平行线的判定与性质证明题
平行线的判定与性质证明题
平行线的判定和性质1.如图,已知:AB∥CD,∠B=∠D,求证:BC∥AD .2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.4.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.5.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.6.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.7.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D 相等吗?试说明理由.8.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.9.如图,在△ABC中,CD⊥AB,垂足为D,点E 在BC上,EF⊥AB,垂足为F .(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?10.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.11.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.12.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.13.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.14.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.15、如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性。
结论:(1)________________(2)_______________(3)________________(4)_______________选择结论:____________,说明理由。
平行线的判定证明练习题精选
平行线的判定证明练习题精选一.判断题:1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。
()2.如图①,如果直线1l⊥OB,直线2l⊥OA,那么1l与2l一定相交。
()3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()二.填空题:1.如图③∵∠1=∠2,∴_______∥________()。
∵∠2=∠3,∴_______∥________()。
2.如图④∵∠1=∠2,∴_______∥________()。
∵∠3=∠4,∴_______∥________()。
3.如图⑤∠B=∠D=∠E,那么图形中的平行线有________________________________。
4.如图⑥∵AB⊥BD,CD⊥BD(已知)∴AB∥CD ( )又∵∠1+∠2 =180(已知)∴AB∥EF ( )∴CD∥EF ( )三.选择题:1.如图⑦,∠D=∠EFC,那么()A.AD∥BC B.AB∥CDC.EF∥BC D.AD∥EF2.如图⑧,判定AB∥CE的理由是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE3.如图⑨,下列推理错误的是()A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥b C.∵∠1=∠2,∴c∥d D.∵∠1=∠2,∴c∥d4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()A.①③B.②④C.①③④D.①②③④四.完成推理,填写推理依据:1.如图⑩∵∠B=∠_______,∴AB∥CD()∵∠BGC=∠_______,∴CD∥EF()∵AB∥CD ,CD∥EF,∴AB∥_______()2.如图⑾填空:(1)∵∠2=∠B(已知)∴AB__________()(2)∵∠1=∠A(已知)∴__________()(3)∵∠1=∠D(已知)∴__________()(4)∵_______=∠F(已知)∴AC∥DF()1 32 A E C D BF 图103.填空。
(完整版)平行线及其判定(证明应用题)
授课教案学员姓名:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日(~);共_____课时(以上信息请老师用正楷字手写)平行线及其判定(证明应用题)一.解答题(共11小题)1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.2.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.3.如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?2015年03月05日752444625的初中数学组卷参考答案与试题解析一.解答题(共11小题)1.(2014•槐荫区二模)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.考点:平行线的判定.专题:证明题.分析:由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.解答:证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.点评:此题考查了平行线的判定与性质.注意内错角相等,两直线平行与同位角相等,两直线平行.2.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:证明题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.3.(2010•江宁区一模)如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.考点:平行线的判定.专题:证明题.分析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.要证明AM∥BC,只要转化为证明∠C=∠DAM即可.解答:证明:∵AB=AC,∴∠B=∠C,∵∠B=∠DAM,∴∠C=∠DAM,∴AM∥BC.点评:本题主要考查了平行线的判定,注意等量代换的应用.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.考点:平行线的判定.专题:探究型.分析:因为DF∥AC,由内错角相等证明∠C=∠FEC,又因为∠C=∠D,则∠D=∠FEC,故CE∥BD.解答:解:CE∥BD.理由:∵DF∥AC(已知),∴∠C=∠FEC(两直线平行,内错角相等),又∵∠C=∠D(已知),∴∠D=∠FEC(等量代换),∴CE∥BD(同位角相等,两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养“执果索图”的思维方式与能力.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.考点:平行线的判定.专题:探究型.分析:设AB与DE相交于H,若判断ED与FB的位置关系,首先要判断∠1和∠EHA的大小;由∠3=∠4可证得BD∥CF(内错角相等,两直线平行),可得到∠5=∠BAF;已知∠5=∠6,等量代换后发现AB∥CD,即∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断出BF、DE的位置关系.解答:解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.另解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∵△BFA、△DEC的内角和都是180°∴△BFA=∠1+∠BFA+BAF;△DEC=∠2+∠4+∠6∵∠1=∠2;∠BAF=∠6∴∠BFA=∠4,∴BF∥DE.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.考点:平行线的判定.专题:证明题.