普通物理学教程力学课后答案高等教育出版社第七章-刚体力学习题解答
《力学》漆安慎答案07章
力学(第二版)漆安慎习题解答第七章刚体力学第七章 刚体力学 一、基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c //ρρρρ求质心方法:对称分析法,分割法,积分法。
⒉刚体对轴的转动惯量定义:∑⎰==dm r I r m I ii 22平行轴定理 I o = I c +md 2正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p ρρρρ ⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==c c c c I a m F βτρρ(不必考虑惯性力矩)动能:221221cc c k I mv E ω+= ⒎刚体的平衡方程 ∑=0F ρ, 对任意轴 ∑=0τ二、思考题解答火车在拐弯时所作的运动是不是平动?答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。
若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。
但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。
对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动?答:对静止的刚体施以外力作用,当合外力为了零,即时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。
所以,对某一确定点刚体所受合外力的力矩不一定为零。
由刚体的转动定律可知,刚体将发生转动。
比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。
物理学简明教程第七章课后习题答案—高等教育出版社
物理学简明教程第七章课后习题答案高等教育出版社第七章 恒定磁场和电磁感应7-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )7-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2题 7-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B).7-4一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定题 7-4 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).7-5将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).7-6 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).7-7 已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如图所示,如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度 ()R IR R IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRB I 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 7-7 图7-8 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 7-8 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B .解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 7-9 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 7-9 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0.解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800= B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μR I μB π22000-= B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μR I μR I μR I μR I μB 4π24π4π4000000+=++= B 0 的方向垂直纸面向外.7-10 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 7-10 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πRIr μB = 在导线外r >R ,I I =∑,因而rI μB 2π0= 磁感强度分布曲线如图所示.7-11 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 7-11 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB = R 1 <r <R 2I μr B 022π=⋅rI μB 2π02= R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).7-12 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦNξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势 ())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.7-13 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S S B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 7-13 图7-14 如图所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 7-14 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.7-15 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 7-15 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图(b)所示.而E OA 和E OB 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-rr ABAB 221d d --=-=⋅⨯=⎰⎰-l B v因此棒两端的电势差为()r L lB ωE U AB AB 221--==当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-=7-16 如图所示,在“无限长”直载流导线的近旁放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.题 7-16 图分析 本题亦可用两种方法求解.其中应注意下列两点:(1)当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgefghefE E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.