测井资料解释及应用
测井基础知识及其应用
流呈一定厚度的水平层状径向流入地层,从而减小井 的分流作用和围岩的影响,提高分层能力。 目前多用双侧向测井、微球型聚焦测井、八侧向
3、双侧向测井--电极系及其电场分布
电极系:结构见图。
深侧向由于增加了一对柱状屏
B1
由于测量结果受井内泥浆、围岩、侵入带等的影响, 不是地层真实的电阻率,而称为视电阻率,所以又 称视电阻率测井。
a、普通电阻率测井基础
电极系:是按一定顺序排列的一组电极。由供电电极A、B 和测量电极M、N组成。
电极类型 :成对电极,如AaMbN中的MN
不成对电极(单电极),如AaMbN中的A电极
应用:常与双感应组合,在淡水泥浆侵入 很深和低阻环带时,用来确定Rt和Rxo.
Rmf>Rw时, 油层双感应—八 侧向曲线呈低侵 特征: RILD>RILM
当Rmf>Rw时, 水层的双感 应—八侧向曲 线呈高侵特征: RILD<RILM
感应测井
提出:前面介绍的电阻率测井要求井内介质是 导电的,而在油基泥浆和空气钻井的井中均无 法测量。为此提出了以电磁感应原理为基础的 感应测井,以实现对地层电阻率的测量。
双极供电 正装(底 部)梯度 电极系
双极供电 倒装(顶 部)梯度 电极系
称
目前常用: 4米底部梯度电阻率曲线 2.5米底部梯度电阻率曲线
主要用途:
a、定性或半定量划分油气水层;确 定套管鞋深度;
b、求岩层的真电阻率; C、划分岩性剖面和确定岩层界面;
砂泥岩剖面,一般高阻层为砂 岩油层,低阻层为泥岩 d、地层对比。
电极系结构
b测量原理:电极系及 探测范围 微梯度:4 ~5cm 微电位:8~10cm 微梯度的数值主要受泥 饼的影响; 微电位的数值主要受冲 洗带的影响。
测井资料综合解释经典
测井资料综合解释经典测井是油气勘探开发过程中极为重要的一项技术手段,通过对地下岩层进行电磁、声波、核子等各种物理方法的测量,获取有关地层、含油气性质等基本参数的数据。
测井数据对于判断油气藏的性质、水文地质条件、岩性变化等都具有重要的参考价值。
本文将综合解释几种经典的测井资料,包括测井曲线、测井解释方法等。
一、测井曲线1. 自然伽马测井曲线(GR)自然伽马测井曲线测量的是地层的自然伽马辐射强度,是一种常用的测井曲线之一。
自然伽马辐射是由岩石中的放射性元素,如钍、钾和铀等的衰变所产生的。
GR曲线的峰值反映了岩石的放射性物质含量,通过与岩层进行对比分析,可以判断岩层的类型和含油气性质。
2. 电阻率测井曲线(ILD、Rt)电阻率是指物质对电流的阻碍程度,电阻率测井曲线测量了地层的电阻率值。
岩石的电阻率与其孔隙度、含水饱和度以及岩石的含油气性质密切相关。
ILD曲线是测量液体饱和度等含油气性质的重要参数,而Rt曲线通常用于描述岩石的电阻性质。
3. 声波测井曲线(DT、ΔT)声波测井曲线主要是通过测量岩石对声波的传播速度来获取有关地层岩性和孔隙度等参数。
DT曲线即声波传播时间曲线,反映了声波在地层中传播所需的时间,ΔT曲线是声波时差曲线,它可用于计算地层中流体的饱和度。
二、测井解释方法1. 直接解释法直接解释法是根据测井曲线的特征进行判断、推断,结合地层信息和岩性特征,直接得出结论。
例如,根据GR曲线的峰值及其分布情况,可以判断油气层的存在与否,以及油气层的厚度和含油饱和度等。
2. 相关系数法相关系数法是通过建立地层参数之间的统计关系来进行解释。
通过计算测井曲线之间的相关系数,可以得出地层岩性、岩相、孔隙度、饱和度等参数的推断。
例如,通过计算GR曲线与含油饱和度的相关系数,可以判断油气层的含油饱和度等。
3. 分层解释法分层解释法是根据地层的特点和垂向变化进行测井解释。
通过分析测井曲线的规律性变化和层段特点,将地层划分为若干层段,再对每个层段进行解释。
测井原理及方法
离子扩散;-扩散电动势 • 岩石颗粒表面对离子有吸附作用;-吸附电动势 • 泥浆滤液向地层中渗透作用。-过滤电动势
自然电位测井
自然电位的测量
自然电位SP的理论计算
自然电流: 测量的自然电位异常幅度值Usp:自然电流流过井内泥浆 柱电阻上的电位降:
1、 常规测井资料原理及应用
1. )电阻率测井电阻率测井 2. )自然电位测井 3. )声波测井 4. )伽马和密度测井 5. )补偿中子测井
电阻率测井
电法测井是地球物理测井中三大测井方法之一,它根据岩层电学性 质的差别,测量地层的电阻率、电导率或介电常数等电学参数,用来研 究地质剖面,判断岩性,划分油气水层,和其它方法一起研究储集层的 含油性、渗透性和孔隙性等性质。
