【八年级】八年级数学下册172勾股定理逆定理2导学案无答案新版新人教版
人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1
人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1一. 教材分析《勾股定理的逆定理》是人教版数学八年级下册第17.2节的内容。
这部分教材主要让学生了解并掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
教材通过实例引入,引导学生探究并发现勾股定理的逆定理,进而总结出一般性结论。
这部分内容是初中数学的重要知识点,也是中考的热点,对于学生来说,理解和掌握勾股定理的逆定理对于解决实际问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了勾股定理和直角三角形的性质,对于这些知识点有一定的了解。
但是,学生可能对于如何运用勾股定理的逆定理来判断一个三角形是否为直角三角形还不够清晰。
因此,在教学过程中,我需要引导学生通过探究和发现来理解并掌握勾股定理的逆定理,并能够运用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.过程与方法目标:通过探究和发现,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.教学难点:如何引导学生通过探究和发现来理解并掌握勾股定理的逆定理。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、实例教学法和小组合作学习法等教学方法。
通过引导学生观察、思考和交流,激发学生的学习兴趣,培养学生的观察能力、思考能力和解决问题的能力。
同时,我将运用多媒体课件和教具等教学手段,帮助学生更好地理解和掌握知识点。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何判断一个三角形是否为直角三角形。
2.探究:引导学生观察和分析实例,发现勾股定理的逆定理,并总结出一般性结论。
3.讲解:对勾股定理的逆定理进行详细讲解,解释其含义和运用方法。
人教版八年级数学下册《勾股定理的逆定理(2)》名师教案
17.2 勾股定理的逆定理(第二课时)一、教学目标1.核心素养:通过运用勾股定理的逆定理,提高运算能力、逻辑推理能力和应用意识.2.学习目标(1)理解勾股数的含义.(2)能运用勾股定理的逆定理解决实际问题.3.学习重点勾股定理的逆定理的应用.4.学习难点二、教学设计(一)课前设计1.预习任务请写出几组能作为直角三角形边长的正整数.2.预习自测1.由7、24、25组成的三角形是直角三角形吗?2.我们知道以3、4、5为边长能构成直角三角形,那6、8、10呢?9、12、15呢?你发现了什么?(二)课堂设计1.知识回顾勾股定理的逆定理是什么?2.问题探究问题探究一勾股数●活动一理解定义像3、4、5这样,能够成为直角三角形三边长的三个正整数成为勾股数. 即满足的三个正整数就称为勾股数.再如:…●活动二推理论证我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)也是一组勾股数吗? 因为,,所以且3k 、4k 、5k 均为正整数,所以3k 、4k 、5k 也是一组勾股数.●活动三 推广提升一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)也是一组勾股数吗? 因为,,而,∴∴,则ak 、bk 、ck (k 是正整数)也是一组勾股数.请你再写几组勾股数.问题探究二 利用勾股定理的逆定理解决生活中的问题 重点知识★ ●活动一 初步应用 例1 如图,某港口P 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile ,“海天”号每小时航行12nmile, 它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?E NRP Q【知识点:勾股定理的逆定理;】详解:根据题意PQ=16×1.5=24,PR=12×1.5=18, QR=30,因为,即,所以QPR=90o .由“远航”号沿东北方向航行可知,“海天”号沿西北方向航行. 点拨:由已知条件易想到求出两轮船航行的路程,即为三角形的边长,从而已知C A 三角形的三边长,再利用勾股定理的逆定理判断该三角形为直角三角形而解决问题 .●活动二 拓展提升例2 如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?【知识点:勾股定理的逆定理;】详解:设MN 交AC 于E ,则∠BEC=90°.又AB 2+BC 2=52+122=169=132∴△ABC 是直角三角形,∠ABC=90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE=288,∴CE=13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.点拨:由题意可得△ABC 的三边长分别为5、12、13,根据勾股定理的逆定理判断∠ABC=90°,由题可知走私艇C 进入我领海的最近距离是CE ,再利用勾股定理建方程求出CE 的长,从而解决问题.问题探究三 勾股定理及逆定理的综合运用例3. 某中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【知识点:勾股定理,勾股定理的逆定理;】详解:连接BD. 在Rt△ADB中∠BAD=90o,BD==5,在△DBC中,则∴∠DBC=90o,∴S四边ADBC=S△ADB+ S△DBC=5×12=36∴36×200=7200(元).答:学校需投入7200元买草皮.点拨:根据条件易想到链接BD,将四边形的面积转化为两个三角形的面积之和,由AB=3,AD==4,易求BD=5,而△CBD中已知三边的长,可根据勾股定理的逆定理判断该三角形为直角三角形,再根据面积计算公式求出答案.3.课堂总结【知识梳理】1. 一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数.2.利用勾股定理的逆定理解决生活中的问题.【重难点突破】1.三个数是勾股数,则必须满足两个条件:(1)较小的两个数的平方和等于较大数的平方.(2)三个数必须是正整数.2.已知一个三角形的三边长时,首先应想到利用勾股定理的逆定理来判断这个三角形是否为直角三角形.3.在勾股定理及其逆定理的综合运用时需注意正确区分:勾股定理是在直角三角形中运用,而其逆定理是判断一个三角形是否为直角三角形.4.随堂检测1. 在△ABC中,三边长a、b、c满足 = 0,则此三角形为()A . 钝角三角形 B. 等腰三角形C. 等腰直角三角形D. 直角三角形【知识点:勾股定理的逆定理】【答案】D2. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出两组基本勾股数:, .【知识点:勾股数】【答案】5,12,13;9,40,41.3.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船出发后的航向是南偏东多少度?东【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】∵AC=16×3=48,AB=12×3=36,∴222222+=-==,BC AC AB604836∴△ABC为直角三角形且∠CAB=90°,∴乙船出发后的航向是南偏东40o.4. 一个零件的形状如图,按规定这个零件中∠A与∠DBC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=13 , BC=12,这个零件符合要求吗?【知识点:勾股定理的逆定理;数学思想:模型思想】【答案】这个零件符合要求.在△ADB中,,则,∴∠DAB=90o,同理,在△DBC中,则∴∠DBC=90o,∴这个零件符合要求.。
八年级数学下_勾股定理导学案(全)
18.1 勾股定理(1)学习目标:1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2、培养在实际生活中发现问题总结规律的意识和能力。
3、介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。
重点:勾股定理的内容及证明。
难点:勾股定理的证明。
学习过程:一、预习新知1、正方形边长和面积有什么数量关系?2、以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?归纳:等腰直角三角形三边之间的特殊关系。
(1)那么一般的直角三角形是否也有这样的特点呢?(2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。
(3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?(4)对于更一般的情形将如何验证呢?二、课堂展示方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S正方形=_______________=____________________方法二;已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o,∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一个等腰直角三角形,它的面积等于c2.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于_________________归纳:勾股定理的具体内容是。
三、随堂练习1、如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;(2)若∠B=30°,则∠B的对边和斜边:;(3)三边之间的关系:四、课堂检测1、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC =________。
2020春人教版数学八年级下册(RJ)导学案17.2 第2课时 勾股定理的逆定理的应用