(2)用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgefl B l B d d v v()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μvv ()1202πl d d l I +=1vl μ由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()ξξμξμ120020lnπ2d π21l Il x x Il l +=+=Φ⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v由E >0 可知,线框中电动势方向为顺时针方向.7-17 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tBd d 为常量.试证:棒上感应电动势的大小为2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 7-17 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B t l E k d d dd ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tBr E k d d 2=设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE lk k PQ -=-==⋅=⎰⎰θξx E证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫⎝⎛-==-==l R l t B t B S t ΦE E PQ讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?。
大学物理课后答案第七章..
第七章 静电场中的导体和电介质一、基本要求1.掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律; 2.学会计算电容器的电容;3.了解介质的极化现象及其微观解释; 4.了解各向同性介质中D 和E 的关系和区别; 5.了解介质中电场的高斯定理; 6.理解电场能量密度的概念.二、基本内容1.导体静电平衡(1)静电平衡条件:导体任一点的电场强度为零(2)导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3)导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2.电容(1)孤立导体的电容 qC V=电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关. (2)电容器的电容BA V V qC -=q 为构成电容器两极板上所带等量异号电荷的绝对值。
B A V V -为A 、B 两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3)电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之和。
等效电容由121111nC C C C =+++进行计算。
并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为12n C C C C =+++。
(4)计算电容的一般步骤①设两极带电分别为q +和q -,由电荷分布求出两极间电场分布。
②由BA B A V V d -=⋅⎰E l 求两极板间的电势差.③根据电容定义求BA V V qC -=3.电位移矢量D人为引入的辅助物理量,定义0ε=+D E P ,D 既与E 有关,又与P 有关.说明D 不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向异性介质都适用.对于各向同性电介质,因为0e χε=P E ,所以0r εεε==D E E 。
大学物理 刚体力学基础习题思考题及答案
解:(1)设杆的线密度为:,在杆上取一小质元,有微元摩擦力: , 微元摩擦力矩:, 考虑对称性,有摩擦力矩: ; (2)根据转动定律,有:,
解:根据角动量守恒,有:
有: ∴
5-9.一质量均匀分布的圆盘,质量为,半径为,放在一粗糙水平面上 (圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心的竖直固定光 滑轴转动。开始时,圆盘静止,一质量为的子弹以水平速度垂直于圆盘 半径打入圆盘边缘并嵌在盘边上,求:(1)子弹击中圆盘后,盘所获 得的角速度;(2)经过多少时间后,圆盘停止转动。(圆盘绕通过的竖 直轴的转动惯量为,忽略子弹重力造成的摩擦阻力矩。) 解:(1)利用角动量守恒: 得:; (2)选微分,其中:面密度, ∴由有:, 知:
得: 。
5-13.如图所示,物体放在粗糙的水平面上,与水平桌面之间的摩擦系 数为,细绳的一端系住物体,另一端缠绕在半径为的圆柱形转轮上,物 体与转轮的质量相同。开始时,物体与转轮皆静止,细绳松弛,若转轮 以绕其转轴转动。试问:细绳刚绷紧的瞬时,物体的速度多大?物体运 动后,细绳的张力多大? 解:(1)细绳刚绷紧的瞬时前后,把物体和转轮、绳看成一个系统, 系统对转轴圆柱形中心角动量守恒,
(1) (2) (3)
(4) 联立方程可得 、, 。
5-2.一圆盘绕过盘心且与盘面垂直的轴以角速度按图示方向转动,若 如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力 沿盘面方向同时作用到盘上,则盘的角速度怎样变化? 答:增大 5-3.个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑 铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台 组成的系统的: (A)机械能守恒,角动量守恒;(B)机械能守恒,角动量不守恒; (C)机械能不守恒,角动量守恒;(D)机械能不守恒,角动量不守 恒。 答:(C)
普通物理学教程力学课后答案高等教育出版社刚体力学习题解答
第七章刚体力学习题解答7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。
⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。
边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。
⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。
解:0.222.1==+==dtd dtd t ωθβω⑴t=0时,s m R v v y x /12.01.02.10,2.1=⨯====ωω2222/2.01.00.2/144.01.0/12.0/sm R a a s m R v a a y y n x =⨯===-=-=-=-=βτ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/ssm R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =⨯⨯=︒=-=⨯⨯-=︒-=ωω222222222222/182.0)14.20.2(1.0)(45sin 45sin 45sin /465.0)14.20.2(1.0)(45cos 45cos 45cos s m R R R a s m R R R a y x -=-⨯=-︒=︒-︒=-=+⨯-=+︒-=︒-︒-=ωβωβωβωβ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s2222/77.01.078.2/2.01.00.20/278.01.078.2s m R a s m R a v s m R v y x y x -=⨯-=-=-=⨯-=-==-=⨯-=-=ωβω7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω=10rad/s 逆时针转动,求臂与铅直成45º时门中心G 的速度和加速度。
