小电流接地故障现象及原因分析(正式版)
小电流系统接地故障现象分析
小电流系统接地故障现象分析——北京拓山电力科技有限公司小电流接地故障一般有完全接地、不完全接地、电弧接地、母线电压互感器一相二次熔断、电压互感器高压侧出现一相(A相)断线或一次熔断件熔断、串联谐振、绝缘监测仪表的中性点断线时电网发生单相接地、绝缘监测继电器接点粘接,电网实际无接地、这九种接地故障。
现具体分析如下:(1)完全接地。
如果发生A相完全接地,则故障相的电压降到零,非故障相的电压升高到线电压,此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接地信号。
(2)不完全接地。
当发生一相(如A相)不完全接地时,即通过高电阻或电弧接地,中性点电位偏移,这时故障相的电压降低,但不为零。
非故障相的电压升高,它们大于相电压,但达不到线电压。
电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。
(3)电弧接地。
如果发生A相完全接地,则故障相的电压降低,但不为零,非故障相的电压升高到线电压。
此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接地信号。
(4)母线电压互感器一相二次熔断件熔断。
此现象为中央信号警铃响,打出“电压互感器断线”光字牌,一相电压为零,另外两相电压正常。
处理对策是退出低压等与该互感器有关的保护,更换二次熔断件。
(5)电压互感器高压侧出现一相(A相)断线或一次熔断件熔断。
此时故障相电压降低,但指示不为零,非故障相的电压并不高。
这是由于此相电压表在二次回路中经互感器线圈和其他两相电压表形成串联回路,出现比较小的电压指示,但不是该相实际电压,非故障相仍为相电压。
互感器开口三角处会出现35V左右电压值,并启动继电器,发出接地信号。
对策是处理电压互感器高压侧断线故障或更换一次熔断件。
(6)串联谐振。
由于系统中存在容性和感性参数的元件,特别是带有铁心的铁磁电感元件,在参数组合不匹配时会引起铁磁谐振,并且继电器动作,发出接地信号。
可通过改变网络参数,如断开、合上母联断路器或临时增加或减少线路予以消除。
小电流接地系统故障分析
二、小电流接地系统接地故障分析(低压系统)
1)电压情况 EA EB EC 单电源不接地系统,接地后,故障点的三相电压为: UAD = 0 UBD = EB – EA UCD = EC – EA U0 = – EA UAD
UCD
UBD
U0 结论 1: K(1)时,全系统接地相对地电压为 0,全系统非故障相对地电压升高为 √3 倍,全系统出现零序电压,大小为相电压。 2)电流情况E1源自Z13RZ2
Z0
3R
由于 3R 远大于各序综合等值阻抗,计算就简化为:I0 = E / 3R 故障相电流 3I0 = E / R ,其中 E 为相电势。
U0
L
U0
C IC IL
显然,故障点 I0 = IL - IC 完全补偿:XC=XL,纵向出现不对称时,串联谐振引起过电压; 补偿方式: 欠补偿:IL<IC,方式变化,仍会导致串联谐振; 过补偿:IL>IC, 5%~10% ; 2) 中性点经高阻接地系统 电弧是电阻性的,易间歇复燃,导致过电压,再一个解决办法是中性点经 高阻接地。由高阻使得电流保持稳定不至于间歇复燃。 3) 中性点经中阻接地系统 事实上,对于现代供电网,规模越来越大,而且电缆越来越多,发生接地 故障,故障点的电流已经很大,本来也是停电,索性使用中阻接地,使接地电 流变大,由接地保护直接跳闸。这种方案使得保护易整定,选择性和灵敏性易 保证。 零序电流的计算:
C IC B IB A IB
UA IB IA UC IC UB UC IC
I0
UB
正常时的电容电流,但无零序 A 相接地时,出现零序 结论 2:K(1)时,出现零序电流,超前零序电压 90 度。 3)对于多出线情况(常见实际情况)
线路 1
小电流接地系统接地故障的原因分析及对策(一)
小电流接地系统接地故障的原因分析及对策(一)1.问题提出目前,小电流接地系统特别是35KV及以下的小接地系统,由于其线路分支多,走向复杂,电压等级较低,在设计施工中线路质量不易保证,运行中发生接地故障的几率是很高的。
从我市地方电网历年来的运行统计资料来看,在小电流接地系统的接地故障中,35KV电网占8.2%,10KV电网占91.8%。
本文通过笔者在实践中对电网运行工况的了解以及运行经验的总结,分析了小电流接地系统在实际运行中易引起误判的几类接地故障,在给出其原因分析的基础上着重阐述了接地故障的判别方法、处理措施及对策。
相信对同行有一定的借鉴作用。
2.易引起误判的几类接地故障及其原因分析为了便于展开下文,我们有必要首先对电网发生接地的原因作一个简单的分析。
如图1,当中性点电压Uo不为0且Uo大于绝缘监察系统定值时,便有接地信号发出,而Uo反映的是零序电压,其计算公式为:Uo=(uaubuc)/3从上式可以看出,当电网各相电压ua、ub、uc不平衡时,便有中性点电压Uo产生,而电网电压的不平衡度是接地信号发生与否的关键,本文下面的论述将紧紧围绕接地故障发生的原因作具体分析。
根据兴义市地方电网历年来的运行资料,我们统计了如下几类经常发生接地的情况:2.1系统发生单相接地或两相不完全接地此时,系统各相对地电压ua、ub、uc不平衡,其相量和不为零,产生中性点位移致使TV二次的开口三角绕组出现零序电压而发出接地信号。
2.2系统高压侧缺相运行根据运行经验和多次的模拟试验,当系统高压侧缺一相或两相运行时,由于各相对地电压不平衡(某一相或两相为零),其相量和不为零,产生的中性点位移致使TV二次的开口三角绕组出现零序电压而发出接地信号。
2.3系统发生谐振由于系统中电压互感器TV的励磁电抗XL(等于ωL)过低,倒闸操作时恰遇某相电压过零值或操作手法不正确、系统接地运行时间过长等,都可能导致系统发生铁磁谐振。