a.主要类型
(2)微侧向(MLL): 微电极测井中泥饼分流作用太大,测RXO不准确,采用聚焦原理,形 成微侧向测井。
(3)微球形聚焦(MSFL): 微侧向MLL探测浅,受泥饼影响大。MSFL方法探测浅,又基本不受泥饼影 响,是目前最好的RXO测量方法。
(4)八侧向(LL8): 以上均为贴井壁测量,LL8是不贴井壁测量Rxo的方法。它是在七侧 向电极系下方附近设屏流回路电极B1,在上方较远处设回路电极B2。
• 厚层可以用“半幅点” 确定地层界面。
地层电阻率的影响
• 含油气饱和度比较高的储集层,其电阻率比它完全含水时rsd明显升 高,SP略有下降。一般油气层的SP幅度略小于相邻的水层。Rt/Rm 增大,曲线幅度减小。
• 围岩电阻率Rs增大,则rsh增大,使自然电位异常幅度减小。
泥浆侵入带、井径的影响
b.电极系分类: 通常供电和测量共4个电极,一个在地面,井下三个组成电极系。 梯度:单电极到相邻成对电极的距离大于成对电极间的距离。 电位:单电极到相邻成对电极的距离小于成对电极间的距离。 梯度电极系进一步分为:底部(正装)梯度、顶部(倒装)梯度。
测井资料及其应用
地面仪器
测井仪器车
下井仪器
2、测井资料解释与评价
测井信息是地层评价的主 要手段。主要应用于: 储层评价 油气资源评价 油田勘探及开収 油藏开収及管理 地层评价 地质、钻井和采油工 程 最核心的应用是储层 评价,油气水层评价。 测井评价 技术发展历史
储层定性解释
1960年~1979年
1980年~1995年
25
测井资料的应用
测井具有成本低、垂直分辨率高、连续 性好等特点,被广泛应用于地层评价,地 质、钻井和采油工程,以及矿产资源(如 金属、煤、钾盐、水文工程)勘探开发等 方面。
1、自然电位测井
自然电位测井的应用
①划分渗透性地层。 ②判断岩性,进行地层 对比。 ③计算泥质含量。 ④确定地层水电阻率。 ⑤判断水淹层。 ⑥沉积相研究。
储层定量评价 单井精细解释 多井资料综合解释 油藏描述 地质研究 工程应用
1995年~至今
3、测井方法和理论
• 电磁测井—岩石电学性质 • 声波测井—岩石声学性质 • 核测井—放射性、核衰变、原子物理
常规测井与现代测井
常规测井技术
单一探头
现代测井新技术
阵列或扫描探头
分辨率低
测量平均物理量 非定向测量
含水饱和度 解 (%) 0 残余 可动 释 100 层 束缚水饱和度 号 100 (%) 0 50 (%) 井径 (cm) -25
85
0 25
100
(%)
0
砂泥岩地层测井数字处理成果图
固井质量评价图格式 Q/SL 1273-2001
236
胜利石油管理局测井公司
井 声波变密度测井 固井质量评价图
深度比例 1:200
原状地层
测井资料解释(煤田测井解释)
对比泥质砂岩体积模型和煤的体积模型: 泥质砂岩的岩石骨架相当于碳分, 泥质相当于灰分, 而孔隙水则相当于水分。
煤的声波测井、密度测井及中子测井解释公式与泥质砂岩的测井解释公式具有相 同的形式:
t 1 Vatc Vata t f b 1 Vac Vaa f N 1 Vac Vaa f
上式中Va’=V0/V为灰分的相对体积含量;Δtc、Δta、Δtf分别为碳、灰、水的声波时差; δc、δa、δf分别为碳、灰、水的体积密度;Φc、Φa、Φf分别为碳、灰、水的含氢指 数;为水分的相对体积含量。
煤层的井径曲线受钻井工艺和钻井液性能影响,煤层会发生垮塌,使井径扩大。 煤层的声反射系数比其它地层都小,声波井周成像是记录声波在井壁处反射波的 能量,由于煤层反射系数小,声波透过地层的能量多,而反射的能量少,因此图像 颜色深。
煤储层孔渗特征
1. 煤储层孔隙结构 属裂缝—孔隙型结构,煤基质被天然裂缝(割理)网分隔成许多方块,每个方块 由煤粒和微孔隙组成。基质是储气空间,甲烷被吸附在微孔的表面,渗透率很低, 一般为(10-2~10-6)×10-3μm2。在浓度差的作用下,甲烷透过基质扩散到裂缝中, 裂缝在煤的总孔隙体积中占次要地位,储气功能很低,可有少量游离气储存其中, 但裂缝的渗透率高,是甲烷渗流的主要通道。 煤中的天然裂缝(割理)是煤化作用和构造应力影响的结果。成大致相互垂直的两 组,主要的、延伸较大的一组叫面割理,次要的、与面割理大致垂直的一组叫端割 理。割理是煤中流体运移的主要通道,并且有方向性,因而它是控制煤层气方向渗 透的主要因素,割理间距是煤储层模拟中的一个重要参数。
生产测井原理与资料解释
生产测井原理与资料解释生产测井原理是一种通过测量井内流体的性质和流动特征来评估油井的产能和储层性质的方法。
