如何比较一次函数与反比例函数的大小
反比例函数与一次函数综合(面积问题、线段和差,函数值比较大小)—2024年二轮热点题型(全国通用)
![反比例函数与一次函数综合(面积问题、线段和差,函数值比较大小)—2024年二轮热点题型(全国通用)](https://img.taocdn.com/s3/m/83687430dcccda38376baf1ffc4ffe473368fdcd.png)
反比例函数与一次函数综合目录热点题型归纳 (1)题型01 面积问题 (1)题型02 两线段和差最值问题 (3)题型03 两函数值比较大小问题 (15)中考练场 (31)题型01 面积问题【解题策略】【典例分析】例.(2023·辽宁鞍山·中考真题)如图,直线AB 与反比例函数()0k y x x=<的图象交于点()2,A m −,(),2B n ,过点A 作AC y 轴交x 轴于点C ,在x 轴正半轴上取一点D ,使2OC OD =,连接BC ,AD .若ACD 的面积是6.(1)求反比例函数的解析式.(2)点P 为第一象限内直线AB 上一点,且PAC △的面积等于BAC 面积的2倍,求点P 的坐标.【答案】(1)8y x =−;(2)()2,8P【分析】(1)根据2OC OD =,可得三角形面积之比,计算出AOC 的面积,面积乘2即为8k =,解析式可得;(2)根据点的坐标求出直线AB 的解析式为6y x =+,设符合条件的点(),6P m m +,利用面积的倍数关系建立方程解出即可.【详解】(1)解:∵2OC OD =,ACD 的面积是6,∴4AOC S =V , ∴8k =,∵图象在第二象限,∴8k =−,∴反比例函数解析式为:8y x =−;(2)∵点()2,A m −,(),2B n ,在8y x =−的图象上, ∴4m =,n =−4,∴()2,4A −,()4,2B −,设直线AB 的解析式为y kx b =+,2442k b k b −+=⎧⎨−+=⎩,解得:16k b =⎧⎨=⎩,∴直线AB 的解析式为6y x =+,∵AC y 轴交x 轴于点C ,∴()2,0C −, ∴14242ABC S =⨯⨯=,设直线AB 上在第一象限的点(),6P m m +, ∴()142282PAC ABC S m S =⨯⨯+==,∴248m +=,∴2m =,∴()2,8P .【点睛】本题考查了反比例函数与一次函数的交点问题,交点坐标满足两个函数关系式.【变式演练】1.(2023·山东泰安·三模)如图,一次函数1112y x =+的图象与反比例函数2(0)k y x x =>的图象交于点(),3A a ,与y 轴交于点B .(1)求a ,k 的值;(2)请直接写出在第一象限124y y <<时,x 的取值范围.(3)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC AD =,连接.CB 求ABC 的面积.【答案】(1)412a k ==,(2)34x <<(3)8【分析】本题主要考查了求反比例函数的解析式,结合一次函数的解析式求点的坐标,解决问题的关键是画出图形.(1)用待定系数法即可求解;(2)根据图象直接得出答案;(3)求出()2,6C ,由1144822ABC A S CE x =⋅=⨯⨯=△,即可求解.【详解】(1)将点A 的坐标代入一次函数表达式得:1312a =+, 解得:4a =,则点()4,3A ,将点A 的坐标代入反比例函数表达式得:34k=, 解得:12k =;(2)把4y =代入12y x =,得3x =, 由图可知24y <时,3x >, 由图可知12y y <时,4x <, 124y y ∴<<时,34x <<;(3)点()4,3A ,D 点的纵坐标是0,AD AC =, ∴点C 的纵坐标是3206⨯−=,把6y =代入12y x =,得2x =, ()2,6C ∴,如图1,作CD x ⊥轴于D ,交AB 于E ,当2x =时,12122y =⨯+=,()2,2E ∴, ()2,6C ,624CE ∴=−=,∴由1144822ABC A S CE x =⋅=⨯⨯=△.2.(2023·山东泰安·一模)如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于()1,2A ,()2,B n −两点.(1)求一次函数和反比例函数的表达式.(2)根据图象,直接写出满足21k k x b x+<的x 的取值范围. (3)若点P 在线段AB 上,且1:3AOP BOP S S =△△:,求点P 的坐标.【答案】(1)2y x =,1y x =+(2)01x <<或<2x − (3)15,44⎛⎫ ⎪⎝⎭【分析】(1)把()1,2A 坐标代入2k y x =可得解析式,继而求出n ,用待定系数法求出一次函数解析式; (2)根据图象直接写出21k k x b x +<的x 的取值范围即可;(3)利用1:3AOP BOP S S =△△:得出3PB PA =,设P 坐标(),1x x +利用勾股定理建立方程求出x 即可. 本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.【详解】(1)解:反比例函数2k y x =经过()1,2A , 2122k ∴=⨯=,∴反比例函数解析式为2y x =,()2B n −,在反比例函数2y x =的图象上, 212n ∴==−−,()21B ∴−−,,直线1y k x b =+经过()1,2A ,()2,1B −−,11221k b k b +=⎧∴⎨−+=−⎩,解得111k b =⎧⎨=⎩,∴一次函数的解析式为1y x =+;(2)解:观察函数图象可知21k k x b x +<的x 的取值范围是01x <<或<2x −;(3)解:设()1P x x +,,∵1:3AOP BOP S S =△△::1:3AP BP ∴=,即3PB PA =,()()()()22222119112x x x x ⎡⎤∴++++=−++−⎣⎦, 解得15(4x =舍去),214x =, P ∴点坐标为1544⎛⎫ ⎪⎝⎭,3.(2023·广东潮州·二模)如图,反比例函数2y x=的图象与一次函数y kx b =+的图象交于点A 、B ,点A 、B 的横坐标分别为1,2−,一次函数图象与y 轴的交于点C ,与x 轴交于点D .(1)求一次函数的解析式;(2)对于反比例函数2y x=,当1y <−时,写出x 的取值范围; (3)点P 是第三象限内反比例图象上的一点,若点P 满足S △BDP =12S △ODA ,请求出点P 的坐标.【答案】(1)1y x =+(2)20x −<<(3)(或(1−【分析】本题主要考查二次函数性质,一次函数性质,图形的面积等,解题的关键在于利用反比例函数得出交点坐标,从而求出一次函数解析式,以及懂得观察图象,获取图象信息,从而得到自变量的取值范围,以及利用割补法求面积.(1)利用反比例函数求出交点A 、点B 的坐标分别为()1,2,()2−,-1,再利用待定系数法即可求出一次函数的解析式.(2)当1y <−时,即为B 点右侧图象,观察图象,从而得出此段图象对应的自变量的取值范围为20x −<<.(3)先求出ODP 的面积为1,从而确定BDP △的面积为12,再通过点P 的不同的位置,设点P 的坐标为2,x x ⎛⎫ ⎪⎝⎭,根据图形面积列出方程,即可求出点P 的坐标.【详解】(1)解:∵反比例函数2y x =的图象与一次函数y kx b =+的图象交于点A 、B ,点A 、B 的横坐标分别为1,﹣2;∴A ()1,2,B()2,1−−; 把A 、B 的坐标代入y kx b =+得221k b k b +=⎧⎨−+=−⎩,解得11k b =⎧⎨=⎩;∴一次函数的解析式为1y x =+.(2)∵()2,1B −−;由图象可知,当20x −<<时,1y <−.(3)∵一次函数为1y x =+;∴D ()1,0−;∵A ()1,2, ∴1212ODA S =⨯⨯V ; ∴1122BDP ODA S S ==V V , 设点P 的坐标为: 2,x x ⎛⎫ ⎪⎝⎭,0x <;∴ON x =−,2PN x =−;当P 在直线下方时,如图1,则;()()()121211=1212112222BDP BDM PDNBMNP S S S S x x x x =+−⎛⎫⎛⎫−++−−−−−⨯= ⎪ ⎪⎝⎭⎝⎭梯形;解得x =∴点P (.当P 在直线AB 的上方时,如图2,则;()()()1211112211122222BDF BDM PDN BMNP SS S S x x x x =+−⎛⎫⎛⎫=−−−+−⨯−−−−= ⎪ ⎪⎝⎭⎝⎭梯形;解得1x =−∴点P (1−;综上可得:点P的坐标为:( 或(1− .4.(2023·广东云浮·二模)如图,在平面直角坐标系中,一次函数y kx b =+图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数m y x=在第一象限内的图象交于点C ,CD x ⊥轴, 1tan BAO 2∠=,42OA OD ==,.(1)求一次函数与反比例函数的解析式;(2)若点E 是反比例函数在第三象限内图象上的点,过点E 作EF ⊥y 轴,垂足为点F ,连接OE AF 、,如果4BAF EFO SS =,求点E 的坐标. 【答案】(1)一次函数解析式为122y x =+,反比例函数解析式为6y x =(2)342E ⎛⎫−− ⎪⎝⎭, 【分析】本题主要考查了一次函数与反比例函数综合,解直角三角形,待定系数法求函数解析式,正确求出对应的函数解析式是解题的关键.(1)先求出A 、D 坐标,以及AD 的长,解直角三角形求出CD 的长,进而得到点C 的坐标,然后利用待定系数法求出对应的函数解析式即可;(2)设出点E 坐标,求出OEF 的面积为3,进而得到ABF △的面积为12,再求出点B 的坐标,得到OB 的长,利用面积法求出BF 的长进而求出点E 的坐标即可.【详解】(1)解:∵42OA OD ==,,∴()()4020A D −,,,,426AD OA OD =+=+=,∵BAO CAD ∠=∠, ∴1tan tan 2BAO CAD ∠=∠=, ∵CD x ⊥轴, ∴1tan 2CD CAD AD ∠== , ∴132CD AD ==,∴点C 的坐标为()23,,∴把()()4023A C −,,,代入y kx b =+中得4023k b k b −+=⎧⎨+=⎩,解得122k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为122y x =+,∵点C 在反比例函数my x =的图象上,∴将()23C ,代入m y x =中得32m=, 解得:6m =,∴反比例函数解析式为6y x =;(2)解:设6E m m ⎛⎫−− ⎪⎝⎭,, ∴6EF m OF m ==,∴132EFOSOF EF =⋅=,∴142BAFEFOSS==,∵一次函数解析式为122y x =+,∴()02B ,,∴2OB =,又∵4OA =,12ABF S BF OA =⋅=△,∴()2212OF +=,∴626m +=,∴32m =, ∴342E ⎛⎫−− ⎪⎝⎭,. 题型02 两线段和差最值问题【解题策略】例.(2023·四川宜宾·中考真题)如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点()30C ,,顶点A 、()6B m ,恰好落在反比例函数ky x=第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.【答案】(1)6y x =,142y x =−+(2)在x 轴上存在一点()5,0P ,使ABP 周长的值最小,最小值是【分析】(1)过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D ,证明()AAS ACE CBD ≌,则3,CD AE BD EC m ====,由3OE m =−得到点A 的坐标是()3,3m −,由A 、()6B m ,恰好落在反比例函数ky x =第一象限的图象上得到()336m m−=,解得1m =,得到点A 的坐标是()2,3,点B 的坐标是()6,1,进一步用待定系数法即可得到答案;(2)延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP ,利用轴对称的性质得到AP A P '=,()2,3A '−,则AP PB A B '+=,由AB =AB 是定值,此时ABP 的周长为AP PB AB AB A B '++=+最小,利用待定系数法求出直线A B '的解析式,求出点P 的坐标,再求出周长最小值即可.【详解】(1)解:过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D , 则90AEC CDB ∠=∠=︒,∵点()30C ,,()6B m ,,∴3,6,OC OD ==BD m =, ∴3CD OD OC =−=, ∵ABC 是等腰直角三角形, ∴90,ACB AC BC ∠=︒=,∵90ACE BCD CBD BCD ∠+∠=∠+∠=︒, ∴ACE CBD ∠=∠, ∴()AAS ACE CBD ≌,∴3,CD AE BD EC m ====, ∴3OE OC EC m =−=−, ∴点A 的坐标是()3,3m −,∵A 、()6B m ,恰好落在反比例函数ky x =第一象限的图象上.