此时,系统三相电压是不平衡的,产生的中性点位移也会使保护动作而发出接地信号,这是在实际运行中导致接地信号误发最多的一种假接地故障。
小电流接地故障现象及原因分析
小电流接地故障现象及原因分析1. 引言在电力系统中,小电流接地故障是一种常见的故障类型。
它通常由线路或设备的绝缘击穿引起,导致电流通过接地电阻流入地面。
本文将对小电流接地故障的现象和原因进行分析,并探讨可能的解决方法。
2. 小电流接地故障现象小电流接地故障的主要现象包括:2.1 电流波动在小电流接地故障发生后,系统中的电流会出现明显的波动。
这是因为接地电流通过地面的不规则路径导致。
2.2 电压异常接地故障通常会导致供电系统的电压异常。
例如,故障点周围的电压可能下降,而其他区域的电压可能上升。
2.3 失效设备小电流接地故障可能导致设备失效。
由于电流通过设备的绝缘材料流入地面,设备可能受到电弧击穿或过电压的损坏。
2.4 烟雾或火花在接地电流较大的情况下,可能会出现烟雾或火花。
这是由于电流通过空气中的污染物或绝缘材料时产生的。
3. 小电流接地故障原因分析小电流接地故障的原因可以归结为以下几点:3.1 中性点接地电阻不良电力系统中,中性点接地电阻用于将系统的中性点接地,以减少对地电压和接地电流的影响。
如果中性点接地电阻不良,会导致接地电流通过其他路径流入地面,从而引发小电流接地故障。
3.2 绝缘击穿线路或设备的绝缘击穿是导致小电流接地故障的主要原因之一。
绝缘击穿可能由于设备老化、绝缘损坏或外部因素(如雷击)引起。
3.3 漏电流过大系统中的漏电流过大也可能导致小电流接地故障。
漏电流是指绝缘材料中的电流泄漏到地面或其他部分的现象。
可能的原因包括设备绝缘损坏、湿漏等。
4. 小电流接地故障解决方法针对小电流接地故障,可以采取以下措施进行解决:4.1 检修绝缘部件定期检查设备和线路的绝缘部件,确保其完好无损,以防止发生绝缘击穿的情况。
4.2 检修中性点接地电阻定期检查中性点接地电阻的电阻值,如果发现不良的情况,及时更换中性点接地电阻。
4.3 检查设备绝缘状态定期检查设备的绝缘状态,及时修复或更换老化或损坏的绝缘材料。
小电流接地系统异常接地情况分析
图 1 V 线 T 接
22 .、系统 发生 铁磁谐 振 的影响 在 小 电 流 接 地 系 统 中 , 由于 母 线 对 地 电容 的 存 在 ,其 与 母 线 电磁 电压 互 感 器T V ( 次 中性 点接 地 )的非 线性 电感L 成并 一 组 联谐振 回路 。在 外界 条件 激发 下 ,如 :合 闸 冲击 ,单 相接 地故 障切 除或 弧光接 地 自动熄 灭 ,线 路 断 线 ,或 系统 参数 变化 等 。在 这 些 暂态 过 程 中 , 电压 互感 器 T V三相 绕 组 由 于承 受 电压 不同 ,铁芯 饱和 程度 可能 不 同 , 于 是三相 电感也不 相 等 ,就 可能 发生 并联 铁
o
鲁
]
f) ,将 以 一 个 脉 振 的 角 速 度 ∞。 2n = (i f)旋 转 ,可 以 和任 意 相 电压 重 合 f — ( 图2 ,从 而使 l 常 网 络的 相 电压 大 小 见 ) }
下转 第1 8 页 O
2几种 异 常接地 现 象及 其发 生的原 因
f 属 相地、压压霉非 相 接1 性 接 电电 。故 升 地蛊 、 为相 1陴 为 障 高 线 故
2 、非盎属性捧地 、故障相电压降低 ( 不为零 非 故障相电压升高 f 低干线 申压) 1 、基逋谐振 ( 过电压 璺 ) 并联 1 、一相电压下降 f 不为零).两相 电压升高超过拽电压或 电压表到头 两相电压下降 ( 不为零 ), 相电压 升高或 电压表到头
. 上接 第 1 6 . 《 O页 按 序发 生 了 由0 倍 相 电压 的变化 ,不仅 改 ~2 变 了该 网络 的相 电压 相位 ,同时比 改变 _ 广 相 电压的 数 值 ,使正常 系 统 }现接地 现 象 ,即 } j 形 成虚 幻 接地 ,引起 运 行 人 员的误 判 断 。在 实 际运 行 中 ,上述接 线 方式 是少 见的 ,但 为 了防 止上 述现 象的发 生 ,无论变 压器 分 列或 者 并 列运 行 ,都要避 免 用 消弧线 圈的 隔 离开 关并 列 、解 列两台变 压 器 的 中性点 。
小电流接地系统单相接地故障
小电流接地系统单相接地故障分析小电流系统单相接地时的运行状态,其不同于正常运行状态的信息主要有2点:故障线路流过的零序电流是全系统的电容电流减去自身的电容电流,而非故障线路流过的零序电流仅仅是该线路的电容电流。
故障线路的零序电流是从线路流向母线,而非故障线路的零序电流是从母线流向线路,两者方向相反,或者说两者反相。
从小电流系统单相接地时与正常运行时,状态信息的不同看,故障线路的判定好像特别简单,然而事实并非如此,其缘由主要有以下四点:1、电流信号太小小电流系统单相接地时产生的零序电流是系统电容电流,其大小与系统规模大小和线路类型(电缆或架空线)有关,数值甚小,经中性点接入消弧线圈补偿后,其数值更小,且消弧线圈的补偿状态(过补偿、欠补偿、完全补偿)不同,接地基波电容电流的特点与无消弧线圈补偿时相反或相同,对于有消弧线圈的小电流系统采纳5次谐波电流或零序电流有功功率方向检测,而5次谐波电流比零序电流又要小20~50倍。
2、干扰大、信噪比小小电流系统中的干扰主要包括2方面:一是在变电站和发电厂的小电流系统单相接地爱护装置的装设地点,电磁干扰大;二是由于负荷电流不平衡造成的零序电流和谐波电流较大,特殊是当系统较小,对地电容电流较小时,接地回路的零序电流和谐波电流甚至小于非接地回路的对应电流。
3、随机因素影响的不确定我国配电网一般都是小电流系统,其运行方式转变频繁,造成变电站出线的长度和数量频繁转变,其电容电流和谐波电流也频繁转变;此外,母线电压水平的凹凸,负荷电流的大小总在不断地变化;故障点的接地电阻不确定等等。