第十七章勾股定理17.2 勾股定理的逆定理第2课时勾股定理的逆定理的应用学习目标:1.灵活应用勾股定理及其逆定理解决实际问题;2.将实际问题转化成用勾股定理的逆定理解决的数学问题.重点:灵活应用勾股定理及其逆定理解决实际问题.难点:将实际问题转化成用勾股定理的逆定理解决的数学问题.一、知识回顾1.你能说出勾股定理及其逆定理的内容吗?2.快速填一填:(1)已知△ ABC中,BC=41,AC=40,AB=9,则此三角形为_______三角形,_________是最大角;(2)等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是__________cm.一、要点探究探究点1:勾股定理的逆定理的应用典例精析例1如图,某港口P位于东西方向的海岸线上. “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?分析:题目已知“远航”号的航向、两艘船的一个半小时后的航程及距离,实质是要求出两艘船航向所成角,由此容易联想到勾股定理的逆定理.方法总结:解决实际问题的步骤:构建几何模型(从整体到局部);标注有用信息,明确已知和所求;应用数学知识求解.变式题如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我沿海靠近,里,AB=6海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我领海?课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3-5)2.探究点1新知讲授(见幻灯片6-14)分析:根据勾股定理的逆定可得△ABC是直角三角形,然后利用勾股定理的逆定理及直角三角形的面积公式可求PD,然后再利用勾股定理便可求CD.例2一个零件的形状如图①所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图②所示,这个零件符合要求吗?针对训练1.A、B、C三地的两两距离如图所示,A地在B地的正东方向,C在B地的什么方向?2.如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?探究点2:勾股定理及其逆定理的综合应用典例精析教学备注2.探究点1新知讲授(见幻灯片6-14)例3 如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.分析:连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断△ACD是直角三角形.方法总结:四边形问题对角线是常用的辅助线,它把四边形问题转化成两个三角形的问题.在使用勾股定理的逆定理解决问题时,它与勾股定理是“黄金搭挡”,经常配套使用.变式题1 如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积.变式题2如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30 cm2,DC=12 cm,AB=3cm,BC=4cm,求△ABC的面积.针对训练1.如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC= 5 ,BD=2.(1)求证:△BCD是直角三角形;(2)求△ABC的面积.教学备注配套PPT讲授4.课堂小结(见幻灯片27)5.当堂检测(见幻灯片20-26)教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片15-19)二、课堂小结1.医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东______的方向.2.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中摆放方法正确的是()A B C D3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.4.如图,在△ABC中,AB=17,BC=16,BC边上的中线AD=15,试说明:AB=AC.当堂检测勾股定理的逆定理的应用应用认真审题,画出符合题意的图形,熟练运用勾股定理及其逆定理来解决问题航海问题与勾股定理结合解决不规则图形等问题方法教学备注5.当堂检测(见幻灯片20-26)5.在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B.于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A的前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B.此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?6.如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向点以每秒2cm的速度移动,点Q从点C沿CB边向点B以每秒1cm的速度移动,如果同时出发,则过3秒时,求PQ的长.温馨提示:配套课件及全册导学案WORD版见光盘或网站下载:(无须登录,直接下。
人教版数学八年级下册17.2《勾股定理的逆定理》教学设计
-教师提供指导性的问题,引导学生通过画图、计算、推理等手段探索定理的正确性。
-分享探究成果,各组展示不同的解题思路和方法,促进学生之间的相互学习和启发。
3.知识讲解,深化理解
-教师对勾股定理的逆定理进行系统的讲解,强调定理的条件和结论。
-通过多媒体演示或实物模型展示,帮助学生形象化理解定理的内涵。
3.创新思维题:
-设立1-2道开放性问题,鼓励学生从不同角度思考,探索多种解题方法。
-鼓励学生尝试自己编写与勾股定理的逆定理相关的题目,并与同学分享,激发学生的学习兴趣和创造力。
4.小组合作任务:
-分配一个小组研究课题,例如“讨论研究,并在下节课上进行汇报展示。
4.设计具有层次性的练习题,使学生在不同难度层次的题目中逐步提高自己的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、善于发现的精神,使学生体验数学探究的乐趣。
3.培养学生严谨、踏实的科学态度,养成认真思考、独立解决问题的习惯。
4.通过勾股定理的逆定理的学习,使学生感受数学在现实生活中的广泛应用,体会数学的价值。
2.学生在证明过程中可能出现的逻辑错误,需要教师及时指导纠正。
3.学生对于勾股定理与逆定理之间的联系和区别的把握。
教学设想:
1.创设情境,引入新课
-通过呈现一些生活中的实际例子,如建筑物的直角结构、直角三角形的艺术品等,引导学生观察并思考这些直角三角形的特征,自然引入勾股定理的逆定理。
2.自主探究,合作交流
2.强调勾股定理与逆定理之间的联系,提醒学生注意在解决问题时灵活运用。
3.鼓励学生主动探索数学问题,培养他们勇于挑战、不断进取的精神。
人教版数学八年级下册17.2 勾股定理的逆定理同步练习(解析版)
17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。
人教版数学八年级下册17.2.1勾股定理的逆定理(教案)
(1)理解勾股定理与逆定理之间的关系:学生需要明确勾股定理与逆定理是相互关联的,理解它们在几何证明中的应用。
举例:解释为什么勾股定理的逆定理可以用来判断直角三角形。
(2)在实际问题中灵活运用勾股定理的逆定理:学生需要学会将定理应用于各种实际问题,如计算未知边长、判断三角形类型等。
举例、教学反思
今天我们在课堂上探讨了勾股定理的逆定理,整体来看,学生们对这个定理的理解和应用还是有些吃力。我发现,在讲解理论部分时,虽然我尽量用简单的语言和生动的例子来阐述,但仍有部分学生难以跟上。这可能是因为这个定理本身的抽象性,需要更多的时间和练习来消化。
在实践活动环节,分组讨论和实验操作的部分,学生们的参与度很高,我能感受到他们对这个定理的兴趣。但也有一些小组在讨论时,可能是因为对定理的理解不够深入,导致讨论的方向有些偏离。在今后的教学中,我需要更加注意引导学生的讨论,确保他们的思考能够紧扣主题。
(3)掌握逆定理的证明方法:学生需要掌握如何证明勾股定理的逆定理,以便在解决问题时能够更有说服力。
举例:通过构造一个直角三角形,证明勾股定理的逆定理。
(4)区分直角三角形与锐角三角形、钝角三角形的判定方法:学生需要明确勾股定理的逆定理仅适用于直角三角形的判定,对其他类型的三角形不适用。
举例:解释为什么一个三角形的两边长分别为5和12,第三边长为13时,这个三角形是直角三角形,而不是锐角三角形或钝角三角形。
我还注意到,在学生小组讨论中,有些学生比较内向,不太愿意表达自己的观点。这可能影响了他们对于勾股定理逆定理的理解和掌握。我考虑在接下来的课程中,更多地采用鼓励和表扬的方式,激发这部分学生的积极性,让他们更加自信地参与到课堂讨论中来。
此外,对于难点的解析,我觉得我还可以做得更好。虽然我已经尽力通过举例来解释,但可能还需要寻找更多元化的教学方法,比如使用多媒体动画或者实物模型来直观展示,帮助学生更好地理解勾股定理逆定理的内涵。
新人教版八年级数学下册《十七章 勾股定理 17.2 勾股定理的逆定理 阅读与思考 ,费尔马大定理》教案_11
勾股定理的逆定理(一)学习目标:1、了解勾股定理的逆定理的证明方法和过程;2、理解互逆命题、互逆定理、勾股数的概念及互逆命题之间的关系;3、能利用勾股定理的逆定理判定一个三角形是直角三角形.学习重点:勾股定理的逆定理及其应用。
学习难点:勾股定理的逆定理的证明。
教学过程【活动一】自学导航1、勾股定理:直角三角形的两条_________的平方____等于______的_______,即___________.2、填空题 (1)在Rt △ABC ,∠C=90°,=a 8,=b 15,则=c 。
(2)在Rt △ABC ,∠B=90°,=a 3,=b 4,则=c 。
(如图) 【活动二】合作交流1、怎样判定一个三角形是直角三角形?2、下面的三组数分别是一个三角形的三边长a.b.c5、12、13 7、24、25 8、15、17(1)这三组数满足222c b a =+吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?猜想命题2:如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形由此得到勾股定理逆定理:3、勾股定理的逆定理的证明已知:在△ABC 中,AB =c ,BC =a ,CA =b ,且222c b a =+求证:∠C =90°思路:构造法——构造一个直角三角形,使它与原三角形全等, 利用对应角相等来证明.证明:A B C a b c【活动三】展示提升例题1、判断由线段a 、b 、c 组成的三角形是不是直角三角形:(1)17,8,15===c b a ; (2)15,14,13===c b a .1、练习:判断由线段a 、b 、c 组成的三角形是不是直角三角形:(1)25,24,7===c b a (2)5,4,41===c b a(3)43,1,45===c b a (4)60,50,40===c b a【活动四】综合应用例2、一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角。
新人教版八年级数学下《17.2 勾股定理的逆定理 原(逆)命题、原(逆)定理》优质课教学设计_0
通过阅读教材,培养学生的阅读水平和自主学习的水平。
教学环节4
教学过程
合作探究、交流展示
教师活动
以小组为单位,完成导学案合作探究部分。
学生活动
按照老师的要求,小组合作、探究勾股定理的逆命题,并验证它的准确性,得到逆定理。并选出一组实行展讲。
设计意图
培养学生的合作意识和水平,并锻炼学生的展讲水平。
教学难点
写出一个命题的逆命题并判断命题的真假。
五、教学方法
采用自主学习和小组合作交流展示的方法。
六.教具准备
课件
七、教学过程设计
教学环节1
教学过程
明确学习目标,复习巩固
教师活动
齐读学习目标。
思考:什么是命题?