它是油气开发过程中重要的工具,可以为油气勘探和开发提供重要的数据支持。
基于不同的原理和方法,生产测井可以得到不同的信息,包括油井产能、油层储量、油气组分、储层渗透率等。
生产测井资料解释是指通过对生产测井资料进行分析和解释,得出有关油井和储层性质的结论。
生产测井资料一般以测井曲线的形式呈现,包括电阻率曲线、自然伽马曲线、声波曲线等。
通过对这些曲线进行解析,可以获得有关储层性质和井内流体的定量和定性信息。
电阻率测井是生产测井中最常用的方法之一、它通过测量井内岩石的电阻率来评估储层的孔隙度和渗透率。
在电阻率测井曲线中,较高的电阻率通常表示较低的孔隙度和较低的渗透率,而较低的电阻率则表示反之。
通过对电阻率曲线进行解释,可以判断油井是否有产能,以及井间的储层性质差异。
自然伽马测井是用来测量井内地层放射性物质含量的方法,它可以用于判断油井中的油气含量、岩石类型、垂向流动性等。
自然伽马曲线可以显示地层中放射性元素的分布情况,通过分析曲线的形态和取值,可以判断储层的油气饱和度和岩石类型。
声波测井是一种测量地层中声波传播速度和频谱特征的方法,它可以用来评估储层的孔隙度、渗透率和井内流体性质。
声波测井曲线中的传播速度通常与地层的密度和波速有关,通过测量速度的变化,可以获得有关储层和井内流体的信息。
除了上述方法外,还有许多其他的生产测井原理和方法,如渗压测井、渗透率测井、流量测井等。
每种方法都有其特定的原理和应用范围,可以根据不同的需求选择合适的方法。
总之,生产测井原理是通过测量井内流体的性质和流动特征来评估油井的产能和储层性质的方法。
通过对生产测井资料的解释,可以获得有关油井和储层性质的重要信息,为油气勘探和开发提供数据支持。
在实际应用中,可以根据不同的需求和情况选择合适的生产测井原理和方法,以获得准确可靠的结果。
测井技术及资料解释
测井技术及资料解释测井技术及资料解释应用2022年一、石油测井技术方法二、石油测井地质应用三、测井资料的处理解释(一)石油测井技术概述石油测井技术是采用声、电、磁、放射性等物理测量方法, 应用电子技术及计算机等高新技术,在井中对地层的各项物理参数进行连续测量, 通过对测得的数据进行处理和解释,得到地层的岩性、孔隙度、渗透率、含油饱和度及泥质含量等参数。
石油测井技术与录井、取心等其他技术手段相比,它之所以成为地层和油气资源评价的关键技术手段,主要是由于其具有观测密度大、高分辨率与纵向连续性,以及由众多信息类型组成的综合信息群等技术优势。
三维地震服务于油气勘探和开发的全过程裸眼井测井评价裸眼井测井资料油井动态测井资料电缆测试资料射孔地震合成剖面测井沉积相分析地层评价(逐井) 岩性描述储层分析含油气评价储量计算勘探初期油藏模式分析油田解释模型完井评价孔隙度饱和度渗透率压力剖面勘探中后期油藏描述开发初期油藏模拟水泥胶结套管状况监测酸化压裂效果防砂效果产液剖面注入剖面温度压力剖面剩余油分布开发中期油藏工程开发后期采油工程油藏监测油田生产动态(二)石油测井技术方法迄今为止,测井技术已经历了四次的更新换代,这一发展进程,实质上是一个在更高层次上,形成精细分析与描述油藏地质特性配套能力的过程,是一个不断提高测井发现和评价油气藏能力的过程。
第一代:模拟测井(60年代以前、80年代末) 第二代:数字测井(60年代开始、90年开始)第三代:数控测井(70年代后期、97年开始)第四代:成像测井(90年代初期、2022年)测井方法电学声学核物理学力学磁学光学量子力学实验学电阻率测井声波测井核测井电缆地层测试井方位测井流体成份测量核磁共振测井岩电实验室测井技术应用电子学、计算机科学、传感器技术、精密加工和材料学的成果。
测井技术采用声、电、磁、放射性等物理测量方法, 应用电子技术及计算机等高新技术制造成测井仪器,在井中对地层的各项物理参数进行连续测量,现有的测井方法多达几十种.1 地层电阻率测井方法:双侧向测井双感应测井阵列感应测井微电极测井微球型聚焦测井 2.5米电位电极系测井 4.0米梯度电极系测井2、声学测井技术补偿声波长源距声波声波测井资料应用:确定岩性计算储层孔隙度及渗透率识别地层含流体性质计算岩石力学参数阵列声波数字声波多极阵列声波(Vp、Vs、Vst)垂直地震(VSP)刻度地面地震资料3、放射性测井技术自然伽马(GR) 补偿中子孔隙度(CNL) 岩性密度(DEN,Pe) 补偿密度(DEN) 自然伽马能谱(U、Th、K、SGR、CGR) 中子伽马(NGR)A、自然电位测井资料应用1.