这些都造成了零序故障电容电流和零序谐波电流的不稳定。
4、电容电流波形的不稳定小电流系统的单相接地故障,经常是间歇性的不稳定弧光接地,因而电容电流波形不稳定,对应的谐波电流大小随时在变化。
小电流接地系统接地故障原因分析及对策
小电流接地系统接地故障原因分析及对策引言小电流接地系统是一种用于隔离和保护电气设备的重要电气系统。
然而,在使用过程中,我们可能会遇到接地故障问题,导致系统性能下降甚至无法正常工作。
本文将对小电流接地系统的接地故障原因进行分析,并提出相应的对策措施。
1. 小电流接地系统接地故障原因分析1.1 接地电阻过大接地电阻过大是导致小电流接地系统接地故障的常见原因之一。
当接地电阻过大时,接地系统无法良好地将电流引入地下,导致接地电流不稳定或无法正常流动。
1.2 地线损坏地线作为小电流接地系统的重要组成部分,一旦损坏将导致接地系统无法正常工作。
地线损坏的原因可能包括线路老化、外力破坏等。
1.3 地线与其他金属部件发生短路当地线与其他金属部件发生短路时,会导致接地系统接地电流异常增大,进而影响整个系统的正常运行。
1.4 接地装置安装不当接地装置的安装位置、方式等因素将直接影响接地系统的性能。
如果接地装置安装不当,可能导致接地电阻过大、接地电流不稳定等故障。
2. 小电流接地系统接地故障对策2.1 定期检测接地电阻为了确保小电流接地系统正常工作,应定期对接地电阻进行检测。
一旦发现接地电阻过大,应及时采取相应措施进行修复。
2.2 防止地线损坏为了减少地线损坏的风险,可以采用以下措施:定期检查地线状况,及时更换老化或损坏的地线;保护地线免受外力破坏,例如增加防护罩等。
2.3 隔离地线与其他金属部件为了防止地线与其他金属部件发生短路,可以采取隔离措施,例如增加隔离层,确保地线与其他金属部件之间的绝缘性。
2.4 正确安装接地装置在安装接地装置时,应遵循相关的安装规范。
确保接地装置的位置合理,接地电阻适当,以及接地装置与其他电气设备之间的连接牢固可靠。
结论小电流接地系统接地故障的原因可能包括接地电阻过大、地线损坏、地线与其他金属部件发生短路、接地装置安装不当等。
为了防止接地故障的发生,我们应定期检测接地电阻、防止地线损坏、隔离地线与其他金属部件,以及正确安装接地装置。
小电流接地系统异常接地情况分析
小电流接地系统异常接地情况分析摘要:针对电网值班员经常遇到小电流接地系统电压异常的问题,结合日常工作所见,浅析电压异常的原因,包括一次系统接地故障、一次系统断线故障、电压互感器高压保险丝熔断、低压保险丝熔断(或空开跳开)、所接负荷不对称、铁磁谐振等,并结合工作实际浅谈处理方法。
关键词:小电流接地系统:铁磁谐振;过电压1、电压异常现象分析1.1完全接地如果系统发生完全接地,则三相线电压仍保持不变,接地相的电压降至零,其他两相电压上升为线电压,零序电压3U0上升至100V左右,后台监控机发出母线接地信号。
此类接地原因主要有:电缆击穿放电、架空线路上搭有异物、针瓶击穿等。
1.2不完全接地如果系统发生不完全接地,则三相线电压仍保持不变,接地相电压下降但不为零,其他两相电压.上升但低于线电压,零序电压3U0上升至报警值与100V之间,后台监控机发出母线接地信号。
此类接地原因主要有:线路接点打火、配电变压器故障等。
1.3间歇性接地如果系统发生间歇性接地,则三相线电压仍保持不变,三相相电压时增时减,零序电压3U0时有时无的变化,随之后台监控机发出的母线接地信号也是发信、复归伴随出现。
此类接地原因主要有:天气原因异物搭接在线路上、风天树木靠近线路等。
1.4弧光接地区别于金属接地,弧光接地的故障点与地之间不是直接接触,而是通过电弧接触,发生时电压显示不稳定,非接地相电压上升至额定电压的2.5~3倍,零序电压3U0可能大于100V。
引起此类接地的原因很多,主要有:雷击、鸟害、断线、树枝等外力破坏以及阀式避雷器放电等等。
在单相接地中最危险的就是间歇性的弧光接地,因为此时网络是一个具有电容电感的振荡回路,随着交流周期的变化而产生电弧的熄灭与重燃,就可能产生很高的过电压现象,这对电器是很危险的,特别是35千伏以上的系统,过电压可能超过设备的绝缘能力而造成事故。
本地区X x变XHG-ZK型消弧装置已投入使用,投入以来消除了弧光接地过电压给电气设备造成的各种损害,效果显著.1.5由接地诱发的谐振当系统遭到一定程度的冲击扰动,激发起铁磁谐振现象,由于对地电容和互感器的参数不同,可能产生三种频率的谐振:基波谐振、高次谐波谐振和分频谐波谐振。
小电流接地故障现象及原因分析(通用版)
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改小电流接地故障现象及原因分析(通用版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes小电流接地故障现象及原因分析(通用版)1引言随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。
反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。
1引言随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。
反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。
2故障现象判断与分析2.1绝缘监视装置自身故障的判断2.1.1TV熔断器一相熔断的现象与判断(1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则二次侧A相无感应电压,但因TV 负载另两侧相电压与A相形成一串联回路,故A相对地有很小的电压,A相二次熔断器熔断时,也同样因TV有负载,A相有很小的电压,电压表可能有一点指示。
