方波及三角波产生电路
lm358正弦波方波三角波产生电路
《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。
LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。
本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。
二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。
通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)RC滤波电路。
在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。
3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。
三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)反相输入和正向输入。
通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。
3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。
四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
方波-三角波发生电路实验报告
河西学院物理与机电工程学院综合设计实验方波-三角波产生电路实验报告学院:物理与机电工程学院专业:电子信息科学与技术姓名:侯涛日期:2016年 4月 26日方波-三角波发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。
指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V一、方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号。
2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。
3、把方波信号通过一个积分器。
转换成三角波。
方案二:1、由滞回比较器和积分器构成方波三角波产生电路。
2、然后通过低通滤波把三角波转换成正弦波信号。
方案三:1、由比较器和积分器构成方波三角波产生电路。
2、用折线法把三角波转换成正弦波。
二、方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。
当R1=R2、C1=C2。
即f=f0时,F=1/3、Au=3。
然而,起振条件为Au略大于3。
实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。
如果R4/R3大于2时,正弦波信号顶部失真。
调试困难。
RC串、并联选频电路的幅频特性不对称,且选择性较差。
因此放弃方案一。
方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。
比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。
通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。
然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。
因此不满足使用低通滤波的条件。
放弃方案二。
方案三:方波、三角波发生器原理如同方案二。
比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。
正弦波 方波 三角波发生电路
正弦波方波三角波发生电路----9eef9958-7160-11ec-a078-7cb59b590d7d正弦波方波三角波发生电路正弦波&周期;方波&周期;三角波产生电路一、设计目的及要求:1.1. 设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2). 熟悉集成电路:集成运算放大器LM324,掌握其工作原理。
1.2. 设计要求:(1)设计波形产生电路。
(2)信号频率范围:100hz——1000hz。
(3)信号波形:正弦波。
二、实验方案:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。
但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。
如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。
反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。
为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。
选频网络由r、c和l、c等电抗性元件组成。
正弦波振荡器的名称一般由选频网络来命名。
正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。
产生正弦波的条件与负反馈放大电路中产生自激的条件非常相似。
然而,在负反馈放大器电路中,信号频率到达通带的两端,导致足够的附加相移,从而使负反馈变为正反馈。
正反馈加到振荡电路中。
振荡建立后,它只是一个频率的信号,没有额外的相移。
(a)负反馈放大电路(b)正反馈振荡电路图1振荡器的方框图比较图1(a)和(b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。
由于=十、。
由于正负号的变化,正反馈的放大系数为: = 0,因此X振荡电路的输入信号xiif.a,式中a是放大电路的放大倍数,f是反馈网络的放大倍数。
..振荡条件:AF 1.幅度平衡条件:af=1相位平衡条件: AF= a+f=±2n振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求|af| 1..这被称为起始条件。
方波和三角波的电路原理
方波和三角波的电路原理
方波和三角波是两种常见的周期信号波形,它们可以通过电路来生成。
以下是它们的电路原理:
1. 方波电路原理:
方波是一种以高电平和低电平互相交替的波形,它的电路原理可以通过如下步骤实现:
- 产生一个稳定的时钟信号:可以使用定时器、晶振等元件来生成稳定的方波时钟信号。
- 频率分频:将稳定的时钟信号输入到一个频率分频电路中,通过设置分频系数,使得输出信号的周期满足方波的需求。