命题能够写成什么形式?
什么叫题设和结论。
(即时巩固,以游戏的方式实行)
学生活动
学生抢答
设计意图
通过抢答的形式激发学生的竞争意识。复习旧知识为本节课内容做好铺垫。
教学环节2
教学过程
创设情境探索新知
教师活动
和学生一起做个小游戏“说反话”,举个例子,老师说“我是老师”,学生说“老师是我”。
你是学生。
如果是红灯,那么汽车要停。
如果是小鸟,那么它在天上飞。
提出问题:从老师和你说的两句话你有什么发现。
学生活动
教材版本:2019年人教版
教师
年级
八年级
学生人数
授课时间
课题
勾股定理逆定理
课时安排
2课时
第1课时
授课类型
新授课
一、学情分析
本节课是在学生已经学习了勾股定理的基础上学习勾股定理的逆定理,八年级的学生抽象思维已经趋于成熟,具有一定的独立思考和合作学习的水平
新人教版初中数学八年级下册17.2.1 勾股定理的逆定理
8.(2018·南通)下列长度的三条线段能组成直角三角形的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,11,12
9.(2019·益阳)已知 M,N 是线段 AB 上的两点,AM=MN=2, NB=1,以点 A 为圆心,AN 长为半径画弧;再以点 B 为圆 心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
答案显示
1.如果两个命题的题设和结论刚好相反,那么这样的两个命题 叫做__互__逆___命__题___,如果把其中一个命题叫做原命题,那么 另一个叫做它的__逆__命__题____.
2.一般地,如果一个定理的逆命题经过证明是正确的,那么它 也是一个定理,称这两个定理互为_逆__定___理__.
3.下列命题的逆命题正确的是( A ) A.两条直线平行,内错角相等 B.若两个实数相等,则它们的绝对值相等 C.全等三角形的对应角相等 D.若两个实数相等,则它们的平方也相等
17.(2019·河北)已知:整式 A=(n2-1)2+(2n)2,整式 B>0. 尝试 化简整式 A. 解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1 =(n2+1)2.
发现 A=B2,求整式 B. 解:∵A=B2,B>0,∴B=n2+1.
联想 由上可知,B2=(n2-1)2+(2n)2,当 n>1 时,n2-1,2n,
(30°,60°,45°)的和的形式; (2)用旋转法将△CPB 绕点 C 顺时针旋转 90°到△CP′A 的位置.
解:如图,将△CPB 绕点 C 顺时针旋转 90°得△CP′A,则 P′C =PC=2,P′A=PB=1,∠BPC=∠AP′C,连接 PP′. 因为∠PCP′=90°,所以 PP′2=22+22=8. 又因为 P′A=1,PA=3, 所以 PP′2+P′A2=8+1=9,PA2=9. 所以 PP′2+P′A2=PA2. 所以∠AP′P=90°. 易知∠CP′P=45°, 所以∠BPC=∠AP′C=∠AP′P+∠CP′P=90°+45°=135°.
八年级数学下册 18.2 勾股定理逆定理(第2课时)学案2(无答案) 新人教版
勾股定理逆定理班级 姓名【学习目标】1.掌握勾股逆定理的内容.2. 能应用勾股逆定理解决实际问题【学习重难点】会结合勾股定理及直角三角形相关知识解决问题(一)【复习回顾】1.已知△ABC 的三边长a ,b ,c 分别为6,8,10,则△ABC__ ____(•填“是”或“不是”)直角三角形.2.△ABC 中,AB=7,AC =24,BC=25,则∠A=_____ _.3.△ABC 中,BC=n 2-1,AC=2n ,AB=n 2+1(n>1),则∠______=9004.如果三角形的三边长为1.5,2,2.5,那么这个三角形最短边上的高为______.(二)合作探究例2.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?(三)学以致用1.已知两条线段的长为3cm 和4c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.2. 在Rt △ABC 中,∠C=90°,(1)若a=5,b=12,则c= ;(2)b=8,c=17 ,则ABC S =3. 等边三角形的边长为6,则它的高是________4. 在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=____5.已知甲、乙两人从同一处出发,甲往东走了4km ,乙往南走了3km ,这时甲、乙两人相距 千米.6.下列各组数中,以它们为边的三角形不是直角三角形的是( )A .1.5,2,3 B. 7,24,25 C .6,8,10 D. 3,4,5 7.下列命题中是假命题的是( )A. △ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形.B. △ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C. △ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D. △ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形.8.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( )A. 等腰三角形B. 等边三角形C. 等腰直角三角形D. 等腰三角形或直角三角形9.一个直角三角形,有两边长分别为6和8,下列说法正确的()A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为1010.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( ) A . 27cm B. 30cm C. 40cm D. 48cm11.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )cm 2A 6B 8C 10D 1212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距()A .25海里 B. 30海里 C. 35海里 D. 40海里13. 如图所示,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求A B 的长.14.已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积.F 第11题 北南 A 东第12题15.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36,点P从点A开始沿AB边向B 点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?。
人教版8下数学练习题及答案17.2 勾股定理的逆定理
17.2 勾股定理的逆定理评卷人得分一、选择题1. 在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且(a+b)(a-b)=c2,则()A. ∠A为直角B. ∠C为直角C. ∠B为直角D. △ABC不是直角三角形2. 满足下列条件的三角形中,不是直角三角形的是()A. 三内角之比为1∶2∶3B. 三边长的平方之比为1∶2∶3C. 三边长之比为3∶4∶5D. 三内角之比为3∶4∶53. 下列几组数:①9,12,15,②8,15,17,③7,24,25,④n2-1,2n,n2+1(n是大于1的整数),其中是勾股数的有()A. 1组B. 2组C. 3组D. 4组4. 以下定理,其中有逆定理的是()A. 对顶角相等B. 互为邻补角的角平分线互相垂直C. 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D. 直角三角形的两条直角边的平方和等于斜边的平方5. 下列各组数中,是勾股数的是()A. 14,36,39B. 8,24,25C. 8,15,17D. 10,20,266. 如图,每个小正方形的边长均为1,A,B,C是小正方形的顶点,则∠ABC的度数为 ()A. 90°B. 60°C. 45°D. 30°7. 一个三角形三边长a,b,c满足|a-12|++(c-20)2=0,则这个三角形最长边上的高为()A. 9.8B. 4.8C. 9.6D. 10评卷人得分二、填空题8. 如图所示,点A为小红家的位置,点B为小明家的位置,点C为学校的位置,三地之间的距离如图,已知学校在小明家的正西方向,则小红家在小明家的方向.9. 若一个三角形的三边长分别为m+1,m+2,m+3,那么当m=时,这个三角形是直角三角形.10. 把命题“如果a>b,那么ac>bc(c≠0)”的逆命题改写为“如果……,那么……”的形式:11. 