高考数学选择题的解题策略.doc
高考数学选择题的解题策略指导
A ( 1 1 .一 , ) B( l 十 .一 , ∞)
l_/ / ’ -
/ / ,
一
介绍的几 种方 法有 时是互相交织难以截然分开 的 ,因此分类方 面也只能是相对合 理 , 不能穷究. 事实上 , 分别熟悉 以上方法 在
以后 , 学生要学会采 用多种方法协 同作战 , 以期得 到最大实效. 下面以一首小诗 总结 全文—— 人生选择 , 选择人生 , 用兵之道 ,
0. 5
B. =l。 , n=2
C. 2, = m= n l
D m= n l . 3, =
答 案 : B
五 、 补 法 割
“ 能割善 补” 是解决 几何问题常用 的方 法 , 巧妙地利 用割补
解: 代人验 证 , 当m= ,= , 1 n 2
) c ( - 口 x+ )贝 =E 1x) (32 ,4 = 厂 ( = (x- x 1 , ( = ) 口 3Z4 + )畦 )。
'
解/詈=[2号][+)f, : ) 詈 ( )i( ](而 I s 一+ - 2号= 卅 i + - n s n
+)n 一 T+ [xr ) 以 选. 订 I 2+) 2+) , 应 B : ( In(q] 所 i 1 i '
代入 法适 应于题设复杂 , 结论简单 的选择题. 若能据题意确 定代入顺序 , 则能较大提高解题速度.
1
法 , 以将不规则的图形转 化为规则 的图形 , 可 这样可 以使问题得
D 05 . 1
到 简 化 , 而 缩 短 解题 时 间. 从
( 。 x 1 0 ÷ ,= , 3 一 + ) 可知 l 1 x4 = = 2
图 1
例5 一 个 四面 体 的所 有棱
1学生用高考数学选择题的解题策略
第1讲 高考数学选择题的解题策略一、知识整合1.高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。
一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。
解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
3.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.二、方法技巧 1、直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1.若sin 2x >cos 2x ,则x 的取值范围是( )(A ){x |2k π-34π<x <2k π+π4,k ∈Z } (B ) {x |2k π+π4<x <2k π+54π,k ∈Z }(C ) {x |k π-π4<x <k π+π4,k ∈Z } (D ) {x |k π+π4<x <k π+34π,k ∈Z }例2.设f (x )是(-∞,∞)是的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )(A ) 0.5 (B ) -0.5 (C ) 1.5 (D ) -1.5例3.七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( ) (A ) 1440 (B ) 3600 (C ) 4320 (D ) 4800直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解.直接法适用的范围很广,只要运算正确必能得出正确的答案.提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错.2、特例法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.例4.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(44,0),1x 2,tan x θ<<若则的取值范围是( ) (A ))1,31( (B ))32,31((C ))21,52((D ))32,52(例5.如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C nn =( ) (A ) 2n (B ) 2n -1 (C ) 2n -2 (D ) (n -1)2n -1例6.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) (A )130 (B )170 (C )210 (D )260例7.若1>>b a ,P =b a lg lg ⋅,Q =()b a lg lg 21+,R =⎪⎭⎫⎝⎛+2lg b a ,则( ) (A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略.近几年高考选择题中可用或结合特例法解答的约占30%左右.3、筛选法:从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.例8.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ) (A )(0,1) (B )(1,2) (C )(0,2) (D ) [2,+∞)例9.