- 幅度调整:可以通过运算放大器、转换电路等来调整方波的幅度,使其达到需要的高低电平。
- 输出:将调整好幅度的方波信号输出到需要的电路或装置中。
2. 三角波电路原理:
三角波是一种以线性增加和线性减小的波形,它的电路原理可以通过如下步骤实现:
- 产生一个稳定的时钟信号:同样使用定时器、晶振等元件来生成稳定的时钟信号,作为三角波的基准。
- 频率分频:将时钟信号输入到一个比例控制电路中,通过设置控制信号的斜率和频率,实现三角波的增加和减小过程。
- 幅度调整:由于三角波的幅度一般比较小,在输出之前,可能需要通过运算放大器、滤波电路等来放大幅度,使其达到需要的水平。
- 输出:将调整好幅度的三角波信号输出到需要的电路或装置中。
需要注意的是,方波和三角波的电路原理可能因具体应用的不同而有所差异,上述只是一般性的描述。
实际应用中,可以使用集成电路、函数发生器等专用元件来生成方波和三角波信号。
模电实验-方波三角波发生电路
方波三角波发生电路一、实验要求:1、振荡频率范围:500HZ-1000HZ2、方波输出电压幅度:Vom=±8v3、三角波峰值调节范围:Vom1=2-4v4、集成运放采用uA7415、双向稳压管用2个D1N4735反接替代二、实验仿真与分析:1、确定参数:取R1=10k,Vom1=4v,则R2=Vom*R1/Vom1=20k,取电容C=1uF,暂时取R和R3为1k.2、设置瞬态分析,应特别注意时间的设置,由于周期为1ms~2ms,可设置终止时间为10ms.时间过大则波形过于密集,时间小则波形越偏离方波。
仿真分析知此时方波电压幅值为6V左右。
设置R3为全局变量,扫描分析使得方波幅值最大,确定R3=100,此时三角波幅值也满足要求:CPARAMETERS:v ar = 1k8.0V4.0V0V-4.0V-8.0V0s1ms2ms3ms4ms5ms6ms7ms8ms9ms10ms V(R2:2)V(R1:1)Time方波幅值为7.02V ,三角波幅值为3.7V ,取两个波谷值测取周期,T=3.7651-1.6182=2.1ms 并不符合要求,故要减小周期,即减小R仿真分析得当R=800时,仿真图像为周期为1.7ms,符合要求。
3、 设置瞬态分析,得到运放的电压传输特性分别为: 方波:三角波:Time0s1ms2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10msV(R2:2)V(R1:1)-8.0V-4.0V0V4.0V8.0VV(R1:1)-4.0V-3.0V -2.0V -1.0V 0.0V 1.0V 2.0V 3.0V 4.0VV(R2:2)-8.0V-4.0V0V4.0V8.0V4.0V2.0V0V-2.0V-4.0V-8.0V-6.0V-4.0V-2.0V0V 2.0V 4.0V 6.0V8.0V V(R1:1)V(R:1)三、实验体会:两个稳压管用来稳定输出方波,理论上是可以通过改变稳压值来调节方波幅值的,但是实验中却发现对方波幅值影响非常小,调不到8v,但是三角波却能够满足要求。
(整理)方波和三角波发生器电路
方波和三角波发生器电路由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。
如图6.5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。
方波和三角波发生器的工作原理A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。
利用叠加定理可得:当Vp>0时A1输出为正,即VO1 = +Vz;当Vp<0时,A1输出为负即VO1 = -VzA2构成反相积分器VO1为负时,VO2 向正向变化,VO1 为正时,VO2 向负向变化。
假设电源接通时VO1 = -Vz,线性增加。
当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。
四、报告要求1、课题的任务和要求。
2、课题的不同方案设计和比较,说明所选方案的理由。
3、电路各部分原理分析和参数计算。
4、测试结果及分析:(1)实测输出频率范围,分析设计值和实测值误差的来源。
(2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值范围,分析输出电压幅值随频率变化的原因。
(3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。
注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动!(4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。
5、课题总结6、参考文献2、方波、三角波发生器(1)按图11-2所示电路及参数接成方波、三角波发生器。
图11-2(2)将电位器Rp调至中心位置,用双综示波器观察并描绘方波V01及三角波V02(注意标注图形尺寸),并测量Rp及频率值。
表11-3方波V01及三角波V02 波形Rp= (中间) , f=(3)改变Rp的位置,观察对V01和V02 幅值和频率的影响,将测量结果填入表11-3中(记录不失真波形参数)。
表11-4F ( KHz ) Rp ( Ω ) V01P-P(V) V02P-P(V)备注频率最高频率最低(4)将电位器Rp调至中间位置,改变R1为10K可调电位计,观察对V01和V02 幅值和频率的影响。
方波、三角波(锯齿波)产生电路.ppt
VZ
反相积分电路
1 vO1 RC
同相迟滞比较器
v dt V
0 S
t
O1
(0 )
R1vO R2vI vP + vN 0 R1 R2 R1 R2
Vth vI R1 vO FVZ 2.72V R2
VO2 t VO1 (0 ) RC
R6
– + R7
A2
vO
同相输入 迟 滞比较器
t
积分电路
t
end
反相积分电路
DZ VZ= 8V
VZ
习题9.4.9
同相迟滞比较器
方波、三角波(锯齿波)产生电路
画出vO1、vO2的波形。求振荡频率;
C R vS 5.1k
vN R1 – + R3 R2 15k 2k vO2
– +
0.047F
A1
A2
vO1
vI 5.1k vP
DZ VZ= 8V
求振荡频率;画出vO1、vO的波形。
C R vS 5.1k
vN R1 – +
– +
0.047F
A1
A2 R2 15k
R3 2k vO2
vO1
vI 5.1k vP
vO2
DZ VZ= 8V
VZ
VO2 v ( t ) t V ( 0 ) O1 O1 t RC 0 T VZ T vO1 v O1 ( ) ( FVZ ) FVZ 2 RC 2 FVZ T 4 RC t VZ 0 R2 f 3kHz 4 RCR1 如何调整三角波的幅值和频率?