已知a,b,c是△ABC的三边,且满足|a-3|++(c-5)2=0,则此三角形的形状是.评卷人得分三、解答题12. 在B港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?13. 如图所示,已知△ABC的三边分别是a,b,c,且a+b=4,ab=1,c=,试判断△ABC的形状.14. 如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.15. 如图,欲从一块三角形下脚料ADB中截出一个形如△ACD的工件,其中AD=5dm,AB=14dm,AC=10dm,CD=5dm,求剩余部分△ABC的面积.16. 已知:如图,在四边形ABCD中,AD∥BC,AB=4,BC=6,CD=5,AD=3.求四边形ABCD的面积.评卷人得分四、证明题中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.18. 如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求证:BA⊥AD.参考答案1. 【答案】A【解析】因为(a+b)(a-b)=a2-b2=c2,所以b2+c2=a2.所以△ABC为直角三角形, ∠A为直角,故选A.2. 【答案】D【解析】A项中,由三角形内角和为180°可得,三个内角分别为30°,60°,90°,故此三角形是直角三角形.B项中,令三边长分别为a,b,c,则a2∶b2∶c2=1∶2∶3,∴a2+b2=c2,故满足此条件的三角形是直角三角形.C项中,a∶b∶c=3∶4∶5,设a=3k,则b=4k,c=5k,∴a2+b2=(3k)2+(4k)2=25k2=c2,∴是直角三角形. D项中的最大角为75°,故不是直角三角形.3. 【答案】D【解析】①中因为92+122=152,所以是勾股数;②中因为82+152=172,所以是勾股数;③中因为72+242=252,所以是勾股数;④中因为(n2-1)2+(2n)2=(n2+1)2,所以是勾股数.故选D.4. 【答案】D【解析】A定理的逆命题是“相等的两个角是对顶角”,不正确;B定理的逆命题是“角平分线互相垂直的两个角是邻补角”,∵两条平行线被第三条直线所截得的同旁内角的平分线也互相垂直,∴该逆命题不成立;C定理的逆命题是“如果两个角相等或互补,那么一个角的两边与另一个角的两边分别平行”,∵当两个角相等或互补时,一个角的两边与另一个角的两边可能分别垂直,∴该逆命题不成立;D定理的逆命题为勾股定理的逆定理.综上可知A,B,C三个定理均无逆定理,故选D.5. 【答案】C【解析】确定勾股数只需验证两小数的平方和与大数平方是否相等.∵142+362=1 492,392=1 521≠1 492,∴A项不是勾股数;∵82+242=640,252=625≠640,∴B项不是勾股数;∵82+152=289,172=289,∴C是勾股数;∵102+202=500,262=676≠500,∴D项不是勾股数.故选C.6. 【答案】C【解析】连接AC,观察图形易知AB=, BC=, AC=,所以△ACB为等腰三角形,又因为BC2+ AC2=AB2, △ACB为等腰直角三角形,所以∠ABC=45°.7. 【答案】C【解析】∵|a-12|≥0,≥0,(c-20)2≥0,∴由题意得,a-12=0, b-16=0,c-20=0,则有a=12,b=16,c=20.∵a2+b2=122+162=400=202=c2,∴该三角形为直角三角形,c为斜边.设斜边上的高为h.由面积公式得ab=ch,所以h===9.6.8. 【答案】正北【解析】因为82+152=172,所以△ABC为直角三角形,即AB与BC垂直.9. 【答案】2【解析】因为m+3>m+2>m+1,所以m+3为直角边,根据勾股定理得,(m+1)2+(m+2)2=(m+3)2,解得m=2或m=-2(舍去).所以m=2.10. 【答案】如果ac>bc(c≠0),那么a>b【解析】根据命题写出它的逆命题,即原命题的题设是逆命题的结论,原命题的结论是逆命题的题设.11. 【答案】直角三角形【解析】∵|a-3|≥0,≥0,(c-5)2≥0,结合题意得a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5,a2+b2=9+16=25=c2,∴△ABC 是直角三角形.12. 【答案】如图,甲船航行的距离为BM=8×2=16(海里),乙船航行的距离为BP=15×2=30(海里).∵162+302=1 156=342,∴BM2+BP2=MP2,∴△MBP为直角三角形,且∠MBP=90°,∴乙船是沿着南偏东30°的方向航行的.13. 【答案】∵a+b=4,ab=1,∴(a+b)2=42=16,即a2+b2+2ab=16,∴a2+b2=16-2ab=16-2×1=14,又∵c2=()2=14,∴a2+b2=c2,又∵a,b,c是△ABC的三边,根据勾股定理得△ABC为直角三角形.14. 【答案】连接AC(如图).∵AD⊥DC,∴在Rt△ACD中,由勾股定理得AC==5 m.又∵AC2+BC2=52+122=132=AB2,∴△ABC 为直角三角形,∴这块地的面积为S △ABC -S △ACD =AC ×BC -AD ×CD =× 5×12-×4× 3=24(m 2).15. 【答案】因为CD 2+AD 2=(5)2+52=100=AC 2,所以△ACD 是直角三角形,且∠D =90°. 在Rt △ABD 中,BD ==3 (dm),所以BC =BD -CD =(3-5) dm,所以△ABC 的面积为BC ·AD =×(3-5)×5=(dm 2).16. 【答案】如图,作DE ∥AB 交BC 于点E ,连接BD ,则可以证明△ABD ≌△EDB (ASA),∴DE =AB =4,BE =AD =3.∵BC =6,∴EC =BC -BE =3,∴EC =EB .∵DE 2+CE 2=42+32=25=CD 2,∴△DEC 为直角三角形,∴∠DEC =90°.又∵EC =EB =3,∴△DBC 为等腰三角形,∴DB =DC =5.在△BDA 中,∵AD 2+AB 2=32+42=25=BD 2,∴△BDA 是直角三角形.易得S △BDA =×3×4=6,S △DBC =×6×4=12,∴S △四边形ABCD =S △BDA +S △DBC =6+12=18.17. 【答案】在Rt △ACD 和Rt △BCD 中,∵AC 2=AD 2+CD 2,BC 2=CD 2+BD 2,∴AC 2+BC 2=AD 2+2CD 2+BD 2=AD 2+2AD ·BD +BD 2=(AD +BD )2=AB 2,∴△ABC 是直角三角形.18. 【答案】延长AD 到点E ,使DE =AD ,连接BE .∵点D 是BC 的中点,∴BD =CD .在△ADC 和△EDB 中,CD =BD ,∠ADC =∠EDB ,AD =ED ,∴△ADC ≌△EDB ,∴EB =AC =13,AE =2AD =2×6=12.又∵AB =5,∴AB 2+AE 2=52+122=169=132=BE 2,∴△ABE 是直角三角形,且∠BAE =90°,∴BA ⊥AD .。
最新人教版八年级数学下册第十七章 勾股定理导学案(全章)
第十七章 勾股定理 课题:17.1 勾股定理(1)学习目标:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
学习重点:勾股定理的内容及证明。
学习难点:勾股定理的证明。
学习过程: 一、自主学习画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。
(勾3,股4,弦5)。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42_____52,52+122_____132,那么就有_____2+_____2=_____2。
(用勾、股、弦填空) 对于任意的直角三角形也有这个性质吗?勾股定理内容 文字表述: 几何表述: 二、交流展示例1、已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为 a 、b 、c 。
求证:a 2+b 2=c 2。
分析:⑴准备多个三角形模型,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正即4×21× +﹝ ﹞2=c 2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷勾股定理的证明方法,达300余种。
这个古老而精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
八年级数学下册第十七章勾股定理勾股定理的逆定理教案新人教版