∴()336m m−=,解得1m =,∴点A 的坐标是()2,3,点B 的坐标是()6,1,∴66k m ==,∴反比例函数的解析式是6y x =,设直线AB 所对应的一次函数的表达式为y px q =+,把点A 和点B 的坐标代入得,2361p q p q +=⎧⎨+=⎩,解得124p q ⎧=−⎪⎨⎪=⎩,∴直线AB 所对应的一次函数的表达式为142y x =−+,(2)延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP ,∴点A 与点A '关于x 轴对称, ∴AP A P '=,()2,3A '−,∵AP PB A P PB A B ''+=+=, ∴AP PB +的最小值是A B '的长度,∵AB =AB 是定值,∴此时ABP 的周长为AP PB AB AB A B '++=+最小, 设直线A B '的解析式是y nx t =+,则2361n t n t +=−⎧⎨+=⎩,解得15n t =⎧⎨=−⎩, ∴直线A B '的解析式是5y x =−, 当0y =时,05x =−,解得5x =,即点P 的坐标是()5,0,此时AP PB AB AB A B '++=+=综上可知,在x 轴上存在一点()5,0P,使ABP周长的值最小,最小值是【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.【变式演练】1.(2023·河南濮阳·三模)如图,一次函数6y x =−+与反比例函数()0ky x x=>交于A 、B 两点,交x 轴于点C ,已知点A 的坐标为()2,a .(1)求反比例函数解析式; (2)直接写出不等式()60kx x x−+>>的解集______. (3)在x 轴是否存在点P ,使得PA PB −有最大值,若存在,请求出点P 的坐标,若不存在,请说明理由. 【答案】(1)反比例函数解析式为:y =8x .(2)24x <<.(3)在x 轴上存在点P ,使PA PB −有最大值为AB 此时P 点坐标是()6,0.【分析】本题考查了一次函数与反比例函数的综合、三角形的三边关系的应用等知识点,熟练掌握待定系数法和数形结合法是解题关键.(1)先求解A 的坐标,再利用待定系数法求解反比例函数的解析式即可; (2)先求解函数的交点坐标,再结合图象可得答案;(3)先求解一次函数与x 轴的交点坐标,再结合三角形的三边关系确定P 的位置即可.【详解】(1)解:∵点A 的坐标为()2,a 在一次函数6y x =−+上,∴264a =−+=,∴()2,4A ,∵()2,4A 在反比例函数()0ky x x =>上,∴248k =⨯=,∴反比例函数解析式为:8y x =.(2)联立一次函数和反比例函数得析式为:86y x y x ⎧=⎪⎨⎪=−+⎩,解得24x y =⎧⎨=⎩或42x y =⎧⎨=⎩,∴()2,4A ,()4,2B , 由图示可知:不等式()60kx x x −+>>的解集是24x <<.(3)∵直线AB 的解析式是6y x =−+,令0y =, 则06x =−+,则6x =,∴()6,0C ,∴当P 点坐标是()6,0,PA PB −有最大值理由如下:在PAB 中,根据三边关系,PA PB AB −<,当P 在点C 处时,PA PB AB −=.即最大值为AB .故在x 轴上存在点P ,使PA PB −有最大值为AB 此时P 点坐标是()6,0.2.(2023·辽宁盘锦·二模)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于()1,A a −,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)当反比例函数值大于一次函数值时,直接写出x 的取值范围;(3)在y 轴上存在点P ,使得APB △的周长最小,求点P 的坐标并直接写出APB △的周长.【答案】(1)3y x =−,()3,1B −(2)10x −<<或3x <−(3)点P 的坐标为50,2⎛⎫ ⎪⎝⎭,【分析】本题主要考查了一次函数与反比例函数综合,轴对称最短路径问题,灵活运用所学知识是解题的关键. (1)先把点A 坐标代入一次函数解析式求出点A 的坐标,再把点A 的坐标代入反比例函数解析式求出反比例函数解析式,再联立一次函数与反比例函数解析式即可求出点B 的坐标; (2)利用图象法求解即可;(3)如图所示,作点A 关于y 轴的对称点A ',连接BA '交y 轴于点P ,此时PA PB +的值最小,则APB △的周长最小,再求出直线BA '的解析式即可求出点P 的坐标,由()1,3A −,()3,1B −,()1,3A ',可求出AB 、A B '的值,最后根据APB△的周长为PA PB AB A B AB '++=+.【详解】(1)解:点()1,A a −在一次函数4y x =+的图象上,∴143a =−+=, ∴点()1,3A −,点()1,3A −在反比例函数ky x =的图象上,∴133k =−⨯=−,∴反比例函数的表达式为3y x =−,联立34y x y x ⎧=−⎪⎨⎪=+⎩, 解得: 13x y =−⎧⎨=⎩或31x y =−⎧⎨=⎩, ∴()3,1B −;(2)观察函数图象可知:当10x −<<或3x <−时,一次函数4y x =+的图象在3y x =−的图象的下方,∴当反比例函数值大于一次函数值时,x 的取值范围为:10x −<<或3x <−;(3)作点A 关于y 轴的对称点A ',连接BA '交y 轴于点P ,此时PA PB +的值最小,则APB △的周长最小,如图所示.点()1,3A −,∴点()1,3A ',设直线BA '的表达式为()0y mx n m =+≠,则331m n m n +=⎧⎨−+=⎩,得:1252m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线BA '的表达式为1522y x =+,在1522y x =+中,令0x =,则52y =,∴点50,2P ⎛⎫ ⎪⎝⎭,()1,3A −,()3,1B −,()1,3A ',∴AB =A B =='∴APB △的周长为PA PB AB A B AB '++=+=3.(2023·广东云浮·二模)如图,在平面直角坐标系中,矩形OABC 的两边OC 、OA 分别在坐标轴上,且2OA =,4OC =,连接OB .反比例函数1(0)k y x x=>的图象经过线段OB 的中点D ,并与AB 、BC 分别交于点B 、F .一次函数2y k x b =+的图象经过E 、F 两点.(1)分别求出一次函数和反比例函数的表达式.(2)点P 是x 轴上一动点,当PE PF +的值最小时,求点P 的坐标.【答案】(1)一次函数的解析式为1522y x =−+,反比例函数表达式为2y x =;(2)17,05⎛⎫ ⎪⎝⎭ 【分析】(1)由矩形的性质及中点坐标公式可得(2,1)D ,从而可得反比例函数表达式;再求出点E 、F 坐标可用待定系数法解得一次函数的解析式;(2)作点E 关于x 轴的对称点E ',连接E F '交x 轴于点P ,则此时PE PF +最小.求出直线E F '的解析式后令0y =,即可得到点P 坐标. 【详解】(1)解:四边形OABC 为矩形,2OA BC ==,4OC =,(4,2)B ∴.由中点坐标公式可得点D 坐标为(2,1),反比例函数1(0)k y x x =>的图象经过线段OB 的中点D ,1212k xy ∴==⨯=,故反比例函数表达式为2y x =.令2y =,则1x =;令4x =,则12y =.故点E 坐标为(1,2),1(4,)2F . 设直线EF 的解析式为2y k x b =+,代入E 、F 坐标得:222142k b k b =+⎧⎪⎨=+⎪⎩,解得:21252k b ⎧=−⎪⎪⎨⎪=⎪⎩, 故一次函数的解析式为1522y x =−+.(2)作点E 关于x 轴的对称点E ',连接E F '交x 轴于点P ,则此时PE PF +最小.如图. 由E 坐标可得对称点(1,2)E '−,设直线E F '的解析式为y mx n =+,代入点E '、F 坐标,得:2142m n m n −=+⎧⎪⎨=+⎪⎩,解得:56176m n ⎧=⎪⎪⎨⎪=−⎪⎩. 则直线E F '的解析式为51766y x =−,令0y =,则751x =.∴点P 坐标为17(5,0).故答案为:17(5,0).【点睛】本题考查了反比例函数的图象性质,反比例函数图象与一次函数图象的交点,中点坐标公式,矩形的性质,待定系数法求函数解析式,最短路径问题(将军饮马).解题关键在于牢固掌握待定系数法求函数解析式、将军饮马解题模型.题型03 两函数值比较大小问题【解题策略】例.(2023·山东淄博·中考真题)如图,直线y kx b =+与双曲线m y x=相交于点()2,3A ,(),1B n .(1)求双曲线及直线对应的函数表达式;(2)将直线AB 向下平移至CD 处,其中点()2,0C −,点D 在y 轴上.连接AD ,BD ,求ABD △的面积;(3)请直接写出关于x 的不等式m kx b x +>的解集. 【答案】(1)6y x =,142y x =−+ (2)10 (3)26x <<或0x <【分析】()1将()2,3A 代入双曲线m y x =,求出m 的值,从而确定双曲线的解析式,再将点(),1B n 代入6y x =,确定B 点坐标,最后用待定系数法求直线的解析式即可;()2由平行求出直线CD 的解析式为11,2y x =−−过点D 作DG AB ⊥交于G ,设直线AB 与y 轴的交点为H ,与x 轴的交点为F , 可推导出HDG HFO ∠=∠, 再由cos HFO ∠=,求出DG ==则ABD 的面积110;2=⨯ ()3数形结合求出x 的范围即可.【详解】(1)将()2,3A 代入双曲线m y x =,∴6m =, ∴双曲线的解析式为6y x =, 将点(),1B n 代入6y x =,∴6n =,∴()6,1B ,将()()2,3,6,1A B 代入y kx b =+, 2361k b k b +=⎧∴⎨+=⎩,解得124k b ⎧=−⎪⎨⎪=⎩,∴直线解析式为142y x =−+;(2)∵直线AB 向下平移至CD ,∴AB CD ,设直线CD 的解析式为12y x n =−+,将点()2,0C −代入1,2y x n =−+∴10n +=,解得1n =−∴直线CD 的解析式为112y x =−−∴()0,1D −过点D 作DG AB ⊥交于G ,设直线AB 与y 轴的交点为H ,与x 轴的交点为 F ,∴()()0,4,8,0H F ,∵90,90HFO OHF OHG HDG ∠+∠=︒∠+∠=︒,∴HDG HFO ∠=∠,∵4,8OH OF ==,HF ∴=cosHFO ∴∠=∵5DH =,DG DH ∴==, 2AB =∴ABD 的面积1102=⨯= (3)由图可知26x <<或0x <时,161.2x x −−> 【点睛】本题考查反比例函数的图象及性质,熟练掌握反比例函数的图象及性质,直线平移是性质,数形结合是解题的关键.【变式演练】1.(2023·山东青岛·一模)如图,一次函数y ax b =+与反比例函数k y x=的图象交于A 、B 两点,点A 坐标为(,2)m ,点B 坐标为(4,)n −,OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD .(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD 的面积;(3)请你根据图象直接写出不等式k ax b x+>的解集. 【答案】(1)一次函数表达式为112y x =−,反比例函数表达式为12y x =; (2)18;(3)6x >或40x −<<. 【分析】本题考查了反比例函数的综合题,涉及解直角三角形,待定系法求函数解析式,三角形面积等,熟练掌握反比例函数图象上点的坐标特征是解题的关键.(1)先求出点A 坐标,再利用待定系数法求出反比例函数解析,再根据点B 在反比例函数图象上,可得点B 的坐标,进一步利用待定系数法求一次函数解析式即可;(2)先求出点C 和点D 坐标,再根据OCD BCD OCBD S S S ∆∆=+四边形求解即可;(3)根据图象即可确定不等式的解集.【详解】(1)解:OA 与x 轴正半轴夹角的正切值为13,∴13AE OE =,点(,2)A m ,2AE ∴=,6OE m ==,∴点A 坐标为(6,2),6212k ∴=⨯=,点B 在反比例函数图象上,412n ∴−=,解得3n =−,∴点B 坐标为(4,3)−−,将点(6,2)A ,点(4,3)B −−代入一次函数y ax b =+,得6243a b a b +=⎧⎨−+=−⎩,解得121a b ⎧=⎪⎨⎪=−⎩,∴一次函数表达式为112y x =−,反比例函数表达式为12y x =; (2)解:当0x =时,1112y x =−=−, ∴点C 坐标为(0,1)−,CD y ⊥轴, ∴点D 纵坐标为1−,点D 在反比例函数12y x =上,∴点D 横坐标为12−,12CD ∴=,∴111211221822OCD BCD OCBD S S S ∆∆=+=⨯⨯+⨯⨯=四边形;(3)解:由图象可知,不等式kax b x +>的解集是6x >或40x −<<..2.(2023·广西桂林·一模)如图,直线1y kx b =+与双曲线2a y x=相交于A 、B 两点,直线AB 与x 轴相交于点C ,点B 的坐标是()3m m ,,5OA =,E 为x 轴正半轴上一点,且3os 5c AOE ∠=.(1)双曲线2y 的解析式是 ,直线1y 的解析式是 .(2)求证:3AOB COB S S =△△.(3)当12y y >时,x 的取值范围是 .【答案】(1)122,23y y x x ==+ (2)见解析(3)60x −<<或3x >【分析】(1)根据三角函数的定义求出点A 的坐标,代入反比例函数解析式求出结果即可;求出点B 的坐标,用待定系数法求出一次函数解析式即可;(2)根据A 、B 两点的坐标分别表示出AOB 和BOC 的面积即可得出答案;(3)根据函数图象得出x 的取值范围即可.