锯齿波发生电路772锯齿波及三角波产生电路方波三角波锯齿波产生电路锯齿波产生电路同相输入滞比较器积分电路
方波—三角波发生电路[整理版]
000课程设计:方波—三角波产生电路我爱读书2008-06-15 22:17:17 阅读1044 评论3 字号:大中小订阅0000一、设计任务与要求00001、任务00设计一个用集成运算放大器构成的常见的方波—三角波产生电路。
000指标要求如下:0000方波重复频率:500Hz,相对误差<±5%00脉冲幅度:±(6~6.5)V0000三角波重复频率:500Hz,相对误差<±5%0000脉冲幅度:1.5 ~ 2 V0002、要求00(1)根据设计要求和已知的条件,确定电路的方案,计算并选取各单元电路的元件参数。
000(2)测量方波产生电路输出方波的幅度和重复频率,使之满足设计要求。
000(3)测量三角波产生电路输出三角波的幅度和重复频率,使之满足设计要求。
000二、设计原理0000运算放大器可以和两个电阻构成同相输入施密特触发器,由此可以产生稳定的方波。
运算放大器可以和RC构成积分电路,二者形成闭合的回路。
由于电容C放入米勒效应,在放大器的输出端得到线性度较好的三角波。
0000由下面的设计图不难分析,该电路的有关计算公式为:0000振荡周期000(1)000输出方波Vo1的幅度000(2)00输出三角波Vo2的幅度000(3) 0000三、设计电路0000四、元器件选择与参数设定0000(1)选择集成运算放大器00a)由于方波前后沿与用作开关的器件A1的转换速率SR有关,因此当输出方波的重复频率较高时,集成运算放大器A1应选用高速运算放大器,一般要求时选用通用型运放即可。
000b)集成运算放大器A2的选择:积分运算电路的积分误差除了与积分电容的质量有关外,主要事集成放大器参数非理想所致。
因此为了减小积分误差,应选用输入失调参数(VI0、Ii0、△Vi0/△T、△Ii0/△T)小,开环增益高、输入电阻高,开环带较宽的运算放大器。
000(2)选择稳压二极管00稳压二极管Dz的作用是限制和确定方波的幅度,因此要根据设计所要求的方波幅度来选稳压管电压Dz。
三角波,方波产生电路
方波发生电路工作原理:设某一时刻输出电压Uo=+Uz ,则同相输入端电位Uc=+Ut 。
Uo 通过R12对电容C3正向充电。
反相输入端电位Uc 随时间t 增长而逐渐升高,当t 趋近于无穷时,Uc 趋于+Uz ;一旦Uc=+Ut ,再稍增大,Uo 就从+Uz 跃变为-Uz ,与此同时Uc 从+Ut 跃变为-Ut 。
随后,Uo 又通过R 对电容C3放电。
反相输入端电位Uc 随时间t 增长而逐渐降低,当t 趋近于无穷时,Uc 趋于-Uz ;一旦Uc=-Ut ,再稍减小,Uo 就从-Uz 跃变为+Uz ,与此同时,Uc 从-Ut 跃变为+Ut ,电容又开始反向充电。
而上述过程周而复始,电路产生了输出状态的自动转换,便输出方波。
方波信号发生原理由于图中所示电路电筒正向充电和反向充电的时间常数均为RC ,而且充电的总幅值也相等,因而在一个周期内Uo=+Uz 的时间与Uo=-Uz 的时间相等,Uo 为对称的方波,所以也称为该电路为方波发生电路。
电容上电压Uc (即集成运放反相输入端电位Un )和电路输出电压Uo 波形如图所示。
矩形波的宽度Tk 与周期T 之比称为占空比,因此Uo 是占空比为1/2 的矩形波。
根据电容上电压波形可知,在1/2周期内,电容充电的起始值俄日-Ut ,终了值为+Ut ,时间常数为R3C ;时间t 趋于无穷时,Uc 趋于+Uz ,利用一阶RC 电路的三要素法可列出方程上述电路输出状态发生跳变的临界条件为:U- = U+ 其中:O O FU U R R R U =+=+322当输出U0为高电平时:H O HO FU U R R R U =+=+322当输出U0为低电平时:L O L O FU U R R R U -=+-=+322刚开始振荡建立时,由于电路中的电扰动,并通过正反馈,使输出很快变为高电平或低电平。