划分渗透性储层2.判断油水层(异常幅度大小)和水淹层(泥岩基线偏移) 3.地层对比和沉积相研究 4.估算泥质含量C SP SP min SP max S P min 2 GCUR *C 1 VS H 2GCUR 1自然电位5.确定地层水电阻率SSP K * lg Rmfe Cw K * lg Rwe CmfB、自然伽马测井资料应用1.划分岩性和地层对比高放射性储层:火成岩、海相黑色泥岩等;中等放射性岩石:大多数泥岩、泥灰岩等;低放射性岩石:一般砂岩、碳酸盐岩等自然伽马2.划分储层砂泥岩剖面:低伽马为砂岩储层,在半幅点处分层碳酸盐岩剖面:低伽马表示纯岩石,需结合地层孔隙度分层B、自然伽马测井3.计算地层泥质含量GR GRmin C GRmax GRmin 2GCUR *C 1 VS H 2GCUR 1自然伽马4.计算粒度中值粒度大小与沉积环境、沉积速度及颗粒吸附放射性物质的能力有关,岩性越细,放射性越强。
测井资料解释及应用
3.标准测井图 第一道: 道号40~237
;通常放R25曲线,每 格 2 Ω·m。 第 二 道 : 道 号237~434;自然伽马 GR和自然电位SP(虚线 )。 第三道: 道号434 ~631;GR为15API每格 ,SP为12.5mV每格
第四道:道号631~828
;井径曲线CAL和钻头 直线BS。第五道:道号 828~986。CAL和BS为 2in(或5cm)每格。
典型油水同层
上油层下油水同层(30号层) GR≈52API; 该层中上部SP负异常幅 度差小于底部; AC≈ 120 µ s/ft, 这 说 明 该层孔隙性较好。 RILD=9~10Ω·m, 电 阻 率 值明显高于邻近的水层, 感应电阻率低侵特征明 显, R 深 >R 中 >R 浅 ,该层 底部电阻率有下降趋势, 说明含油性变差.
4.井斜-方位图 第一道:道号40~237; 第二道:道号237~434; 第三道:道号434~631; 第四道:道号631~828;
典型的油、气、水层
典型油层
④深探测电阻率高,是典型水层的3~5倍, 束缚水饱和度越低差别越大,深、中、浅 三电阻率组合显示为低侵电阻率模式,即 R深>R中>R浅(极高地层水矿化度的低电阻率 油层也可显示高侵电阻率模式或无侵入模 式);
Байду номын сангаас
典型的油、气、水层
典型油层
⑤成果图上,含油饱和度高,含水饱 和度低,且与束缚水饱和度几乎相等 (Sw≈Swir);有较好的可动油气孔 隙体积即残余油少,可动油多。
常规井出图格式简介
①常规测井解释所提供图件包括测井曲线图、 测井图、成果图、成果表、标准测井图、井斜方位图; ②如果为斜井,除了以上图件外,还包括垂直 测井曲线图、垂直测井图、垂直成果图、垂直 成果表、垂直标准测井图; ③如果该井有钻井取心,出图时还应包括放大 曲线图。
随钻测井资料解释方法研究及应用
随钻测井资料解释方法研究及应用一、本文概述本文旨在探讨随钻测井资料解释方法的研究与应用。
随钻测井技术作为现代石油勘探领域的重要技术手段,对于提高钻井效率、优化油气藏开发策略具有重要意义。
本文将首先介绍随钻测井技术的基本原理及其在石油勘探中的应用背景,阐述其相较于传统测井技术的优势。
随后,文章将重点分析随钻测井资料解释方法的现状与挑战,包括数据处理、信号提取、地层识别等方面的难点问题。
在此基础上,本文将深入探讨随钻测井资料解释方法的研究进展与创新点,包括新型算法的开发、多源信息融合技术的应用以及技术在资料解释中的潜力。
本文将通过具体案例分析,展示随钻测井资料解释方法在实际应用中的效果与价值,为相关领域的科研工作者和工程技术人员提供参考与借鉴。
二、随钻测井资料解释方法基础随钻测井(Logging While Drilling,LWD)是石油勘探领域中的一种重要技术,它通过在钻井过程中实时测量地下岩石的物理性质,为地质评价和油气藏描述提供关键数据。
随钻测井资料解释方法的基础主要建立在对测量数据的准确理解、合理的解释模型以及先进的处理技术上。
随钻测井资料解释需要深入理解各种测井信号的物理含义和影响因素。
例如,电阻率、声波速度、自然伽马等测井参数,它们分别反映了地下岩石的导电性、弹性和放射性等特性。
这些参数的变化不仅与岩石的矿物成分、孔隙度、含油饱和度等地质因素有关,还受到井眼环境、仪器性能等多种因素的影响。
因此,在解释随钻测井资料时,需要充分考虑这些因素,以确保解释的准确性和可靠性。
随钻测井资料解释需要建立合理的解释模型。