普通物理学教程力学课后答案高等教育出版社第七章-刚体力学习题解答
第七章刚体力学习题解答7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。
⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。
边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。
⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。
解:0.222.1==+==dtd dtd t ωθβω⑴t=0时,s m R v v y x /12.01.02.10,2.1=⨯====ωω2222/2.01.00.2/144.01.0/12.0/sm R a a s m R v a a y y n x =⨯===-=-=-=-=βτ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/ssm R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =⨯⨯=︒=-=⨯⨯-=︒-=ωω222222222222/182.0)14.20.2(1.0)(45sin 45sin 45sin /465.0)14.20.2(1.0)(45cos 45cos 45cos s m R R R a s m R R R a y x -=-⨯=-︒=︒-︒=-=+⨯-=+︒-=︒-︒-=ωβωβωβωβ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s2222/77.01.078.2/2.01.00.20/278.01.078.2s m R a s m R a v s m R v y x y x -=⨯-=-=-=⨯-=-==-=⨯-=-=ωβω7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω=10rad/s 逆时针转动,求臂与铅直成45º时门中心G 的速度和加速度。
普通物理学教程 力学 高等教育出版社 最新 第二版 漆安慎、杜婵英主编 课后答案 习题解答
−1 / 2
⑷∫
1
e
1+ ln x x
dx
aw .c om
π /2
第 1 章物理学力学数学 微积分初步习题解答
课后答案网
2
第 1 章物理学力学数学 微积分初步习题解答
解:
∫ sin xdx = − cos x |
0
π
0
2
=1
y
⑸ ∫ (e x + 1 ⑹ ∫ cos 2 xdx ⑺ ∫ 1+1x 2 dx ⑻ ∫ (3 x + sin 2 x)dx x ) dx
6.计算由y=3x和y=x2所围成的平面图形的面积。 解:如图所示,令 3x=x2,得两 y 条曲线交点的 x 坐标:x=0,3. 面积
A = ∫ 3 xdx − ∫ x 2 dx
0 0 3 2 2 1 3
3
3
2 e x 1 ⑷ ∫ 1+ ln x dx = ∫ (1 + ln x ) d (1 + ln x ) = 2 (1 + ln x ) |1 = 1.5 1 1 x 2 2 ⑸ ∫ (e x + 1 x ) dx = (e + ln x ) |1 = e − e + ln 2 1 2
1 0 1/ 2 2 2 解:⑴ ( x |1 − x |1 = ∫ x − 1)dx = ∫ x dx − ∫ dx = 2 3 1 1 1 1 1 2 2 2
3 2
− /2
∫ sin xdx = −1 π∫ sin xdx = 0 π
− /2
0
π /2
-π/2 -
+ 0 π/2
x
4 2 3
−5 3
漆安慎 杜禅英 力学习题及答案07章
第七章 刚体力学 一、基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c //求质心方法:对称分析法,分割法,积分法。
⒉刚体对轴的转动惯量定义:∑⎰==dm r I rm I ii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==c c ccI a m F βτ(不必考虑惯性力矩)动能:221221c c c k I mvE ω+= ⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ二、思考题解答7.1 火车在拐弯时所作的运动是不是平动? 答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。
若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。
但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。
7.2 对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动?答:对静止的刚体施以外力作用,当合外力为了零,即i c F ma ==∑时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。
所以,对某一确定点刚体所受合外力的力矩i i iM M r F ==⨯∑∑不一定为零。
由刚体的转动定律M J α=可知,刚体将发生转动。
比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。
大学物理学第七章参考答案
题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。
求它们之间的斥力。
题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。
题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。
证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。
题7.2分析:根据题意将电子作为经典粒子处理。
电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。
点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。
证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。
题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。
为方便计算可以利用晶格的对称性求氯离子所受的合力。
解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。
普通物理学第二版第七章课后习题答案
第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s 估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转[解 答](1)22(30001200)1/601.57(rad /s )t 12ωπβ⨯-⨯===V V(2)222220()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为球t 时刻的角速度和角加速度.[解 答]7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45o 时,(3)转过90o时,A 点的速度和加速度在x 和y 轴上的投影.[解 答](1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==v(2)45θ=o时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v R πθωω=+==∴==⨯v v v得(3)当90θ=o时,由7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45o 时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D点相同。