【详解】(1)解:过点A 作AD x ⊥轴于点D ,如图所示:∵3cos 55OD AOE ∠==, ∴3OD =,∴4AD ,∴()34A ,,将点A 的坐标代入反比例函数2y x =12a =, ∴双曲线2y 的解析式为12y x =,∵点()3B m m ,在反比例函数12y x =图象上, ∴123m m =,解得2m =±,∴()6,2B −−,把()34A ,,()6,2B −−代入1y kx b =+得3462k b k b +=⎧⎨−+=−⎩,解得232k b ⎧=⎪⎨⎪=⎩,∴直线1y 的解析式是223y x =+;(2)解:∵()34A ,,()6,2B −−,∴AOC 的面积1422OC OC =⨯⨯=,BOC 的面积122OC OC =⨯⨯=,∴AOB 的面积3OC =,∴3AOB BOC S S =△△;(3)解:根据函数图象可知,当60x −<<或3x >时,一次函数在反比例函数图象的上面,∴当12y y >时,x 的取值范围为60x −<<或3x >.【点睛】本题主要考查了一次函数和反比例函数的综合应用,求一次函数和反比例函数的解析式,三角函数的应用,解题的关键是数形结合,根据三角函数求出点A 的坐标.3.(2023·四川泸州·一模)如图,一次函数y ax b =+的图象与反比例函数(0)ky x x=>的图象交于第一象限()1,4C ,()4D m ,两点,与坐标轴交于A 、B 两点,连接OC ,OD .(O 是坐标原点)(1)求一次函数与反比例函数的表达式;(2)直接写出当一次函数值小于反比例函数值时x 的取值范围;(3)将直线AB 向下平移多少个单位长度,直线与反比例函数(0)k y x x =>图象只有一个交点?【答案】(1)4y x =,5y x =−+; (2)01x <<或>4x ;(3)1.【分析】本题考查了反比例函数与一次函数的综合,熟练掌握函数的图象与性质是解题的关键.(1)根据待定系数法求解即可;(2)结合图象找出反比例函数图象高于直线部分对应的x 的范围即可;(3)设出平移后直线的解析式结合一元二次方程的根的判别式解答即可;【详解】(1)解:∵反比例函数ky x =过点()1,4C ,()4,D m , ∴144k m =⨯=,解得:4k =,1m = 反比例函数解析式为:4y x =,点()4,1D , ∵一次函数解析式y ax b =+过点C ,D ,∴441a b a b +=⎧⎨+=⎩,解得:15a b =−⎧⎨=⎩∴一次函数解析式为:5y x =−+;(2)解:根据图象,不等式kax x +<的解集为:01x <<或>4x ; (3)解:设直线AB 向下平移n 个单位长度时,直线与反比例函数图象只有一个交点,则平移后的解析式为5y x n =−+−, 联立两个函数得:45x n x =−+−,整理得:2(5n)40x x −−+=,2(5)4140n ∆=−−⨯⨯=,∴54n −=±,9n =或1,∵点(0,5)B ,∴9n =不符合题意舍去.∴直线AB 向下平移1个单位长度时,直线与反比例函数图象只有一个交点.4.(2024·新疆·一模)如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()()2,3,,1A B n −.(1)求反比例函数和一次函数的解析式;(2)判断点()2,1P −是否在一次函数1y k x b =+的图象上,并说明理由;(3)直接写出不等式21k k x b x+≥的解集. 【答案】(1)反比例函数解析式为6y x =,一次函数的解析式为122y x =+ (2)点()2,1P −在一次函数122y x =+的图象上,理由见解析(3)60x −≤<或2x ≥【分析】本题主要考查了一次函数与反比例函数综合:(1)先利用点A 求出反比例函数的解析式,由此求出点B 的坐标,再利用点A 及点B 的坐标求出一次函数的解析式;(2)在一次函数中求出2x =−时的函数值即可得到结论;(3)根据函数图象找到一次函数图象在反比例函数图象上方或二者交点处时自变量的取值范围即可得到答案.【详解】(1)解:将点()2,3A 代入反比例函数()220k y k x =≠中,得2236k =⨯=, ∴反比例函数解析式为6y x =;将点(),1B n −代入6y x =中,得6n −=,∴6n =−,∴()6,1B −−,将点()2,3A 、()6,1B −−代入一次函数()110y k x b k =+≠中,得112361k b k b +=⎧⎨−+=−⎩,∴1122k b ⎧=⎪⎨⎪=⎩,∴一次函数的解析式为122y x =+;(2)解:点()2,1P −在一次函数122y x =+的图象上,理由如下:在122y x =+中,当2x =−时,()12212y =⨯−+=,∴点()2,1P −在一次函数122y x =+的图象上;(3)解:由图象可知:当60x −≤<或2x ≥时,一次函数的图象在反比例函数图象的上方或二者的交点处,即21k k x b x +≥,∴当60x −≤<或2x ≥时,21k k x b x +≥.1.(2023·贵州·中考真题)如图,在平面直角坐标系中,四边形OABC 是矩形,反比例函数()0ky x x=>的图象分别与,AB BC 交于点()4,1D 和点E ,且点D 为AB 的中点.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),直接写出m 的取值范围.【答案】(1)反比例函数解析式为4y x =,()22E ,(2)30m −≤≤【分析】(1)根据矩形的性质得到BC OAAB OA ∥,⊥,再由()4,1D 是AB 的中点得到()42B ,,从而得到点E 的纵坐标为2,利用待定系数法求出反比例函数解析式,进而求出点E 的坐标即可; (2)求出直线y x m =+恰好经过D 和恰好经过E 时m 的值,即可得到答案.【详解】(1)解:∵四边形OABC 是矩形,∴BC OAAB OA ∥,⊥, ∵()4,1D 是AB 的中点,∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x =,在4y x =中,当42y x ==时,2x =,∴()22E ,;(2)解:当直线 y x m =+经过点()22E ,时,则22m +=,解得0m =; 当直线 y x m =+经过点()41D ,时,则41m +=,解得3m =−;∵一次函数y x m =+与反比例函数()0ky x x =>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),∴30m −≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.2.(2023·山东聊城·中考真题)如图,一次函数y kx b =+的图像与反比例函数my x=的图像相交于()1,4A −,(),1B a −两点.(1)求反比例函数和一次函数的表达式;(2)点(),0P n 在x 轴负半轴上,连接AP ,过点B 作BQ AP ∥,交my x=的图像于点Q ,连接PQ .当BQ AP =时,若四边形APQB 的面积为36,求n 的值.【答案】(1)4y x =−,3y x =−+(2)215n =−【分析】(1)根据反比例函数过点()1,4A −,(),1B a −两点,确定()4,1B −,待定系数法计算即可.(2)根据平移思想,设解析式求解即可.【详解】(1)解:∵一次函数y kx b =+的图像与反比例函数my x =的图像相交于()1,4A −,(),1B a −两点,∴144m =−⨯=−,故反比例函数的解析式为4y x =−,∴441a =−=−,故()4,1B −,∴414k b k b +=−⎧⎨−+=⎩,解得13k b =−⎧⎨=⎩, ∴直线的解析式为3y x =−+.(2)∵()1,4A −,()4,1B −,(),0P n ,BQ AP ∥,BQ AP =,∴四边形APQB 是平行四边形,∴点A 到点P 的平移规律是向左平移1n −−个单位,向下平移4个单位,∴点()4,1B −到点Q 的平移规律也是向左平移1n −−个单位,向下平移4个单位,故()5,5Q n +−, ∵()5,5Q n +−在4y x =−上,∴44555n +=−=−,解得:215n =−,∴点P 的坐标为210,5⎛⎫− ⎪⎝⎭, 设AB 与x 轴交于点C ,连接PB ,如图所示:把0y =代入3y x =−+,解得:3x =,∴()3,0C ,∴2136355PC ⎛⎫=−−=⎪⎝⎭, ∴()136411825APBS=⨯⨯−−=⎡⎤⎣⎦,∵四边形APQB 为平行四边形, ∴236APBAPQB S S==四边形,∴当215n =−时,符合题意.【点睛】本题考查了一次函数与反比例函数的交点,平移规律计算,熟练掌握规律是解题的关键. 3.(2023·四川乐山·中考真题)如图,一次函数y kx b =+的图象与反比例函数4y x=的图象交于点(),4A m ,与x 轴交于点B , 与y 轴交于点()0,3C .(1)求m 的值和一次函数的表达式; (2)已知P 为反比例函数4y x=图象上的一点,2OBP OAC S S =△△,求点P 的坐标. 【答案】(1)3y x =+ (2)()2,2P 或()2,2−−【分析】(1)先把点A 坐标代入反比例函数解析式求出m 的值,进而求出点A 的坐标,再把点A 和点C 的坐标代入一次函数解析式中求出一次函数解析式即可;(2)先求出3OB =,3OC =,过点A 作AH y ⊥轴于点H ,过点P 作PD x ⊥轴于点D ,如图所示,根据2OBPOACS S =△△可得11222OB PD OC AH⋅=⨯⋅,求出2PD =,则点P 的纵坐标为2或2−,由此即可得到答案.【详解】(1)解:点(),4A m 在反比例函数4y x =的图象上,44m ∴=,1m ∴=,()1,4A ∴,又点()1,4A ,()0,3C 都在一次函数y kx b =+的图象上,43k bb =+⎧∴⎨=⎩,解得13k b =⎧⎨=⎩, ∴一次函数的解析式为3y x =+.(2)解:对于3y x =+,当0y =时,3x =−,∴()30B −,,3OB ∴=,∵()0,3C ,3OC ∴=过点A 作AH y ⊥轴于点H ,过点P 作PD x ⊥轴于点D ,如图所示.2OBP AOC S S =△△,11222OB PD OC AH ∴⋅=⨯⋅. 11323122PD ∴⨯⨯=⨯⨯⨯,解得2PD =. ∴点P 的纵坐标为2或2−.将2y =代入4y x =得2x =, 将=2y −代入4y x =得2x =−,∴点()2,2P 或()2,2−−.【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.4.(2022·江苏徐州·中考真题)如图,一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x=>的图像交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD x ⊥轴于点D ,CB CD =,点C 关于直线AD 的对称点为点E . (1)点E 是否在这个反比例函数的图像上?请说明理由; (2)连接AE 、DE ,若四边形ACDE 为正方形. ①求k 、b 的值;②若点P 在y 轴上,当PE PB −最大时,求点P 的坐标.【答案】(1)点E 在这个反比例函数的图像上,理由见解析 (2)①1k =,2b =;②点P 的坐标为(0,2)−【分析】(1)设点A 的坐标为8(,)m m ,根据轴对称的性质得到AD CE ⊥,AD 平分CE ,如图,连接CE 交AD 于H ,得到CH EH =,再结合等腰三角形三线合一得到CH 为ACD ∆边AD 上的中线,即AH HD =,求出4,H m m ⎛⎫ ⎪⎝⎭,进而求得4(2,)E m m ,于是得到点E 在这个反比例函数的图像上;(2)①根据正方形的性质得到AD CE =,AD 垂直平分CE ,求得12CH AD=,设点A 的坐标为8(,)m m ,得到2m =(负值舍去),求得(2,4)A ,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得,解方程组即可得到结论;②延长ED 交y 轴于P ,根据已知条件得到点B 与点D 关于y 轴对称,求得PE PD PE PB−=−,则点P 即为符合条件的点,求得直线DE 的解析式为2y x =−,于是得到结论.【详解】(1)解:点E 在这个反比例函数的图像上. 理由如下:一次函数(0)y kx b k =+>的图像与反比例函数8(0)y x x =>的图像交于点A ,∴设点A 的坐标为8(,)m m ,点C 关于直线AD 的对称点为点E ,AD CE ∴⊥,AD 平分CE ,连接CE 交AD 于H ,如图所示:CH EH ∴=, AD x ⊥轴于D ,CE x ∴∥轴,90ADB ∠=︒, 90CDO ADC ∴∠+∠=︒, CB CD =, CBO CDO ∴∠=∠,在Rt ABD ∆中,90ABD BAD ∠+∠=︒,CAD CDA ∴∠=∠,CH ∴为ACD ∆边AD 上的中线,即AH HD =,4,H m m ⎛⎫∴ ⎪⎝⎭,4(2,)E m m ∴,428m m ⨯=,∴点E 在这个反比例函数的图像上;(2)解:①四边形ACDE 为正方形,AD CE ∴=,AD 垂直平分CE ,12CH AD ∴=,设点A 的坐标为8(,)m m ,CH m ∴=,8AD m =,182m m ∴=⨯,2m ∴=(负值舍去),(2,4)A ∴,(0,2)C ,把(2,4)A ,(0,2)C 代入y kx b =+得242k b b +==⎧⎨⎩,解得12k b =⎧⎨=⎩; ②延长ED 交y 轴于P ,如图所示:CB CD =,OC BD ⊥,∴点B 与点D 关于y 轴对称,PE PD PE PB∴−=−,则点P 即为符合条件的点,由①知,(2,4)A ,(0,2)C ,(2,0)D ∴,(4,2)E ,设直线DE 的解析式为y ax n=+,∴2042a n a n +=+=⎧⎨⎩,解得12a n ==−⎧⎨⎩,∴直线DE 的解析式为2y x =−, 当0x =时,=2y −,即()0,2−,故当PE PB −最大时,点P 的坐标为(0,2)−.【点睛】本题考查了反比例函数的综合题,正方形的性质,轴对称的性质,待定系数法求一次函数的解析式,正确地作出辅助线是解题的关键.。