这些模型通常基于地质学、地球物理学和石油工程等领域的专业知识,用于将测井数据转化为地质参数和油气藏特征。
例如,通过电阻率测井数据可以推断地层的含油饱和度,通过声波速度测井数据可以估算地层的孔隙度等。
这些模型的建立需要充分考虑地质条件和实际情况,以确保解释的准确性和实用性。
随钻测井资料解释还需要借助先进的处理技术。
测井资料综合解释
较均匀。
(2)裂缝性储集层 因裂缝较发育而具有储集性。 裂缝发育程度有限、孔隙度很 低(5-7%),较高者10%左右, 裂缝性储集层,对测井技术的 要求较高。
4、岩性评价
(1)岩石类别 测井类别。一般为:砂岩、石灰岩、 白云岩、硬石膏、石膏、盐岩、花 岗岩、灰质砂岩、灰质白云岩等。 (2)泥质含量和矿物含量 泥质含量是岩石中颗粒很细的细粉 砂(小于0.1mm)和湿粘土的体积 占岩石体积的百分数。
10、测井系列 1、裸眼井地层评价测井系列:未下套管的 裸眼井中,一套测井方法。 2、 套管井地层评价测井系列:已下套管的 井中一套综合测井方法。 3、生产动态测井系列:地层产出或吸入流 体的情况下,一套综合测井方法, 4、工程测井系列:裸眼井或套管井中,确 定井斜状态、固井质量、酸化或压裂效果、 射孔质量等测井方法
8
9
地层倾角
双感应—八侧向(上古)
表2 油探井测井系列
1:500测井项目 (全井 ) 双感应 声波时差 自然电位 自然伽马 井径 井斜 1:200测井项目 (目的层段) 双感应—八侧向 声波时差 补偿中子 补偿密度 自然伽马 自然电位 微电极 4米 井径 选测项目 地层倾角 自然伽马能 谱
1 2 3 4 5 6
环空测井仪、生 产测井组合仪
DDL生产组合测 井仪
3
4 5 6 7
气井产气剖面测井
注水井吸水剖面测 井 注水井吸水剖面测 井 注气井吸水剖面测 井 注气井吸水剖面测 井
流体密度/持水率、流量、自然 DDL生产组合测 伽马、磁定位、井温、压力 井仪
自然伽马、磁定位 井温 流体密度/持水率、流量、自然 伽马、磁定位、井温、压力 流体密度/持水率、流量、自然 伽马、磁定位、井温、压力 125自然伽马磁定 位 井温、噪声井温 仪 DDL生产组合测 井仪 DDL生产组合测 井仪
测井资料解释及应用
QK-103
常规油层GR一般在60API左右,SP负异常明显, 声波时差一般大于270μs/m,电阻率大于6Ωm,这类 油层特征明显,一般易于识别。
的响缚图
基束水(
本 因 素
缚 水 饱 和 度 和 形 成 低 电 阻 率 油 层
饱 和 度 增 加 , 表 明 粒 度 中 值 是 影
) 反 映 随 着 粒 度 中 值 的 减 小 束
a
Swir(%) 100
80
60Βιβλιοθήκη 40200
MD(mm)
0
0.05
0.1
0.15
0.2
图2-8(a) 台兴油田粒度中值与束缚水关系图
表2-1 砂岩粒度中值、束缚水饱和度和电阻率分析数据表
井名 层号
深度 (m)
4 2641.3 -- 2644.0
RT (Ωm) 2.94
SH (%)
6.14
POR (%) 21.12
Swir (%) 48.37
MD (mm) 0.0557
结论 试油结论 油层
6 2655.1 -- 2656.3 3.01 4.37 19.41 50.38 0.067 油层
1、从自然电位和电阻率台阶看,水系发 生了巨变。
2、从测井曲线形状变化可看出,盐城组 大套砂层转入三垛组的砂泥岩频繁交互,电阻 率和声波时差由高值到低值,自然电位由正异 常到负异常。
测井特征图如下所示。
三垛组(Es)
三垛组地层也分为两段,即垛二段(Es2)和垛 一段(Es1),岩性为砂泥岩互层。
生产测井资料的解释及应用
井下温度测试
1.用井温剖面曲线判断注水井吸水层位
水井注入水的温度和吸水层温度是有差别的。
若注入冷水,水温在吸水层处温度显低值。因注入
水冷却吸水层,使其温度降低,而且注水量越大,
冷却程度越大。若注热水,热水加热了吸水层,使
其温度升高。同样,注入量越大,加热程度越大。 这样,水就使吸水层偏离了正常温度变化规律,其 偏离的程度与吸水层的注水量及注水强度度有关。 (如图)
产出剖面测井资料的解释方法及应用 产液状态示意图
产出剖面测井资料的解释方法及应用
具体方法:以油水两相产出为例 设仪器测得的各点合层体积流量 分别为 Q1 、 Q2 、 Q3 ;合层持水率 分别为Yw1、Yw2、Yw3。
产出剖面测井资料的解释方法及应用
1.计算合层产水量 第一层合层产水量 Qw1=Q1· Yw1(m3/d)
大家好!
