了1天完成”可知完成这项工程实际用了6天.因此甲完成的工作量是1121()615305-+⨯=;最后根据工作时间=工作量÷工作效率,求出修这条路甲队工作了几天即可. 【解答】解:1111()5101530÷++=(天) 516+=(天)111[1()6]153010-+⨯÷31[1]510=-÷21510=÷4=(天)答:甲工作了4天.23.(2019秋•东莞市期末)一批货物由甲、乙两个人搬运,需8天完成,现在甲先搬8天,然后乙再搬4天,这时还剩13没有搬.乙单独搬运需要几天?【分析】甲先搬8天,然后乙再搬4天,可以看成甲乙合作了4天后,甲又干了4天;把这批货物的总量看成单位“1”,合作的工作效率就是18,用18乘4求出合作的工作量,再用一个完成了12133-=,用23减去合作完成的工作量就是甲4天的工作量,再除以4,即可求出甲的工作效率,进而求出乙的工作效率,再用1除以乙的工作效率即可求出乙单独搬运需要几天.【解答】解:11(14)(84)38--⨯÷-21()432=-÷146=÷124=111()824÷-1112=÷12=(天)答:乙单独搬运需要12天.24.(2019春•济南月考)某工厂加工一批零件,甲、乙、丙三人合作加工需要15天完成.由于机械故障,丙停止加工1天,乙就要多做3天,或者由甲、乙合作1天.问:加工这批零件由甲单独完成需要多少天?【分析】丙1天的工作量,相当乙3天的工作量,则丙的工作效率是乙的工作效率的3(倍),甲、乙合作1天,与乙做3天一样,也就是甲做1天,相当于乙做2天,甲的工作效率是乙的工作效率的2倍.则甲的工作效率是三人效率的12(321)3÷++=,他们共同做15天的工作量,由甲单独完成,甲需要15345⨯=(天)【解答】解:丙的工作效率是乙的工作效率的3倍,甲的工作效率是乙的工作效率的312-=倍,则甲的工作效率是三人效率的12(321)3÷++=,由甲单独完成,甲需要115453÷=(天).答:这项工程由甲独做,需要45天.25.(2019春•成都月考)一部书稿,甲单独打字需60天完成,乙单独打字需50天完成.已知甲每周日休息,乙每周六、周日休息.如果两人合作,从2018年4月23日(周一)开始打字,那么几月几日可以完成这部书稿?【分析】把书稿的字数看作单位“1”,乙每周六、周日休息,那么两人合作时,一星期就合作5天,先求出两人合作5天完成书稿字数占总字数的分率,再求出甲1天完成书稿字数占总字数的分率,进而求出两人一周完成工作量,然后依据工作时间=工作总量÷工作效率,求出完成任务需要的时间,最后用现在的日期加需要的时间(注意需要减去开始的一天以及最后一天)即可解答. 【解答】解:111111()5560506030060+⨯+=⨯+1116060=+ 15=,117115÷⨯-- 5711=⨯-- 3511=-- 341=- 33=(天)2018年4月23日33+天2018=年5月26日 答:5月26日可以完成这部书稿.26.(2019•辽宁模拟)一份稿件,甲独自打字需要6小时,乙单独打字需要10小时.现在甲单独打字若干小时后,因有事离开,由乙接着打完.从一开始打字到打完这份稿件共用了7小时,甲打字用了多少小时? 【分析】将工作总量看作单位“1”,可以求出甲、乙的工作效率,假设全是乙打的,求出对应的工作总量,再与总的工作量作比较,得到与实际相差的工作总量,再除以甲乙两人的工作效率差就可求出甲的工作时间. 【解答】解:1166÷=111010÷=1771010⨯= 7311010-=11161015-= 314.51015÷=(小时)答:甲打字用了4.5小时.27.(2019•海淀区模拟)一项工作,甲、乙合干12天完成.如果让甲先干8天,余下的由乙单独干要18天完成.这项工程由乙单独干需要几天完成?