(2)三相五柱式TV接成Y0/Y0/Δ接线时,它们的磁路是互通的,高压侧A相熔断器熔断,二次侧A相仍能感应出一定的电压,但此时的A相电压比单相TV接线时要高一些,二次侧断开一相时,情况与单相TV接线时相同。
小电流接地系统接地故障的原因分析及对策
小电流接地系统接地故障的原因分析及对策引言小电流接地系统是一种有效预防设备接地故障的保护措施,能够降低电气事故的发生率,提高电网的可靠性。
但在使用过程中,也常常会出现一些接地故障,对设备和人员的安全造成威胁。
本文将对小电流接地系统接地故障的原因及对策进行分析探讨。
小电流接地系统接地故障的定义与分类小电流接地系统是指在系统中引入一个小电流,使电流在接地时,因为电阻的存在而形成一定的电压,以达到快速检测和定位接地点的目的。
小电流接地系统的接地故障通常分为以下两种类型:1.接地电压高:指小电流接地系统的接地电压比正常水平高,严重时可致使设备和人员受到电击,甚至导致火灾等重大事故;2.接地电压低:指小电流接地系统的接地电压比正常水平低,无法检测和定位接地点,从而导致接地故障处理不及时,加重事故后果。
小电流接地系统接地故障的原因分析系统参数错误小电流接地系统的参数设置直接影响系统的可靠性和稳定性,系统参数错误则容易导致接地故障的发生。
主要表现在以下几个方面: 1.系统压力设置不当,导致接地电压高于正常值; 2. 接地电流仪设置不当,导致误差过大; 3. 接地电流阈值设置不当,导致检测不灵敏或过于灵敏。
接地电阻不当小电流接地系统的接地电阻决定了其的电流流过的大小和接地电压的高低,接地电阻不当则会导致接地故障的发生。
主要表现在以下几个方面: 1. 接地电阻过大或过小,导致小电流无法在接地时形成足够的电压差; 2. 接地电阻变化引起接地电压波动,导致无法定位接地点。
负载电流异常小电流接地系统的负载电流异常也是导致接地故障的另一个重要原因。
主要表现在以下几个方面: 1. 负载电流突变,导致小电流接地系统的电压、电流波动太大; 2. 负载电流缺失,引起小电流接地系统检测不准确。
小电流接地系统接地故障的对策正确设置系统参数正确设置小电流接地系统的参数,包括系统压力、接地电流仪、接地电流阈值等,可以提高系统的稳定性和可靠性。
小电流接地系统单相接地故障分析及选线研究
小电流接地系统单相接地故障分析及选线研究一、引言小电流接地系统是电力系统较常见的一种接地方式,其主要特点是接地电流较小,通常情况下不会引起系统故障,但是一旦发生单相接地故障,必须及时进行分析和处理,以避免引发更大的事故。
本文将从单相接地故障的原因和分析、以及选线研究等几个方面展开讨论。
二、小电流接地系统单相接地故障原因分析1. 绝缘老化小电流接地系统中的设备和设施都需要使用绝缘材料进行保护,但是长时间运行和外部环境的影响会导致绝缘老化,使得绝缘性能下降,从而增加了单相接地故障的风险。
2. 外力破坏在系统运行过程中,设备受到外力的破坏也是单相接地故障的常见原因。
例如由于人为操作不当或者外部环境因素导致设备受到损坏,使得设备绝缘被破坏从而引起接地故障。
3. 设备缺陷设备制造过程中可能存在一些缺陷,这些缺陷在长时间运行后可能会暴露出来,成为单相接地故障的隐患。
4. 脏污覆盖系统在运行过程中会受到一定程度的脏污覆盖,长期未清理会导致设备绝缘性能下降,增加单相接地故障的风险。
当发生单相接地故障时,我们需要进行分析找到故障点,以便进行修复。
接地故障的分析一般包括以下几个方面:1. 过电压测量通过对系统中的接地电压进行测量,可以初步确定故障的位置和范围,有利于后续的故障处理。
2. 绝缘电阻测量通过对系统绝缘电阻进行测量,可以判断绝缘是否存在问题,需要进行维修或更换。
4. 设备检查对系统中的设备进行仔细检查,特别是接地设备和绝缘材料,发现问题需要及时更换或修复。
通过以上几个方面的分析,可以帮助我们找到单相接地故障的具体原因和位置,以便进行后续的处理和修复。
四、小电流接地系统选线研究小电流接地系统的选线研究主要是为了保障系统的正常运行和安全性,能够有效地减小接地电流,降低系统故障的风险。
1. 接地导线选材接地导线的选材直接关系到系统的接地效果,通常情况下,要求接地导线具有较好的电导率和耐腐蚀性能,能够保证系统的稳定接地效果。
小电流接地系统接地故障特征分析
小电流接地系统接地故障特征分析小电流接地系统接地故障特征分析小电流接地系统是现代输电系统中一种重要的保护措施,用于限制电网发生接地故障时对系统和用户的影响和损失,提高电网的可靠性和安全性。
但是,在小电流接地系统运行中,难免会发生接地故障,给系统带来不良影响。
因此,对小电流接地系统接地故障特征进行分析,有助于及时发现和处理故障,保证系统的可靠运行和用户的安全用电。
一、小电流接地系统的基本原理小电流接地系统是通过一定的电路装置和保护措施,将接地故障电流限制在很小的范围内,从而保证系统的安全稳定运行。
小电流接地系统通过引入中性点电感器,将出现故障时的接地电流转化为电压信号,经过灵敏地电流互感器和控制器的监测和控制,控制开关从母线中间引出接地电流,并将接地故障电流限制在安全范围内。
二、小电流接地系统接地故障的类型小电流接地系统的故障类型主要有以下几种:1. 单相接地故障:发生单相接地故障时,系统将出现高电压跳闸和过电压;2. 两相接地故障:发生两相接地故障时,电网将出现三相短路电流,电网振荡频率将增大;3. 地间故障:地间故障是指通过地面传递的两相接地故障,会导致电网起伏不定,电网波动,对系统的影响很大;4. 跨越接地故障:跨越接地故障是指线路跨越水域时,水中的导体发生故障导致故障电流通过地面传递时,会对系统带来很大影响。
