史密斯(Smith)圆图
Smith(史密斯)圆图阻抗匹配
利用归一化阻抗与反射系数之间的一一对应 关系,将归一化阻抗表示在反射系数复平面上。
(z ') 2e j2z' 2 e j(2 2z')
构成反射系数复平面
2
ZL Z0 ZL Z0
2
tan 1
RL2
2 X LZ0
X
2 L
Z02
Z (z ') R jX 1 (z ') 1 (z ')
可得
2a b2 2 2 且 2 1
等反射系数模值圆的方程
jb
||=0.5 S=3
j
||=1, =0
开路点
a
1
1
||=1, = 短路点
j
||=0.2 S=1.5
1、反射系数曲线坐标(续)
2 2 z ' tan1 a b 反射系数相角射线方程
X
2b
(1
2 a
)2
b2
a
2
R R 1
b2
1
2
R 1
等归一化电阻圆方程
a
12
b
1 X
2
1 X
2
等归一化电抗圆方程
归一化电阻圆
j b
R0 R 0.5 R 1 R2
圆心都在实轴a上; a=1 圆心坐标与半径之和恒
一一对应关系
二、圆图的基本构成
阻抗圆图是表示在复平面上的反射系数和归 一化阻抗轨迹图,包括两个曲线坐标系统和四簇 曲线。
3_smith圆图
XL
先进行归一化,然后 再确定电长度dmin/ 、 dmax/ 。 波节
ji
dmax、
r
RL
波腹 dmin
注意:顺时针旋转
例题
例3、已知负载归一化阻
抗 Z L,求VSWR和L。
Rmax VSWR
ji
XL
例题
例1、已知 Z L 和距离l,求 Zin 。
ji
Rin
XL
RL X in
rl Leabharlann 例题例2、负载阻抗 Z L 30 j 60 与长为d=2cm的50欧传输线相 连,工作频率为2GHz。求输入阻抗 Zin 。假定相速度是光 速的50%。 解题思路: ZL Z0 j 71.56o L Z Z 2 / 5e L 0 2 f 2 83.77 m1 vp
X 与 1 x 圆与单位圆的交 点关于虚轴对称; X 与 1 x 圆与单位圆的 交点关于原点对称;
x0
r
x
x 0.5
x 1
x 2
3.2.2 阻抗圆图
3.2.2 阻抗圆图
Smith阻抗圆图的特点: 上半圆内的阻抗为感抗, X L 0 下半圆内的阻抗为容抗, X C 0 实轴上的阻抗为纯电阻;
1 r
2
2 i
j
1 r
2i
2
i2
电阻圆
r 1 2 r i 1 r 1 r
2 2
2
2
圆心坐标
r , 0 ,半 1 r
径
1 1 r。
阻抗匹配与史密斯(Smith)圆图 基本原理
阻抗匹配与史密斯(Smith)圆图: 基本原理在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括:计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
经验: 只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图: 本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
图1. 阻抗和史密斯圆图基础基础知识大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:R s + jX s = R L - jX L图2. 表达式R s + jX s = R L - jX L的等效图在这个条件下,从信号源到负载传输的能量最大。
史密斯圆图
导纳圆图的特点
' jG b
B 0.5
G 0.5
(0,0) 开路点
(1,0)
匹配点
电流波节 Gmin=K B 0.5
B0
导纳圆图使用原则: 容性 同一张圆图,既可以当 作阻抗圆图来用,也 B 1 可以当作导纳圆图来 G 1 G (,) 用,但是在进行每一 短路点 次操作时,若作为阻 B 1 抗圆图用则不能作为 电流波腹 Gmax=S 导纳圆图。
例3 在Z0为50Ω 的无耗线上测得 VSWR为5,电压驻波最小点
出现在距负载λ /3处,求负
载阻抗值。 解:电压驻波最小点:
rmin = K = 1/ VSWR = 1/ 5 = 0.2
在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的
圆反时针旋转转λ /3得到 zL 0.77 j1.48 , 故得负载阻抗为 Z 38.5 j 74() L
| G | 1/ 3 圆
0
zmin 1.55
0.5
zL
zL 1.55 j 0.65
j 0.65
例9 双导线的特性阻抗为250Ω,负载阻抗为500-j150Ω, 线长为4.8λ,求输入导纳。
解:zL 2 j0.6
180度,得 yL 0.45 j0.15
zL 点沿等Γ线旋转
8
例2 已知: Z 0 50
Z L 100 j50
0.24
ZL
求:距离负载0.24波长处ห้องสมุดไป่ตู้Zin.