所以:7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反. 已知收割机前进速率为1.2m/s ,拔禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度.[解 答]取地面为基本参考系,收割机为运动参考系。
普通物理学第二版课后习题答案(全)
第一章 物理学和力学1.1国际单位制中的基本单位是那些?解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2中学所学习的匀变速直线运动公式为,at 21t v s 20+= 各量单位为时间:s (秒),长度:m (米),若改为以h (小时)和km (公里)作为时间和长度的单位,上述公式如何?若仅时间单位改为h ,如何?若仅0v 单位改为km/h ,又如何?解答,(1)由量纲1LTvdim -=,2LT a dim -=,h/km 6.3h/km 360010h 36001/km 10s /m 33=⨯==--2223232h /km 36006.3h /km 360010)h 36001/(km 10s /m ⨯=⨯==--改为以h (小时)和km (公里)作为时间和长度的单位时,,at 36006.321t v 6.3s 20⨯⨯+=(速度、加速度仍为SI单位下的量值)验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 36006.321t v 6.3s 20⨯⨯+=计算得 )km (2.25927259202.71436006.321126.3s 2=+=⨯⨯⨯⨯+⨯⨯=(2). 仅时间单位改为h由量纲1LTv dim -=,2LTadim -=得h /m 3600h/m 3600h 36001/m s /m ===222222h /m 3600h /m 3600)h 36001/(m s /m ===若仅时间单位改为h ,得:,at 360021t v 3600s 220⨯+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20==== 利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 360021t v 3600s 220⨯+=计算得: )m (2592720025920000720014360021123600s 22=+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h由量纲1LTv dim -=,得s/m 6.31h /km ,h /km 6.3)h 36001/(km 10s /m 3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s得,at 21t v 6.31s 20+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 21t v 6.31s 20+=计算得: )m (25927200259200007200360042136003600/11026.31s 23=+=⨯⨯+⨯⨯⨯=-1.3设汽车行驶时所受阻力f 与汽车的横截面积S 成正比,且与速率v 之平方成正比。
《普通物理学教程 力学(第二版》电子教案目录精编版
第八章 弹性体的应力和应变
§8.1 弹性体的拉伸和压缩 §8.2 弹性体的剪切形变 §8.3 弯曲和扭转
第九章 振 动
§9.1简谐振动的动力学特征 §9.2简谐振动的运动学 §9.3简谐振动的能量转换 §9.4简谐振动的合成 §9.5 振动的分解 §9.6 阻尼振动 §9.7 受迫振动 §9.8“不守规矩”的摆 混沌行为 §9.9 参数振动自激振动
漆安慎 杜婵英 著
普通物理学教程 力学(第二版)
电子教案
何丽珠 研制
高 等 教 育 出版社 高等教育电子音像出版社
第一章 物理学和力学
§1.1 发展着的物理学 §1.2 物理学研究的方法 §1.3 时间和长度的测量 §1.4 单位制和量纲 §1.5 数量级估计 §1.6 参考系·坐标系与时间坐标轴 §1.7 力学——学习物理学的开始
第十章 波动和声
§10.1 波的基本概念 §10.2 平面简谐波方程 §10.3 波动方程与波速 §10.4 平均能流密度·声强与声压 §10.5 波的叠加和干涉·驻波 §10.6 多普勒效应
第十一章 流体力学
§11.1 理想流体 §11.2 静止流体内的压强 §11.3 流体运动学的基本概念 §11.4 伯努利方程 §11.5 流体的动量和角动量 §11.6 黏性流体的运动 §11.7 固体在流体中受到的阻力 §11.8 机翼的升力
第二章 质点运动学
§ 2.1 质点的运动学方程 §2.2 瞬时速度矢量与瞬时加速度矢量 §2.3 质点直线运动——从坐标到速度和加速度 §2.4质点直线运动——从加速度到速度和坐标 §2.5 平面直角坐标系·抛体运动 §2.6 自然坐标·切向和法向加速度 §2.7 极坐标系·径向速度与横向速度 §2.8 伽利略变换
普通物理学第二版第七章课后习题答案
普通物理学第二版第七章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?[解 答](1)22(30001200)1/601.57(rad /s )t12ωπβ⨯-⨯===(2)22222()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为球t 时刻的角速度和角加速度.[解 答]7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45时,(3)转过90时,A 点的速度和加速度在x 和y 轴上的投影.[解 答](1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==(2)45θ=时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v Rπθωω=+==∴==⨯得(3)当90θ=时,由7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D 点相同。
大学物理刚体力学习题讲解
m ,r
m1
6 解:撤去外加力矩后受力分析如图所示
m1g-T = m1a
Tr=J
a=r a = m1gr / ( m1r + J / r) 代入J =
a
T
P
m1 v 0
m, r1 2 mrFra bibliotek2m1 g a= = 6.32 ms2 1 m1 m 2
∵
v 0-at=0
∴
t=v / a=0.095 s
设m1下降,m2 上升 m1g - T1 m1 a T2 m 2 g m 2 a T1 R T2 R I 1 2 I m3 R 2 a R
2(m1 m2 ) a 联立方程得到 g 2(m1 m2 ) m3 2(m1 m2 ) g [2(m1 m2 ) m3 ]R 4m1m2 m1m3 T1 g 2(m1 m2 ) m3 4m1m2 m2 m3 T2 g 2( m m ) m
①物体状态at=rβ (P-atm)r=Jβ ②拉力情况下Pr=Jβ
挂重物时,mg-T= ma =mRβ, TR =J, P=mg 由此解出
mgR 2 mR J
而用拉力时, mgR = Jβ`
mgR J
/
故有 β`>
3. 三个质量均为m的质点,位于边长为a的等边 三角形的三个顶点上.此系统 对通过三角形中心并垂直于三角形平面的轴的转 动惯量J0=ma2 , 对通过三角形中心且平行于其一边的轴的转动惯 量为JA=1/2ma2, 对通过三角形中心和一个顶点的轴的转动惯量为 JB=1/2ma2 .