【分析】把这项工作看作单位“1”,甲、乙合干12天完成,甲、乙每天的工作效率和是112,如果让甲先干8天,余下的由乙单独干要18天完成.可以看作甲、乙合作8天,乙单独干(188)-天完成,由此可以求出乙每天的工作效率,然后根据工作时间=工作量÷工作效率,据此列式解答. 【解答】解:1(18)(188)12-⨯÷-2(1)103=-÷ 1103=÷11310=⨯ 130=; 113030÷=(天);答:这项工程由乙单独干需要30天完成. 四.解答题28.(2019•宁波模拟)容积为250升的水箱上装有两根进水管甲、乙和一根排水管丙.如图所示,先由甲管单独向水箱内注水,再由甲、乙两根进水管同时向水箱内注水,注满后,关闭甲、乙两根水管,最后由丙管将水箱内的水排完. (1)水箱内原有水 50 升. (2)乙管每分钟向水箱内注水 升.(3)如果注满水后,只关闭乙管.甲管和丙管同时打开,几分钟可以把水箱中的水全部排完?【分析】(1)根据折线统计图,时间为0分时,水箱内的水为50升,说明水箱内原有水50升;(2)先由甲管单独向水箱内注水,从0分到10分,这10分钟的时间,水箱内的水由50升上升的100升,说明10分钟的时间,甲管向水箱内注入50升的水,求甲的速度为:50105÷=(升/分);从10分到25分,再由甲、乙两根进水管同时向水箱内注水,直至注满250升,共注水250100150-=(升),用时:251015-=(分),所以,甲乙速度的和为:1501510÷=(升/分).所以乙的速度为:1055-=(升/分); (3)根据丙放水所用时间为30255-=(分钟),求丙的速度为:250550÷=(升/分).注满水,甲、丙同开,排完水所用时间为:50250(505)9÷-=(分钟). 【解答】解:(1)由图可知水箱内原有50升水.(2)甲的速度:50105÷=(升/分) 甲乙注水量:250100150-=(升) 甲乙所注水时间:251015-=(分) 甲乙速度和:1501510÷=(升/分) 乙的速度:1055-=(升/分) 答:乙管每分钟向水箱内注水 5升.(3)丙放水时间:30255-=(分钟) 丙的速度:250550÷=(升/分)注满水,甲、丙同开,排完水所用时间为: 250(505)÷- 25045=÷509=(分钟)答:若只有乙管注水,509分钟注满水箱. 故答案为:50;5;509.29.(2019春•北京月考)我们规定两人轮流做一个工程是指,第一个人先做一个小时,第二个人做一个小时,然后再由第一个人做一个小时,然后又由第二个人做一个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?【分析】依题意可知,两次做每人所花时间为:甲乙轮流做一个工程,甲工作了5小时,乙工作了4.8小时;乙甲轮流工作时,乙工作了5小时,甲工作了4.6小时.由此可知甲工作0.4小时相当于乙工作 0.2小时,推出甲工作5小时相当于乙工作2.5小时,故求出乙单独做此工程需要的时间,解决问题.【解答】解:甲乙轮流做一个工程,甲工作了5小时,乙工作了4.8小时;乙甲轮流工作时,乙工作了5小时,甲工作了4.6小时.所以甲做0.4小时完成的工程等于乙做0.2小时,乙的效率是甲的0.40.22÷=(倍), 甲做5小时完成的任务乙只要2.5小时就能完成. 所以乙单独完成这个工程要:2.5 4.87.3+=(小时). 答:乙单独做这个工程需要7.3小时.30.(2019•上街区)甲、乙、丙三人共同完成一项工作,5天完成了全部工作的13,然后甲休息了3天,乙休息了2天,丙没有休息.如果甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天的工作量的2倍,那么从这项工作开始算起一共用了多少天完成?