解
ZL zL 2 j Z0
l 0.213
查史密斯圆图,其对应的 电波长数为
向电源顺时针旋转0.24(等半径)
zin 0.42 j0.25
史密斯圆图基本原理及应用
终端短路的传输线,起点为实轴 左边的端点(即180 处) 沿传输线移动的距离以波长为 单位来计量
同心圆的半径表示 反射系数的大小
微波工程基础
3
第一章 均匀传输线理论之史密斯圆图及其应用
2. 阻抗圆(impedance circles)
Z in 1 1 反射系数与归一 Z in 1 Z in 1 化阻抗一一对应 (z)表示成直角坐标形式 u jv
由于阻抗和导纳与反射系数的关系只差一个负号, 所以两者的图形以原点为中心对称。为什么?
串联元件的阻抗是相加的,并联元件的导纳是相加的。 在实际设计中,需要频繁地在阻抗表达式和导纳表达 式之间转换。 实际上由无耗传输线的4的阻抗变换特性,将整个阻 抗圆图旋转180即得到导纳圆图。 阻抗圆图变为导纳圆图并不需要对圆图作任何修正, 且保留了圆图上的所有已标注好的数字。 12
第一章 均匀传输线理论之史密斯圆图及其应用
3.阻抗圆图(smith chart)
实轴右半边为 电压波腹点又 代表驻波比
向电源
实轴左半边为电 压波节点又代表 行波系数K
向负载
将反射系数圆 图、归一化电 阻圆图和归一 化电抗圆图画 在一起,为完 整的阻抗圆图, 也称为史密斯 圆图。
微波工程基础
9
2 2
Z in 1 u jv 传输线上任意一点归一化阻抗为: Z in Z 0 1 u jv 令 Zin r jx ,则得到下列方程
微波工程基础
4
第一章 均匀传输线理论之史密斯圆图及其应用
阻抗到反射系数的映射示意图---等电阻圆
微波工程基础
(z)为一复数,极坐标形式为:
( z) l e
史密斯圆图基本原理及应用
第一章 均匀传输线理论之史密斯圆图及其应用
结论:阻抗圆图上的重要点、线、面
上半圆电感性
x=+1电抗圆弧
r=1的纯电阻圆 开路点 匹配点
纯电阻线 短路点
纯电抗圆
x=-1电抗圆弧
下半圆电容性
微波工程基础
10
第一章 均匀传输线理论之史密斯圆图及其应用
结论
在阻抗圆图的上半圆内的电抗为x>0呈感性;下半圆内的 电抗为x<0呈容性; 实轴上的点代表纯电阻点,左半轴上的点为电压波节点, 其上的刻度既代表rmin ,又代表行波系数K,右半轴上的点 为电压波腹点,其上的刻度既代表rmax ,又代表驻波比; 圆图旋转一周为/2; =1的圆周上的点代表纯电抗点; 实轴左端点为短路点,右端点为开路点;中心点处有r=1、 x=0,是匹配点; 在传输线上由负载向电源方向移动时,在圆图上应顺时针 旋转;反之,由电源向负载方向移动时,应逆时针旋转。
作为图形设计工具,通过比较
SMITH圆图中等驻波比圆的半 径,可以直观地观测传输线和附 载阻抗之间的失配程度。
终端负载决定了无耗传输线反
射系数大小 微波工程基础
16
第一章 均匀传输线理论之史密斯圆图及其应用
[例1-3]已知传输线的特性阻抗Z0=50。假设传输线的负 载阻抗为Zl=25+j25 ,求离负载z=0.2处的等效阻抗。
微波工程基础
14
第一章 均匀传输线理论之史密斯圆图及其应用
[例1-1]已知传输线的特性阻抗Z0=50Ω,终端 接有下列负载阻抗,将其用反射系数表示 ~ Z a L 1 a Z L 0 ZL L Z0 b L 1 b Z L ~
(c ) Z L 50 ( d ) Z L (16.67 j16.67) (e) Z L (50 j 50)
SMITH原图
一、Smith图圆的基本思想
( z') l e
j 2 z '
| l | e
j ( l 2 )
| l | e
j
θ的周期是 1/2λg。这种以| Γ|圆为基底的图形称为 Smith圆图。 3. 把阻抗(或导纳),驻波比关系套覆在|Γ|圆上。 这样,Smith圆图的基本思想可描述为:消去特 征参数Z0,把β归于Γ相位;工作参数Γ为基底,套覆 Z(Y)和ρ。
±1
1
±1
1
二、Smith圆图的基本构成
i
x 1 = 感 抗 x 1 = /2
i
r= 0
1 r=
2 r=
0
x 0 = sh rte .c or d 容 抗 图
0
图 7-2 等电阻图
7-3 等电抗图
x -1 = /2 3. 标定电压驻波比实轴表示阻抗纯阻点。因此,可 x =1 由电阻r 对应出电压驻波比。 4. 导纳情况