三、小电流接地系统接地故障特征分析小电流接地系统的接地故障特征主要包括以下几个方面:1. 接地电流的突变:当系统发生接地故障时,接地电流会突然增大,从而引起系统保护动作,产生抢扫现象;2. 中性点电压变化:接地故障会导致中性点电压的变化,如果系统存在悬垂中性点,则可能会引起电压失调;3. 接地微短暂:接地故障微短暂,持续时间一般在毫秒到几十毫秒,往往会被系统快速检测器检测出来;4. 接地电流的波形:接地故障电流一般呈现半波周期,且在接触器和断路器开关时间内,电流的周期变化很明显;5. 接地电阻阻值特征:接地故障电阻的阻值变化会对接地电流的大小产生影响,因此对变化的电阻阻值进行监测有助于快速发现故障。
小电流接地系统单相接地故障的判断与处理
小电流接地系统单相接地故障的判断与处理一、概述小电流接地系统是指电力系统中采用特殊的接地方式,将系统接地电流限制在很小的范围内(小于1A),以减小绝缘击穿发生的可能性,提高系统的安全性和可靠性。
但是,在小电流接地系统中,由于接地电流很小,一旦发生单相接地故障,会很难被及时发现和定位,给系统运行带来极大的风险。
因此,本文将探讨小电流接地系统单相接地故障的判断与处理方法。
二、小电流接地系统单相接地故障的原因小电流接地系统单相接地故障的原因主要有以下几种:1. 电缆终端缺陷:当电缆终端出现绝缘缺陷时,会导致单相接地故障。
2. 外界短路电流影响:电力系统中,当出现接地故障时,会产生一定的短路电流,使得系统的地电位发生变化,从而影响到小电流接地系统的正常运行。
3. 土壤湿度不足:小电流接地系统是通过地下金属接地网与土壤接触实现接地的,如果土壤湿度不足,将会产生一定的接地电阻,从而影响系统的接地效果,导致单相接地故障的出现。
三、小电流接地系统单相接地故障的判断方法小电流接地系统单相接地故障的判断方法主要有以下几种:1. 就地巡检:一些单相接地故障可以通过就地巡检来进行判断,例如观察接地网是否存在绝缘A故障、接地电阻是否增大等。
2. 压缩信号分析法:通过对小电流接地系统压缩信号进行分析,可以判断出故障点的位置,从而快速定位单相接地故障。
3. 采用低频模拟故障信号:通过向小电流接地系统注入低频模拟故障信号,可以判断出故障点的位置,即可由故障点所在的位置判断出单相接地故障的具体位置。
四、小电流接地系统单相接地故障的处理方法小电流接地系统单相接地故障的处理方法应根据具体情况而定,但一般可以采用以下方法:1. 找到故障点所在的位置:通过采用上述的判断方法,可以找到单相接地故障的具体位置。
2. 对故障线路进行隔离:为了避免故障扩大,需要对故障线路进行隔离,防止故障扩散。
3. 更换有关部件:更换故障件是解决单相接地故障的最终方法,一旦故障件被更换,接地系统将重新正常运行。
小电流接地故障现象及原因分析
小电流接地故障现象及原因分析一、引言在电力系统中,小电流接地故障是一种常见的故障类型,指的是系统中存在接地故障时,故障电流较小(一般在几毫安至几安之间),不足以引起保护动作,但会对系统带来一系列的负面影响。
因此,对小电流接地故障的现象及原因进行深入分析是十分必要的。
二、小电流接地故障的现象1.母线电压波动明显增大。
2.变压器中性点电压偏移,甚至出现恒性接地。
3.系统的共模电流明显增大,线电流变形严重。
4.出现不明原因的过压或欠压等异常现象。
5.系统绝缘水平下降,同时变压器、配电箱等设备存在过热现象。
三、小电流接地故障的原因1.系统中存在一些隐蔽的接地故障,虽然故障电流较小,但会引起系统绝缘水平下降。
2.系统接地方式不正确,例如多点接地导致共模电流异常增大。
3.针对某些基础设施,如变压器或配电箱的绝缘性能欠佳,容易产生过热现象,从而引发小电流接地故障。
4.电力系统中的杂质和谐波等干扰因素会影响系统正常运行,进而导致小电流接地故障的发生。
四、解决小电流接地故障的方法1.完善电力系统接地制度,改正确的接地方式,防止共模电流异常增大。
2.定期对系统进行绝缘水平检测,及时发现和处理隐蔽的接地故障。
3.针对某些设备如变压器或配电箱,进行定期的维护或更换工作,确保其绝缘性能良好。
4.通过调整系统参数等方法,减少杂质和谐波等干扰因素,保证系统正常稳定运行。
五、结语小电流接地故障虽然不是很严重,但同样会造成极大的经济损失和安全隐患,因此,在对小电流接地故障处理时,必须高度重视,做到及时有效的预防和解决。
小电流接地故障现象及原因分析
小电流接地故障现象及原因分析
小电流接地故障是一类电力系统故障,特点是接地电流较小(一般小于0.5A),但故障存在时间长,容易造成继电保护误动作或无法检测等问题,对电力系统的安全稳定运行产生较大危害。
本文将介绍小电流接地故障的现象及原因分析。
一、小电流接地故障的现象
1. 电压波动:当小电流接地故障发生时,故障地点与系统其他部位之间形成一条电阻,形成了一个形如“Y”字形的电路;电路总分流电流很小,所以故障一段时间内无法形成过载,很难被普通的保护装置所检测;而在故障地点,接地电阻比较小,因此形成了一个电泄露回路,回路中通入了大量非对称复合波,造成电压波动。
2. 电流不平衡:小电流接地故障会导致系统电流不平衡,表现为三相电流不相等,且不等于零;此时三相电流大小与相位角都会发生变化。
3. 干扰噪声增强:小电流接地故障还会导致系统噪声增强。
由于故障地点接地电阻的存在,使得群发现场、天线、避雷器等设备间出现振荡,噪声增强。
二、小电流接地故障的原因分析
1. 绝缘老化:系统中的设备绝缘老化容易导致小电流接地故障的发生。
由于绝缘老化,使得设备的绝缘阻值降低,导致设备绝缘性能下降,存在隐患。
2. 接地电阻增高:系统接地电阻增高可以使得小电流接地故障的发生率增加。
由于接地电阻增高,使得接地电流较小,故障难以被检测到,存在安全隐患。
3. 静电击穿:静电击穿也是导致小电流接地故障的常见原因。
由于系统中存在较高的静电电压,往往会引起静电击穿,导致小电流接地故障的发生。
小电流接地故障虽然接地电流较小,但仍然对电力系统的稳定运行造成了不小的威胁,因此应该采取措施进行及时检测和隔离,保障电力系统的安全稳定运行。
小电流接地系统接地故障的原因分析及对策
小电流接地系统接地故障的原因分析及对策小电流接地系统是一种有效的绝缘监测手段,可检测接地电流及其变化情况,保证设备的安全运行。