17.2勾股定理的逆定理【教学目标】知识与技能:1.理解原命题、逆命题、逆定理的概念及关系.2.会用勾股定理的逆定理判断直角三角形.过程与方法:经历探索勾股定理的逆定理的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.情感态度与价值观:通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.【重点难点】重点:理解并掌握勾股定理的逆定理,并会应用.难点:勾股定理的逆定理的证明.【教学过程】一、创设情境,导入新课小明做了一个长为40 cm,宽为30 cm的长方形模型,高兴地交给了老师,老师接过小明的模型,用刻度尺度量了模型的长宽所在的对角线,量得对角线的长为56 cm,然后老师指着模型对小明说:“这个角不是直角,你做的模型不合格.”小明不高兴地问老师:“老师,只通过直尺度量就能判断一个角不是直角吗?”同学们有这样的疑问吗?老师通过直尺度量判断直角有没有根据?带着这些问题,我们学习本节知识.二、探究归纳活动1:互逆命题、互逆定理1.问题1:下面几组数分别是一个三角形的边长a、b、c(单位:cm).①3、4、5;②4、7、9;③6、8、10.(1)这三组数都满足a2+b2=c2吗?(2)尺规作图:分别以每组数为三边长作出三角形.(3)用量角器量一量,它们是直角三角形吗?提示:(1)①③满足a2+b2=c2,②不满足(2)略(3)①③是直角三角形,②不是直角三角形.2.思考:根据上面的几个例子,你能提出一个数学命题吗?3.归纳:如果一个三角形的三边长a,b,c满足_________________,那么这个三角形是___________.答案:a2+b2=c2直角三角形4.问题2:阅读,命题1 : 如果一个三角形是直角三角形,两直角边长为a,b,斜边长为c,那么a2+b2=c2.命题2 :如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(1)观察命题2与命题1,你有什么发现?发现:两个命题的______、______正好相反,命题1的____是命题2的______;命题1的______是命题2的______.我们把像这样的两个命题叫做________.如果把其中一个叫______,那么另一个叫做它的________.(2)你能举出互逆命题的例子吗?(3)如果原命题正确,那么逆命题也正确吗?举例说明.提示:(1)题设结论题设结论结论题设互逆命题原命题逆命题(2)略(3)不一定略5.思考:一个三角形各边长数量应满足怎样的关系时,这个三角形才是直角三角形呢?提示:三角形的三边长a,b,c满足a2+b2=c2时,这个三角形是直角三角形.活动2:1.问题:已知△ABC中,BC=3,AC=4,AB=5,求证△ABC是直角三角形.证明:如图,画一个Rt△A′B′C′,使B′C′=______,A′C′= ______,∠C′= ______°.∵BC=3,AC=4,∴BC=______=3 ,AC=______=4,由勾股定理,得A′B′2=B′C′2+A′C′2=______+______=______,∴A′B′=______,∵AB=5,∴AB=______ ,在△ABC和△A′B′C′中,∵∴△ABC≌△A′B′C′()∴∠C′= ______= ______°∴△ABC是直角三角形.提示:BC AC 90B′C′A′C′ 32 42 255A′B′BC=B′C′,AC=A′C′,AB= A′B′SSS∠C 902.思考:若△ABC的三边不是3、4、5,而是a,b,c,但同样满足a2+b2=c2,你能证明△ABC是直角三角形吗? 提示:略3.思考:如果一个定理的逆命题经过证明是正确的,那么它也是一个定理吗?提示:是归纳:1.如果三角形的三边长是a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形,是真命题,可以用来判定直角三角形,我们把它称为勾股定理的逆定理.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理“互为逆定理”.活动3:勾股数思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?提示:是6.应用举例【例1】下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中是假命题的有________(填序号).分析:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.解:①对顶角相等是真命题;②同旁内角互补是假命题;③全等三角形的对应角相等是真命题;④两直线平行,同位角相等是真命题;故是假命题有②.答案:②总结:要判断一个命题是假命题,只需举出一个反例即可.【例2】观察以下几组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26;…,根据以上规律的第⑦组勾股数是()A.14、48、49B.16、12、20C.16、63、65D.16、30、34分析:根据前面的几组数可以得到每组勾股数与各组的序号之间的关系,如果是第n组数,则这组数中的第一个数是2(n+1),第二个是:n(n+2),第三个数是:(n+1)2+1.根据这个规律即可解答.解:选C.根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+1),第二个数是n(n+2),第三个数是(n+1)2+1,故可得第⑦组勾股数是16,63,65.总结:勾股数满足的条件只要三个整数中,满足较小两个整数平方的和等于较大整数的平方,那么这三个整数就是一组勾股数.【例3】如图四边形ABCD是一块草坪,量得四边长AB=3 m,BC=4 m,DC=12 m,AD=13 m,∠B=90°,求这块草坪的面积.分析:连接AC,可以把四边形分割成两个三角形,由勾股定理及逆定理说明△ACD为直角三角形,利用三角形面积公式可求四边形ABCD的面积.解:连接AC,在Rt△ABC中,AB=3 m,BC=4 m,∠B=90°,由勾股定理得AB2+BC2=AC2,∴AC=5 m.在△ADC中,AC=5 m,DC=12 m,AD=13 m∵AC2+DC2=169,AD2=169,∴AC2+DC2=AD2 ,∴△ACD为直角三角形,即∠ACD=90°.所以四边形的面积=S Rt△ABC+S Rt△ADC=AB×BC+AC×DC=×3×4+×5×12=36(m2)即这块草坪的面积是36 m2.总结:应用勾股定理的逆定理判断三条线段能否构成直角三角形的方法1.排序:把三条线段按由小到大排列;2.计算:看较小两条线段边的平方和是否等于最大线段的平方;3.结论:判断能否构成直角三角形.三、交流反思这节课我们学习了互逆命题(定理),探索了勾股定理的逆定理,掌握了直角三角形的判别条件(即勾股定理的逆定理),并能进行简单应用,理解勾股定理和勾股定理的逆定理之间的区别.四、检测反馈1.下列各组数中,是勾股数的为()A.1,2,3B.4,5,6C.3,4,5D.7,8,92.分别有下列几组数据:①6、8、10②12、13、5③7、8、15④40、41、9.其中是勾股数的有()A.4组B.3组C.2组D.1组3.把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果……,那么……”的形式: __________________.4.下列命题中,其逆命题成立的是________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.5.叙述下列命题的逆命题,并判断逆命题是否正确.(1)如果a3>0,那么a2>0;(2)如果三角形有一个角小于90°,那么这个三角形是锐角三角形;(3)如果两个三角形全等,那么它们的对应角相等;(4)关于某条直线对称的两条线段一定相等.6.如图在△ABC中,AB=13,BC=10,BC边上的中线AD=12.求:(1)AC的长度;(2)△ABC的面积.7.如图是一块地的平面图,AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,求这块地的面积.五、布置作业教科书第34页习题17.2第1,2,5题六、板书设计17.2勾股定理的逆定理一、互逆命题(定理)二、勾股数三、勾股定理的逆定理四、例题讲解五、板演练习七、教学反思勾股定理的逆定理这节课的教学,我采用了体验探究的教学方式.在课堂教学中,我首先创设情境,提出问题;再让学生通过画图、测量、判断、找规律,猜想出一般的结论;然后由学生想、画、剪、叠,去验证结论……使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝到成功的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,挤出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度的生活习题的练习,拓宽学生知识面,提高学生的发散思维能力.。
(新人教版)数学八年级下册 第十七章 勾股定理 单元复习讲义学案