电阻圆始终和直线
r 1
相切。
二、Smith圆图的基本构成
园心坐标
r
r r 1 r
半径
i 0
1 1 r
0 1 2
2 3
0
1 2
0 0 0
1
1 2
1 3
二、Smith圆图的基本构成
虚部又可得到方程
2 (r 1) i 0 x
2 2 i
Y
Y 0.011 j Z0
三、Smith圆图的基本功能
[例2] 已知阻抗
Z 1 j ,求反射系数
i 0.088 1+j
和
0
2.60
r
射频阻抗匹配与史密斯_Smith_圆图:基本原理详解
阻抗匹配与史密斯(Smith)圆图:基本原理在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括•计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的 格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
• • •手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
经验: 只有在 RF 领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。
微波技术-史密斯圆图
1.圆图的概念
由于阻抗与反射系数均为复 数,而复数可用复坐标来表示, 因此共有两组复坐标: • 归一化阻抗或导纳的实部和虚 部的等值线簇;
x
r =const
r x =const
Z (d ) z (d ) = = r (d ) + jx(d ) = z e jq Z0
• 反射系数的模和辐角的等值线簇。
骣 1÷ 圆心坐标 ç1, ÷ 在 GRe = 1 的直线上 ç ç x÷ 桫
GRe
半径
1 x
x =∞:圆心(1,0)半径=0
x =+1:圆心(1,1)半径=1 x =-1:圆心(1,-1)半径=1
x =0:圆心(1, ∞ )半径= ∞
c.等驻波比圆
VSWR =
1+ G 1- G
驻波比:对应于反射系数也是一簇同心圆 (1,∞)
GIm
半径
1 1+ r
GRe
r =∞:圆心(1,0) 半径=0 r =1:圆心(0.5,0)半径=0.5
r =0:圆心(0,0) 半径=1
1 x 圆 (G - 1)2 + 骣 - 1 鼢= 骣 珑 Im G 鼢 珑 Re 珑 桫 x鼢 桫 x
2
2
GIm
为归一化电抗的轨迹方程, 当 x 等于常数时,其轨 迹为一簇圆弧;
0.343
z L 0.57 j1.5
Z L 28.5 j 75
例2.5-3 在Z0为50Ω 的无耗线上测得 VSWR为5,电压驻波最小点
出现在距负载λ /3处,求负
载阻抗值。 解:电压驻波最小点:
rmin = K = 1/ VSWR = 1/ 5 = 0.2
在阻抗圆图实轴左半径上。以rmin点沿等 VSWR=5的
(完整版)史密斯圆图及应用
(z) u jv
Z(z) 1 (z) 1 (z)
Z (z) 1 u jv 1 u jv
1 (u2
2 v
)
j
2u
(1 u )2 v2 (1 u )2 v2
r jx
阻抗圆图----等阻抗圆
r 1 (u2 v2 ) (1 u )2 v2
x
2u
(1 u )2 v2
(u
r
r )2 1
– 已知负载阻抗ZL,确定传输线上第一个电 压波腹点与波节点距离负载的距离;
– 已知驻波系数VSWR及距离负载电压波节 点的位置,确定负载阻抗ZL
阻抗圆图的应用----阻抗变换
一个典型的包含有长度为d、特性阻抗为Z0、终端 负载为ZL的传输线的电路,采用Smith圆图分析 其阻抗特性,可以按以下步骤进行:
两个旋转方向
– 顺时针向源 – 逆时针向负载
阻抗圆图----特点
Smith圆图可以直接提供如下信息
– 直接给出归一化输入阻抗值zin ,乘以特性 阻抗即为实际值;
– 直接给出反射系数的模值||及其相位; – 根据反射系数模值计算出驻波系数的值
阻抗圆图的应用
应用于下列问题的计算
– 已知负载阻抗ZL,确定传输线上的驻波系 数或反射系数和输入阻抗Zin;
jX
ji
4
2
0.5
1
2
1 x=0.5
x=-0.5
0.2 RC
4 D r
-1
-0.2
-4
-2
-2
-0.5 -1
-4
(b)
阻抗圆图----等电抗圆