反比例函数与一次函数
![反比例函数与一次函数](https://img.taocdn.com/s3/m/b51c1a7abb68a98270fefa54.png)
反比例函数与一次函数1.函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式都有意义.①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.2.函数的图象函数的图象定义:对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上.3.函数的表示方法函数的三种表示方法:____、____、____.其特点分别是:列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.注意:①它们分别从数和形的角度反映了函数的本质;②它们之间可以互相转化.4.反比例函数的性质反比例函数的性质:(1)反比例函数y=xk(k≠0)的图象是____;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.5.反比例函数图象上点的坐标特征反比例函数y=xk(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6.待定系数法求反比例函数解析式用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=xk(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.7.反比例函数的应用(1)利用反比例函数解决实际问题:①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.8.反比例函数综合题(1)应用类综合题能够从实际的问题中抽象出反比例函数这一数学模型,是解决实际问题的关键一步,培养了学生的建模能力和从实际问题向数学问题转化的能力.在解决这些问题的时候我们还用到了反比例函数的图象和性质、待定系数法和其他学科中的知识.(2)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.9.一次函数的图象(1)一次函数的图象的画法:经过两点(0,b)、(﹣bk,0)或(1,k+b)作直线y=kx+b.注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b 分别是与y 轴,x 轴平行的直线,就不是一次函数的图象.(2)一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx 平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.注意:①如果两条直线平行,则其比例系数相等;反之亦然;②将直线平移,其规律是:________;③两条直线相交,其交点都适合这两条直线.10.一次函数图象与系数的关系由于y=kx+b 与y 轴交于(0,b),当b>0时,(0,b)在y 轴的正半轴上,直线与y 轴交于正半轴;当b<0时,(0,b)在y 轴的负半轴,直线与y 轴交于负半轴.①k>0,b>0⇔y=kx+b 的图象在一、二、三象限;②k>0,b<0⇔y=kx+b 的图象在一、三、四象限;③k<0,b>0⇔y=kx+b 的图象在一、二、四象限;④k<0,b<0⇔y=kx+b 的图象在二、三、四象限.11.两条直线相交或平行问题直线y=kx+b,(k≠0,且k,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k,b 都相同时,两条线段重合.(1)两条直线的交点问题两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.(2)两条直线的平行问题若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.例如:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2.12.一次函数的应用1、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.2、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.3、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.(2)理清题意是采用分段函数解决问题的关键.13.一次函数综合题(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.14.反比例函数与一次函数的交点问题反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.1.函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【例1】(2014•成都双流中学期末)在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>练1.(2014春•湘潭中学质检)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3D.y=2.待定系数法求反比例函数解析式;反比例函数的性质.【例2】(2014•山西中考一模)如果反比例函数的图象经过点(﹣2,﹣3),那么k的值为()A.B.C.﹣6D.6练2.已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.第二,三象限B.第一,三象限C.第三,四象限D.第二,四象限3.反比例函数图象上点的坐标特征.【例3】(2014•河北博野县一模)点M (﹣2,3)在曲线y=上,则下列点一定在该曲线上的是()A.(2,3)B.(﹣2,﹣3)C.(3,﹣2)D.(3,2)练3.已知点P(m,n)在某反比例函数的图象上,则此图象上还有点()A.(0,0)B.(﹣m,﹣n)C.(m,﹣n)D.(﹣m,n)4.一次函数的图象.【例4】(2014•秋•宜昌校级月考)关于x 的一次函数y=kx+k 2+1的图象可能正确的是()A.B.C.D.练4.已知函数y=kx+b 的图象如图,则y=2kx+b 的图象可能是()A.B.C.D.5.反比例函数与一次函数的交点问题.【例5】(2014•东营中学期中)如图所示,反比例函数y 1与正比例函数y 2的图象的一个交点坐标是A(2,1),若y 2>y 1>0,则x 的取值范围在数轴上表示为()A.B.C.D.练5.如图,反比例函数y=的图象与直线y=x+m 在第一象限交于点P(6,2),A、B 为直线上的两点,点A 的坐标为2,点B 的横坐标为3.D、C 为反比例函数图象上的两点,且AD、BC 平行于y 轴.(1)直接写出k,m 的值;(2)求梯形ABCD 的面积.1.若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A.k<0B.k>0C.b<0D.b>02.如果函数y=ax+b(a<0,b<0)和y=kx(k>0)的图象交于点P,那么点P应该位于()A.第一象限B.第二象限C.第三象限D.第四象限3.小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.4.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的()m1234v0.01 2.98.0315.1A.v=2m﹣2B.v=m2﹣1C.v=3m﹣3D.v=m+15.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.6.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应()A.不小于4.8ΩB.不大于4.8ΩC.不小于14ΩD.不大于14Ω__________________________________________________________________________________________________________________________________________________________________1.矩形面积为4,它的长y与宽x之间的函数关系用图象大致可表示为()A.B.C.D.2.为了预防“HINI”流感,某校对教室进行药熏消毒,药品燃烧时,室内每立方米的含药量与时间成正比;燃烧后,室内每立方米含药量与时间成反比,则消毒过程中室内每立方米含药量y与时间t的函数关系图象大致为()A.B.C.D.3.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应()A.不小于4.8ΩB.不大于4.8ΩC.不小于14ΩD.不大于14Ω4.设从茂名到北京所需的时间是t,平均速度为v,则下面刻画v与t的函数关系的图象是()A.B.C.D.)与它的体积v(m3)5.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa 的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是()A.B.C.D.6.如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积.7.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?8.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为8mg.根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6mg时,对人体无毒害作用.那么从消毒开始,经多长时间学生才可以返回教室?。
【中考数学复习】一次函数与反比例函数知识
![【中考数学复习】一次函数与反比例函数知识](https://img.taocdn.com/s3/m/30f479e90b4c2e3f562763ce.png)
【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。
一次函数与反比例函数值的大小比较方法
![一次函数与反比例函数值的大小比较方法](https://img.taocdn.com/s3/m/afcf556f3d1ec5da50e2524de518964bcf84d2af.png)
一次函数与反比例函数值的大小比较方法一次函数和反比例函数是两种常见的函数类型。
在一次函数中,函数的值随着自变量的增加而线性增加或减少;而在反比例函数中,函数的值随着自变量的增加而减小。
在这两种函数中,比较函数值的大小是非常常见的问题。
本文将介绍两种函数值的大小比较方法,并给出具体的例子来解释这些方法。
方法一:代入法代入法是将自变量的值代入函数中,比较函数值的大小。
例如,对于一次函数 y = 2x + 1 和反比例函数 y = 1/x,我们可以将x的值代入函数中比较函数值的大小。
当 x = 0 时,一次函数 y = 2(0) + 1 = 1,反比例函数 y = 1/0不存在。
因此,在一次函数中,当x = 0 时,函数值最小,即 y = 1。
当 x = 1 时,一次函数 y = 2(1) + 1 = 3,反比例函数 y = 1/1 = 1。
因此,在一次函数中,当 x = 1 时,函数值最大,即 y = 3。
因此,我们可以得出结论,在一次函数中,当自变量的值越大,函数值也越大;而在反比例函数中,当自变量的值越大,函数值越小。
方法二:图像法图像法是通过绘制函数的图像来比较函数值的大小。
对于一次函数和反比例函数,它们的图像分别是一条直线和一个双曲线。
例如,对于一次函数 y = 2x + 1 和反比例函数 y = 1/x,我们可以将它们的图像绘制在同一个坐标系中,比较函数值的大小。
在一次函数的图像中,当自变量的值越大,函数值也越大,因此函数的图像是一条向右上方倾斜的直线。
在反比例函数的图像中,当自变量的值越大,函数值越小,因此函数的图像是一个向左上方弯曲的双曲线。
通过比较两个函数的图像,我们可以发现,在一次函数中,函数值随着自变量的增加而线性增加;而在反比例函数中,函数值随着自变量的增加而减小。
综上所述,我们可以得出结论,在一次函数中,当自变量的值越大,函数值也越大;而在反比例函数中,当自变量的值越大,函数值越小。
第11章 反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)
![第11章 反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)](https://img.taocdn.com/s3/m/8fcebce75a8102d277a22f79.png)