人教版初中数学八年级下册第十七章句股定理章节复习教学设计一、教学目标z1.复习与回顾本擎的重要知识点;2.勾股定理及其逆定理的用途和相互关系;3.总结本章的重要思想方法及其应用;4.勾股定理及逆定理的综合运用.二、教学过程z 知识网络如果直角三角形的两条直角边长分别为a,b ,斜边长为c ,那么①a 2+bi=ι,l .句股定理的变式:(l)c=乓亏V;(2)a 2=c 2-旷;(3)b 2=C 2-a 2; ( 4 )a =正亡,T;(5)b=lc 亡歹.实际问题| ||二二二二|勾股定理(直角三角形边长的计算)'逆命题实际问题||勾股定理(判定直角三角形)|←一一一一|的逆定理知识梳理一、勾股定理已知直角三角形中的任意两边,均可求出第三边长;已知直角三角形的一边,可确定另两边的数量关系;证明含平方关系的问题等.如果三角形的三边长α,b,c 满足②α2+b 2=/,那么这个三角形是直角三角形.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a 2+b 2=c 2.两直角边的平方和等于斜边的平方.a:勾般因因回回a i +b i =c 2 c =U 工b2a 2=c 2-b 2 a =♂习Tb 2=c 2-a 2b =Jcf"习二、句股定理的实际应用利用勾股定理解决实际问题的一般步骤:(l)读懂题意,分析己知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.转T也题进臼川构’学l l l E ’我旬欣纯理利用三、利用句股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.l i-2-1IA2--1 o 1 2s : 4类似地,利用勾股定理,可以作出长为-./2,飞/言,-./5,…的线段按照同样方法,可以在数轴上画出表示飞斤,d ,飞/言,{'ii,-./5,…的点A一-··四、折叠问题中结合勾股定理求线段长的方法:(I)设一条未知线段的长为x(一般设所求线段的长为x); (2)用已失I]线数或含x的代数式表示出其他线段长;(3)在一个直角三角形中应用勾股定理列出一个关于x的方程;(4)解这个方程,从而求出所求线段长.c AB五、原命题与逆命题'-l唾晦哩,也DEc题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理勾股定理与勾股定理的逆定理为互逆定理.六、勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a,b, c满足矿+b2=c2,那么这个三角形是直角三角形AbB c七、句股数如果三角形的三边长a,b, c满足a2+b2=c2那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数固回回因因常见勾股数:3.4, 5; 6, 8, 10; 5, l2, l3; 8, 15, l7; 7, 24, 25等等.回国团团团回因一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.如:3, 4, 5; 6, 8, 10: 9, 12, 15; 12, 16, 20…考点梳理考点解析考点1:句股定理的简单应用例1.在Rt.6.ABC中,LC=90。
最新人教版八年级数学下册 第十七章《勾股定理的逆定理》教案
《勾股定理的逆定理》教案1【教学设计说明】本课使学生在动手操作的基础上和合作交流的良好氛围中,让学生充分观察、动手实践,营造轻松愉快的学习氛围,以此激发学生的学习兴趣.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的.【教材分析】勾股定理是我国古代数学的一项伟大成就,被广泛的应用于数学和实际生产生活的各个方面.勾股定理的逆定理是在学生研究了勾股定理的基础上进一步学习的内容,它是初中数学教学内容中的一个重要定理,是对直角三角形的再认识,也是判断一个三角形是否是直角三角形的重要方法,体现了数形结合的思想,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔.通过本节内容的学习,进一步加深学生对“性质与判定”之间的辩证统一关系的认识,同时也完善了学生的知识结构,为后续的学习打下基础.【学情分析】尽管学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键.在前面知识的学习过程中,学生已经经历了的自主探究、动手实践、合作学习等过程,具有了一定参与数学活动的经验和数学思考,具备了一定的进行数学活动的能力.【教学目标】1.了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.2.探索勾股定理的逆定理,并能运用它们解决一些简单的实际问题.3.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.4.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程.通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用.【教学重点】勾股定理的逆定理及其运用.【教学难点】勾股定理的逆定理的证明.【课时设计】两课时.【教学策略】本节课主要通过创设问题情境,引导学生动手实践、自主学习、合作交流、采用发现法、探究法、练习法为辅的教学方法.【教学过程设计】(一)复习引入(1)勾股定理的内容是什么?(2)求以线段a、b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=5,b=12;③a=8,b=15.(3)上述(2)中三角形的边a,b,c有什么关系______,分别以上述a,b,c为边的三角形的形状会是什么样的呢?通过此情景引发学生的质疑、兴趣,师揭示课题,提出教学目标并板书课题.答案:(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a +b =c .(2)①c=5;②c=13;③c=17;(3)a +b =c ;直角三角形.【设计意图】在复习旧知的基础上,通过调换命题的条件和结论,巧妙地过渡到本节课的课题.(二)探索新知实验观察:1.拼一拼:同学们拿出准备好的木条,用三根木条作为三角形的边a ,b ,c 拼成一个三角形,要求如下:(1)a =3cm ,b =4cm ,c =5cm ;(2)a =5cm ,b =12cm ,c =13cm ;(3)a =8cm ,b =15c m ,c =17cm.2.量一量:用你的量角器分别测量一下上述各三角形的最大角的度数,并说出此三角形的形状.3.猜一猜:由上面几个例子你发现了什么吗?请以命题的形式说出你的观点.学生思考并回答:命题2与勾股定理的题设和结论有何关系?师生共同归纳:原命题与逆命题的定义.4.说一说:说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两直线平行,内错角相等.(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应边相等答案:2.90;直角三角形.3.命题2:如果三角形的三边长分别为a ,b ,c ,满足a +b =c ,那么这个三角形是直角三角形.4.(1)内错角相等,两直线平行.成立(2)如果两个实数的平方相等,那么这两个实数相等.不成立(3)如果两个实数的绝对值相等,那么这两个实数相等.不成立(4)对应边相等的两个三角形是全等三角形.成立【设计意图】通过“拼一拼”“量一量”“猜一猜”“说一说”等活动感知勾股定理的逆定理.比较勾股定理与命题2的题设与结论,认知原命题与逆命题的互逆性,凸显命题的形成过程,自然地得出勾股定理的逆命题.5.验一验:师:那勾股定理的逆命题是否正确?我们怎么验证呢?师生行为:让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.222222222师生共同得出:把命题转化成已知求证的形式.已知:如图,在△ABC 中,AB =c ,AC =b ,BC =a ,且a +b =c ,求证:∠C =90.222 师:△ABC 的三边长a ,b ,c 满足a +b =c .如果△ABC 是直角三角形,它应与直角边是a ,b 的直角三角形全等,实际情况是这样吗?我们作一个Rt △A 'B 'C ',使B 'C '=a ,A 'C '=b ,∠C '=90(如下图)Rt △A B C 会与△ABC 全等吗?'''222生:我们所作的Rt △A 'B 'C ',A 'B '=a +b ,又因为c =a +b ,所以A 'B '=c ,2222222∠C =∠C '=90.△ABC 即A 'B '=c .△ABC 和△A 'B 'C '三边对应相等,所以两个三角形全等,为直角三角形.即勾股定理的逆命题是正确的.师:很好,当我们证明了勾股定理的逆命题是正确的,那么命题就成为一个定理.勾股定理和勾股定理的逆定理称为互为逆定理.