||1,因此只有单位圆内的部分才有物理意义 等电抗圆都相切于点,即D点x=0时,圆的半 径为无限大对应于复平面上的实轴即直线CD 当x时,电抗圆缩为一个点,D点
史密斯圆图
9.旋转方向:圆图还注明了顺时针旋转为向始端(信号源端)方向移
动,逆时针旋转为向终端(负载端)方向移动。 10.
r 值的标注: r 值标注在纯电阻线上,开路点为 ,短路点为0,
匹配点为1。
11.X值的标注:标注在 1 大圆的内侧等X线与 1 大圆的交点处。
Zb zb Zc (105 j50)
作业:用Smith圆图完成以下作业
特性阻抗为 Z0 50 ,负载阻抗为Z L (50 j100) ,
l 0.2 ,求输入阻抗 Z in 。
1.等反射系数图
均匀无耗线上任一处的反射系数 ( z ) 可以表示为
( z) 2 e
j (2 2 z )
在极坐标中其曲线是一个以原点为圆心、 2 为半径的 圆。在一段终端接以某负载、无分支的无耗线上,其 的值由长线的特性阻抗 Z0 和负载阻抗 Z L 所决定,而沿 线各处的 2 与 是相同的,只是反射相位将随位置的 改变而改变,故称此圆为等反射系数图。因为反射系数 的模与驻波比 是一一对应的,故又称为等驻波比圆。
Smith圆图(极坐标圆图)
构成圆图的依据是长线理论中的一些基本公式(沿线Z坐标原点均选在终端)
Z in ( z ) 1 ( z ) Z (z) Z0 1 ( z)
L 1 2 Z 1 2
(z) 1 Z (z) (z) 1 Z
( z ) 2e
u
的直线上。圆心的纵坐标等于圆半径。故所有等 X 圆也全相切于点 (1,0)。
圆、等 将等 R X 圆绘制在同一复平面 u j v 上便得到如下所示的等 阻抗图。
史密斯圆图即为等反射系数圆与等阻抗圆的重叠图
射频阻抗匹配与史密斯_Smith_圆图:基本原理详解
阻抗匹配与史密斯(Smith)圆图:基本原理在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括•计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的 格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
• • •手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
经验: 只有在 RF 领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阻抗匹配与史密斯 (Smith) 圆图:基本原理摘要:本文利用史密斯圆图作为 RF 阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并给出了 MAX2474 工作在 900MHz 时匹配网络的作图范例。
事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器 (LNA) 之间的匹配、功率放大器输出 (RFOUT) 与天线之间的匹配、 LNA/VCO 输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件 (比如连线上的电感、板层之间的电容和导体的电阻 ) 对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
手工计算:这是一种极其繁琐的方法,因为需要用到较长 (“几公里”)的计算公式、并且被处理的数据多为复数。
经验:只有在 RF 领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz ) IC 连线的电磁波传播现象。
这对 RS-485 传 输线、 PA 和天线之间的连接、 LNA 和下变频器 /混频器之间的连接等应用都是有效的。
大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:R s + jX s = R L - jX L表达式 R s + jX s = R L - jX L 的等效图 在这个条件下,从信号源到负载传输的能量最大。
另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信 号源,尤其是在诸如视频传输、 RF 或微波网络的高频应用环境更是如此。