过抛物线y 2=4x 的焦点,作直线与此抛物线相交于两点P 和Q ,那么线段PQ 中点的轨迹方程是( )(A ) y 2=2x -1 (B ) y 2=2x -2(C ) y 2=-2x +1 (D ) y 2=-2x +2筛选法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%.4、代入法:将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.例10.函数y =sin(π3-2x )+sin2x 的最小正周期是( )(A )π2(B ) π (C ) 2π (D ) 4π例11.函数y =sin (2x +25π)的图象的一条对称轴的方程是( )(A )x =-2π(B )x =-4π(C )x =8π(D )x =45π代入法适应于题设复杂,结论简单的选择题。
选择题解题技巧
解析:分析选择支可知,四条曲线中有且只有一条曲线不符合要求,故可考虑找不符合条件的曲线从而筛选,而在四条曲线中②是一个面积最大的椭圆,故可先看②,显然直线和曲线 是相交的,因为直线上的点 在椭圆内,对照选项故选D。
6、分析法:就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。
(1)特殊值
例1、若sinα>tanα>cotα( ),则α∈()
A.( , )B.( ,0)C.(0, )D.( , )
解析:因 ,取α=- 代入sinα>tanα>cotα,满足条件式,则排除A、C、D,故选B。
例2、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为()
A.-24B.84C.72D.36
A.①②④B.①④C.②④D.①③
解析:取f(x)=-x,逐项检查可知①④正确。故选B。
(3)特殊数列
例5、已知等差数列 满足 ,则有 ( )
A、 B、 C、 D、
解析:取满足题意的特殊数列 ,则 ,故选C。
(4)特殊位置
例6、过 的焦点 作直线交抛物线与 两点,若 与 的长分别是 ,则 ()
A、 B、 C、 D、
解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2-S1=12,a3=a1+2d=-24,所以前3n项和为36,故选D。
(2)特殊函数
例3、如果奇函数f(x)是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是()
A.增函数且最小值为-5B.减函数且最小值是-5
C.增函数且最大值为-5D.减函数且最大值是-5
[全]高考数学选择题六大答题技巧(附例题详解)
[全]高考数学选择题六大答题技巧(附例题详解)选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右:(1)绝大部分数学选择题属于中低档题,且一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有较好区分度的基本题型之一。
(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点,且每一题几乎都有两种或两种以上的解法,能有效地检测学生的思维层次及观察、分析、判断和推理能力。
目前高考数学选择题采用的是一元选择题(即有且只有一个正确答案),由选择题的结构特点,决定了解选择题除常规方法外还有一些特殊的方法.解选择题的基本原则是:“小题不能大做”,要充分利用题目中(包括题干和选项)提供的各种信息,排除干扰,利用矛盾,作出正确的判断。
数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果。
二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件。
解答数学选择题的主要方法包括直接法、概念辨析法、数型结合法、特殊值法、排除法、逆向思维法等,这些方法既是数学思维的具体体现,也是解题的有效手段。
一一、直接法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支。
这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解。
思路解析:关于直线与圆锥曲线位置关系的题目,通常是联立方程解方程组.本题即是利用渐近线与抛物线相切,求出渐近线斜率.二、概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”。
高考数学选择题答题技巧(精选6篇)
高考数学选择题答题技巧(精选6篇)高考数学选择题答题技巧精选篇1所谓排除法就是对各个选项通过分析、推理、计算、判断,排除掉错误的选项,留下正确选项的一种选择方法。
直接法和排除法是高考做选择题时最常用的两种基本选择方法。
高考数学选择题答题技巧精选篇2将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