普通物理学习题答案全
目录contents第一章力和运动......................... 错误!未定义书签。
1-2 ............................................................................................................. 错误!未定义书签。
1-4 ............................................................................................................. 错误!未定义书签。
1-5 ............................................................................................................. 错误!未定义书签。
1-6 ............................................................................................................. 错误!未定义书签。
1-9 ............................................................................................................. 错误!未定义书签。
1-14 ........................................................................................................... 错误!未定义书签。
第二章运动的守恒量和守恒定律错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章刚体力学习题解答7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。
⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。
边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2(θ:rad,t:s)。
⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。
解:0.222.1==+==dtd dt d t ωθβω⑴t=0时,s m R v v y x /12.01.02.10,2.1=⨯====ωω2222/2.01.00.2/144.01.0/12.0/sm R a a s m R v a a y y n x =⨯===-=-=-=-=βτ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/ssm R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =⨯⨯=︒=-=⨯⨯-=︒-=ωω222222222222/182.0)14.20.2(1.0)(45sin 45sin 45sin /465.0)14.20.2(1.0)(45cos 45cos 45cos s m R R R a s m R R R a y x -=-⨯=-︒=︒-︒=-=+⨯-=+︒-=︒-︒-=ωβωβωβωβ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s2222/77.01.078.2/2.01.00.20/278.01.078.2s m R a s m R a v s m R v y x y x -=⨯-=-=-=⨯-=-==-=⨯-=-=ωβω7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω=10rad/s 逆时针转动,求臂与铅直成45º时门中心G 的速度和加速度。
解:因炉门在铅直面内作平动,所以门中心G 的速度、加速度与B 点或D 点相同,而B 、D 两点作匀速圆周运动,因此s m AB v v B G /155.110=⨯===ω,方向指向右下方,与水平方向成45º;222/1505.110s m AB a a B G =⨯===ω,方向指向右上方,与水平方向成45º7.1.6 收割机拨禾轮上面通常装4到 6个压板,拨禾轮一边旋转,一边随收割机前进。
压板转到下方才发挥作用,一方面把农作物压向切割器,一方面把切下来 的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反。
已知收割机前进速率为1.2m/s ,拨禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度。
解:拨禾轮的运动是平面运动,其上任一点的速度等于拨禾轮轮心C 随收割机前进的平动速度加上拨禾轮绕轮心转动的速度。
压板运动到最低点时,其转动速度方向与收割机前进速度方向相反,压板相对地面(即农作物)的速度s m R v v c /53.02.125.160222-=⨯-=-=⨯πω负号表示压板挤压作物的速度方向与收割机前进方向相反。
7.1.7飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm ,发动机转速2000rev/min. ⑴桨尖相对于飞机的线速率等于多少?⑵若飞机以250km/h 的速率飞行,计算桨尖相对地面速度的大小,并定性说明桨尖的轨迹。