振荡周期为:21T T T +=而方波发生电路中电容正向充电与反向充电的时间常数均为RC ,而且充电的总幅值也相等,因而在一个周期内uO=+UZ 的时间与uO=-UZ 的时间相等,即方波T1 = T2。
方波-三角波电路分析
方波-三角波发生电路分析图1.1 方波-三角波发生电路图1.1为方波-三角波电路。
同一个四运放芯片TL084中的两个运算放大器构成了此信号发生电路。
第一级运放构成了方波发生器,它的RC充放电回路用第二级的积分运算电路(R3和C1)取代。
该四运放芯片TL084由单电源供电。
VDD为输入到两个运放的信号电压。
在图1.1中,连到示波器的红色曲线表示第一级运放的正输入端电压,黄色曲线表示第一级运放输出端电压,绿色曲线表示第二级运放的负输入端电压,蓝色曲线表示第二级运放输出电压。
在VDD取不同值时有图1.2所示变化。
图1.2 VDD vs 电路信号从图1.2可见,VDD的取值能够影响该电路是否正常工作(起振)下面从电路原理上分析上述电路的特性。
首先定义一些变量:A1:第一级运放的负向输入电压和第二级运放的正向输入电压U IN(即VDD),一般要求U IN ≥U L;A2:第一级运放输出值的最大值U H和最小值U L;第一级运放输出值的最大值和最小值就是方波的峰值和谷值,从TL084的数据页或图1.2中可以得到:U L=1.523v,U H=14v;A3:第一级运放输出方波信号波峰持续时间T UP和波谷持续时间T DOWN;A4:第二级运放(积分电路)输出值的最大值U up和最小值U down。
假定上电时,第一级负输入端的电平较正输入端的高,则第一级输出电平很快会达到最小值U L。
由于U IN≥U L,即第二级正输入端电平大于负输入端电平,所以第二级积分电路处在充电状态,即第二级输出端的电平将逐渐增大直至U up(充电持续时间为T DOWN)。
当第二级输出端的电平达到U up时,经R2反馈到第一级的正输入端,此时应能够使正输入端的电平达到或超过U IN,从而使第一级输出电平迅速达到最大的饱和值U H。
由于U H的引入,造成第二级运放的负输入端电平大于正输入端电平,导致第二级积分电路开始放电,并反向充电,直至第二级输出电平达到U down(充电持续时间为T UP)。
lm358正弦波方波三角波产生电路
lm358正弦波方波三角波产生电路LM358是一种双通道运算放大器,具有低功耗和宽电源电压范围等特点,非常适合用于信号处理、滤波以及波形生成电路。
在本文中,我们将针对LM358正弦波、方波和三角波产生电路展开探讨,并提供详细的电路设计原理和实现步骤。
1. LM358正弦波产生电路正弦波产生电路是一种基本的波形生成电路,能够产生具有稳定幅值和频率的正弦波信号。
使用LM358运算放大器和一些基本的无源元件,我们可以设计出简单而稳定的正弦波产生电路。
我们需要通过一个RC 网络将运算放大器配置为反馈振荡电路。
通过调整RC网络的参数,可以实现所需频率的正弦波输出。
需要注意的是,为了稳定输出的幅值和频率,我们需要精心选择和调整电阻和电容的数值。
2. LM358方波产生电路方波产生电路是一种能够生成具有固定占空比和频率的方波信号的电路。
使用LM358运算放大器和几个简单的元件,我们可以设计出稳定的方波产生电路。
我们可以将LM358配置为比较器,通过设置阈值电压和反馈电阻,可以实现所需频率和占空比的方波输出。
需要注意的是,选择合适的电阻和电容数值,可以使得方波输出的上升和下降沿更加陡峭。
3. LM358三角波产生电路与正弦波和方波不同,三角波产生电路能够生成具有线性变化斜率的三角波信号。
同样地,我们可以利用LM358运算放大器和几个简单的元件设计出稳定的三角波产生电路。
我们可以将LM358配置为积分放大器,通过输入一个方波信号,并将其积分,可以得到具有线性变化斜率的三角波输出。
调整输入方波的频率和幅值,可以进一步调整三角波输出的频率和幅值。