高考数学选择题答题技巧精选篇3所谓构建数学模型法就是将问题建立在某一个数学模型中,利用该数学模型所具有的`意义、几何性质等去解题的一种方法。
最后说及一点,选择方法固然重要,但根本上还是要学会通式通法,扎扎实实打好基础,才能最后成功。
高考数学选择题答题技巧精选篇4所谓直接法就是利用数学公式、法则或者定理直接进行计算来获得答案的方法。
通常是在做计算题时用此方法。
从另一个角度讲,考生在做选择题时,先观察一下四个选项,认为哪一个选项可能性最大就先做哪一个,而不是按照顺序逐个做,这也体现了一种直接选择的思想。
高考数学选择题答题技巧精选篇5一、解答选择题的基本策略解答选择题的基本策略是“小题小做,不择手段”.1.要充分挖掘各选择支的暗示作用;2.要巧妙有效的排除迷惑支的干扰.快速解答选择题要靠基础知识的熟练和思维方法的灵活以及科学、合理的巧解,应尽量避免小题大做.二、选择题常用解题方法由于高考数学选择题四个选项中有且只有一个结论正确,因而解选择题要沿着以下两个途径思考:一是否定3个结论;二是肯定一个结论.常用的方法有:直接法,筛选法(排除法),利用数学中的二级结论法,特例法 (特殊值,特殊图形,特殊位置,特殊函数)是重点方法,还有数形结合法,验证法,估算法,特征分析法,极限法等,还是要学会通式通法,扎扎实实打好基础,才能最后成功。
高考数学选择题答题技巧精选篇6所谓特值法就是利用满足题设条件的某些特殊数值、特殊位置、特殊函数、特殊图形等对各个选项进行验证或推理,利用问题在这一特殊条件下不真,则它在一般情况下也不真的原理,去伪存真作出选择的一种方法。
高考数学选择题解题策略
高考数学选择题的解题策略摘要:在做高考数学试卷时,选择题的做法灵活多样,可以采用直接法、特殊值法、排除法、代入法、图解法(数形结合法)等。
关键词:直接法;特殊值法;排除法;代入法;图解法(数形结合法)数学选择题在当今高考试卷中,不但题目多,而且占分比例高,此类题型具有概括性强、知识覆盖面广、小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。
因此,如何巧解、快解、准确地得出结论就显得越来越重要。
下面通过一些实例来介绍一些常用的解题方法。
一、直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.到此就应该停笔,结合答案很快就选a.点拨:直接法是解答选择题最常用的基本方法,经过统计研究表明,大部分选择题的解答用的是此法.但解答中也要注意结合选项特点灵活做题,注意题目的隐含条件,争取少算.这样既节约了时间,又提高了命中率.二、特殊值法用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而做出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.三、排除法从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.四、代入法将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.五、图解法(数形结合法)据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.习惯上也叫数形结合法.严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略,但它在解有关选择题时非常简便有效.不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择.总之,解答选择题要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选择肢的暗示作用,迅速地作出正确的选择.这样不但可以迅速、准确地获取正确答案,而且可以提高解题速度,为后续解题节省时间.(作者单位陕西省咸阳市乾县杨汉中学)。
高考数学选择题满分答题技巧
查找错题, 分析病因, 对症下药, 这是重点工作。
( 3)阅读《考试说明》和《试题分析》 , 确保没有知识盲点。
( 4)回归课本, 回归基础, 回归近年高考试题, 把握通性通法。
( 5)重视书写表达的规范性和简洁性,
掌握各类常见题型的表达模式,
避免“会 而不对, 对而
不全”现象的出现。
( 6)临考前应做一定量的中、低档题, 以达到熟悉基本方法、典型问题的目的,
分的考生少之又少 , 所以 , 你不要幻想 先易后难 , 分段得分 . 着在高考时数学能够拿满分 . 换个角度思考 ,
学习再好的学生也会出现一些错误 , 所以 , 遇到难题感到做不下去实际上很正常 , 就看你如何能够从这些
难题上尽可 能多的争到分数 . 在这个时候 , 分段得分就很重要了 . 一定要把每个能想到的与 题目考查范围
一般可在 五分钟之内做完下面几件事: ( 1)填写好全部考
( 2)调节情绪, 尽快进入考试状态, 可解答那些一眼就能看得出结论的简单选择
或填空题(一旦
解出, 信心倍增, 情绪立即稳定) ; ( 3)对于不能立即作答的题目, 可一边通览, 一边粗略地分为 A 、B 两类: A 类指 题型比较熟悉、