但是,由于外部因素和内部因素的影响,小电流接地系统也会出现接地故障,导致设备失去保护,甚至引发事故。
因此,分析小电流接地系统接地故障的原因,采取相应的对策,对确保设备的安全运行至关重要。
一、小电流接地系统接地故障的原因1.设备老化:小电流接地系统内的各种设备长期运行产生磨损和老化,导致接地电阻增大,影响系统的正常运行。
2.绝缘损坏:由于设备异常、压力变化、温湿度等条件的影响,导致小电流接地系统的绝缘损坏,从而引发接地故障。
3.接地点故障:小电流接地系统中的接地点对于系统的正常运行非常重要,但由于物理和环境原因(如潮湿、腐蚀),接地点容易受到影响,从而导致接地故障。
4.外来干扰:小电流接地系统受到外部因素的影响,例如雷击、浪涌等,可能导致接地故障发生。
二、小电流接地系统接地故障的对策1.设备维护:定期检查小电流接地系统的设备状态,发现异常及时更换或修理,保证系统正常运行。
2.保障绝缘完好:定期检查小电流接地系统的绝缘状态,如发现损坏及时修复或更换,避免绝缘损坏引发接地故障。
3.严格管理接地点:对小电流接地系统的接地点进行管理,保证接地点周围环境的干燥和不受腐蚀,定期清洗和维护接地点,确保接地导体与设备接触压力适当。
4.防雷接地:加强小电流接地系统的防雷措施,如在接地线上设置避雷器,在系统设备周围设置接地网,并定期进行检查和更新。
总之,小电流接地系统接地故障的发生可能会给设备带来严重的损害,因此需要重视其运行状态,定期检查设备和接地点的状况,及时采取相应的对策,确保设备的安全稳定运行。
小接地电流系统接地故障分析
小接地电流系统接地故障分析.小电流接地系统是指采用中性点不接地或经消弧线圈接地的系统。
在该系统中,如发生单相接地时,由于线电压的大小和相位不变(仍对称),且系统绝缘又是按线电压设计的,所以允许短时运行而不切断故障设备,从而提高了供电可靠性。
但是,若一相发生接地,则其它两相对地电压升高为相电压的J3倍,特别是发生间歇性电弧接地时,接地相对地电压可能升高到相电压的2.5—3.0倍。
这种过电压对系统的安全威胁很大,可能使其中的一相绝缘击穿而造成两相接地短路故障。
因此,值班人员应迅速寻找接地点,并及时隔离。
当中性点非直接接地系统发生单相接地时,一般出现下列迹象:(1)警铃响,“x x千伏母线接地”光字牌亮,个性点经消弧线圈接地的系统,常常还有“消弧线圈动作”的光字牌亮。
(2)绝缘监察电压表三相指示值不同,接地相电压降低或等于零,其它两相电压升高为线电压,此时为稳定性接地。
如果绝缘监察电压表指针不停地来回摆动,出现这种现象即为间歇性接地。
(3)当发生弧光接地产生过电压时,非故障相电压很高,表针打到头,常伴有电压互感器高压一次侧熔体熔断,甚至严重烧坏电压互感器。
当小电流接地系统发生上述迹象时,值班人员应沉着冷静,及时向上级调度汇报,并将有关现象作好记录,根据信号、表计指示、天气、运行方式等情况,判断故障。
各出线装有接地信号装置的变电所(站),若装置正常投入,故障范围很容易区分,若报出母线接地信号的同时,某一线路也有接地信号,则故障点多在该线路上。
若只报出母线接地信号,对于这种情况,故障点可能在母线及连接设备上。
所以,处理时应注意:(1)母线和某一线路都报出接地信号,应检查故障线路的站内设备有无异常。
(2)只报出母线接地信号,应检查母线及连接设备、变压器有无异常。
如经检查,站内设备无异常,则有可能是某一线路有故障,而其接地故障失灵,应用瞬停的方法,查明故障线路。
当各出线未装接地信号装置时,首先应根据前面所述的特征,判明故障性质的相别;其次分网运行,缩小查找范围。
小电流接地系统接地故障现象分析
小电流接地系统接地故障现象分析小电流接地系统是常用的一种电力系统接地方式,它能够将接地电流限制在很小的范围内,有效地减少接地故障对电力系统的影响,提高电力系统的可靠性和安全性。
但是,小电流接地系统也存在着一些接地故障现象,这些故障对电力系统的影响不容忽视,需要进行深入的分析研究。
一、小电流接地系统的接地方式及其特点小电流接地系统是一种采用重复接地电极对电力系统进行接地的方式,通过将接地电流分摊到多个接地电极上,使得每个接地电极上的接地电流都很小,从而实现对电力系统的接地保护。
小电流接地系统有多种接地方式,其中常用的有三种:多点接地方式、单点接地方式和分布式接地方式。
多点接地方式是指在电力系统中设置多个接地电极,将接地电流均匀分摊到各个接地电极上。
这种接地方式具有接地电阻低、接地电流小、接地电位稳定等特点,适用于中小型电力系统。
单点接地方式是指在电力系统中仅设置一个接地电极,将接地电流通过接地电极回流到中心接地电极上。
这种接地方式具有接地电流小、线路泄漏电流减小等特点,适用于小型电力系统。
分布式接地方式是指通过在电力系统中设置多个接地电极,并将接地电极之间连通,将接地电流分散到各个接地电极上。
这种接地方式具有接地电流更小、线路泄漏电流更小、抗干扰能力更强等特点,适用于大型电力系统。
二、小电流接地系统的接地故障现象1、接地电极回流故障接地电极回流故障是指接地电极本身发生故障,导致接地电流不能通过接地电极流回到地下,而是从接地电极回流到系统中。
这种故障对电力系统的影响较大,会使得系统的接地电流异常增大,影响系统的稳定性和安全性。
2、接地电缆故障接地电缆故障是指接地电缆本身发生故障,导致接地电流无法正确接地。
这种故障会导致系统的接地电流异常变化,影响系统的稳定性和安全性。
3、接地电位不稳定接地电位不稳定是指接地电极之间存在电位差,在一定程度上影响系统的接地效果。
这种现象常见于多点接地方式,同时也是其不足之处。
小电流接地系统接地故障分析
小电流接地系统接地故障分析接地故障是指电气设备或电力系统中的一些导电部分与地之间发生了不正常的电流流动,造成电流接地,导致系统工作异常甚至损坏。
小电流接地系统接地故障是指电流接地的情况较为隐蔽,电流通常不会造成任何不良后果,只有在故障检测和保护装置的作用下才能发现和保护。