2021年中考数学一轮复习(通用版)第11章反比例函数考点梳理考点一反比例函数的概念、图象和性质1.反比例函数的概念一般地,函数y=(k为常数,且k≠0)叫做反比例函数.【点拨】(1)函数y=kx-1或xy=k都是反比例函数;(2)反比例函数中自变量的取值范围是x≠0. 2.反比例函数的图象和性质(1)反比例函数y=kx(k为常数,且k≠0)的图象是.(2)反比例函数的图象无限接近,但永不与相交.(3)反比例函数的图象和性质第一、三象限第二、四象限一象限,再结合每个象限内反比例函数图象的增减性来比较,解决这种问题的一个有效办法是画出草图,标上各点,再比较大小.3.确定反比例函数的表达式(1)求反比例函数的表达式可用待定系数法.由于反比例函数的表达式中只有一个待定系数,因此只需已知一组对应值即可.(2)求反比例函数表达式的一般步骤:①设反比例函数的表达式;①把已知的一组对应值代入函数表达式,建立方程;①解方程求得待定系数的值.4.反比例函数的系数k的几何意义如图,设点P(x,y)是反比例函数y=kx图象上任一点,过点P作x轴的垂线,垂足为A,则①OP A的面积=12OA·P A=12|xy|=12|k|,这就是反比例函数的系数k的几何意义.【点拨】根据比例系数k的几何意义,求k值时,要根据双曲线所在的象限正确确定k的符号.考点二反比例函数的应用1.反比例函数与一次函数的综合应用(1)求函数解析式一般先通过一个已知点求出反比例函数解析式,再由反比例函数的解析式求出另一个交点的坐标,再将这两点的坐标代入一次函数的解析式中,解方程(组)即可.(2)求交点坐标将一次函数的解析式与反比例函数的解析式联立成方程组求解即可;对于正比例函数与反比例函数,其均关于原点对称,只要知道一个交点的坐标,就可以求出其关于原点对称的另一个交点的坐标.(3)求面积①当有一边在坐标轴上时,通常将坐标轴上的边作为底边,再利用点的坐标求得底边上的高,然后利用面积公式求解;①当两边均不在坐标轴上时,一般可采用割补法将其转化为一边在坐标轴上的两个三角形面积的和或差来求解.此外,求面积时要充分利用“数形结合”的思想,即用“坐标”求“线段”,用“线段”求“坐标”.(4)比较两个函数值的大小,求自变量的取值范围2.反比例函数的实际应用利用反比例函数解决实际问题,首先要建立反比例函数的数学模型,这也是关键一步,一般地,建立反比例函数模型有两种思路:(1)题目中明确指出变量间存在反比例函数关系,在这种情况下,可利用待定系数法求反比例函数的解析式.(2)题目中未指出变量间存在反比例函数关系,在这种情况下可利用基本数量关系求反比例函数的关系式,反比例函数模型建立后,进一步地可利用反比例函数的图像及性质解决问题.重难点讲解考点一正确理解反比例函数的概念,会求k值和反比例函数的解析式方法指导:因为反比例函数的解析式y=kx(k≠0)中只有一个待定系数k,确定了k的值,也就确定了反比例函数的解析式,因而只需给出一组x,y的值或图象上一点的坐标,代入y=kx(k≠0)中即可求出k的值,从而确定反比例函数的解析式.另外,反比例函数解析式y=kx(k≠0)也可以变形为k=xy(k≠0),所以要求的k值就等于双曲线上任意一点的横坐标与纵坐标之积.进一步理解得到反比例函数解析式y=kx(k≠0)中,比例系数k的几何意义是过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.经典例题1 (2020•安徽滁州模拟)如图,在平面直角坐标系中,反比例函数y=kx(x>0)经过矩形ABOC的对角线OA的中点M,已知矩形ABOC的面积为16,则k的值为()A.2B.4C.6D.8【解析】设A(a,b),则ab=16,∵点M是OA的中点,∴M(12a,12b),∵反比例函数y=kx(x>0)经过点M,∴k=12a﹒12b=14ab=14×16=4.【答案】B考点二一次函数与反比例函数的综合方法指导:这类问题常有以下四种主要题型:(1)利用k值与图象的位置关系,综合确定系数符号或图象位置.解题策略:分k>0和k<0两种情况考虑.(2)已知直线与双曲线的表达式求交点坐标.解题策略:联立直线与双曲线的方程组成方程组求解.(3)用待定系数法确定直线与双曲线的表达式.解题策略:待定系数法.(4)应用函数图象的性质比较一次函数值与反比例函数值的大小.解题策略:看图象,以两个图象的交点为界,图象在上方的函数值比图象在下方的要大.经典例题2 (2020•黑龙江大庆模拟)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.【解析】(1)利用待定系数法求出点A坐标即可解决问题.(2)构建方程组求出交点B坐标,直线y=-x +5交y轴于E(0,5),根据S△AOB=S△OBE-S△AOE计算即可.解:(1)∵A(1,n)在直线y=-x+5上,∴n=-1+5=4,∴A(1,4),把A(1,4)代入y=kx得到k=4,∴反比例函数的解析式为y=4x.(2)由45y xy x ⎧=⎪⎨⎪=-+⎩,,解得14x y =⎧⎨=⎩,或41x y =⎧⎨=⎩,, ∴B (4,1),直线y =-x +5交y 轴于E (0,5), ∴S △AOB =S △OBE -S △AOE =12×5×4-12×5×1=7.5.考点三 反比例函数的应用 方法指导:利用反比例函数解决实际问题,我们应抽象概括出反比例函数关系,建立反比例函数模型.根据已知条件写出反比例函数的解析式,并能把实际问题反映在函数的图象上,结合图象和性质解决实际问题.因此,利用反比例函数解决实际问题的关键是建立反比例函数模型,即求出反比例函数解析式.一般地,建立反比例函数模型有以下两种常用方法:(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设反比例函数解析式为y =kx(k ≠0),然后求出k 的值即可.(2)列方程法:若题目信息中变量之间的函数关系不明确,在这种情况下,通常是列出关于函数(y )和自变量(x )的方程,进而解出函数,得到函数解析式.经典例题3 (2020·江西模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y (℃)与开机时间x (分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y (℃)与开机时间x (分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题: (1)当0≤x ≤10时,求水温y (℃)与开机时间x (分)的函数关系式; (2)求图中t 的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为y=kx+b,依据题意,得2010100 bk b⎧⎨⎩=,+=,解得820kb⎧⎨⎩=,=,故此函数解析式为y=8x+20.(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为y=mx,依据题意,得100=10m,即m=1000,故y=1000x,当y=20时,20=1000t,解得t=50.(3)∵57-50=7<10,∴当x=7时,y=8×7+20=76.答:小明散步57分钟回到家时,饮水机内的温度约为76℃.过关演练1.(2020·河南一模)已知点A(2,a),B(-3,b)都在双曲线y=-6x上,则()A.a<b<0B.a<0<b C.b<a<0 D.b<0<a2.(2020•山东德州中考)函数y=kx和y=-kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A B C D 3.(2020•贵州黔西南州中考)如图,在菱形ABOC中,AB=2,①A=60°,菱形的一个顶点C在反比例函数y═kx(k≠0)的图象上,则反比例函数的解析式为()A .y =-x B .y =-x C .y =-3xD .y =x4.(2020·湖南长沙模拟)若点A (3,4)是反比例函数y =kx图象上一点,则下列说法正确的是( ) A .图象分別位于二、四象限 B .当x <0时,y 随x 的增大而减小 C .点(2,-6)在函数图象上 D .当y ≤4时,x ≥3 5.(2020·安徽合肥模拟)在同一坐标系中,函数y =kx和y =-kx +3的大致图象可能是( )A B C D6.(2020·安徽合肥一模)如图,若反比例函数y =k x (x <0)的图象经过点(-12,4),点A 为图象上任意一点,点B 在x 轴负半轴上,连接AO ,AB ,当AB =OA 时,①AOB 的面积为( )A .1B .2C .4D .无法确定7. (2020•湖北孝感中考)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为( )A.I=24RB.I=36RC.I=48RD.I=64R8. (2020•湖南长沙中考)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=610tB.v=106t C.v=6110t2D.v=106t29.(2020·河北一模)已知反比例函数y=mx与一次函数y=kx+b的图象相交于点A(4,1),B(a,2)两点,一次函数的图象与y轴交于点C,点D在x轴上,其坐标为(1,0),则①ACD的面积为()A.12B.9C.6D.510.(2020·广东广州一模)如图所示,已知A(13,y1),B(3,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(13,0) B.(43,0) C.(23,0) D.(103,0)11.(2020·湖北十堰一模)已知反比例函数y=24kx+(k是常数,且k≠-2)的图象有一支在第二象限,则k的取值范围是.12.(2020•江苏无锡模拟)如果反比例函数y=3ax-(a是常数)的图象在第一、三象限,那么a的取值范围是.13.(2020•山东滨州中考)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.14.(2020•四川甘孜州中考)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2 x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且①ABP的面积是①AOB的面积的2倍,则点P的横坐标为.15.(2020·安徽阜阳模拟)如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD①x轴,双曲线y=5 x (x>0)经过A,B两点,则菱形ABCD的面积为.16.(2020•山东青岛)如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积是2,则k=.17.(2020•浙江台州中考)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小:y1-y2y2-y3.18.(2020•山东济宁中考)在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.19.(2020·安徽合肥三模)如图,一次函数y=-x+b的图象与反比例函数y=kx(x<0)的图象交于点A(-3,m),与x轴交于点B(-2,0).(1)求一次函数和反比例函数的表达式;(2)若直线y=3与直线AB交于点C,与双曲线交于点D,求CD的长;(3)根据图象,直接写出不等式-x+b<kx<3的解集.20.(2020·浙江金华模拟)如图,一次函数y1=-x+4的图象与反比例函数y2=kx(k为常数,且k≠0)的图象交于A(1,a),B两点,与y轴和x轴分别交于C,D两点,AM①y轴,BN①x轴,垂足分别为M,N两点,且AM与BN交于点E.(1)求反比例函数的表达式及点B的坐标;(2)直接写出反比例函数图象位于第一象限且y1<y2时自变量x的取值范围;(3)求①OAB与①ABE的面积的比.21.(2020•四川成都中考)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若①AOB的面积为①BOC的面积的2倍,求此直线的函数表达式.22.(2020•山东聊城中考)如图,已知反比例函数y=kx的图象与直线y=ax+b相交于点A(-2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得①P AB的面积为18,求出点P的坐标.23.(2020·江西南昌模拟)制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800①,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600①.煅烧时温度y(①)与时间x(min)成一次函数关系;锻造时,温度y(①)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是26①.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400①时,须停止操作,那么锻造的操作时间有多长?