师生共同归纳出勾股定理的逆定理:如果三角形的三边长分别为a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形.学生明确利用勾股定理的逆定理求角要注意的事项:(1).条件:须知道三角形三边长a 、b 、c 满足a +b =c ,往往要通过计算.结论:∠C =90(最长边c 所对的角).(2).书写格式:∵如图在△ABC 中,AC +BC =AC .∴∠C =90.222 222【设计意图】经历定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点.(三)例题讲解例1:判断由线段a,b,c组成的三角形是不是直角三角形?(1)a=15,b=17,c=8;;(2)a=13,b=15,c=14.学生根据勾股逆定理来解决此类已知三边,判断三角形形状的问题.通过思考,归纳出解题思路.师生共同归纳:像15,17,8,能够成为直角三角形三条边长的三个正整数,称为勾股数.答案:(1) 152+82=225+64=289172=289∴152+82=172∴这个三角形是直角三角形(2) 132+142=169+196=365152=225∴13+14≠15222∴这个三角形不是直角三角形【设计意图】进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重点.例2.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NQ远航号海天号R21P E海岸线解:根据题意画图,如图所示:PQ=16⨯1.5=24,PR=12⨯1.5=18,QR=30242+182=302,即PQ2+PR2=QR2∴∠QPR=90由”远航“号沿东北方向航行可知,∠QPS=45.所以∠RPS=45 ,即?海天”号沿西北方向航行.【设计意图】以例2为理解勾股定理逆定理的应用.(四)拓展提高1.下面以∠A 、∠B 、∠C 的对应边分别为a ,b ,c 的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a =15b =20c =25;(2)a =13b =10c =20;(3)a =1b =2c =3;(4)a :b :c =3:4:5 .2.△ABC 中,∠A ,∠B ,∠C 所对应边的长分别为a ,b ,c ,且c =a -b ,则下列说法正确的是().A .∠C 是钝角B .∠C 是直角C .∠A 是直角D .∠B 是直角3.满足下列条件的△ABC ,不是直角三角形的是().A .AC +BC =AB B .a ∶b ∶c =5∶12∶13C .∠C =∠A +∠BD .∠A ∶∠B ∶∠C =3∶4∶54.一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?222222C13D ACD 4512BA 3B参考答案:1、(1)是;∠C.(2)不是.(3)是;∠B.(4)是;∠C.2、C3、D4、解析:∵AB 2+AD 2=32+42=25BD 2=52=25∴AB 2+AD 2=BD 2∴∠A =90∵BD 2+BC 2=52+122=169CD 2=132=169∴BD 2+BC 2=CD 2∴∠CBD =90∴这个零件符合要求.【设计意图】及时反馈教学效果,查漏补缺,对学有困难的同学给予鼓励和帮助.(五)知识小结你能谈谈学习这节内容的收获和体会吗?【设计意图】通过归纳总结,使学生优化概念,内化知识.(六)课后作业1.下列三条线段能组成直角三角形的是().A .6,8,9B .5,6,12C .5,3,2D .10,7,82.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为().A .2,4,8B .4,8,10C .6,8,10D .8,10,123.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a -b )=c ,则().2A .∠A 为直角B .∠C 为直角C .∠B 为直角D .不是直角三角形4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().A .12.5B .12C .152D .925.请你写一组勾股数:_________________.6.若一个三角形的三边分别为5、4、3,则它的面积为.27.已知a -5+(b -12)+c -13=0,则以a ,b ,c 为边的三角形是_____________.8.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为_______cm .9.已知:在∆ABC 中,AB =13cm,BC =10cm,BC 边上的中线AD =12cm.求AC .10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?2答案:1.C 2.C 3.A 4.B5.3,4,5答案不唯一6.67.直角三角形.解:由题意可得a=5,b=12,c=13.∵52+122=169,132=169.∴52+122=132即a 2+b 2=c 2所以三角形是直角三角形8.1209.∵AD 2+BD 2=52+122=169AB 2=132=169即AD 2+BD 2=AB 2∴△ABD 是直角三角形∴在Rt △ACD 中,AC=52+122=1311⨯120=12海里,BC =⨯50=5海里1010∵AC 2+BC 2=52+122=16910.由题意得,AC =AB 2=132=169即AC 2+BC 2=AB 2∴△ABC 是直角三角形∴乙巡逻艇向北偏西40 方向航行,即∠ABC =50 ∴∠BAC =40 ,即甲巡逻艇向北偏东50 方向航行.答:甲巡逻艇向北偏东50 方向航行.【板书设计】【教学反思】这节课的学习,我采用了体验探究的教学方式.在课堂教学中,首先由教师创设情境,提出问题;再让学生通过“拼一拼”“量一量”“猜一猜”“说一说”等活动猜想出一般性的结论;然后由去验证结论,使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民.作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者.因此,课堂教学过程的设计,也必须体现出学生的主体性.。
陕西省安康市紫阳县紫阳中学八年级数学下册 17.2 勾股定理逆定理(第2课时)教案(新人教版)
17.2 勾股定理逆定理(第2课时)课题: 17.2 勾股定理逆定理(第2课时)教学目标知识与能力:1.说出证明勾股定理逆定理的方法。
2.叙述逆定理,互逆定理的概念。
过程与方法:1.经历证明勾股定理逆定理的过程,发展逻辑思维能力和空间想象能力。
2.经历互为逆定理的讨论,树立严谨的治学态度和实事求是求学精神。
情感态度价值观:1.经历探索勾股定理逆定理证明的过程,树立克服困难的勇气和坚强的意志。
2.树立与人合作、交流的团队意识。
教学重、难点重点:勾股定理逆定理的证明,及互逆定理的概念。
难点:互逆定理的概念学情分析本节主要学习勾股定理逆定理的证明,经历证明勾股定理逆定理的过程,得出命题2是正确的,引出勾股定理的逆定理的概念,最后是利用勾股定理的逆定理解决实际问题的例子,可以进一步理解勾股定理的逆定理,体会数学与现实世界的联系。
课前准备多媒体教学过程教师活动学生活动设计意图创设问题情境,引入新课二、讲授新课活动 1 以下列各组线段为边长,能构成三角形的是____________(填序号),能构成直角三角形的是____________.①3,4,5 ②1,3,4 ③4,4,6 ④6,8,10 ⑤5,7,2 ⑥13,5,12 ⑦7,25,24活动2 问题:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A'B'C',使B'C'=a,A'C'=b,∠C'=90°(如下图)由学生自己独立完成,教师巡视学生填的结果.在此活动中,教师应重点关注:①学生是否熟练地完成填空;②学生是否积极主动地完成任务.生:能构成三角形的是:①③④⑥⑦,能构成直角三角形的是;①④⑥⑦让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.我们所画的Rt△A'B'C',A'B'=a2+b2,又因为c2=a2+b2,所以A'B'2=c2,即帮助学生回忆构成三角形的条件和判定一个三角形为直角三角形的条件.由特例猜想得到的结论,会让一些同学产生疑虑,我们的猜想是否正确,必须有严密的推理证明过程,才能让大家用的放心.通过对命题2的证明,还可以提高学生的逻辑推理能力把画好的△A'B'C'剪下,放在△ABC上,它们重合吗?1.如果三条线段长a,b,c 满足a2=c2-b2.这三条线段组成的三角形是不是直角三角形?为什么?2.说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两条直线平行,内错角相等.