总结回顾通过对LM358正弦波、方波和三角波产生电路的探讨,我们可以看到LM358作为运算放大器在波形生成电路中的灵活性和高性能。
通过精心设计和调整,我们可以实现稳定、精确和灵活的波形输出。
值得一提的是,LM358产生的波形信号可以应用于各种信号处理和波形调制电路中,具有广泛的应用前景。
正弦波-方波-三角波产生电路
正弦波-方波-三角波产生电路综述:正弦波、方波和三角波是按照不同波形的原理产生的电路。
此外,它们之间也存在着共同点,例如,它们都是复用的技术,均可利用振荡电路来产生多种波形。
本文旨在介绍正弦波、方波和三角波的电路原理,以及它们之间的异同点。
一、正弦波产生电路原理正弦波的产生原理,可以是指振荡电路的基本原理,或者是采用某种数字信号处理方法产生出来的。
振荡电路就是利用低压脉冲充电器充电电容,再将电容中的电荷引到另一个电荷;反复循环这个过程,便可形成一种“弹簧”式的脉冲振荡,从而形成正弦波。
按照数字信号处理的原理,把波形的高和低电压写入某种字段,用现有的处理器进行转换,便可以生成正弦波。
方波的产生电路利用了一种特殊的振荡电路来实现,它主要由四部分组成:加法->正弦波发生器->交织多路反馈网络、平衡多路反馈网络。
正弦波发生器可以产生必须控制电压大小,频率和起点电压起点(最低电压和最高电压)的正弦波;交织多路反馈网络用来调节正弦波的峰峰电压;平衡多路反馈网络则用来消除正弦波的一半电压,形成方波。
三角波产生电路也是基于共oscilla tor振荡原理实现,它利用振荡器来实现,只需改变振荡器的结构即可产生三角波。
比如,采用增益电子管、三极管和整流电路组成的振荡器,在控制调节的过程中,可以产生不同类型的振荡,从而得到完美的三角波。
四、正弦-方-三角波的异同点同点:三者都可以通过振荡电路或数字信号处理来产生。
不同点:(1)振荡电路原理上,正弦波是由低压脉冲电路充放电,产生弹性振荡;方波是利用加法/正弦/交织/反平衡振荡电路来完成;而三角波则需要增益电子管、三极管和整流电路组成振荡器,控制调节获取完美的三角波。
(2)如果以数字信号处理来产生各类波形,则不存在性质上的差别,就是利用现有的处理器,把波形的高和低电压写入某种字段,进行转换,即可产生对应的波形。
本文对正弦-方-三角波的产生电路及其异同点进行了简要说明。
正弦波-方波-三角波发生电路设计
东华理工大学长江学院课程设计报告正弦波-方波-三角波发生电路设计学生姓名:专业:班级:指导教师:正弦波-方波-三角波发生电路设计函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生正弦波,再将正弦波变成方波-三角波或将方波变成三角波等等。
本课题采用先产生正弦波,再将方波变换成三角波的电路设计方法,本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成正弦波产生电路,比较器输出的方波经积分器得到三角波,目录1、正弦波发生器 (3)2、方波发生器 (4)3、三角波发生器 (7)4、正弦波-方波-三角波发生器 (9)5、总电路图、元器件清单 (10)6、心得体会及参考文献 (11)简述:方波、正弦波、三角波是电子电路中经常用到的信号,设计一个正弦波-方波-三角波发生电路。
具体技术要求如下:(1)正弦波-方波-三角波的频率在100Hz-20KHz范围内连续可调;(2)正弦波和方波的信输出幅度为6V,三角波的输出幅度在0-2V之间连续可调;正弦波的失真度r5%;(4)设计上述电路工作所需的直流稳压电源电路。
使用仪器及测量仪表:选用元器件(1).集成运放F007(a741);(2)稳压及开关二极管;(3)电阻、电容、电位器若干。
测量仪表(1)直流稳压电源;(2)示波器;(3)万用表(4)频率计(5)交流电压表一、正弦波发生器其振荡频率为1kHz。
方波三角波电路工作原理(二)2024
方波三角波电路工作原理(二)引言概述:方波和三角波电路是电子设备中常用的信号发生器,用于产生特定形状的波形信号。