【分析】由于甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天工作量的2倍,所以可以把丙一天工作量看作1份,那么甲一天的工作量是3份,乙一天的工作量是2份.甲、乙、丙三人一天的工作量是1326++=份. 甲、乙、丙三人5天的工作量是6530⨯=份,完成了全部工程的13,全部工程是130903÷=份. 已知甲、乙、丙的工作量及总工作量,由此根据他们每人所干的天数解答即可.【解答】解:将丙一天工作量看作1份,那么甲一天的工作量是3份,乙一天的工作量是2份. 三人一天干的工作量为:1326++=(份), 则总作工量为:165903⨯÷=(份);甲乙丙如果全程合作的话需要:90615÷=(天)完成. 甲休息了3天,乙休息了2天,在这5天中,甲乙少干了: 332213⨯+⨯=(份),这13份甲、乙、丙三人合作得干113626÷=(天).所以这项工作从开始算起需要111521766+=(天)完成. 答:那么从这项工作开始算起一共用了1176天完成.31.(2018•长沙)一项工程,乙单独做20天完成.如果第一天甲做,第二天乙做,这样交替做也恰好用整数天完成;如果第一天乙做,第二天甲做,这样交替做结果比上次交替做要多半天才能完成.这项工程由甲单独做需要几天可以完成?【分析】根据两种轮流交替做的情况可得出:当甲先做时,用的时间就少,而乙先做时,用的时间就多.据此可得第一种情况甲乙的工作顺序是:甲,乙,甲,乙⋯甲(最后一天是甲做的,若是乙做的,则第二种情况不会出现多做半天的时间);而第二种情况甲乙的工作顺序就是:乙,甲,乙,甲⋯乙,甲,12乙,把两种情况对照可得:甲一天的工作效率=乙一天的工作效率+甲半天工作效率,即甲半天工作效率=乙一天工作效率,也就是说甲的工作效率是乙工作效率的2倍,把这项工程的量看作单位“1”,先表示出乙的工作效率,再求出甲的工作效率,最后根据工作时间=工作总量÷工作效率即可解答.【解答】解:依据分析可得甲的工作效率是乙工作效率的2倍11(2)20÷⨯1110=÷10=(天)答:这项工程由甲单独做需要10天可以完成.32.(2018•东莞市模拟)单独完成某项工程,甲需要9小时,乙需要12小时,如果按照甲、乙、甲、乙⋯的顺序轮流工作,每次工作1小时,那么完成这项工作需要多少小时?【分析】把某项工作的工作总量看作单位“1”,甲的工效是19,乙的工作效率是112,“按照甲,乙,甲,乙,⋯的顺序轮流工作,每次1时”,那么甲乙各做1小时,即2个小时,则完成11791236+=,5个循环后(即10个小时),则完成73553636⨯=,还剩,35113636-=,由甲来完成,求得甲再做的时间,再加上10小时即是完成这项工作共需要的时间.【解答】解:111 [1()5]9129 -+⨯÷71[15]369=-⨯÷351(1)369=-÷11369=÷0.25=(小时)甲、乙轮流做共需要:100.2510.25+=(小时)答:完成这项工作需要10.25小时.33.(2018•东莞市)甲、乙两项工程分别由一、二队来完成,在晴天,一队完成甲工程需要12天,二队完成乙工程需要15天;在雨天,一队的工作效率要下降40%,二队的工作效率要下降10%,结果两队同时开工同时完成这项工程,那么,在施工的日子里,雨天有多少天?。
分数应用题(工程问题复习)
⑵一台织布机3小时织布60米, 每小时织每小时织布20米
⑶一台织布机每小时织布20 米,织布60米要多少小时?
工作总量÷工作效率=工作时间
60 ÷20=3(小时)
答:织布60米要3小时。
初探新知
⑴一项工程,5天完成,平均每 天完成几分之几 ?
这道题的工作总量是多少? 工作时间呢? 怎样表示工作效率?
1 ⑵ 一项工程,每天完成 2 几天可以完成?
,
这道题的工作总量是多少? 工作效率? 怎样表示工作时间呢?