参考答案考点梳理考点一 1.kx2. (1)双曲线 (2)坐标轴 坐标轴 (3)减小 增大 中心 过关演练1. B 【解析】①双曲线y =6x,k =-6<0,①双曲线在第二、四象限,①2>0,-3<0,①点A (2,a )在第四象限,点B (-3,b )在第二象限,①a <0<b .2. D 【解析】在函数y =k x 和y =-kx +2(k ≠0)中,当k >0时,函数y =kx的图象在第一、三象限,函数y =-kx +2的图象在第一、二、四象限,故选项A 、B 错误,选项D 正确;当k <0时,函数y =kx的图象在第二、四象限,函数y =-kx +2的图象在第一、二、三象限,故选项C 错误.3. B 【解析】①在菱形ABOC 中,①A =60°,菱形边长为2,①OC =2,①COB =60°,①点C 的坐标为(-1,,①顶点C 在反比例函数y ═k x 的图象上,=1k,得k y =-x .4. B 【解析】①点A (3,4)是反比例函数y =kx图象上一点,①k =xy =3×4=12,①此反比例函数的解析式为y =12x.①k =12>0,①此函数的图象位于一、三象限,故选项A 错误;①k =12>0,①在每一象限内y 随x 的增大而减小,故选项B 正确;①2×(-6)=-12≠12,①点(2,-6)不在此函数的图象上,故选项C 错误;当y ≤4时,即y =12x≤4,解得x <0或x ≥3,故选项D 错误. 5. D 【解析】由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项A 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项B 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k <0,根据一次函数图象可得-k <0,则k >0,故选项C 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k <0,则k >0,故选项D 正确.6. B 【解析】①反比例函数y =k x (x <0)的图象经过点(-12,4),①k =-12×4=-2,过A 点作AC ①OB于点C,①①ACO的面积为12×2=1,①AO=AB,①OC=BC,①S①AOB=2S①AOC=2.7. C 【解析】设I=kR,把(8,6)代入得:k=8×6=48,故这个反比例函数的解析式为I=48R.8. A 【解析】①运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,①106=vt,①v=6 10t.9. D 【解析】①点A(4,1)在反比例函数y=mx上,①m=xy=4×1=4,①y=4x.把B(a,2)代入y=4x得2=4a,①a=2,①B(2,2).①把A(4,1),B(2,2)代入y=kx+b.①1422k bk b⎧⎨⎩=+,=+,解得123kb⎧⎪⎨⎪⎩=-,=,①一次函数的解析式为y=12x+3,①点C在直线y=12x+3上,①当x=0时,y=3,①C(0,3).过A作AE①x轴于点E.①S①ACD=S梯形AEOC-S①COD-S①DEA=(13)42+⨯-12×1×3-12×1×3=5.10. D 【解析】把A(13,y1),B(3,y2)代入反比例函数y=1x得y1=3,y2=13,①A(13,3),B(3,13).连接AB,在①ABP中,由三角形的三边关系定理得:|AP-BP|<AB,①延长AB交x轴于P′,当P在P′点时,P A-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0),把点A,B的坐标代入得133133a ba b⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1103ab⎧⎪⎨⎪⎩=-,=,①直线AB的解析式是y=-x+103,当y=0时,x=103,即P(103,0).11. k<-2 【解析】①反比例函数y=24kx+的图象有一支在第二象限,①2k+4<0,解得k<-2.12. a>3 【解析】∵反比例函数y=3ax-(a是常数)的图象在第一、三象限,∴a-3>0,∴a>3.13. y=2x【解析】当y=2时,即y=2x=2,解得x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=kx,解得k=2,故该反比例函数的解析式为y=2x.14. 2【解析】①当点P在AB下方时作AB的平行线l,使点O到直线AB和到直线l的距离相等,则①ABP的面积是①AOB的面积的2倍,直线AB与x轴交点的坐标为(-1,0),则直线l与x轴交点的坐标C(1,0),设直线l的表达式为y=x+b,将点C的坐标代入上式并解得:b=-1,故直线l的表达式为y=x-1①,而反比例函数的表达式为y=2x①,联立①①并解得x=2或-1(舍去);①当点P在AB上方时,同理可得,直线l的函数表达式为:y=x+3①,联立①①并解得x舍去负值).15. 452【解析】连接AC,与BD交于点M,①菱形对角线BD①x轴,①AC①BD,①点A,B横坐标分别为1和4,双曲线y=5x(x>0)经过A,B两点,①AM=5-54=154,BM=4-1=3,①AC=152,BD=6,①菱形ABCD的面积12AC·BD=452.16. -4 【解析】设反比例函数的解析式为y=kx.∵△AOB的面积=△ABP的面积=2,△AOB的面积=12|k|,∴12|k|=2,∴k=±4;又反比例函数的图象的一支位于第二象限,∴k<0.∴k=-4.17. 解:(1)设y与x之间的函数关系式为y=kx,把(3,400)代入y=kx得,400=3k,解得k=1200,①y与x之间的函数关系式为y=1200x;(2)>提示:把x=6,8,10分别代入y=1200x得,y1=12006=200,y2=12008=150,y3=120010=120,①y1-y2=200-150=50,y2-y3=150-120=30,①50>30,①y1-y2>y2-y3.18. 解:(1)y=4xx>0 提示:①在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2,①12xy=2,①xy=4,①y关于x的函数关系式是y=4x,x的取值范围为x>0.(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y =-x +3向上平移a (a >0)个单位长度后解析式为y =-x +3+a ,解34y x a y x =-++⎧⎪⎨=⎪⎩,, 整理得,x 2-(3+a )x +4=0,①平移后的直线与上述函数图象有且只有一个交点,①①=(3+a )2-16=0,解得a =1,a =-7(不合题意舍去),故此时a 的值为1.19. 解:(1)由点B (-2,0)在一次函数y =-x +b 上,得b =-2,①一次函数的表达式为y =-x -2;由点A (-3,m )在y =-x -2上,得m =1,①A (-3,1),把A (-3,1)代入数y =kx(x <0)得k =-3,①反比例函数的表达式为y =-3x. (2)y =3,即y C =y D =3,当y C =3时,-x C -2=3,解得x C =-5,当y D =3时,3=-3Dx ,解得x D =-1,①CD =x D -x C =-1-(-5)=4. (3)不等式-x +b <kx<3的解集为-3<x <-1. 20. 解:(1)当x =1时,a =-x +4=3,①点A 的坐标为(1,3).将点A (1,3)代入y =kx中,①k =1×3=3,①反比例函数的表达式为y =3x ,联立34y xy x ⎧⎪⎨⎪⎩=,=-+,解得13x y ⎧⎨⎩=,=,或31x y ⎧⎨⎩=,=, ①B (3,1). (2)反比例函数图象位于第一象限且y 1<y 2时自变量x 的取值范围为0<x <1或x >3. (3)①A (1,3),B (3,1),①E (3,3),AE =2,BE =2,①S ①ABE =12×2×2=2,①S ①OAB =S 四边形ONEM -S ①ABE -S ①AOM -S ①BON =3×3-2-12×3×1-12×3×1=4,①①OAB 与①ABE 的面积的比是4①2=2①1.21. 解:(1)①反比例函数y=mx(x>0)的图象经过点A(3,4),①k=3×4=12,①反比例函数的表达式为y=12x;(2)①直线y=kx+b过点A,①3k+b=4,①过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,①B(-b k ,0),C(0,b),①①AOB的面积为①BOC的面积的2倍,①12×4×|-bk|=2×12×|-bk|×|b|,①b=±2,当b=2时,k=23,当b=-2时,k=2,①直线的函数表达式为y=23x+2,y=2x-2.22. 解:(1)将点A(-2,3)的坐标代入反比例函数表达式y=kx,解得k=-2×3=-6,故反比例函数表达式为y=-6x,将点B的坐标代入上式,解得m=-6,故点B(1,-6),将点A,B的坐标代入一次函数表达式得326=a ba b=-+⎧⎨-+⎩,,解得3=3ab=-⎧⎨-⎩,,故直线的表达式为y=-3x-3;(2)设直线与x轴的交点为E,当y=0时,x=-1,故点E(-1,0),分别过点A,B作x轴的垂线AC,BD,垂足分别为C,D,则S①P AB=12PE•CA+12PE•BD=32PE+62PE=92PE=18,解得PE=4,故点P的坐标为(3,0)或(-5,0).23. 解:(1)材料锻造时,设y=kx(k≠0),由题意得600=8k,解得k=4800,当y=800时,4800x=800,解得x=6,①点B的坐标为(6,800).材料煅烧时,设y=ax+26(a≠0),由题意得800=6a+26,解得a=129,①材料煅烧时,y与x的函数关系式为y=129x+26(0≤x≤6).4800÷26=184.6,①锻造操作时y与x的函数关系式为y=4800x(6<x<184.6).(2)把y=400代入y=4800x,得x=12,12-6=6(分).答:锻造的操作时间为6分钟.。
一次函数与反比例函数的性质
![一次函数与反比例函数的性质](https://img.taocdn.com/s3/m/d32f2490ac51f01dc281e53a580216fc700a53c3.png)
05
典型例题解析
一次函数典型例题
例题1
已知一次函数 y = 2x + 1,求该函数在 x = 3 时的函数值。
例题2
已知一次函数 y = kx + b(k ≠ 0)的图像经 过点(2,3)和(-1,-2),求该函数的解 析式。
例题3
已知一次函数 y = -x + 4 与 x 轴交于点 A, 与 y 轴交于点 B,求 △AOB 的面积。
3
例题3
已知一次函数 y = kx + b 与反比例函数 y = m/x 的图像交于 C、D 两点,且 C 、D 两点的纵坐标分别为 -4 和 6,CD = 10,求这两个函数的解析式及 k、b、 m 的值。
06
总结与展望
知识体系总结
一次函数与反比例函数的基本性质
01
包括定义域、值域、单调性、奇偶性等基础概念。
一次函数的增减性与 其图像的斜率方向一 致。
当一次函数的比例系 数小于0时,函数在 整个定义域内是减函 数。
一次函数的对称性
一次函数不具有轴对称性,因为其图像是一 条直线,无法关于某条直线对称。
一次函数具有中心对称性,即其图像关于某 一点中心对称。该点即为一次函数的中心点 ,坐标为(h, k),其中h和k分别为一次函数与 x轴和y轴的交点横纵坐标的平均值。
。
综合应用典型例题
1
例题1
已知一次函数 y = ax + b(a ≠ 0)与反 比例函数 y = k/x(k ≠ 0)的图像交于 A、B 两点,且 A、B 两点的横坐标分别 为 -1 和 3,求这两个函数的解析式。
2
例题2
已知一次函数 y = -2x + m 与反比例函 数 y = n/x 的图像交于 A(-1,4)和 B (3,-2)两点,求这两个函数的解析式 及 m、n 的值。
反比例函数与一次函数综合题的解题技巧
![反比例函数与一次函数综合题的解题技巧](https://img.taocdn.com/s3/m/137aec2b640e52ea551810a6f524ccbff121ca3e.png)
反比例函数与一次函数综合题的解题技巧反比例函数是一类函数,它的特点是其中的变量是互为倒数关系,变量之间的函数关系是y=k/x,其中k为常数,当k<0时,反比例函数为递减;当k>0时,反比例函数为递增。
一次函数是一类函数,它的特点是其中的变量是线性的关系,变量之间的函数关系是y=kx+b,其中k为斜率,b为截距。
针对反比例函数与一次函数的综合题,我们可以采用以下解题技巧:
1.把反比例函数转换为一次函数
将反比例函数y=k/x,转化为一次函数,则有y=kx^(-1)+b,其中k是常数,b是截距,x^(-1)是x的倒数。
2.把一次函数转换为反比例函数
将一次函数y=kx+b,转化为反比例函数,则有y=k/x+b,其中k是斜率,b是截距,x是变量。
3.计算斜率和截距
可以根据已知点,根据联立方程求出斜率和截距,用于验算正确性。
4.给定一点,求出函数
可以根据已知点,求出函数的斜率和截距,然后根据斜率和截距求出函数的具体形式。
- 1 -。
(完整版)如何比较一次函数与反比例函数的大小
![(完整版)如何比较一次函数与反比例函数的大小](https://img.taocdn.com/s3/m/14adb9c7f111f18582d05a01.png)
如何比较一次函数与反比率函数的大小一次函数和反比率函数是初中数学授课的重要内容, 也是学生应掌握的最基础,最核心的内容。
它们之间的大小关系是一次函数和反比率函数的综合应用,遇到这样的问题时同学们不知从何下手, 易出现错误。
下面我们就结合一条例题的讲解,介绍如何轻松的解决这样的问题。