史密斯圆图史密斯圆图是由很多圆周交织在一起的一个图。
正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复 杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。
史密斯圆图是反射系数 (伽马,以符号 Γ表示) 的极座标图。
反射系数也可以从数学上定义为单端口散射参数,即 s 11史密斯圆图是通过验证阻抗匹配的负载产生的。
这里我们不直接考虑阻抗,而是用反射系数 ΓL ,反射系数可以反映负载的特性 (如导纳、增益、跨导 ) ,在处理 RF 频率的问题时 ΓL 更加有用。
我们知道反射系数定义为反射波电压与入射波电压之比:负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。
反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数。
为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。
这里 Z 0 ( 特性阻抗 )通常为常数并且是实数,是常用的归一化标准值,如 50Ω 、75Ω 、100Ω 和 600Ω 。
于是我们可以定义归一化的负载阻抗:图据此,将反射系数的公式重新写为:从上式我们可以看到负载阻抗与其反射系数间的直接关系。
但是这个关系式是一个复数,所以并不实用。
我们可以把史密斯圆图当作上述方程的图形表示。
为了建立圆图,方程必需重新整理以符合标准几何图形的形式 (如圆或射线 ) 。
首先,由方程 2.3 求解出;并且令等式 2.5 的实部和虚部相等,得到两个独立的关系式:重新整理等式 2.6 ,经过等式 2.8 至 2.13 得到最终的方程 2.14 。
这个方程是在复平面 ( Γr, Γ上i)、圆的参数方程 (x-a) + (y-b)2 = R2 ,它以 (r/r+1, 0) 为圆心,半径为 1/1+r.更多细节参见图 4a图 4a. 圆周上的点表示具有相同实部的阻抗。
例如, r = 1 的圆,以(0.5, 0) 为圆心,半径为 0.5 。
它包含了代表反射零点的原点 (0, 0) ( 负载与特性阻抗相匹配)。
以(0, 0) 为圆心、半径为 1的圆代表负载短路。
负载开路时,圆退化为一个点(以 1, 0 为圆心,半径为零 )。
与此对应的是最大的反射系数 1 ,即所有的入射波都被反射回来。
在作史密斯圆图时,有一些需要注意的问题。
下面是最重要的几个方面:所有的圆周只有一个相同的,唯一的交点 (1, 0) 。
代表 0Ω、也就是没有电阻 (r = 0) 的圆是最大的圆。
无限大的电阻对应的圆退化为一个点 (1, 0) 实际中没有负的电阻,如果出现负阻值,有可能产生振荡。
选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。
作图经过等式 2.15 至 2.18 的变换, 2.7 式可以推导出另一个参数方程,方程 2.19同样, 2.19 也是在复平面 (Γr, Γ上i)的圆的参数方程 (x-a)2 + (y-b)2 = R2 ,它的圆心为 (1,1/x) ,半径 1/x 更多细节参见图 4b 。
图 4b. 圆周上的点表示具有相同虚部x 的阻抗。
例如, x = 1 的圆以(1, 1) 为圆心,半径为 1。
所有的圆(x 为常数)都包括点 (1, 0) 。
与实部圆周不同的是,x 既可以是正数也可以是负数。
这说明复平面下半部是其上半部的镜像。
所有圆的圆心都在一条经过横轴上 1 点的垂直线上。
完成圆图为了完成史密斯圆图,我们将两簇圆周放在一起。
可以发现一簇圆周的所有圆会与另一簇圆周的所有圆相交。
若已知阻抗为 r + jx ,只需要找到对应于 r和 x的两个圆周的交点就可以得到相应的反射系数。
可互换性上述过程是可逆的,如果已知反射系数,可以找到两个圆周的交点从而读取相应的 r 和 x 的值。
过程如下:确定阻抗在史密斯圆图上的对应点找到与此阻抗对应的反射系数 ( Γ)已知特性阻抗和Γ,找出阻抗将阻抗转换为导纳找出等效的阻抗找出与反射系数对应的元件值 (尤其是匹配网络的元件,见 图 7)推论因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。