尝 试 探 究
⑴甲、乙两队合修一段路。 甲队单独修10天完成,乙队单独 修15天完成。两队合修几天完成 1 这条路的 4 ?
1 ÷( 1 1 ) + 4 10 15
作业:
5、一袋米,甲、乙、 丙三人一起吃,8天吃完, 甲一人24天吃完,乙一人 36天吃完,问丙一人几天 吃完?
作业:
6、一个水池上有两个进 水管,单开甲管,10小时可把 空池注满,单开乙管,15小时 可把空池注满。现先开甲管, 2小时后把乙管也打开,再过 几小时池内蓄有3/4的水?(原 是空池)
巩固发展
做一批零件,一个人单独做, 甲要12小时,乙要10小时,丙要 5小时。
要合作完成这批零件有几种选 择做法呢?
做一批零件,一个人单独做, 甲要12小时,乙要10小时,丙要 5小时。 (1)可以由甲乙两人合做。 (2)可以由乙丙两人合做。 (3)可以由甲丙两人合做。 (4)可以由甲乙丙三人合做。 请你任选一种合作方式,算出他 们完成这批零件需要几小时?
作业:
1、一批零件,甲单独做要6 天,乙单独做要8天,两队合作 需要几天?
作业:
2、车站有一批水果90千克, 甲车15小时可以运完;乙车 10 小时可以运完。两车同时运,几小 时可以运完?
2019分数应用题:工程问题
学科:数学教学内容:分数应用题:工程问题【知识要点精讲】工程问题反映了工作总量、工作时间和工作效率三者之间的关系,其数量关系式是:工作总量=工作效率×工作时间。
在工程问题中,把工作总量看成单位“1”,工作效率表示单位时间内完成工作总量的几分之一。
【重点难点点拨】本节知识的重点与难点是明确工程问题中的数量关系,理解把工作总量看作单位“1”,弄清工程问题的结构特点。
例1 一项工程,甲单独做8天完成,乙单独做5天完成,甲、乙合做,几天完成全工程的2013? 分析:求甲、乙合起完成工程2013的时间,可以先求合起来的工作效率。
解:2013÷(81+51)=2(天)答:2天完成全工程的2013。
例2 一项工程,甲队单独要45天完成,乙队单独要60天完成,现在甲、乙两队合做,中途乙队因故请假几天,完成全部工程共用了30天,求乙队中途请了几天假?分析:假设乙队不请假,与甲队一起合做30天,一定会超过任务,超过的部分正是乙队请假后虚做部分,这样求出虚做的天数就是乙队请假天数。
解:①甲、乙合做30天会超过任务几分之几?(451+601)×30-1=61②超过部分是乙队请假虚做的。
61÷601=10(天)答:乙队中途请了10天假。
【解题技巧传经】解答工程问题常用三种方法:算术方法、比例解答及方程。
运用比例解答是指工作总量一定时,工作效率与工作时间成反比,根据题目需要选择恰当的比的条件进行解答。
【课后作业设计】1.填空(1)一项工程,甲独做5小时完成,甲每小时完成工程的( ),3小时完成工程的( )。
(2)打一份稿件,甲要8小时完成,乙要6小时完成,甲的工作效率是( ),乙的工作效率是( ),两人合起来效率是( )。
(3)修一条公路,甲队单独10天修完,乙队单独15天修完,甲、乙合修1天,可完成这条路的( ),甲、乙合修( )天可以修完。
2.选择题(将正确答案序号填在括号内)(1)完成一件工作,甲、乙两人单独做各需3小时,他们合做( )小时完成。
分数应用题必考点——小升初压轴题之工程问题.doc
分数应用题必考点——小升初压轴题之工
程问题
工程问题是小学数学应用题教学中的重点,也是难点,是分数应用题中的必考知识点,通过解答工程类应用题不仅可以提高学生的抽象逻辑思维能力,而且还可以提高学生对代数的运算。
下面我们就来看看工程类应用题的题型有哪些。
在进行解题之前,我们要清楚的知道工程问题中涉及的相关公式及其所表示的意义:
(1)工作效率×工作时间=工作总量
(2)一般假设工程总量为单位1工程问题不仅表现为以上几种题型,有时候还会表现为行程问题价格问题,它不止是一种题型,更是一种解题思路。
我们常用代换法、比例法、列方程、列表法等来解决此类题型,根据题意找出效率和时间的关系,从而找到突破口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲分数应用题之工程问题
工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种“工程习惯”,这一类问题称
之为“工程问题”。