容易上手的题目; B 类指题型比较陌生、自我感觉有困难的题目,
其次, 填空题的解构, 往往是在一个正确的命 也可以是结论) , 留下空位, 让考生 独立填上,
考查方法比较灵活, 在对题目的阅读理解上, 较之选择题有时会显得较 为费劲。 当然并非常常如此,
这将取决于命题者对试题的设计意图。
填空题的考点少, 目标集中。 否则, 试题的区分度差, 其考
试的信度和效度都 难以得到保证。 这是因为:填空题要是考点多, 解答过程长, 影响结论的因素多,
【智博教育原创专题】高考数学必胜秘诀之高考数学选择题的解题策略
高考数学必胜秘诀之高考数学选择题的解题策略数学选择题在当今高考试卷中,不但题目多,而且占分比例高,选择题由原来的12题改为10题,但其分值仍占到试卷总分的三分之一。
数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。
解答选择题的基本策略是准确、迅速。
准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。
高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。
解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。
【策略1】直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础。
【例1】某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( )81.125A 54.125B 36.125C 27.125D 【解析】某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。
22333364627()()101010125C C ⨯⨯+⨯=,故选A 。
1.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线,a b 不垂直,那么过a 的任一个平面与b 都不垂直。
高考数学选择题答题技巧
高考数学选择题答题技巧1.有选项。
利用选项之间的关系,我们可以判断答案是选或不选。
如两个选项意思完全相反,则必有正确答案。
2.答案只有一个。
大家都有这个经验,当时不明白什么道理,但是看到答案就能明白。
由此选项将产生暗示3.题目暗示。
选择题的题目必须得说清楚。
大家在审题过程中,是必须要用到有效的讯息的,题目本身就给出了暗示。
4.利用干扰选项做题。
选择题除了正确答案外,其他的都是干扰选项,除非是乱出的选项,否则都是可以利用选项的干扰性做题。
一般出题者不会随意出个选项,总是和正确答案有点关系,或者是可能出错的结果,我们就可以借助这个命题过程得出正确的结论。
5.选择题只管结果,不管中间过程,因此在解题过程中可以大胆的简化中间过程。
6.选择题必须考察课本知识,做题过程中,可以判断那个选项与这个知识点无关的可立即排除。
因此联系课本知识点做题。
7.选择题必须保证考生在有限时间内可以做出来的,因此当大家花很多时间想不对的时候,说明思路错了。
选择题必须是由一个简单的思路构成的。
高考数学答题技巧1.做选择题前10个或前11个首先做选择题前10个或前11个,做完后就开始涂答题卡,一定要做完选择题就涂答题卡,我见过太多的同学因为做完选择题、填空题没有及时涂答题卡,导致后面做大题没有时间涂答题卡,考试时间到还未来得及涂卡在考场苦苦哀求监考老师给一分钟机会,可是高考对每个人而言都是公平的,监考老师也不可能为了你的痛哭流涕就心软给你额外一分钟的时间,所以最后一般都是会无情的收走试卷,如果你真的将答案做出来写在了试卷上,却未来得及涂卡,那么你是不是要后悔一辈子了?所以,尽可能做完选择题前11个就涂答题卡。
一般而言,最后一个选择题较难,大部分人做五分钟如果还做不出来就先放弃,选择B或者C,大概率显示高考数学选择题近几年的答案一般都是B或者C。
节约时间在后面的部分,不要为了一棵树而放弃整片森林,不然得不偿失2.做填空题前三个高考数学中,填空题前三个一般情况下难度适中,你尽量用最短的时间作出后就填在答题纸上,避免后续时间紧张而来不及填写,最后一个填空题你先看一遍题目,倘若看完题目毫无思绪的话,暂且放弃,留到最后,倘若有时间就再回过头来看看,如果没有时间就随便填蒙一个,一般情况下都是特殊数字,比如0、1等。
高考数学试题中选择题的解题策略
择 支 的 范 | 内 找 出 矛 盾 , 样 逐 步 筛 选 , 到 得 出 正 确 的 选 韦 l 这 直
择 . 与特 例 法 、 解 法 等 结 合 使 用 是 解 选 择 题 的 常 蹦 方 它 图 法 , 此 法 的 在 近 几 年 高 考选 择 题 中约 4 % 左 右 . 町 0 3 “ 住 特 征 , 施倒 行 ” 逆 推 法 ) .抓 逆 ( 将 符 个 选 择 项 逐 一 代 入 题 设 进 行 检 验 , 而 获 得 止 确 从 的划 断 . 即将 各 选 项 分 别 作 为 条 件 , 原 题 条 件 作 为 结 论 去 将 验证命题 , 能使 命 题成 立 的选 项 就 是 应 选 答 案 .