本文将探讨方波和三角波电路的工作原理,并详细介绍其组成部分和相关操作。
1. 方波电路的工作原理1.1 基本概念:方波是一种特殊波形,具有矩形脉冲的特征。
1.2 脉冲产生器:方波电路使用脉冲产生器来产生高低电平切换的矩形脉冲信号。
1.2.1 电容充放电:通过电容充放电来实现电平的切换。
1.2.2 双稳态触发器:利用双稳态触发器产生稳定的脉冲信号。
2. 三角波电路的工作原理2.1 基本概念:三角波是一种具有线性变化的波形,频率和幅度均可调整。
2.2 积分器电路:三角波电路使用积分器电路来实现波形的线性变化。
2.2.1 操作放大器:通过操作放大器将输入信号积分得到三角波信号。
2.2.2 可变电阻:利用可变电阻来调整积分器的时间常数。
3. 方波电路的组成部分3.1 电源:提供方波电路所需的稳定电源。
3.2 脉冲产生器:产生高低电平切换的方波脉冲信号。
3.3 可调电路:用于调整方波信号的频率和占空比。
3.4 输出电路:将方波信号输出到外部设备或电路中。
4. 三角波电路的组成部分4.1 电源:提供三角波电路所需的稳定电源。
4.2 积分器电路:将输入信号积分获得线性变化的三角波信号。
4.3 可调电路:用于调整三角波信号的频率和幅度。
4.4 输出电路:将三角波信号输出到外部设备或电路中。
5. 方波和三角波电路的应用5.1 信号发生器:方波和三角波电路常被用作实验室中的信号发生器。
5.2 测试设备:方波和三角波电路可用于测试电路的频率响应和稳定性。
5.3 音频设备:方波和三角波电路常用于音频设备中的声音生成和调试。
5.4 控制系统:方波和三角波电路可用于控制系统中的时序生成和控制操作。
5.5 数字通信:方波和三角波电路可用于数字通信中的信号调制和解调。
总结:方波和三角波电路是广泛应用于电子设备和通信系统中的重要模块。
方波三角波产生电路方案
方波-三角波产生电路的设计1 技术指标设计一个方波-三角波产生电路,要求方波和三角波的重复频率为500Hz,方波脉冲幅度为6-6.5V,三角波为1.5-2V,振幅基本稳定,振荡波形对称,无明显非线性失真。
2 设计方案及其比较产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。
由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。
2.1 方案一非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC电路充放电来实现;具有其他辅助部分,,如积分电路等。
矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。
但此时要求前后电路的时间常数配合好,不能让积分器饱和。
如图1所示为该电路设计图。
由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。
如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。
构成迟滞比较器,用于输出方波;构成积分电路,用于把方波转变为三角波,即输出三角波。
图1 方案一电路设计图U1构成迟滞比较器,同相端电位由和决定。
利用叠加定理可得:当时,U1输出为正,即当时,U1输出为负,即构成反相积分器,为负时,正向变化。
为正时,负向变化。
当时,可得:当上升使略高于0v时,U1的输出翻转到同样,时,当下降使略低于0时,。
这样不断重复就可以得到方波和三角波,输出方波的幅值由稳压管决定,被限制在之间。
积分电路的输入电压是滞回比较器的输出电压,而且不是,就是,所以输出电压的表达式为:(1>式中为初态时的输出电压。