生产测井资料的解释及应用
主讲人
郭新军
前 言
前 言
在油井投产后至报废止的整个生产过程中,
凡采用地球物理测井工艺技术进行井下测量并录
取资料的工作,统称为生产测井。这里提及的油
井,是油田为勘探和开采石油而钻各种井眼的统 称。包括产油井、注入井、观察井和资料井。 生产测井属于地理物理测井的一个分支。它是相 对完井(裸眼井)测井而提出来的,两者在部分
(2)偏心配水器和封隔器 (3)油管外壁和套管内壁(如死油、 管柱局部腐蚀) 出现污染影响后,解释必须进行污 染校正。
放射性同位素示踪法测井
(三)应用
1.定量测出分层水量
2.定性判断套管漏失点如:文检2井(吸水剖面)
3.可发现套管窜槽( 如文侧15-40井) 4.利用水井注入剖面定性推测产出剖面 (1)吸水剖面基本反映了连通油井同期的产液剖面 (2)油井水淹层明显地对应着主力吸水层 (3)随着吸水剖面的变化,连通油井产出剖面也相 应地变化。
核磁共振测井资料解释与应用
核磁共振测井资料解释与应用核磁共振测井(Nuclear Magnetic Resonance Logging,简称NMR 测井)是一种常用的地质测井技术,利用核磁共振原理对地下岩石进行非侵入性测量,可获取地层各种物理和化学参数的连续变化情况。
NMR测井资料是分析地层组成、孔隙结构和流体性质等信息的重要工具,在油气勘探、地下水资源评价和地质储层评价等领域有广泛的应用。
NMR测井资料提供了多个参数,包括有效孔隙度、孔隙尺度分布、孔隙直径、孔隙连通性和时间常数等。
根据这些参数,可以评估岩石孔隙结构特征,如孔隙度、孔隙分布、孔隙连通性,进而判断流体的储存和流动情况。
此外,NMR测井资料还可以提供岩石矿物组成信息,以及含油气饱和度、流体相态(油、气、水)比例和流体饱和度等。
NMR测井资料在油气勘探中的应用主要有以下几个方面:1.矿石特性评估:NMR测井资料可以获取到岩石的孔隙结构参数,如孔隙度、孔隙连通性等,进而评估储层的孔隙度分布、孔隙尺度、孔隙连通性等。
这些参数对于判断储层的储存和流动能力非常重要,对油气资源的评估和开发有着重要的指导意义。
2.资源评价和储量估算:NMR测井资料可以提供岩石中流体的类型、饱和度和流体饱和度等参数,这些参数对于评估油气资源的潜力和储量有着重要的作用。
结合地震和地质资料,可以对储层进行综合评价和储量估算,为油气勘探和开发决策提供科学依据。
3.储层评价和改造:NMR测井资料可以提供储层的孔隙结构参数,如孔隙度、孔隙连通性等,对于储层的评价和改造有着重要的作用。
通过对NMR测井资料的分析,可以确定储层的渗透率、孔隙度分布、孔隙连通性等,进而指导油气勘探和生产管理。
4.地下水资源评价:NMR测井资料可以提供地层中含水饱和度、孔隙结构和含水层分布等参数,对地下水资源的评价和开发有着重要的作用。
利用NMR测井资料,可以评估地下水资源的潜力和可开发性,从而指导地下水资源的开发和管理。
总之,NMR测井资料是一种重要的地质测井技术,可以提供地层的孔隙结构、流体性质和岩石组成等信息。
测井资料综合解释
测井资料综合解释测井是油田勘探开发中非常重要的技术手段之一。
通过测井可以获取井筒内地层的物理性质和地质信息,帮助油田工程师和地质学家做出准确的解释和预测。
本文将全面介绍测井资料的综合解释方法和技巧。
一、测井资料的分类与应用范围测井资料按测井方法可分为电测井、声测井、核子测井等多种类型。
不同类型的测井方法能提供不同的地层信息。
电测井主要用于测量地层的电性质,如电阻率、自然电位等;声测井则用于测量地层的声学性质,如声波传播速度、衰减系数等;核子测井则用于测量地层的核辐射特性,如自然伽马辐射强度、中子散射截面等。
测井资料的应用范围十分广泛。
在勘探阶段,测井资料可以帮助确定油藏的存在与分布情况;在开发阶段,测井资料可以评价油层的产能、储量和岩石物理性质;在油井改造和采油过程中,测井资料可以指导井筒的完井和油藏的增产措施。
二、测井资料的解释方法1. 初步解释:初步解释是对测井曲线进行质量控制和基本分析的过程。
通过检查测井曲线的合理性、对比相邻测井曲线的关系,可以初步了解地层的特征和可能存在的问题。
初步解释的目的是将测井曲线的主要特征进行定性和定量描述,为后续的综合解释提供基础。
2. 地层分类解释:地层分类解释是根据测井数据中的地层识别信息,将井段划分为不同的地层单元。
通过对测井曲线的综合分析,结合岩心分析结果和模拟数据,确定地层的划分标准和解释模型。
地层分类解释的目的是将复杂的测井数据转化为可操作的地层单元,为后续的油藏评价和井筒设计提供基础。
3. 物性解释:物性解释是根据测井曲线的响应特征,定量计算地层的物理性质。
通过建立地层物性与测井响应之间的关系模型,可以推测地层的孔隙度、饱和度、渗透率等物理性质。
物性解释的目的是为油田工程师提供关键的地层参数,为油藏开发和生产决策提供依据。
4. 地质解释:地质解释是将测井资料与地质模型进行对比和综合,揭示地层的地质特征和构造特征。