(2)如果两个实数相等,那么它们的绝对值相等.(3)全等三角形的对应角相等.(4)在角的平分线上的点到角的两边的距离相等.[例1]一个零件的形状如下图所示,按规定这个零件中∠A和∠D BC都应为直角.工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?[例2](1)判断以a=A'B'=c △ABC和△A'B'C'三边对应相等,所以两个三角形全等,∠C=∠C'=90°.△ABC为直角三角形.即命题2是正确的.学生独立思考,自主完成;教师巡视完成练习的情况,以不同层次的学生给予辅导.在此活动中,教师应重点关注学生.①学生对勾股定理的逆定理的理解.②学生对互为逆命题的掌握情况.③学生面对困难,是否有克服困难的勇气.学生只要能用自己的语言表达清楚解决问题的过程即可.先由学生独立完成,然后小组交流,讨论;教师巡视学生完成问题的情况,及时给予指导.在此活动中,教师应重点关注学生:①能否进一步理解勾股定理的逆定进一步理解和掌握勾股定理的逆定理的本质特征,以及互为逆命题的关系及正确性;提高学生的数学应用意识和逻辑推理能力.这是利用勾股定理的逆定理解决实际问题的例子,可以使学生进一步理解勾股定理的逆定理,体会数学与现实世界的联系.10,b=8,c=6为边组成的三角形是不是直角三角形.解:因为a2+b2=100+64=164≠c2,即a2+b2≠c2,所以由a,b,c不能组成直角三角形.请问:上述解法对吗?为什么?(2)已知:在△ABC中,AB=13cm,BC=10cm,BC 边上的中线AD=12cm.求证:AB=AC.你对本节的内容有哪些认识,掌握勾股定理的逆定理及其应用,熟记几组勾股数.理,②能否用语言比较规范地书写过程,说明理由.③能否从中体验到学习的乐趣。
八年级数学下册 17.2《勾股定理的逆定理》数学趣苑 趣拼图 证勾股素材 (新版)新人教版
趣拼图 证勾股勾股定理的证明一般是通过割补法拼接,构建特殊的图形,根据面积之间的关系进行推导,现采撷几种著名的拼图方法和同学们一起欣赏.一、赵爽《勾股园方图》我国3世纪时著名数学家赵爽在《勾股园方图》一书中的证明,算得上是比较简单、优美的证法.如图1,在边长为c 的正方形中,有四个斜边为c 的可以完全重合的直角三角形,已知它们的直角边分别为a 、b ,利用这个图证明勾股定理.证明:因为大正方形的边长为c ,所以大正方形的面积为c2.又大正方形是由四个可以完全重合的直角三角形和中间的一个小正方形组成的,所以大正方形的面积=4×12ab+(a -b )2=a 2+b 2,所以a 2+b 2=c 2. 二、刘徽《青朱出入图》如图2,直角边长分别为a 、b 的四个三角形可以完全重合,斜边长为c ,图中有3个边长分别为a 、b 、c 的正方形.推导如下:设图形的面积为S .因为S =a 2+b 2+2·(12 ab )=a 2+b 2+ab ,另一方面S =c 2+12 ab +12ab =c 2+ab .所以a 2+b 2=c 2.三、茄菲尔德总统拼图如图3,直角梯形中,上底为a ,下底为b ,高为(a+b ),梯形中有三个直角三角形,推导方法如下:设梯形面积为S ,则S =12 (a +b )(a +b )=12 a 2+12b 2+ab ,又S =12 ab +12 ab +12 c2=12c 2+ab . 比较上面两式有:a 2+b 2=c 2.四、达·芬奇拼图用4个直角边分别为a 、b ,斜边为c 的直角三角形和1个边长为c 的正方形拼成如图42 -1所示的边长为(a +b )的正方形,再用4个直角边分别为a 、b ,斜边为c 的直角三角形和边长分别为a 、b 的两个正方形拼成如图4-2所示的边长为(a +b )的正方形,根据这两个图形面积相等的关系很容易推导勾股定理.图4-1所示的大正方形的面积=c 2+4·12ab .图4-2所示的大正方形的面积=a 2+b 2+4·12ab ,比较两式易得:a 2+b 2=c 2。
人教版八年级下册17.2勾股定理逆定理练习题(word无答案)
17.2勾股定理逆定理练习一、选择题1.已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24 B.30 C.40 D.482.有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8m B.10m C.12m D.14m3.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15 4.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.小时B.小时C.小时D.小时5.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形二、填空题6.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.7.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.8.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有米.9.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”).10.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.11.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.12.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.三、解答题13.如图,为修铁路需凿通隧道AC,现测量出∠ACB=90°,AB=5km,BC=4km,若每天凿隧道0.2km,问几天才能把隧道AC凿通?14.已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9.(1)求AC的长;(2)求四边形ABCD的面积.15.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.16.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD 长)多少米?17.小明和小颖在如图所示的四边形场地上,沿边骑自行车进行场地追逐赛(两人只要有一个人回到自己的出发点,则比赛结束).小明从A地出发,沿A→B→C→D→A的路线匀速骑行,速度为8米/秒;小颖从B地出发,沿B→C→D→A→B的路线匀速骑行,速度为6米/秒.已知∠ABC=90°,AB=40米,BC=80米,CD=90米.设骑行时间为t秒,假定他们同时出发且每转一个弯需要额外耗时2秒.(1)填空:当t=秒时,两人第一次到B地的距离相等;(2)试问小明能否在小颖到达D地前追上她?若能,求出此时t的值;若不能,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【关键字】八年级
17.1 勾股定理逆定理(2)
学习目标:1、勾股定理的逆定理的实际应用;
2、通过用三角形三边的数量关系来判断三角形的形状,体验数形结合.
学习重点:勾股定理的逆定理及其实际应用。
学习难点:勾股定理逆定理的灵活应用。
学习过程:
一、自主学习:
1、判断由线段、、组成的三角形是不是直角三角形:
(1);(2)(3)
2、写出下列真命题的逆命题,并判断这些逆命题是否为真命题。
(1)同旁内角互补,两直线平行;
解:逆命题是:;它是命题。
(2)如果两个角是直角,那么它们相等;
解:逆命题是:;它是命题。
(3)全等三角形的对应边相等;
解:逆命题是:;它是命题。
(4)如果两个实数相等,那么它们的平方相等;
解:逆命题是:;它是命题。
2、合作交流探究与展示
1、请写出三组不同的勾股数:、、.
2、借助三角板画出如下方位角所确定的射线:
①南偏东30°;②西南方向;③北偏西60°.
3、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
三、当堂检测:
必做
1、一根绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
2、已知在△ABC中,D是BC边上的一点,若AB=10,BD=6,AD=8,AC=17,求S△ABC.
3、已知:如图,四边形ABCD中,AB=3,BC=4,CD=5,AD=,
∠B=90°,求四边形ABCD的面积.
选做
4、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。
已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西n°,问:甲巡逻艇的航向?
此文档是由网络收集并进行重新排版整理.word可编辑版本!。