有的情况下,工程问题并不表现为两个工程队在“修路筑桥、开挖河渠”,甚至
会表现为“行程问题”、“经济价格问题”等等。
我们可以这样认为,工程问题不
仅指一种题型,更是一种解题方法。
教学目标
1.回顾工程问题的基本数量关系与一般解法;
2.精讲工程问题的常见解题方法:
一、解题关键是把“一项工程”看成一个单位,抓住数量关系:工作效率×工作时间=工作
总量,来解答。
二、要善于利用常见的数学思想方法,如假设法、转化法、代换法等。
工作的先后顺序可以
改变(假设);要善于抓住工作效率之间的关系,并适当将它转化为工作时间和工作量之间的关系,这样的转化和代换,往往能化难为易。
三、一些稍复杂的分数应用题、流水行程问题,其实质也是工程问题,要善于抓住问题的本
质特征,把它看作工程问题来解决。
专题回顾
【例1】★★(小学数学冬令营竞赛试题)一项工程,甲单独做20天完成,乙单独做30天完成。
甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。
乙请假多少天?
【例2】★★★搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。
有同样的仓库A和B ,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬运,最后同时搬完两个仓库的货物。
丙帮助甲、乙各搬运了几小时?
【例3】★★★(北京市第六届“迎春杯”决赛试题)一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?
专题精讲
一、代换法
关键是将单干与合作的实际情况,根据需要等量代换成新的条件。
【例4】★★★一池水,甲、乙两管同时开,5小时灌满,乙、丙两管同时开,4小时灌满。
现在先开乙管6小时,还需甲、丙两管同时开2小时。
乙单独开几小时可以灌满?
【例5】【铺垫】一项工程,甲独做6天完成,甲3天的工作量,乙要4天完成。
两队合做2天后由乙队独做,还要几天才能完成?
【例6】★★★一项工程,甲先独做2天,然后与乙合做7天,这样才完成工程的一半。
已知甲、乙工效的比是2:3。
如果这项工程由乙单独做需要多少天才能完成?
二、比例法
通过比例关系,得到相关条件,是工程问题的一种常见方法。
【例7】★★★(奥数研究中心)
打印一份书稿,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。
如果甲、乙合做2天,剩下的由乙独做,那么刚好在规定时间内完成。
甲、乙两合做需几天完成?
【例8】★★(第15届“迎春杯”小学数学竞赛初赛)
甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需10小时,乙车单独清扫需15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米.问:东、西两城相距多少千米?
三、方程法
抓住等量关系解题。
【例9】★★★(小学数学奥林匹克决赛第9题)
甲、乙两项工程分别由一、二队来完成。
在晴天,一队完成甲工作要12天,二队完成乙工程要15天;在雨天,一队的工作效率要下降40%,二队的工作效率要下降10%。
结果两队同时完成工作,问工作时间内下了多少天雨?
四、列表法
数据很多,可列表整理。
【例10】★★★(奥数研究中心)
放满一个水池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4阀门,则21分钟可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;
如果同时打开1,2,4号阀门,则30分钟可以完成。
问:如果同时打开1,2,3,4号阀门,那么多少分可以完成?
【例11】★★★(小学数学奥林匹克竞赛)
一项工程,如果由甲、乙、丙共同工作,45天可以完成,需付工程款2700元;如果由甲、乙、丁共同工作,40天可以完成,需付工程款2800元;如果由乙、丙、丁共同工作,36天可以完成,需付工程款2880元;如果由甲、丙、丁共同工作,30天可以完成,需付工程款2700元,现决定将工程承包给某一工程队,确保工程要100天以内完成,且支付的工程款尽量的少,那么应该将工程交给哪一个工程队,支付的工程款是多少元?
五、工程法
对于行程或者其它一些题,可以用工程习惯来解题。
【例12】小王和小李同时从两地相向而行,小王走完全程要60分钟,小李走完全程要40分钟。
出发后5分,小李因忘带东西而返回出发点,因取东西耽误了5分钟,小李再出发后多长时间两人相遇?
1、(06年西城八中选拔考试真题)
一份文件,如果甲抄10小时,乙抄10小时可以抄完;如果甲抄8小时,乙抄13小时也可以抄完。
现在甲先抄2小时,剩下的甲乙合作,还需要几小时才能完成?
2、(04年人大附考试真题)
我们规定两人轮流做一个工程是指,第一个人先做一个小时,第二个人再做一个小时,然后再由第一个人做一个小时,然后又由第二个人做一个小时,如此反复,做完为止。
如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?
3、抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相
当甲、乙每天工作效率和的1
5。
如果3人合抄只需8天就完成了,那么乙一人单独抄需要多
少天都能完成?
4、有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成
甲工作要 8天,单独完成乙工作要20天。
如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?
5、(小学数学奥林匹克)
一件工程,甲队独做12天可以完成,甲队做3天后乙队做2天恰可完成一半,现在甲乙两队合做若干天后,由乙队单独完成,做完后发现两段所用时间相等,则共用多少天?
真题实战
数学语絮
勤奋出天才
法国数学家彭加勒,童年时由于患过运动神经系统的毛病,视力和书写能力都受到很大的影响,但非凡的记忆力和高度集中的注意力却弥补了他这方面的缺陷。
彭加勒具有过目不忘的“照相机式”的记忆力,他对事物的记忆迅速、持久而准确。
由于视力不好,上课时看不清黑板上的字,记笔记对于他来说是一件很不容易的事。
彭加勒索性就不记笔记,上课时集中注意力全神贯注地听讲、记忆和思考。
由于长期采取这种方式学习,彭加勒养成了在脑子中完成复杂计算的能力,他的许多论文就是采用这种方式构思的。
以这种独特的方式,彭加勒闯进了数学大世界。
19岁那年,彭加勒的数学才能已经远近闻名。
这一年,彭加勒报名参加了巴黎综合工科学校的入学考试。
为了试探这位数学奇才的能力,主考官精心设计了两道难题。
谁知道彭加勒竟然不费吹灰之力,轻而易举地解答了出来,主考官们吃惊不已。
可是,他的画图能力太差,在几何画图的考试中他落下马来。
按学校的规定,彭加勒已与这所著名的高等学府无缘,但主考官认为他是一个难得的数学奇才。
因此,在主考官的竭力推荐下,彭加勒被破格录取了。
在巴黎综合工科学校学习两年后,彭加勒又升入了高一级的矿业学院,准备毕业后当一名工程师。
但是,数学深深吸引着彭加勒,他仍花许多时间和精力来研究各种各样的数学问题。
1878年,他向法兰西科学院提交了一篇关于微分方程的论文,这篇论文被科学院的专家评定为优秀论文。
第二年,法兰西科学院授予彭加勒数学博士学位。
这一年,彭加勒25岁,33岁时他又当选为法兰西科学院院士。
彭加勒一生共发表过500多篇学术论文和30多卷著作,其内容涉及数学、物理学、天文学和哲学等众多学科。
有趣的是,这样一位数学天才的智商,却不像他所取得的成就那样光彩夺目。
在彭加勒成名后,德国心理学家比内测定了他的智商,结论是彭加勒是个“笨人”。
也许,有的同学会为自己的高智商而沾沾自喜,有的同学则会为自己的低智商而垂头丧气。
从彭加勒的故事中,你至少应该明白这样一个道理:智商不能反映一个人能力的高低;对一个人的成才来说,勤奋比智慧更重要。