例:如图 ,一次函数 y 1 =x -1 与反比率函数 y 2 = 2的图像交于点 A(2 ,1);xB(-1,- 2),则使 y 1 >y 2 的 x 的取值范围是()A. x>2B. x>2 或- 1<x<0C. -1<x<2D. x>2 或 x<-1解析:依照图象特点结合 A , B 两点就可以找出使 y 1 >y 2 的 x 的取值范围解:由 A(2 , 1),B(- 1,- 2)两点可知当 x>2 或- 1<x<0 时,一次函数的图象在反比率函数图象的上方,故应选 B 。
学生在看图像比较一次函数与反比率函数的大小时, 经常不知从何下手, 我经过多年的授课实践,认为可以依照以下的步骤解决这样的问题:1、数学结合:依照题意画出图像(本例题已经画出了图像)2、找交点:依照函 数图像,找到两函数的交点坐标。
如本题两函数的交点坐标分别是A(2 , 1)和 B(-1,- 2)。
(2 1)(-1-2)3、画三线:依照两条函数的交点画出三条垂x 直于轴的直线。
如本题的三条直线分别为 x=-1;x=0( 即 y 轴) 和 x=2。
x=-1x=2x=0(2 1)(-1-2)4、分四域:以三线为界可将直角平面划分为四个地域。
如本题可分为① x<- 1;②- 1<x<0;③ 0< x< 2;④ x> 2。
x=-1x=2x=0区区(2 1)域域区区①②域域(-1 -2) ③④5、定大小:依照“上大下小”原则。
在“4”中我们已经获取 4 个地域,下面我们就依照分的地域比较大小:①x<- 1 时,一次函数图像在反比率函数图像的下面,即 y1<y2;②- 1<x<0 时,一次函数图像在反比率函数图像的上面,即y1> y2;③ 0<x<2 时,一次函数图像在反比率函数图像的下面,即y1<y2;④ x> 2 时,一次函数图像在反比率函数图像的上面,即y1> y2。
正比例函数一次函数和反比例函数知识点归纳
![正比例函数一次函数和反比例函数知识点归纳](https://img.taocdn.com/s3/m/350df5dc25c52cc58ad6be23.png)
正比例函数、一次函数和反比例函数知识点归纳正比例函数:解析式:y=kx(k为常数,k≠0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0)和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;yx倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x 轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;一次函数:解析式:y=kx+b(k,b为常数,k≠0),k叫做函数的比例系数,(注意:x的指数为1,b为直线与y轴交点的纵坐标) ;正比例函数是一次函数的特殊情况,即b=0时的一种情况;图像:一条直线;必过点:(0,b)(-b/k,0);走向:k>o,b>0,图像过一二三象限,k>0,b<0,图像过一三四象限;yk<o,b>0,图像过一二四象限k<o,b>0,图像过二三四象限x倾斜度:|k|x轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;平移:y=kx+b,向上平移m个单位:y=kx+b+m;向下平移n个单位:y=kx+b-n;向左平移m个单位:y=k(x+m)+b;向右平移n个单位:y=k(x-n)+b;简称:上加下减,左加右减;(注:上加下减到代数式后面,左加右减到x后面,直接与x 进行加减,与系数和指数都没关系);反比例函数:解析式:y=k/x(k为常数,k≠0)图像:双曲线(图像无限靠近坐标轴,但永不相交。
)所在象限:k>0图像经过一三象限;k<0图像经过二四象限。
ykx增减性:k>0,y随x的增大而减小;k<0,y随x的增大而增大;。
一次函数和反比例函数知识点总结
![一次函数和反比例函数知识点总结](https://img.taocdn.com/s3/m/d4cd0e89aa00b52acfc7ca54.png)
一次函数知识点总结:函数性质:1. y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k≠0)当x增加m,k(x+m)+b=y+km, km/m=k。
2. 当x=0时,b为函数在y轴上的点,坐标为(0,b)。
3. 当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4. 一次函数的图像:直线5. 在两个一次函数表达式中:当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。
若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:y=kx时(即b等于0,y与x成正比例):当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。
反比例与一次函数综合面积问题,比较大小问题
![反比例与一次函数综合面积问题,比较大小问题](https://img.taocdn.com/s3/m/ca4733b528ea81c759f57826.png)
反比例与一次函数综合(1)考点:1.求反比例函数,一次函数解析式,求点坐标2.面积问题3.通过图像求不等式解集4.线段和差最值课前思考:1.已知点A(4.5,5), B(6,0), C(-2,0), 求△ABC的面积.小结:求面积方法__________________________2.已知点A(-2,1),B(1,-3),C(3,4), 求△ABC的面积.小结:求面积方法__________________________铅锤法:如果三角形的三条边与坐标轴都不平行,则通常有以下计算方法:①如图,过三角形的某个顶点作与x轴或y轴的平行线,将原三角形分割成两个满足一条边与坐标轴平行的三角形,分别求出面积后相加.1122ABC ACD ADB C B ACE CEB A BS S S AD y y S S CE x x∆∆∆∆∆=+=⋅-=+=⋅-其中D,E两点坐标可以通过BC或AB的直线方程以及A或C点坐标得到.②如图,首先计算三角形的外接矩形的面积,然后再减去矩形内其他各块面积.ABC DEBF DAC AEB CBFS S S S S∆∆∆∆=---.所涉及的各块面积都可以通过已知点之间的坐标差直接求得.③如图,通过三个梯形的组合,可求出三角形的面积.该方法不常用.()()()()()()ABABCBCBACACADEBADFCCFEByyxxyyxxyyxxSSSS+--+-++-=-+=212121ABC△经典例题:例1、如图,已知一次函数b +x k =y 11的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数xk =y 22的图分别交于C 、D 两点,点D 的坐标(2,-3),点B 是线段AD 的中点。
(1)求一次函数b +x k =y 11与反比例函数xk =y 22的解析式。
(2)求△COD 的面积;(3)直接写出21y >y 时自变量x 的取值范围。
变式练习:如图,一次函数y=kx+b 的图象与反比例函数y=的图象交于点A ﹙﹣2,﹣5﹚ C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1)求反比例函数y=和一次函数y=kx+b 的表达式; (2)连接OA ,OC .求△AOC 的面积.(3)直接写出kx+b>时自变量x 的取值范围。
2015-10反比例函数经典题归纳
![2015-10反比例函数经典题归纳](https://img.taocdn.com/s3/m/13bcf1a2856a561252d36fe3.png)
反比例函数经典题归纳一、 反比例函数的比较大小问题1、 反比例函数y =kx 中,x,y,k 三个量中(知二求一)-----比较大小例1:若点A (1,y 1)和点B (2,y 2)在反比例函数y =图象上,则y 1与y 2的大小关系是:y 1 y 2(填“>”、“<”或“=”).2、 反比例函数y =kx中,x,y,k 三个量中(知一)-----比较大小(1)若点在反比例函数的图象上,则比较m 与n 的大小。
(2)反比例函数2y x-=的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<x 2,请你比较y 1与y 2 的大小。
(3)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)是反比例函数y =-4x的图象上的三点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( ). A .y 3<y 1<y 2 B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 1二、反比例函数与直线相交问题类型一:反比例函数与正比例函数相交问题直线y=mx 与双曲线y =kx 相交于A 、B 两点,A 点的坐标为(1,2)(1)求反比例函数的表达式;(2)计算线段AB 的长. (3)根据图象直接写出当mx >kx 时,x 的取值范围;总结:类型二:反比例函数与一次函数相交问题例1:已知:如图,反比例函数y 1=kx 的图象与一次函数y 2=x +b 的图象交于点A (1,4)、点B (﹣4,n ).(1)求一次函数和反比例函数的解析式;(2)求△OAB 的面积; (3)直接写出y 1>y 2,y 1<y 2,y 1=y 2时自变量x 的取值范围.1、 交点坐标重要性:2、 求曲原三角形面积:3、 比较大小:变式:例2:如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.:(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.总结:1、2、3、例3:如图,在平面直角坐标系中,直线y=x-2与y轴相交于点A,与反比例函数kyx在第一象限内的图象相交于点B(m,2).⑴求反比例函数的关系式;⑵将直线y=x-2向上平移后与该反比例函数的图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.三、交点问题探究1、函数y=的图像与直线y=2x没有交点,k的取值范围?变式:一次函数y=kx+1的图像与反比例函数y=的图像没有公共点,则k 的取值范围2、y=与y=x-2的图像的交点横坐标为a,b,则的值变式:2yx与y=x+1图象交点坐标为(a,b),则的值3、如果一个正比例函数的图像与反比例函数7y x=的图像交于11(,)A x y ,22(,)B x y 两点,那么2121()()x x y y --的值为_____________变式1:如果一个正比例函数的图像与反比例函数7y x=的图像交于11(,)A x y ,22(,)B x y 两点,那么-3x 1y 2+5x 2y 1的值为_____________变式2:M (1,a )是一次函数y =3x +2与反比例函数ky x=图象的公共点,若将一次函数y =3x +2的图象向下平移4个单位,则它与反比例函数图象的交点坐标为 .变式3:在平面直角坐标系xOy 中,一次函数10y x =-的图像与函数()60y x x=>的图像相交于点A,B,设点A 的坐标为(1x ,1y ),那么长为1x ,宽为1y 的矩形的面积为 ,周长为 .4、如图,正方形ABCD 位于第一象限,边长为3,点A 在直线y=x 上,点A 的横坐标为1,正方形ABCD 的边分别平行于x 轴、y 轴.若双曲线y=与正方形ABCD 有公共点,则k 的取值范围为( )A . 1<k <9B . 2≤k≤34C . 1≤k≤16D . 4≤k <16变式1:如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线6+-=x y 于A 、B 两点,若反比例函数xky =(0>x )的图像与△ABC 有公共点,则k 的取值范围是( )A .92≤≤kB .82≤≤kC .52≤≤kD .85≤≤kxyO ABCDE 变式2:矩形ABCO 如图放置,点A,C 在坐标轴上,点B 在第一象限,一次函数y=kx-3的图象过点B ,分别交x 轴、y 轴于点E 、D ,已知C (0,3)且S △BCD =12。
一次函数二次函数反比例函数的增区间
![一次函数二次函数反比例函数的增区间](https://img.taocdn.com/s3/m/e6eaa340e97101f69e3143323968011ca300f7a7.png)
一次函数、二次函数和反比例函数是数学中常见的函数类型,它们在图像的增减性质上有着不同的特点。
本文将针对一次函数、二次函数和反比例函数的增区间进行详细分析和比较。
一、一次函数的增区间一次函数的一般形式为y=ax+b,其中a和b为常数且a不等于0。
一次函数的图像是一条直线,它具有以下特点:1. 如果a大于0,表示直线向上倾斜,那么函数的增区间为整个实数集(-∞,+∞);2. 如果a小于0,表示直线向下倾斜,那么函数的增区间为空集∅。
一次函数的增区间要么是整个实数集,要么是空集,取决于直线的斜率a的正负性。
二、二次函数的增区间二次函数的一般形式为y=ax²+bx+c,其中a、b和c为常数且a不等于0。
二次函数的图像是一条开口朝上或者朝下的抛物线,它具有以下特点:1. 如果a大于0,表示抛物线开口朝上,那么函数的增区间为实数集中与顶点的横坐标相等的点构成的单点集{x| x=x0}。
其中,顶点的横坐标x0=-b/2a;2. 如果a小于0,表示抛物线开口朝下,那么函数的增区间为整个实数集(-∞,+∞)。
二次函数的增区间要么是单点集,要么是整个实数集,取决于抛物线开口的方向和顶点的横坐标。