通过将测井曲线与地质模型进行匹配,可以推断地质界面的位置、断层的存在以及油藏分布的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图(a)反映随着粒度中值的减小束 缚水饱和度增加,表明粒度中值是影 响束缚水饱和度和形成低电阻率油层 的基本因素
Swir(%) 100
80
60
40
20
0
MD(mm)
0
0.05
0.1
0.15
0.2
图2-8(a) 台兴油田粒度中值与束缚水关系图
表2-1 砂岩粒度中值、束缚水饱和度和电阻率分析数据表
井名 层号
深度 (m)
4 2641.3 -- 2644.0
RT (Ωm) 2.94
SH (%)
6.14
POR (%) 21.12
Swir (%) 48.37
MD (mm) 0.0557
结论 试油结论 油层
6 2655.1 -- 2656.3 3.01 4.37 19.41 50.38 0.067 油层
7 2658.9 -- 2663.5 4.3 12.64 19.15 42.97 0.059 油层
测井资料解释及应用
2012年11月
一、江苏地区测井特征
(一)地层与测井曲线特征
盐城组(Ny) 盐城组地层分为两个段:即盐二段
(Ny2)和盐一段(Ny1),由于埋深浅, 该组段地层成岩条件差,岩性疏松,砂 层(岩)大套堆积沉积成体。
测井特征:电阻率和声波时差高,井径 扩径严重,自然电位呈正异常。测井特征 见下图。
低阻油层GR一般在80API左右,SP具有明显负异常, 声波时差在270-350μs/m之间,电阻率一般低于6Ωm,有 的层甚至在3Ωm左右,这类油层在解释时容易被漏失。
QK-122
阜三段台Ⅲ1-台Ⅲ5油组呈正旋回沉积,如QK112井2739-2796米, 低阻油层主要存在于正旋回沉积相带的中、上部,岩性细以及频繁的 砂泥岩薄互层是该区形成低阻油层的主要因素。
三段变差,声波时差一般在230-250μs/m,测
井特征图如下所示。
腰滩油田的Ef1地层砂岩发育,钻井揭示的层位
较短,阜二段底部砂泥岩薄互层结束后进入阜一
段厚砂体,测井特征图如下所示。
泰州组( Et) 草舍油田的Et岩性、物性及电性特征与 Ef1相近,但底块砂岩的厚度较大,声波 曲线反映的物性条件比Ef1 要好,测井特 征图如下所示。
2 2330.0 -- 2331.4 3.73 14.57 21.71 51.7 0.0678 油层
3 2337.8 -- 2342.0 4.74 6.7 24.34 38.69 0.078 油层
11 2418.3 -- 2419.3 2.07 6.79 26.92 51.71 0.0535 油层
12 2424.8 -- 2427.5 2.46 7.19 26.93 40.83 0.044 油层
阜宁组(Ef)
阜宁组分为四个段,即阜四段(Ef4)、阜三段 ( Ef3 )、阜二段( Ef2 )、阜一段( Ef1 )。 Ef4地层岩性以泥岩为主; Ef3- Ef1地层岩性为砂泥岩互层。
Ef3岩性组合为上砂组、中部泥岩段、 下砂组,在测井曲线上显示出很明显的 特点,不论是在溱潼凹陷还是在金湖凹 陷、海安凹陷都具备这一特点,很容易 区分和识别。
(4)注水开发区块的水淹层解释,划分水淹级别,通过对区块的整 体评价,能够指示剩余油的分布情况。
(5)应用地层倾角测井资料进行地质构造和沉积相的研究。 (6)通过多井解释,可对油藏类型、油水关系、产能和储量等进行
综合研究。
• 套管井测井评价
(1)应用声幅或声波变密度测井评价水泥胶结质量。
(2)通过多次测量碳氧比、中子寿命等项目,能动态监 测油层含油饱和度的变化规律。
上砂组 下砂组
为了说明测井解释对曲线综合分析
及曲线形态匹配变化(微观分析)的重 要性,我们以吉1井和苏都290井为例来 分析(从电性特征来分析岩性、物性及 含油性)。
吉1井阜一段
苏都290井阜一段
边城油田的主要含油层位也在阜宁组三段, 该油田阜三段上、下砂组都有油层出现,上、下 砂组水的矿化度有反转现象,即下砂组水矿化度 低于上砂组。因此,我们在判别下砂组油层时, 设置的电性标准要高于上砂组。
8 2669.9 -- 2672.7 4.9 4.51 16.68 40.82 0.0683 油层
QK-103 9 2673.3 -- 2676.6 11.95 2.6 23.38 22.74 0.0938 油层
10 2712.3 -- 2713.8 4.88 3.74 21.62 32.76 0.0856 油层
• 裸眼井测井评价
(1)进行探井和生产井的完井解释,计算孔隙度、渗透率、含油饱 和度和泥质含量等参数,划分油气水层。
(2)对于复杂岩性地层,如火成岩、元古界和太古界潜山地层,测 井解释可以识别岩性和裂缝,尤其是应用声电成像资料可以对裂 缝性储层进行准确评价
(3)应用组分分析解释软件能够定量计算地层的矿物组份,如石英、 长石、方解石、白云石等矿物的百分含量,该方法对复杂岩性的 评价意义重大。
2、如何做好测井资料解释?