下面是一个用史密斯圆图表示的 RF 应用实例:例已知特性阻抗为 50Ω ,负载阻抗如下:Z 1 = 100 + j50 Ω Z 2 = 75 - j100 Ω Z 3 = j200 Ω Z 4 = 150 ΩZ 5 = ∞ (开路) Z 6 = 0 ( 短路) Z 7 = 50 Ω Z 8 = 184 - j900 Ω 对上面的值进行归一化并标示在圆图中 ( 见图 5) :z 1 = 2 + j z 2 = 1.5 - j2 z 3 = j4 z 4 = 3 z 5 = 8z 6 = 0z 7 = 1z 8 = 3.68 - j18史密斯圆图上的点 现在可以通过图 5 的圆图直接解出反射系数 Γ。
画出阻抗点 ( 等阻抗圆和等电抗圆的交点 ),只要读出它们在直角坐标水点击看大图 (PDF, 502K )图 5.平轴和垂直轴上的投影,就得到了反射系数的实部 Γr 和虚部 Γi (见图 6)该范例中可能存在八种情况,在图 6 所示史密斯圆图上可以直接得到对应的反射系数 Γ:用导纳表示史密斯圆图是用阻抗 (电阻和电抗 )建立的。
一旦作出了史密斯圆图,就可以用它分析串联和并联情况下的参数。
可以添 加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可。
然而,增加并联元件时分析过程就不 是这么简单了,需要考虑其它的参数。
通常,利用导纳更容易处理并联元件。
我们知道,根据定义 Y = 1/Z ,Z = 1/Y 。
导纳的单位是姆欧或者 Ω-1 (早些时候导纳的单位是西门子或 S ) 。
并且,如 果Z 是复数,则 Y 也一定是复数。
所以 Y = G + jB (2.20), 其中G 叫作元件的“电导”,B 称“电纳”。
在演算的时候应该小心谨慎,按照似乎合乎逻辑的假设,可以得出: G = 1/R 及 B = 1/X ,然而实际情况并非如此,这样计算会导致结果错误。
用导纳表示时,第一件要做的事是归一化, y = Y/Y 0,得出 y = g + jb 。
但是如何计算反射系数呢?通过下面的式子进行推导:Γ1 = 0.4 + 0.2j Γ2 = 0.51 - 0.4j Γ3 = 0.875 + 0.48jΓ4 = 0.5 Γ8 = 0.96 - 0.1jΓ的实部 图 6. 从 X-Y 轴直接读出反射系数和虚结果是 G 的表达式符号与 z 相反,并有 Γ(y) = - Γ(z)。
如果知道 z ,就能通过将的符号取反找到一个与 (0, 0) 的距离相等但在反方向的点。
围绕原点旋转 180°可以得到同样的 结果(见图 7) 。
当然,表面上看新的点好像是一个不同的阻抗,实际上 Z 和 1/Z 表示的是同一个元件。
( 在史密斯圆图上,不同的值对 应不同的点并具有不同的反射系数,依次类推 )出现这种情况的原因是我们的图形本身是一个阻抗图,而新的点代表的 是一个导纳。
因此在圆图上读出的数值单位是姆欧。
尽管用这种方法就可以进行转换,但是在解决很多并联元件电路的问题时仍不适用。
导纳圆图在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以 Γ复平面原点为中心旋转 180°后得到与之对应的导纳 点。
于是,将整个阻抗圆图旋转 180°就得到了导纳圆图。
这种方法十分方便,它使我们不用建立一个新图。
所有圆周 的交点(等电导圆和等电纳圆 )自然出现在点 (-1, 0) 。
使用导纳圆图,使得添加并联元件变得很容易。
在数学上,导纳圆 图由下面的公式构造:解这个方程度旋转图 7.后的结果接下来,令方程 3.3 的实部和虚部相等,我们得到两个新的独立的关系:从等式 3.4 ,我们可以推导出下面的式子:它也是复平面 (Γr, Γ上i)圆的参数方程 (x-a)2 + (y-b) 2 = R2 (方程 3.12) ,以(-g/g+1, 0) 为圆心,半径为 1/(1+g)从等式 3.5 ,我们可以推导出下面的式子:同样得到(x-a)2 + (y-b)2 = R2 型的参数方程(方程 3.17)求解等效阻抗当解决同时存在串联和并联元件的混合电路时,可以使用同一个史密斯圆图,在需要进行从 z 到 y 或从 y 到 z 的转换时将图形旋转。