刊 n的取 值 范 围是 ( ) .
1 考 数 学 试 题 巾 , 择 题 注 重 多 个 知 识 点 的 小 型 综 .高 选 合 , 透 各 种 数 学 思 想 和 方 法 , 现 以 考 基 本 概 念 的 理 渗 体 解 、 本 方 法 的掌 握 和运 算 的熟 练 为 重 点 导 向 , 否 在 选 择 基 能 题上 获 取 高 分 , 高考 数学 成 绩 影 响 雨 大 . 答 选 择 题 的 基 对 解
一
合特 值 法 , 困是第 四个 选项 是 非确 定性 的. 原 总之 , 们 合理 运 我
用特 值 法 , 解答 选择 题就 能有 更大 的突 破.
近 几 年 高 考 选 择 题 巾 可用 或 可 结 合 特 值 法 解 答 的 约 占
3 % 左 . 0
2 “ 用蕴 涵 , 断 排除 ” 筛 选 法 ) .巧 果 (
例3 函数 、
新高考数学多选题的解题策略
ny2 =1,( ).
A.若 m >n>0,则 C 是椭圆,其焦点在 y 轴上
B.若 m =n>0,则 C 是圆,其半径为 n
C.若 mn <0,则 C 是 双 曲 线,其 渐 近 线 方 程 为
y=±
m
- x
n
以“五育并举”方 针 为 背 景 的 数 学 应 用 问 题,既 践
y2 x2
m
- x;当 m <0,
n>0 时,方 程 化 为 -
=
n
1
1
-
n
m
1,表示焦点 在 y 轴 上 的 双 曲 线,渐 近 线 方 程 为 y =
±
±
m
- x,故 C 正确 .
n
对于 D,当 m =0,
n>0 时,方程化为y=±
表示两条平行于 x 轴的直线,故 D 正确 .
1
,
n
综上可知,应选 A,
C,
D.
本题主要考查 椭 圆、双 曲 线 的 标 准 方 程 和 几
何性质,熟知常 见 曲 线 方 程 之 间 的 区 别 是 解
决本题的关键,属于基础题 .
例 2 (
2020 年 山 东 卷 11)已 知 a >0,
b>0,且
a+b=1,则( ).
A.
a2 +b2 ≥
1
1
B.
2a-b >
关注新高考
D.若 m =0,
n>0,则 C 是两条直线
把题设方程化 为 标 准 形 式,再 结 合 圆 锥 曲 线
的标准方程和几何性质逐一判断 .
1 1
对于 A,当 m >n>0 时,有 0< < ,方程化为
m n
◇ 福建 廖永福
高三数学题型专题--选择题的解法
选择题的解法1.内容概要:选择题注重考查基础知识、基本技能、基本方法、逻辑思维与直觉思维能力,以及观察、分析、比较、选择简捷运算方法的能力.解答选择题的基本原则是小题不能大做,小题需小做、繁题会简做、难题要巧做。
求解选择题的基本方法是以直接思路肯定为主,间接思路否定为辅,即求解时除了用直接计算方法之外还可以用逆向化策略、特殊化策略、图形化策略、整体化策略等方法求解.解选择题要注意选择题的特殊性,充分利用题干和选择支两方面提供的信息,灵活、巧妙、快速求解.2.典例精析一、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法.运用此种方法解题需要扎实的数学基础。
例1.(08某某)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )(A )3(B )5(C )3 (D )5【解析】∵双曲线的准线为2a xc ,∴22():()3:2a a c c c c+-=,解得225c a =,∴5cea故选D.例2.设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2a b b c =+是2A B=的( )(A )充要条件(B )充分而不必要条件(C )必要而充分条件(D )既不充分又不必要条件【解析】设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若()2a b b c =+,则2sin sin (sin sin )A B B C =+,则1cos 21cos 2sin sin 22a BB C --=+, ∴1(cos 2cos 2)sin sin 2B A BC -=,sin()sin()sin sin B A A B B C +-=, 又sin()sin A B C +=,∴sin()sin A B B -=,∴A B B -=,2A B =, 若ABC ∆中,2A B =,由上可知,每一步都可以逆推回去,得到()2a b b c =+,所以()2a b b c =+是2A B =的充要条件,选A.二、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法.用特例法解选择题时,特例取得愈简单、愈特殊愈好.特例法主要包括:特殊值法、特殊函数法、特殊方程法、特殊数列法、特殊位置法、特殊点法等.①特殊值法例3.(08全国Ⅱ)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <c B .c <a <b C . b <a <c D . b <c <a【解析】令12xe ,则11,1,28a b c =-=-=-,故选C.例4.(08某某)若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( )A .1122a b a b +B .1212a a b b +C .1221a b a b +D .12【解析】令114a ,234a ,113b ,223b ,然后代入要比较大小的几个式子中计算即可,答案为A.【点评】从上面这些例子及其解答来看,2008年高考试题特别喜欢把大小比较与函数、三角等知识结合进行考查,这是2008年大小比较考题的一大亮点.②特殊函数法例5.如果奇函数()f x 在[3,7]上是增函数且最小值为5,那么()f x 在区间[-7,-3]上是 ( )A. 增函数且最小值为-5B. 减函数且最小值是-5C. 增函数且最大值为-5D. 减函数且最大值是-5【解析】构造特殊函数5()3f x x ,显然满足题设条件,并易知()f x 在区间[-7,-3]上是增函数,且最大值为(3)5f ,故选C.③特殊数列法例6. 已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有( ) A.11010a a +> B.21020a a +< C.3990a a += D.5151a = 解析:取满足题意的特殊数列0n a =,则3990a a +=,故选C. ④特殊方程法例7.曲线222222b xa y ab (0ab )的渐近线夹角为,离心率为e ,则cos2等于( )A .eB .2e C .1e D .21e【解析】本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊方程来考察.取双曲线方程为2214x y ,易得离心率52e,2cos 25,故选C . ⑤特殊位置法例8.过)0(2>=a ax y 的焦点F 作直线交抛物线与P 、Q 两点,若PF 与FQ 的长分别是p 、q ,则=+qp 11() A 、a 2 B 、a 21 C 、a 4 D 、a4 【解析】此抛物线开口向上,过焦点且斜率为k 的直线与抛物线均有两个交点P 、Q ,当k 变化时PF 、FQ 的长均变化,但从题设可以得到这样的信息:尽管PF 、FQ 长度不定,但其倒数和应为定值,所以可以针对直线的某一特定位置进行求解,而不失一般性.考虑直线PQ OF 时,1||||2PF FQ a==,所以11224a a a p q +=+=,故选C.⑥特殊点法例9.(08全国Ⅰ)若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )A .21x e-B .2xeC .21x e+D .22x e+【解析】因为点(1,1)在1y =的图象上,它关于y x 对称的点(1,1)一定在其反函数(1)y f x =-的图象上,即点(0,1)在函数()f x 的图象上,将其代入四个选择支逐一检验,可以直接排除A 、C 、D ,故选B .【点评】本题主要考查反函数的概念、函数与其反函数图象之间的关系、函数图象的平移.常规解法是先求出函数1y =的反函数,然后再将函数图象平移即可得到正确解答.而本法抓住以下特征:函数图象上的点关于y x 对称的点一定在其反函数的图象上,由此选定特殊点(1,1),从而得出点(1,1)在(1)y f x =-的图象上,进一步得出点(0,1)在()f x 的图象上.于是快速求解.三、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值X 围等)与某些图形结合起来,利用几何图形的直观几性,再辅以简单计算,确定正确答案的方法。
高考数学选择题、填空题的六大解题方法和技巧
高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。
高考数学的解题思路技巧
高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。
做选择题有四种基本方法:1 回忆法。
直接从记忆中取要选择的内容。
2 直接解答法。
多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。
3 淘汰法。
把选项中错误中答案排除,余下的便是正确答案。
4 猜测法。
(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。
函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。
近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。
分析和解决最值问题和定值问题的思路和方法也是多种多样的。
命制最值问题和定值问题能较好体现数学高考试题的命题原则。
应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
(四) 计算证明题解答这种题目时,审题显得极其重要。
只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。
在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。
2 在平时练习中要养成规范答题的习惯。
3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。
5 保证计算的准确性,注意物理单位的变换。
高考数学选择题—解题策略二
高考数学选择题—解题策略二(二)选择题的几种特色运算1、借助结论——速算例29、棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()A 、B、C、D、解析:借助立体几何的两个熟知的结论:(1)一个正方体可以内接一个正四面体;(2)若正方体的顶点都在一个球面上,则正方体的对角线就是球的直径。
可以快速算出球的半径,从而求出球的表面积为,故选A。
2、借用选项——验算例30、若满足,则使得的值最小的是()A、(4.5,3)B、(3,6)C、(9,2)D、(6,4)解析:把各选项分别代入条件验算,易知B项满足条件,且的值最小,故选B。
3、极限思想——不算例31、正四棱锥相邻侧面所成的二面角的平面角为,侧面与底面所成的二面角的平面角为,则的值是()A、1B、2C、-1D、解析:当正四棱锥的高无限增大时,,则故选C。
4、平几辅助——巧算例32、在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A、1条B、2条C、3条D、4条解析:选项暗示我们,只要判断出直线的条数就行,无须具体求出直线方程。
以A (1,2)为圆心,1为半径作圆A,以B(3,1)为圆心,2为半径作圆B。
由平面几何知识易知,满足题意的直线是两圆的公切线,而两圆的位置关系是相交,只有两条公切线。
故选B。
5、活用定义——活算例33、若椭圆经过原点,且焦点F1(1,0),F2(3,0),则其离心率为()A、B、C、D、解析:利用椭圆的定义可得故离心率故选C。
6、整体思想——设而不算例34、若,则的值为()A、1B、-1C、0D、2解析:二项式中含有,似乎增加了计算量和难度,但如果设,,则待求式子。
故选A。
7、大胆取舍——估算例35、如图,在多面体ABCDFE中,已知面ABCD是边长为3的正方形,EF∥AB,EF=,EF与面ABCD的距离为2,则该多面体的体积为()A、B、5 C、6 D、解析:依题意可计算,而=6,故选D。
高考选择题解答策略
选择题的特殊结构决定了它具有相应的特殊作 用与特点 : 由于选择题不需写出运算 、 推理等解答 过 程 , 试卷上配有选择 题时 , 以增加试 卷 容量 , 在 可 扩 大 考 查 知识 的 覆 盖 面 ; 卷 简 捷 , 分 客 观 , 一 定 阅 评 在 程度上 提高了试 卷的效度 与信度 ; 重于考 查学 生 侧 是否能迅速选出正确答案 , 解题手法不拘常规 , 利 有 于考查学生的选 择 、 判断能力 ; 选择项 中往往包括 学 生常犯 的概念错误或运算 、 推理错误 , 所有具有较 大 的 “ 惑 性 ” 迷 。 般地 , 解答选择 题 的策 略是 : 熟 练 掌握各 ① 种基本题 型的一 般解法 。② 结合 高考 单项选 择题 的结构 ( 四选一 ” 由“ 的指令 、 题干 和选择 项所构 成 ) 和不要求 书写解题过程 的特点 , 灵活运用特例法 、 筛 选法 、 图解法等选择题 的常用解 法与技巧 。③ 挖 掘 题 目“ 个性” 寻求简便解法 , , 充分利用选择支 的暗示 作用 , 迅速地作 出正确 的选择 。 1 直 接 选 择 法 . 直 接从 题 设 出发 , 过 推 理 和 准 确 的运 算 得 出 通 正确的答案 , 再与选择的答案项对照 比较 , 从而判 定 正确选 择项 。它一般步骤 是 : 计算 推理 、 分析 比较 、 对照选 择。它又可分 为两个层次 : ①直接判定法 : 有 些选择题 结 构简单 , 常可 从题 目已知 人手 , 用 定 利 义、 定理 、 性质 、 公式 直接指 出正确 答案 。多 用于解 答 有关基本概念或简单性质辨析 的选择题 。②求解 对照法 : 对于涉及计算或证明的选择题 , 时可采用 有 求解对 照法。其基本思想是把选择题 当作常规题来 解, 然后 与题 目选择支相对照 , 出正确答案 。 选 例 l 有三个 函数 , 第一 个函数是 Y=厂 ) 它 ( , 的反函数是第二 个函数 , 而第三 个 函数 与第 二个 函 数图 象 关 于 +Y:0对 称 , 么第 三 个 函数 是 那
数学高考选择题的解题策略
而且有些选择题按常规方法来做时计算量大 , 过程 l繁杂 , 这些都导致了考生在有限的时间内得不到正 确的选项 。巧取特殊值 , 能使解题过程简单化 , 明
、
特点, 巧取特殊值 , 使问题得到简化, 难度得到降
低, 很快就能得出正确的答案。
题 U( 0 4 全 国 , Ⅲ・ ・ ) 20 ・ 卷 理 8 j
分析 : 题的难度较 大。主要体现 在两个方 本 面: 一是考生不会利用“ 同增异减” 来判断复合 函数 yfg ) = [X 的单调性 ; (】 二是考生不会把隐含在暗处 的 “ 恒成立 问题 ” 转化为明处的“ 最值问题 ” 。故无法
得 出正确 答 案 。下 面 , 笔者 给 出两种 解法 :
、
再取x 3 则不等式 1 一 +1<3 =一 , <I 3 l 也成立 , / 故 一 也是原不等式的解。再排除选项 A 故选 D 3 , 。
2 u・ 期 . . 0 6 鼹
考斌与复 习
, 蠡
i
嶷f 羲 ,j 《 , 、 臻, 蕊f 蒸
t 蘩,
嚣
・
.
・= u 2一a(> , ≠1 减 函数 , 使 y l x 0a ) a 是 要 =o g
解法二 :特殊值 法 ) ( 观察 四个备选 选项 的特
( 一 x 01 2 a) ,上是减函数 , 函数 y l .必为增 函 在[ 】 则 =o u g
《 数 , L)1 当 x 时 , 则 . 。 ≠0 要使 2一a >0 成立 , x 恒 即
考试与复l 习
数学高考选择题 的解题策 略
◆黄小华 历 年来 , 藏高考 的数学 试卷 由国家统一命 西
.
,
・
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学选择题的解题策略
高考数学选择题的解题策略归纳
1、仔细审题,吃透题意
审题是正确解题的前题条件,通过审题,可以掌握用于解题的第一手资料已知条件,弄清题目要求。
审题的第一个关键在于:将有关概念、公式、定理等基础知识加以集中整理。
凡在题中出现的概念、公式、性质等内容都是平时理解、记忆、运用的重点,也是我们在解选择题时首先需要回忆的对象。
审题的第二个关键在于:发现题材中的机关题目中的一些隐含条件,往往是该题价值之所在,也是我们失分的隐患。
除此而外,审题的过程还是一个解题方法的抉择过程,开拓的解题思路能使我们心涌如潮,适宜的解题方法则帮助我们事半功倍。
2、反复析题,去伪存真
析题就是剖析题意。
在认真审题的基础上,对全题进行反复的分析和解剖,从而为正确解题寻得路径。
因此,析题的过程就是根据题意,联系知识,形成思路的过程。
由于选择题具有相近、相关的特点,有时真作假时假亦真,对于一些似是而非的选项,我们可以结合题目,将选项逐一比较,用一些虚拟式的如果,加以分析与验证,从而提高解题的正确率。
3、抓往关键,全面分析
在解题过程中,通过审题、析题后找到题目的关键所在是十分重要的,从关键处入手,找突破口,联系知识进行全面的分析形成正确的解题思路,就可以化难为易,化繁为简,从而解出正确的答案。
4、反复检查,认真核对
在审题、析题的过程中,由于思考问题不全面,往往会导致失根、增根等错误,因而,反复地检查,认真地进行核对,也是解选择题必不可少的步骤之一。