油气地质所需的参数没有一个是测井能直接测量的,都是 通过解释模型反演来得到,虽然测井技术已经成为公认的油气 评价的关键手段,但并不意味着已经形成了固定的可以覆盖多 种地质条件的分析模式。
利用测井资料分析评价油气层始终是一件带有风险性的活 动,这不仅表现在测井资料指示作用与地下实际的地质本体有 较大距离,需要相当复杂的“破译”或还原解释过程,而且还 在于地下地质原貌的复杂性和模糊性,任何人都没有完全的把 握,在解释过程中获得与实际几乎一致的答案。
(3)应用注采剖面资料,确定单层的注入量或采出量, 识别串槽位置,合理调整注采层位。
(4)在工程方面,应用井下电视测井确定套管破损程度 及位置。
• 专项研究
(1)深层气的识别方法。 (2)低阻油层及低孔低渗储层的解释方法研究。 (3)岩石破裂梯度及相关的岩石力学参数研究。 (4)其它测井解释相关方面的研究。
试油为油层
北1-3井
阜宁组二段:目前阜二段ຫໍສະໝຸດ 层含油主要出 现在金湖凹陷。我们以金南油田测井资 料为例来描述油气层的测井特征。
该区阜二段砂岩储层的电阻率普遍呈 相对高值,这与胶结物灰质含量高、岩 性致密有关。测井和试油都已证明储层 属低孔低渗特点,而且水层不发育,流 体靠自身弹性驱动,因而该区的油层大 多需要人工改造才能获得较好的产能。
16 2738.5 -- 2741.0 5.01 13.27 15.27 47.53 0.0683 油层
17 2751.7 -- 2758.1 13.2 4.66 21.72 23.54 0.1113 油层
油层
18 2762.6 -- 2766.3 4.63 8.85 17.83 43.9 0.0822 油层
但是,人们可以通过认真与富有成效的综合分析途径,获 得最佳的解释结果。
“四性”关系分析
储层的“四性”关系即电性(准确来说是测井响应特性) 和岩性、物性、含油性的关系。“四性”之间既互相联系,又 互相制约。
储层电性是岩性、物性和含油性的综合反应。 储层岩石颗粒大小,分选好坏,岩石的成分、结构、胶结 物的含量及成分,胶结方式以及储层内部结构,直接决定储层 物性的好坏,即孔隙度和渗透率的大小。 储层的含油性与储层的岩性、物性密切相关。 储层的“四性”关系是制定测井解释标准的重要依据。
测井特征图如下所示。
Ef2地层在草舍油田不发育,或缺失。 在金湖凹陷较发育,是主要含油储集层, 其特征是顶部有一较纯的泥岩段(俗称 泥脖子),上部有一段泥灰岩(俗称七 尖峰),中、下部为砂泥岩互层。测井 特征见下图。
Ef1地层在草舍油田、腰滩油田有揭示。
草舍油田的Ef1地层砂岩发育,由于埋藏较深, 岩石压实性好,物性相对比三垛和戴南组以及阜
油层
QK-122 14 2436.0 -- 2437.9 3.5
4.34 29.16 34.46 0.0621 油层
油层
15 2438.9 -- 2440.4 2.23 13.58 24.79 52.28 0.043 油层
油层
16 2445.2 -- 2446.9 4.29 9.49 23.52 42.26 0.0503 油层
台兴油田阜三段储层既有常规典型油 层--“低伽马、高电阻、高时差”,如 QK103井的第17层,同时也存在低阻油 层,如QK122井的第11-15层。
QK-103
常规油层GR一般在60API左右,SP负异常明显, 声波时差一般大于270μs/m,电阻率大于6Ωm,这类 油层特征明显,一般易于识别。
在岩性、物性都较好前提下,上砂组油层电 阻率要大于3Ωm,下砂组油层电阻率要大于 6Ωm。
边7上砂 组:测试 为油层
边8上砂 组:测试 为油层
边5B下 砂组:测 试为油层
边4下砂 组:测试 为油层
边4下砂 组:测试 为水层
边8下砂 组:测试 为低产层
边城油田刚发现时,在没有试水资料的 情况下,我们通过分析测井资料推测上、 下砂组水性的反转现象,因为测井解释很 需要水资料。后来油田开发逐渐有水分析 资料,印证了推测的结论。大家可以来仔 细注意上、下砂组中泥岩的电阻率变化。
Rt
张家垛油田(Es、Ed)
POR
张家垛油田(Es、Ed)
AC
张家垛油田(Es、Ed)
SH
张家垛油田(Es、Ed)
RT
张家垛油田(Ef3)
POR 张家垛油田(Ef3)
AC 张家垛油田(Ef3)
SH张家垛油田(Ef3)
二、测井资料解释
1、测井资料解释做什么?
测井仪器的测量原理是在声学、电学、核物理等 学科的基础上建立的,而测井解释是一门独立的学科 领域,它把仪器的响应同地质学结合起来,确定地层 的岩石物理参数及流体性质。测井解释可为用户提供 以下服务: