氧化亚铁硫杆菌

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧化亚铁硫杆菌

自从1947年T emple和Colmer发现并命名氧化亚铁硫杆菌以来,它已经成为生物浸出的主要菌种之一。作为浸矿的主要菌种,它最初应用于低品味铜矿、铀矿的生产,后来发展应用于金、锌、钴、等多种金属的浸出。随着氧化亚铁硫杆菌在冶金生产中应用的日益广泛,人们注意到它在环境保护方面及一些科研领域同样有着良好的应用前景,其研究越来越受到广泛重视。

氧化亚铁硫杆菌(Thiobacillusferrooxidans,T.f )属微生物中原核生物界、化能营养原核生物门、细菌纲、硫化细菌科、硫杆菌属。广泛存在于土壤、海水、淡水、垃圾、硫磺泉和沉积硫内,尤以金属硫化矿和煤矿等酸性矿坑水(pH<4)中最为常见。

化能自养,专性好氧,嗜酸,革兰氏阴性,,主要利用利用CO2为碳源,并吸收氮、磷等无机营养来合成自身细胞。菌长1.0到数微米,宽约0.5微米,杆状,端生鞭毛,能游动,腺嘌呤(C)+鸟嘌呤(G)的摩尔百分含量为57%~62%,细菌生长周期为6~10天,菌落为黑色,直径0.05mm,菌落周围为分散的铁锈色斑渍区域。

分离的主要步骤是:将采集到的样品先用9K液体培养基富集培养,待培养基的pH值下降到1.0左右后,用梯度稀释法在改进的9K固体培养基涂布,再用平板划线法分离。

第一部分:(NH4)2SO4 3.0g

KCl 0.1g

K2HPO4 0.5g

MgSO4﹒7H2O 0.5g

Ca(NO3)2 0.01g

蒸馏水700mL

第二部分:5mol/LH2SO4 1.0mL

FeSO4﹒7H2O 14.7%

蒸馏水300mL

分离培养基为改进的9K固体培养基,即在每升9K液体培养基加入1.2%的琼脂及0.03%酵母浸粉。

T .ferrooxidans 在有氧条件下依靠氧化亚铁、各种还原性硫化物以及氢来获得能量供生命活动需要。在无氧条件下,能以三价铁或硫为电子受体、氢为电子供体,或以三价铁为电

子受体、还原性硫化物为电子供体获得能量生长。这些现象说明A .ferrooxidans 能量代谢途径的多样性和复杂性。目前认为亚铁氧化的大部分电子都顺电势梯度传递给氧;同时少量电子逆电势传递,产生还原力NAD(P)H 参与细胞内的物质能量代谢。

Fe2+的氧化主要是分两点:

2Fe2+2Fe2++2e (1)

2e+1/2O2+2H+ H2O (2)

由反应式可知, Fe2+ 被细菌氧化为Fe3+ , 分子氧O2 作为电子受体. 在将电子由Fe2+ 递送至氧的过程中, 菌体中各种细胞色素起着重要的作用. 每种细胞色素都具有特定的氧化还原电位.当电子由细胞色素c 向分子氧递送过程中发生了氧化性磷酸化作用, 形成三磷酸腺苷(ATP) , 电子转移所释放的能量便贮存在ATP 中. 为了自动同化CO 2, 还需要形成还

原性的烟酰胺腺嘌呤二核苷酸(NADH2 ). 这样, Fe2+ 氧化所放出的电子主要是还原分子氧, 但也有很少一部分还原NAD. Fe2+ 氧化过程电子传递示意如图 1 所示.

图1 氧化亚铁硫杆菌氧化Fe2+ 时电子输送途径

目前对 A.ferrooxidans 电子传递系统的研究主要集中于亚铁氧化电子传递系统,已发现多种与亚铁氧化电子传递相关电子载体和操纵子,如电子载体铜蓝蛋白(Rustocyanin,Rus)、细胞色素C(Cytochrome C,Cyc)、细胞色素C 氧化酶(Cytochrome Coxidase,Cox)、亚铁氧化酶(Iro)、细胞色素bc1 复合物(cytochrome bc1 complex,bc1)等,以及rus 操纵子和pet 操纵子。

3.2 硫的氧化

S2-的氧化分两步,第一步是在S2-氧化酶的作用下,S失去两个电子,结果发生硫原子的聚合;第二步包括短链多聚硫化物到多聚硫复合物的氧化,多聚硫复合物的氧化是与细胞膜相连的,而且必须有细胞质的参与。反应过程如下:

SH-硫化酶[S]+H++2e

2[S] [S-S]

[S-S]+SH-S--S-SH

S--S-SH+X X-S-S-SH

2[X-S-S-SH] 多聚硫化酶X-S6-X+2H+

3.3 CO2的固定

TF菌是通过二磷酸核酮糖(还原的磷酸戊糖环)途径来固CO2的,这个途径又叫做卡尔文循环

4、氧化亚铁硫杆菌的应用研究

随着对氧化亚铁硫杆菌的生活环境和生理生化等生物学特征的认识的不断深入,发现该微生物在工业和环保上都具有重要的应用价值,目前已成为工业与环境生物技术发展领域的研究热点,其应用主要有以下几个方面:

生物冶金

生物处理污泥中的重金属

脱硫方面的应用

含砷硫化矿的预处理

其它应用

生物冶金技术是利用微生物或其代谢产物溶浸矿石中有用金属的一种新技术,具有装备简单、流程短、建设和操作成本低、对环境友好及可利用低品位复杂难处理矿石等特点,现已成为世界各国矿冶工程研究和应用的热点,是本世纪最具竞争力的矿冶技术之一。

氧化亚铁硫杆菌是冶金工业中最具商业价值的菌种,也是研究最多的菌种之一。早在1670 年,西班牙的Rio Tinto矿山中人们就已知道从矿山浸出水中沉淀回收铜,其中起重要作用的就是酸性矿水和污泥中普遍存在的嗜酸性无机化能自氧菌氧化亚铁硫杆菌。自1966 年加拿大采用细菌浸铀成功,以后有30 多个国家相继开展了生物冶金技术的研究,矿种扩大到10 余种。经过多年的努力,在铜、铀、锰矿进行了工业性或半工业性试验,并获得了成功。

与传统资源加工技术——选矿和冶金提取与分离两大工艺流程不同,生物冶金技术是利用微生物、空气和水等天然物质从矿石中直接提取有价金属,无需选矿、火法冶炼的清洁短流程技术,反应过程自然温和,是矿冶工程和现代生物科学交叉结合形成的一门新型学科。生物堆浸技术的特点:反应温和。的温和反应。设备少、工艺流程简单、建设周期短、基建投资大大减少。而且处理量大、易操作、生产成本低、产品价值高。无SO2 等有害气体排放、、溶液循环利用,环境友好,节约了处理废弃物的成本;工艺过程矿石无需细磨,可大幅度降低能耗,符合节能减排的发展要求。能较经济地处理常规法难以处理的某些低品位矿石,提高资源利用率,拓宽找矿领域;适合于开发偏远交通不便地区资源,规模可大可小。

相关文档
最新文档