解:⑴桨尖相对飞机的速度: s m r v /3145.1'6022000=⨯==⨯πω⑵桨尖相对地面的速度:机地v v v ϖϖϖ+=',飞机相对地面的速度与螺旋桨相对飞机的速度总是垂直的,s m v /4.696060102503==⨯⨯机地所以,s m v v v /6.3214.69314'2222≈+=+=机地显然,桨尖相对地面的运动轨迹为螺旋线7.1.8桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min /1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π7.2.2 在下面两种情况下求直圆锥体的总质量和质心位置。
⑴圆锥体为匀质;⑵密度为h 的函数:ρ=ρ0(1-h/L ),ρ0为正常数。
解:建立图示坐标o-x,据对称性分析,质心必在x 轴上,在x 坐标处取一厚为dx 的质元 dm=ρπr 2dx ,∵r/a=x/L ,r=ax/L ∴ dm=ρπa 2x 2dx/L 2⑴圆锥体为匀质,即ρ为常数,总质量:L a dx x dm m LLa 2310222ρπρπ===⎰⎰质心:L dx x x LL L a L dx x a dmxdm c 430333//32232==⎰=⎰⎰=⎰ρπρπ⑵x LL xL L h 0)1()1(00ρρρρ=-=-=-总质量:⎰⎰===L a dx x dm m LLa 204103320πρπρ 质心:⎰==⎰⎰=LL dmxdm c L dx x x 0544447.2.3 长度为L 的匀质杆,令其竖直地立于光滑的桌面上,然后放开手,由于杆不可能绝对沿铅直方向,故随即到下。
求杆子的上端点运动的轨迹(选定坐标系,并求出轨迹的方程式)。
解:设杆在o-xy 平面内运动。
因杆 在运动过程中,只受竖直向上的支承力和竖直向下的重力的作用,在水平方向不受外力作用,∴v cx =0,a cx =0,即质心C 无水平方向的移动,只能逆着y 轴作加速直线运动,直到倒在桌面上。
取杆的上端点的坐标为x,y ,匀质杆的质心在其几何中心,由图示的任一瞬间的几何关系可知:4x 2+y 2=L 2(x ≥0,y ≥0)7.3.1 ⑴用积分法证明:质量为m 常为l 的匀质细杆对通过中心且与杆垂直的轴线的转动惯量等于2121ml ;⑵用积分法证明:质量为m 半径为R 的匀质薄圆盘对通过中心且在盘面内的轴线的转动惯量等于241mR证明:⑴取图示坐标,在坐标x 处取一线元,dx dm lm=,它对y 轴的转动惯量为:dx x dI lm 2=,整个细杆对y 轴的转动惯量:21218832/2/332/2/2)(|33ml x dx x I l l lml l lml l lm =+===--⎰⑵在坐标x 处取细杆状质元,xydxl /2-l /2dx x R dx x R dm R mRm 22222222-=-⋅=ππ它对x 轴的转动惯量:dx x R x R dm x R dm dI R m2/322322*********)()()2(2-=-=-=π整个圆盘对x 轴的转动惯量:⎰--=RRR m dx x R I 2/32232)(2π 为了能求出积分,作如下变换:θθθd R dx R x sin ,cos -==θθθ332/3222/32222/322sin )sin ()cos ()(R R R R x R ==-=-代入上式:⎰⎰=-=ππππθθθθθ043203332sin )sin (sin 22d d R RI mR R m据三角函数公式:22cos 1cos ,22cos 1sin 22θθθθ+=-=)4cos 2cos 2()2cos 21()2cos 2cos 21()(sin 21234124cos 141241222cos 14θθθθθθθθ+-=+-=+-==∴+- 24108102360810023621234132)|4sin |2sin (44cos 22cos )4cos 2cos 2(222mR d d d d I mR mR mR =+-=⎥⎦⎤⎢⎣⎡+-=+-=⎰⎰⎰⎰ππππππππθθπθθθθθθθθ7.3.2 图示实验用的摆,l=0.92m,r=0.08m,m l =4.9kg,m r =24.5kg,近似认为圆形部分为匀质圆盘,长杆部分为匀质细杆。
求对过悬点且与盘面垂直的轴线的转动惯量。
解:摆对o 轴的转动惯量I 等于杆对o 轴的转动 惯量I l 加上圆盘对o 轴的转动惯量I r ,即I=I l +I r .根据 平行轴定理2221112232212222113222211322(),()()4.90.9224.50.0824.5(0.920.08)26l l l l l r r r l r r I m l m m l I m r m l r I m l m r m l r kgm =+==++=+++=⨯⨯+⨯⨯++=7.3.3 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
解:大圆盘对过圆盘中心o 且与盘面垂直的轴线(以下简称o 轴)的转动惯量为221MR I =.由于对称放置,两个小圆盘对o 轴的转动惯量相等,设为I ’,圆盘质量的面密度σ=M/πR 2,根据平行轴定理,2412222222124))(()('rM r r r I Rr M R +=+=πσπσ 设挖去两个小圆盘后,剩余部分对o 轴的转动惯量为I ”)/2('2"24222122122124R r r R M Mr MR I I I R r M --=--=-=7.3.5一转动系统的转动惯量为I=8.0kgm 2,转速为ω=41.9rad/s ,两制动闸瓦对轮的压力都为392N ,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为r=0.4m ,问从开始制动到静止需多长时间?解:由转动定理:s rad I I /68.15,0.84.03924.02====⨯⨯⨯τββτ制动过程可视为匀减速转动,t ∆∆=/ωβs t 67.268.15/9.41/==∆=∆βω7.3.6 匀质杆可绕支点o 转动,当与杆垂直的冲力作用某点A 时,支点o 对杆的作用力并不因此冲力之作用而发生变化,则A 点称为打击中心。