设初态时正好从跃变为,即该式又可写为:(2>积分电路反向积分,随时间的增长线性下降,根据迟滞比较器的电压传输特性,一旦,再稍减小,将从跃变为,使得二式变为:稳压管的稳定电压直接决定输出方波的幅度大小,即方波的幅度为:三角波的幅度为:<3)方波、三角波的频率为:<4)其中,由上式可看出调节电位器可改变三角波的幅度,但会影响方波、三角波的频率;调节电位器可改变方波、三角波的频率,但不会影响方波、三角波的幅度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 电压跟随器
2 正弦波变换器
11 -VEE 或地
模 拟电子技术
当 Q = 0,S 断开,
C 充电 (I01) 至 2/3VCC 当 Q = 1,S 闭合,
Q=1
C 放电 (I02 -I01) 至 1/3VCC
Q=0
当 I02 = 2I01,引脚 9 输出方波,引脚 3 输出三角波;
当 I02 < 2I01,引脚 9 输出矩形波,引脚 3 输出锯齿波。
模 拟电子技术
2)应用
正弦波 失真度调整
1
正弦波输出 2
三角波输出 3
接电阻 RA 4
接电阻 RB 5
调+频V偏CC置
电压输出
6 7
ICL 8038
14 14 13 13
正弦波失 12 真度调整
11 -VEE (或地)
10 接电容 C
9 矩形波输出
8
调频偏置 电压输入
模 拟电子技术
+VCC
调 频 率
电镜流象源 V3
uO = UOL C
I0
积分器
R
V3 截止, 充电至 UT+uO
=
UOm uO
V3 导通,
UOCH放电至
uO UT-
=
UOL
t
模 拟电子技术
2. 8038 集成函数发生器
1)原理
I01 10
R
8
2 3VCC
S
1 3VCC
R
8
C
R
uC
R
电子 开关 S
I02 > I01
6 +VCC
Q
反相器 9
一、 方波发生电路 二、 三角波发生电路 三、 锯齿波发生电路
模 拟电子技术
一、方波产生电路(Astable Multivibrator) 1. 电路组成和输出波形
R
uO uC
8
R3 uO
UZ
C 积分 电路
UT+
UZ
R2
R1 滞回比较器
UT-UZ
t
模 拟电子技术
1、构成要点:
1)比较器能持续翻转 2)周期控制(RC定时电路)
石英晶体振荡器(振荡频率精确)
非正弦波振荡: 方波、三角波、 锯齿波等。
模 拟电子技术
二、正弦波振荡条件、电路结构和选频电路
1. 振荡条件
••
AuFu 1
— 振幅平衡条件
A FA F2n π— 相位平衡条件
n = 0, 1, 2,
判断电路是否起振采用瞬时极性法,即断开反馈 网络,加一信号,如果信号极性逐级变化后, 返回后与原信号同极性,则满足相位平衡条件。
模 拟电子技术
三、 三角波发生电路
1. 获得三角波的基本方法
方波
积分电路
三角波
2. 锯齿波发生电路
在三角波发生电路中,如果电容的充电、放电时间 常数不相等,则可使积分电路的输出为锯齿波。
模 拟电子技术
第7章 小结
模 拟电子技术
一、信号产生电路的分类:
正弦波振荡:
RC 振荡器 (低频) LC 振荡器 (高频)
Cq
fS
fP
f
C0 Lq rq
并联谐振频率
符号
等效电路
频率特性
2. 石英晶体谐振电路
串联型 并联型
f = fs,晶体呈纯阻 fs < f < fp,晶体呈感性
模 拟电子技术
五、比较器 1. 单限电压比较器
uO
传 输
UZ
特 性
O
uI UREF
–UZ
模 拟电子技术
UZuO
门限电压 UT = UREF
2、工作原理:
设电源刚接通(t=0)时, vC0, vOVZ,
T2RfCln1(2RR12)
模 拟电子技术
2. 振荡频率
UT
UZR2 R1 R2
UT-
-UZR2 R1 R2
T2RCln1(2R2) R1
f1 T
占空比 = 50%
模 拟电子技术
3、占空比可调的矩形波电路
要点:应改变C的充、放电时间常数
C充电时,充电电流 经电位器的上半部、二 极管D1、Rf;
C放电时,放电电流 经Rf、二极管D2、电位 器的下半部。
模 拟电子技术
二、压控方波产生电路