本文将从小电流接地系统的原理、故障类型、故障分析以及排除方法等方面进行详细阐述。
小电流接地系统是一种对电力系统中的电气设备的接地方式,它在电力系统中广泛应用。
它的原理是通过将电气设备的接地电阻控制在一定范围内,使得设备发生故障时的接地电流保持在较小的范围内。
一般情况下,小电流接地系统的接地电阻应在2欧姆以下,接地电流应在数十毫安以下。
小电流接地系统的故障类型较多,包括短路接地、过电压接地、外部接地等。
其中短路接地是最常见的一种故障类型,指电气设备的线圈或绝缘体出现缺陷,使电流通过绝缘体的路径形成接地路径。
过电压接地则是指电气设备遭受电压冲击,导致设备绝缘体击穿而发生的接地故障。
外部接地指电气设备绝缘体与外界的导电部分发生接触,形成接地故障。
对小电流接地系统进行故障分析时,首先要进行故障检测,及时发现故障并进行保护。
故障检测主要包括以下几个方面:1.定期巡视和检测:通过定期对电气设备的巡视和检测,观察设备表面是否有异常情况出现,如异常放热、异响等,以及设备绝缘电阻是否有下降等现象。
2.使用故障诊断仪器:可使用绝缘电阻测试仪、振动测试仪、红外热像仪等对设备进行全面的故障检测和分析。
3.预防性维护:对关键设备定期进行维护,如清洁、润滑等,以保证设备的工作正常运行。
一旦发现接地故障,需要及时进行排除和修复。
排除小电流接地系统的故障时,应首先确定具体故障原因,然后采取相应的修复方法。
针对短路接地故障,可以采取以下措施:1.更换故障线圈或绝缘体。
2.加强绝缘保护,提高绝缘电阻。
3.增加设备的绝缘层厚度,提高设备的耐电压能力。
对于过电压接地故障,可以采取以下措施:1.安装过电压保护装置,及时将过电压引流至地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文件编号:TP-AR-L2950In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编订:_______________审核:_______________单位:_______________小电流接地故障现象及原因分析(正式版)小电流接地故障现象及原因分析(正式版)使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
1 引言随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。
反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。
1 引言随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。
反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。
2 故障现象判断与分析2.1 绝缘监视装置自身故障的判断2.1.1 TV熔断器一相熔断的现象与判断(1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则二次侧A相无感应电压,但因TV负载另两侧相电压与A相形成一串联回路,故A相对地有很小的电压,A相二次熔断器熔断时,也同样因TV有负载,A相有很小的电压,电压表可能有一点指示。
(2)三相五柱式TV接成Y0/Y0/Δ接线时,它们的磁路是互通的,高压侧A相熔断器熔断,二次侧A 相仍能感应出一定的电压,但此时的A相电压比单相TV接线时要高一些,二次侧断开一相时,情况与单相TV接线时相同。
2.1.2 TV熔断器两相熔断的现象与判断(1)高压熔断器两相熔断时,熔断的两相相电压很小或接近于零,未熔断一相的相电压接近于正常相电压。
熔断器熔断的两相相间电压为零(即线电压为零),其它线电压降低,但不为零。
(2)低压熔断器熔断两相时,熔断的两相相电压降低很多,但不为零,未断的一相电压正常,熔断器熔断的两相间电压为零,其它线电压降低,但不为零。
2.1.3 TV一次侧中性线断线的现象与判断(1)TV一次侧中性线断线时的主要现象是三相对地电压表不反映电网的运行状态,电网三相对地电容不平衡时,三相对地电压表指示是三相一致的,线路发生单相接地时,三相对地电压表的指示是三相平衡的。
(2)绝缘监视TV的二次侧中性点断线时当电网发生单相接地,三相对地电压指示是平衡的,不反映电网有单相接地,失去监视电网三相对地绝缘状态的作用,开口三角绕组有电压,有接地警报。
2.2 线路断线的现象与判断2.2.1 线路出现单相断线运行中的线路断线、线路上装的熔断器熔断一相或两相断开,分两种情况:一种是断线的线路在供电侧接地,这种情况的查找方法与一般查找接地线路的方法相同;另一种情况是线路断线不接地,这种断线也同样引起电网三相对地电压不平衡,出现电网接地信号,但与线路单相接地的区别是,电网三相对地电压一相升高(断线相)另两相降低,配变出现缺相。
而线路单相接地,则电网三相对地电压表现为两相升高,一相降低。
2.2.2 线路两相断线的现象与判断线路发生两相断线时,电网三相对地电容平衡状态被破坏,发生三相对地电压不平衡,变电所出现接地信号,当断线相导线在电源侧接地时,接地相对地电压降低,其它相升高;当断线相导线不接地时,断线相对地电压升高,另一相降低,现象酷似单相接地,但与单线断线的单相接地根本区别是该线路供电的用户全部停产。
2.2.3 两条线和多条线接地的现象与判断(1)两条线同名相接地。
两条配电线同名相发生接地时,绝缘监视一相对地电压表指示不平衡,出现接地信号,变电所值班员按规定顺位逐条选切线路时,应特别注意切每条线路时绝缘监视装置三相对地电压表指示的变化,若全选切一遍,三相对地电压指示没有变化,说明不是线路有单相接地故障,是变电所内设备接地。
若全选切一遍三相对地电压指示有变化时,应考虑有两条配电线同相发生单相接地(含断线)故障。