三、反比例函数的增区间反比例函数的一般形式为y=k/x,其中k为非零常数。
反比例函数的图像是一条对称于第一象限和第三象限的双曲线,它具有以下特点:1. 当k大于0时,函数的增区间为区间(0,+∞);2. 当k小于0时,函数的增区间为区间(-∞,0)。
反比例函数的增区间取决于常数k的正负性,当k为正时增区间在正半轴,当k为负时增区间在负半轴。
总结:一次函数、二次函数和反比例函数的增区间分别与直线的斜率、抛物线开口的方向和对称轴的正负相关。
对于一次函数和二次函数而言,其增区间可以通过其一般形式中的参数a的正负性来确定,而对于反比例函数,其增区间可以通过函数的常数k的正负性来确定。
通过本文的分析和比较,读者可以更加清晰地理解一次函数、二次函数和反比例函数在增区间上的不同特点。
函数值的大小比较
![函数值的大小比较](https://img.taocdn.com/s3/m/008e183b84254b35effd346f.png)
二次函数、反比例函数比较大小一、二次函数的大小比较方法:1、特殊值代入法:直接根据题目要求,分别代入具体的数值,再比较大小。
2、利用函数的增减性:当各点都在对称轴的一侧时,利用函数的增减性进行比较。
3、计算各点到对称轴的距离,结合抛物线的开口方向比较大小:(本法适用于各点在对称轴同侧和异侧的大小比较,尤其是异侧。
)(1)当抛物线开口向上时(即a>0时),离对称轴距离越远,函数值越大,反之越小。
当抛物线开口向上与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1<y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1>y 2 【推理:由x 2-(a b 2-)>a b 2--x 1得x 2+x 1>a b -得221x x +>a b 2-;即x 2离对称轴距离较远;由x 2-(a b 2-)<a b 2--x 1,得x 2+x 1<a b -,得221x x +<a b 2-,即x 1离对称轴距离较远.】 (2)当抛物线开口向下时(即a <0时),离对称轴距离越远,函数值越小,反之越大。
当抛物线开口向下与x 轴有两个交点,两点在对称轴的两侧时,若221x x +>a b 2-(x 1<a b 2-<x 2)时,y 1>y 2;若221x x +<a b 2-(x 1<a b 2-<x 2)时,y 1<y 2,推理同(1) 4、图象法:结合具体图象,利用y 轴“上大下小”的特点比较具体各点的函数值的大小。
(第一、二象限的函数值总是大于第三、四象限的函数值)5、移点法:利用抛物线的对称性将各点转化到对称轴的同一侧,再利用函数的增减性比较大小。
二、反比例函数的大小比较方法由于反比例函数图象为双曲线,所以比较大小时,首先应注意利用k 值弄清各点所处的象限。
1、 同一象限时,利用函数的增减性比较大小。
K >0时,y 随x 的增大而减小;K <0时,y 随x 的增大而减大;2、不同象限时,用图象法,利用y 轴“上大下小”的特点进行比较。
反比例函数一次函数二次函数性质及图像
![反比例函数一次函数二次函数性质及图像](https://img.taocdn.com/s3/m/4a7234f01b37f111f18583d049649b6648d70936.png)
在工程学中,反比例函数、一次函数和二次函数可以用来描 述各种工程问题的数学模型,如结构优化、路径规划等。利 用这些函数的性质和图像,可以进行工程设计和优化,提高 工程质量和效率。
感谢您的观看
THANKS
顶点
二次函数的顶点坐标为 $left(frac{b}{2a}, c frac{b^2}{4a}right)$。
04
图像特征
01
02
03
04
形状
二次函数的图像是一条抛物线 。
位置
根据 $a$、$b$、$c$ 的取值 ,抛物线的位置会有所不同。
与坐标轴的交点
令 $y = 0$ 可求得与 $x$ 轴 的交点,令 $x = 0$ 可求得
05
函数图像比较
图像的平移与伸缩
平移
函数图像在平面直角坐标系中的位置可以通过平移来改变。对于一次函数和二次函数,图像可以沿x轴或y轴进 行平移,而对于反比例函数,图像可以沿原点进行平移。
伸缩
函数图像的形状可以通过伸缩来改变。对于一次函数,图像的伸缩表现为斜率的改变;对于二次函数,图像的 伸缩表现为开口大小或方向的改变;对于反比例函数,图像的伸缩表现为离原点的远近。
单调性
反比例函数
反比例函数的单调性取决于其定义域。在每个象限内,反比例函数都是单调的,但在整个 定义域内不是单调的。
一次函数
一次函数的单调性取决于其斜率。当斜率大于0时,函数在整个定义域内单调递增;当斜 率小于0时,函数在整个定义域内单调递减。
二次函数
二次函数的单调性取决于其二次项系数的正负和对称轴的位置。当二次项系数为正时,函 数在对称轴左侧单调递减,在对称轴右侧单调递增;当二次项系数为负时,函数在对称轴 左侧单调递增,在对称轴右侧单调递减。
一次函数与反比例函数值的大小比较方法
![一次函数与反比例函数值的大小比较方法](https://img.taocdn.com/s3/m/33f2743b17fc700abb68a98271fe910ef02dae53.png)
一次函数与反比例函数值的大小比较方法一次函数和反比例函数是数学中比较基础的概念,它们在实际问题中有广泛的应用。
一次函数通常表示为 y = kx + b 的形式,其中k 是斜率,b 是 y 轴截距。
反比例函数通常表示为 y = k/x 的形式,其中 k 是常数。
在一次函数中,当斜率 k 为正数时,函数值 y 随着 x 的增大而增大;当斜率 k 为负数时,函数值 y 随着 x 的增大而减小。
在反比例函数中,当常数 k 为正数时,函数值 y 随着 x 的增大而减小;当常数 k 为负数时,函数值 y 随着 x 的增大而增大。
为了比较一次函数和反比例函数的值大小,我们可以通过求解它们的交点来确定它们的大小关系。
具体来说,我们可以将一次函数和反比例函数的方程联立起来,解得它们的交点坐标,然后在这个交点处比较它们的函数值大小。
例如,假设我们有一次函数 y = 2x + 1 和反比例函数 y = 3/x,我们可以将它们的方程联立起来,得到一个二次方程 2x^2 + x - 3 = 0。
通过求解这个二次方程,我们可以得到两个交点坐标 x1 = -1 和x2 = 3/2。
在 x1 = -1 处,一次函数的函数值为 y1 = 2(-1) + 1 = -1,反比例函数的函数值为 y2 = 3/(-1) = -3。
因此,在这个交点处,反比例函数的值比一次函数的值小。
在 x2 = 3/2 处,一次函数的函数值为 y3 = 2(3/2) + 1 = 4,反比例函数的函数值为 y4 = 3/(3/2) = 2。
因此,在这个交点处,一次函数的值比反比例函数的值大。
通过这种方法,我们可以比较一次函数和反比例函数的值大小,并确定它们的大小关系。
从一道反比例函数题谈函数大小比较
![从一道反比例函数题谈函数大小比较](https://img.taocdn.com/s3/m/ca73c32ce2bd960590c677a4.png)
从一道反比例函数题谈函数大小比较内容摘要:在初中阶段所涉及的三种函数一次函数(包括正比例函数),二次函数,反比例函数中,只有反比例函数y=x k (k ≠0),对自变量x 有要求,即x ≠0。
因为k ≠0,则y 也必定≠0,所以反比例函数的图象双曲线永远不会与坐标轴相交,因此它的性质中就特别强调:“在图象所在的每个象限内”这一条件。
,若忽略这个条件,就会给后面的解题带来麻烦,这也从某个方面说明教材编写具有相当的严密性。
关键词:反比例函数 双曲线 增减性 自变量x 的取值一、引言数学新教材的最大特点就是体现素质教育的要求,重视人的发展,提倡课程与生活的联系,以数学源于生活又用于生活为主线,着重培养学生的创新意识和动手能力,培养学生学数学、用数学的意识,使其养成良好的学习习惯。
《数学课程标准》明确指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐的发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
因此,我们要以鼓励学生主动参与,主动思考,主动探究,主动实践为基本特征,以实现学生多方面能力综合发展为核心.充分注意学生各种能力的培养。
从实际出发,努力激发学生的学习兴趣,充分调动学生的学习积极性和主动性。
教会学生学习,教会学生思考,教会学生探索,使学生真正成为学习的主人。
二、背景和遇到的问题在九年级上册第一章反比例函数的教学中,当学习完反比例函数的性质后,书本第14页“做一做”第1题第2小题是这样的:已知x 1,y 1和x 2,y 2是反比例函数y=x a 2 (a ≠0)两对自变量与函数的对应值,x 1>x 2>0,则0 y 1 y 2(填>、<、=),我们不妨称此题为例1,本题中因为a 2≥0,所以-a 2≤0,即反比例函数y=x k中的k<0,所以y 的值会随x 的增大而增大,因为x 1>x 2。
函数中的“大小比较”问题
![函数中的“大小比较”问题](https://img.taocdn.com/s3/m/f106d2ef102de2bd96058832.png)
【当堂检测】 当堂检测】
3、已知点A(-4, y1)、 (-3, y2)、 (1, y3) 、已知点 ( )、B( )、C( 是二次函数y=x2+4x-5的图象上的三个点,则y1,y2,y3的 的图象上的三个点, 是二次函数 的图象上的三个点 大小关系是( 大小关系是( ) A.y1<y2<y3 B.y2<y1<y3 . . C.y3<y1<y2 . D.y1<y3<y2 . 4、一次函数y1=x- 与反比例函数y2=2/x的图 x-1与反比例函数 、一次函数y x- 与反比例函数y 的图 像交于点A(2,1),B(-1,-2),则使y1>y2的x的取 像交于点 , - - ,则使y 值范围是( 值范围是( ) A.x> .x>2 B.x> 或-1<x< .x>2 <x<0 .x> .x> <x< C.- <x< .-1<x< D.x> 或x<- .x>2 x<-1 .- <x<2 .x>
y -1 -2
.
y=k2x x
y=k1x+b
【课内探究】 课内探究】
考点二:两个函数中的“大小比较”问题 考点二:两个函数中的“大小比较”
3、(2010年潍坊中考)已知函数y1 = x2与函数 1 y2 = - 2 x+3的图象大致如图,若y1 < y2,则自变量 的x的取值范围是( ) 3 3 y A. - 〈x〈2 B. x 〉 2或x 〈2 2 C. 3 D. 3
y 2 y2 A y 1 1 x O 1 2
(A)0 1 2
(B) 0 1 2
(C) 0 1 2
(D) 0 1 2
【课内探究】 课内探究】
考点二:两个函数中的“大小比较”问题 考点二:两个函数中的“大小比较”
2、直线L1:y=k1x+b与直线 2:y=k2x在同一平面直 、直线 与直线L 与直线 在同一平面直 角坐标系中的图象如图所示,则关于的不等式k 角坐标系中的图象如图所示,则关于的不等式 1x+b>k2x 的解为( ) 的解为( A. x>-1 B. x<-1 > < C. x<-2 D. 无法确定 <
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何比较一次函数与反比例函数的大小一次函数和反比例函数是初中数学教学的重要内容,也是学生应掌握的最基础,最核心的内容。
它们之间的大小关系是一次函数和反比例函数的综合应用,遇到这样的问题时同学们不知从何下手,易出现错误。
下面我们就结合一条例题的讲解,介绍如何轻松的解决这样的问题。
例:如图,一次函数y
1=x-1与反比例函数y
2
=
x
2
的图像交于点A(2 ,1);
B(-1,-2),则使y
1>y
2
的x的取值范围是()
A. x>2
B. x>2或-1<x<0
C. -1<x<2
D. x>2或x<-1
分析:根据图象特点结合A,B两点就可以找出使y
1>y
2
的x的取值范围
解:由A(2,1),B(-1,-2)两点可知当x>2 或-1<x<0时,一次函数的图象在反比例函数图象的上方,故应选B。
学生在看图像比较一次函数与反比例函数的大小时,往往不知从何下手,我经过多年的教学实践,认为可以按照如下的步骤解决这样的问题:
1、数学结合:根据题意画出图像(本例题已经画出了图像)
2、找交点:根据函数图像,找到两函数的交
点坐标。
如本题两函数的交点坐标分别是A(2,1)和B(-1,-2)。
3、画三线:根据两条函数的交点画出三条垂x直于轴的直线。
如本题的三条直线分别为x=-1;x=0(即y轴)和x=2。
4、分四域:以三线为界可将直角平面划分为四个区域。
如本题可分为
①x<-1;②-1<x<0;③0<x<2;④x>2。
5、定大小:根据“上大下小”原则。
在“4”中我们已经得到4个区域,下面我们就根据分的区域比较大小:①x<-1时,一次函数图像在反比例函数图像的
下面,即y
1<y
2
;②-1<x<0时,一次函数图像在反比例函数图像的上面,即
y 1>y
2
;③0<x<2时,一次函数图像在反比例函数图像的下面,即y
1
<y
2
;
④x>2时,一次函数图像在反比例函数图像的上面,即y
1>y
2。
(-1 -2)
(2 1)
(-1 -2) (2 1)
x=-1
x=2 x=0
(-1 -2) (2 1)
x=-1
x=2 x=0
区域①区
域
②
区
域
③
区
域
④
总结:如果一次函数图像与反比例函数图像有交点时,我们就可以利用上面的步骤去解决问题;若没有交点时,我们就可以借助y轴分两个区域,再直接用“上大下小”原则去解决问题。