1. 积分 - 施密特触发器型压控振荡器
恒压流控源
ud
I0
+VCC
uC 占空比 50%
I0V4
V5 uC
施密特 触发器
C
UT+ uO UT-
t
V2 V1
充电方向,于是形成 uO 周而复始的
高、低电平跳变,即方波振荡。
R
施密特
uO
C
触发器
模 拟电子技术
施密特触发器的构成: 迟滞比较器 (运放接成正反馈) 555 定时器的施密特触发器形式 集成施密特触发器
2. 获得三角波的基本方法
方波
积分电路
三角波
模 拟电子技术
2. 迟滞比较器 (施密特触发器)
反相型迟滞比较器
电感三点式
CB
V C1
RB2 RE CE L1 C
L2
模 拟电子技术
f0
2
1 LC
1
2 (L1 L2 2M)C
电容三点式
+VCC RB1
f0
1 2 LC
2
1 C1C2 L
C1 C2
CB RB2
V UiRE
Uo C1 CE 2
Uf C2
1 L
3
模 拟电子技术
四、石英晶体振荡电路
X
1. 等效电路和频率特性 串联谐振频率
U• f
U• o
CR
振荡条件 即
Au 3 Rf 2R1
自动稳幅措施:
Rf 串接二极管(图略)
使电 Au 成为非线性 Rf 串接负温度系数热敏电阻 R1 采用正温度系数热敏电阻
模 拟电子技术
3. LC 振荡电路 变压器反馈式
1 f0 2 LC
RB1
RB1 C L
+VCC
CB RB2
V
RE
CE
+VCC
模 拟电子技术
2. 振荡电路的两种结构
Ui 放大器 Uo
Uf
选频正
反馈网络
Ui
放选大频器 Uo
Uf
正反馈
网络
3. 选频电路及其特性
模 拟电子技术
1) RC 串并联式
电 路
.
幅
1 Fu
频
3
特
性
0
相
90°f
当 = 0 = 1/RC 时
频
.
特
0
Fu= 1/3
性
– 90°
= 0º
模 拟电子技术
2) LC并联谐振回路
门限电压UT+和UT– 。
模 拟电子技术
掌握知识点
学完本节内容后需要掌握以下内容:
1.掌握振荡电路的起振条件及判断荡的方法; 2.掌握RC正弦波振荡电路的分类及频率计算。
i
Z 0 Z
+ u –
r L
iL C
iC
0
f
90º
0
– 90º
电路
谐振频率 谐振阻抗 回路品质因数
阻抗幅频特性
阻抗相频特性
f0
2
1 LC
Z0
L rC
Q0L 1 1 L r r0C r C
模 拟电子技术
三、正弦波振荡电路
1. RC 桥氏振荡电路
Rf
R1
8
1 振荡频率 f0 2π RC
U•
R
i
C
RP1
调占空比和 正弦波失真
RP2
C1 RA
RB
R
4 8
56 ICL8038
9 3 2
10 11 12 1 RP3
-VEE
C
调占空比和 正弦波失真 RP4
模 拟电子技术
二、 三角波发生器
电路与工作原理:
Vom
R1 R2
VZ
三、 锯齿波发生器
三角波发生器波形图
应改变积分器的充放电时间常数
充电:(R∥R‘)C,放电:仍为RC
O –UZ UREF uI
特点: 1) 工作在非线性区
2) 不存在虚短 (除了uI = UREF 时1. 产生方波振荡的基本原理
当施密特触发器输出高(低)电平时,
电容 C 的充电方向不同,每当 uC 超
过上(下)门限电压时,施密特触发器 的输出电平就发生跳变,使电容改变
模 拟电子技术
第26讲
方波及三角波产生电路
教学目标
知识目标:1.掌握方波振荡电路的工作原理; 2.了解三角波及锯齿波的工作原理。
能力目标:1.会分析方波振荡电路; 2.会计算振荡电路的振荡频率
教学重点 方波振荡电路的原理及应用
教学难点 方波、三角波、锯齿波振荡电路的原理分析
模 拟电子技术
7.2.2 非正弦波发生电路
uI R
UREF
P
R2
R1
8
R3 uO UZ
uO UZ
O UT– UT+ uI
– UZ
传输特性
模 拟电子技术
同相型迟滞比较器
UREF R N
R3
8
uI
P
R2
R1
门限电压的求法:
uO UZ
传输特性
UZ uO
UT- O UT+