(2)两条线异名相接地。
这种故障多数发生在雷雨、大风、高寒和降粘雪的天气,主要现象是同一母线供电的两条线同时跳闸或只有一条线跳闸,跳闸时电网有单相接地现象。
若两条线都跳闸,电网接地现象消除;若两条线只有一条跳闸时,电网仍有接地现象,但单送其中一条时电网单相接地相别发生改变,这是判断的必要依据。
(3)多条线同名相接地的现象与判断。
多条线同名相接地是指同一母线供电的两条以上的线路发生的同名相接地,这种现象一般只发生在三角排列的线路下粘雪的情况。
多条线同名相接地时,电网三相对地电压不平衡,出现接地信号,值班人员在选切线路时,每选切到接地线路,对地电压就发生变化,有几条线发生单相接地,三相对地电压就发生几次改变,若把这些电压有变化的线路停掉,电网接地消除,这就可判断出是三条或以上同名相接地故障。
2.3 配电变压器烧损接地的现象与判断配电网内某条线路所带配电变压器烧损接地时,配电网表现为单相接地,出现接地警报,并伴随有过电压发生。
2.3.1 配电变压器烧损接地配电变压器绕组烧损接地现象的特点多表现为C 相先接地,对地电压为零或接近于零,经短时间后,C相接地消除,C相对地电压又升高到大于相电压的水平,接地相又变为A相,同时不完全接地并随时有过电压产生;值班人员选切带有烧损配变的线路时,配电网单相接地消除。
2.3.2 配电变压器内部金属物脱落接地配电变压器内部金属物脱落,挤在绕组与外壳之间,因绕组磨损造成单相接地,变电所绝缘监视装置出现接地信号并有过电压,当选切带有此变压器的线路时,电网接地消除;当送出这条线路时,有时也不出现接地,过一段时间又出现接地。
若为确定接地线段,将部分配电线倒至另一电源供电时,由于配电网电容电流的改变,接地有时也随之消除,过一段时间又出现接地,这样的接地显然发生得不多,但不易分析、判断。
3 结论经过以上分析论述,我们不难看出对于小电流接地电网的故障,大都可以通过绝缘监视装置的报警及仪表指示,经分析判断出故障的性质。
当故障发生时,运行人员应沉着冷静认真分析,从而及时排除故障,确保电网正常安全地运行。
2.1 绝缘监视装置自身故障的判断 2.1.1 TV 熔断器一相熔断的现象与判断(1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则二次侧A相无感应电压,但因TV负载另两侧相电压与A相形成一串联回路,故A相对地有很小的电压,A相二次熔断器熔断时,也同样因TV有负载,A相有很小的电压,电压表可能有一点指示。
(2)三相五柱式TV接成Y0/Y0/Δ接线时,它们的磁路是互通的,高压侧A相熔断器熔断,二次侧A 相仍能感应出一定的电压,但此时的A相电压比单相TV接线时要高一些,二次侧断开一相时,情况与单相TV接线时相同。
2.1.2 TV熔断器两相熔断的现象与判断(1)高压熔断器两相熔断时,熔断的两相相电压很小或接近于零,未熔断一相的相电压接近于正常相电压。
熔断器熔断的两相相间电压为零(即线电压为零),其它线电压降低,但不为零。
(2)低压熔断器熔断两相时,熔断的两相相电压降低很多,但不为零,未断的一相电压正常,熔断器熔断的两相间电压为零,其它线电压降低,但不为零。
2.1.3 TV一次侧中性线断线的现象与判断(1)TV一次侧中性线断线时的主要现象是三相对地电压表不反映电网的运行状态,电网三相对地电容不平衡时,三相对地电压表指示是三相一致的,线路发生单相接地时,三相对地电压表的指示是三相平衡的。
(2)绝缘监视TV的二次侧中性点断线时当电网发生单相接地,三相对地电压指示是平衡的,不反映电网有单相接地,失去监视电网三相对地绝缘状态的作用,开口三角绕组有电压,有接地警报。
2.2 线路断线的现象与判断2.2.1 线路出现单相断线运行中的线路断线、线路上装的熔断器熔断一相或两相断开,分两种情况:一种是断线的线路在供电侧接地,这种情况的查找方法与一般查找接地线路的方法相同;另一种情况是线路断线不接地,这种断线也同样引起电网三相对地电压不平衡,出现电网接地信号,但与线路单相接地的区别是,电网三相对地电压一相升高(断线相)另两相降低,配变出现缺相。
而线路单相接地,则电网三相对地电压表现为两相升高,一相降低。
2.2.2 线路两相断线的现象与判断线路发生两相断线时,电网三相对地电容平衡状态被破坏,发生三相对地电压不平衡,变电所出现接地信号,当断线相导线在电源侧接地时,接地相对地电压降低,其它相升高;当断线相导线不接地时,断线相对地电压升高,另一相降低,现象酷似单相接地,但与单线断线的单相接地根本区别是该线路供电的用户全部停产。
2.2.3 两条线和多条线接地的现象与判断(1)两条线同名相接地。
两条配电线同名相发生接地时,绝缘监视一相对地电压表指示不平衡,出现接地信号,变电所值班员按规定顺位逐条选切线路时,应特别注意切每条线路时绝缘监视装置三相对地电压表指示的变化,若全选切一遍,三相对地电压指示没有变化,说明不是线路有单相接地故障,是变电所内设备接地。
若全选切一遍三相对地电压指示有变化时,应考虑有两条配电线同相发生单相接地(含断线)故障。
(2)两条线异名相接地。
这种故障多数发生在雷雨、大风、高寒和降粘雪的天气,主要现象是同一母线供电的两条线同时跳闸或只有一条线跳闸,跳闸时电网有单相接地现象。
若两条线都跳闸,电网接地现象消除;若两条线只有一条跳闸时,电网仍有接地现象,但单送其中一条时电网单相接地相别发生改变,这是判断的必要依据。
(3)多条线同名相接地的现象与判断。
多条线同名相接地是指同一母线供电的两条以上的线路发生的同名相接地,这种现象一般只发生在三角排列的线路下粘雪的情况。
多条线同名相接地时,电网三相对地电压不平衡,出现接地信号,值班人员在选切线路时,每选切到接地线路,对地电压就发生变化,有几条线发生单相接地,三相对地电压就发生几次改变,若把这些电压有变化的线路停掉,电网接地消除,这就可判断出是三条或以上同名相接地故障。