分析:先由已知证明AD∥EF,再证明1∠1=∠4,∠2=∠4,等量代换得出∠1=∠2.解答:证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(垂直于同一条直线的两直线平行),∴∠1=∠4(两直线平行,同位角相等),又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行),∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2(等量代换).点评:此题的关键是理解平行线的性质及判定.①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.考点:平行线的判定.专题:推理填空题.分析:由∠A=∠F,根据内错角相等,得两条直线平行,即AC∥DF;根据平行线的性质,得∠C=∠CEF,借助等量代换可以证明∠D=∠CEF,从而根据同位角相等,证明BD∥CE.解答:解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).点评:此题综合运用了平行线的判定及性质,比较简单.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.考点:平行线的判定.专题:证明题.分析:首先根据角平分线的性质可得∠BAC=2∠DAC,再根据三角形外角与内角的关系可得∠G+∠GFA=∠BAC,又∠AFG=∠G.进而得到∠BAC=2∠G,从而得到∠DAC=∠G,即可判定出GE∥AD.解答:证明:∵AD是△ABC的平分线,∴∠BAC=2∠DAC,∵∠G+∠GFA=∠BAC,∠AFG=∠G.∴∠BAC=2∠G,∴∠DAC=∠G,∴AD∥GE.点评:此题主要考查了平行线的判定,关键是掌握三角形内角与外角的关系,以及平行线的判定定理.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.考点:平行线的判定.专题:证明题.分析:利用直角三角形中两锐角互余得出∠D=40°,再利用内错角相等,两直线平行的判定证明即可.解答:证明:∵CA⊥AD,∴∠C+∠D=90°,∴∠C=50°,∴∠D=40°,∵∠BAD=40°,∴∠D=∠BAD,∴AB∥CD.点评:本题主要考查了平行线的判定和直角三角形中两锐角互余,比较简单.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.考点:平行线的判定;角平分线的定义.专题:证明题.分析:运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.解答:证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).点评:灵活运用角平分线的定义和角的和差的关系是解决本题的关键,注意正确识别“三线八角”中的同位角、内错角、同旁内角.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?考点:平行线的判定;平行公理及推论.专题:探究型.分析:根据内错角相等,两直线平行可知a∥b,由同旁内角互补,两直线平行可知b∥c,根据如果两条直线都与第三条直线平行那么这两条直线平行得出结论.解答:解:平行.理由如下:∵∠1=∠2,∴a∥b(内错角相等,两直线平行),∵∠3+∠4=180°,∴b∥c(同旁内角互补,两直线平行),∴a∥c(平行于同一直线的两直线平行).点评:本题很简单,考查的是平行线的判定定理和平行公理的推论.内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行那么这两条直线平行.。
(913)平行线的判定专项练习60题(有答案)ok
平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?平行线的判定60题参考答案:1.∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC∥DE2.∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).3.∵AB⊥BC(已知),∴∠ABC=90°(垂直定义);∵BC⊥CD(已知),∴∠BCD=90°(垂直定义),∴∠ABC=∠DCB;∵∠1=∠2(已知),∴∠ABC﹣∠2=∠DCB﹣∠1,即∠FBC=∠ECB,∴BF∥CE(内错角相等,两直线平行)4.∵AB⊥BC,∴∠3+∠4=90°.∵∠2=∠3,∠1+∠2=90°,∴∠1=∠4,∴BE∥DF.5.AB平行于ON.证明:∵OP平分∠MON,∴∠BOA=∠NOA,∵∠BOA=∠BAO,∴∠BAO=∠NOA,∴AB∥ON6.∵∠1=∠2,∴DC∥AB,∴∠A+∠ADC=180°.又∵∠A=∠C,∴∠ADC+∠C=180°,∴AE∥BC.7.∵BC是∠ABE的平分线,∴∠ABC=∠CBE(角平分线定义),∵∠ABE=∠D+∠E=∠ABC+∠CBE,∠D=∠E,∴∠ABC=∠D,∴DE∥BC8.过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.9.∵AC∥ED,∴∠1=∠4;∵∠1=∠2,∴∠2=∠4;又∵EB平分∠AED,∴∠3=∠4;∴∠2=∠3,∴AE∥BD10.∵∠1+∠BEF=180°,∠1=105°,∴∠BEF=75°,∵∠2=75°,∴∠BEF=∠2,∴AB∥CD.11.∵∠D=∠A,∴ED∥AB;∵∠B=∠BCF,∴AB∥CF;∴ED∥CF.12.∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行)13.∵BE是∠B的平分线,∴∠1=∠CBE,∵∠1=∠2,∴∠2=∠CBE,∴DE∥BC.14.AC与DF平行,理由如下:∵BD∥EC,∴∠DBC+∠C=180°,又∠C=∠D,∴∠DBC+∠D=180°,∴AC∥DF.15.∵AC⊥AE,BD⊥BF,∴∠1+∠3=∠2+∠4=90°,∵∠1=35°,∠2=35°,∴∠3=∠4,∴AE∥BF.16.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).17.∵∠BAD=DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式性质),即∠2=∠4,∴AD∥BC(内错角相等,两直线平行)18.DF∥AB.理由:∵DE∥CA,∴∠1=∠CAD,∵AD是三角形ABC的角平分线,∴∠BAD=∠CAD,∵∠1=∠2,∴∠2=∠BAD,∴DF∥AB19.AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行)20.CF∥BD.理由如下:∵BD⊥BE,∴∠1+∠2=90°;∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD.21.AB∥CD.(1分)理由如下:∵∠1+∠MNC=180°,∠MNC=∠1,∴∠1=135°.(2分)又∵∠AMN=∠2=45°,(3分)∴∠1+∠AMN=180°.(4分)∴AB∥CD22.∵BF平分∠ABD,DG平分∠CDE,∴∠1=∠ABD,∠2=∠CDE,又∵∠ABD=∠CDE,∴∠1=∠2,∴BF∥DG(同位角相等,两直线平行).23.ED∥BF;证明如下:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BF、DE分别平分∠ABC、∠ADC,∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ADE+∠ABF=90°,又∵∠A=90°,∠ADE+∠AED=90°,∴∠AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵CD⊥AB,GF⊥AB,∴CD∥FG,∴∠2=∠DCG;又∵∠1=∠2,∴∠DCG=∠1,∴DE∥BC26.∵∠CAD=∠ACB,∴AD∥BC,∵EF⊥CD,∴∠EFC=90°∵∠D=90°,∴∠EFC=∠D,∴AD∥EF,∴BC∥EF,∴∠AEB=∠B.27.∵∠E=∠F,∴AE∥FP,∴∠PAE=∠APF;又∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,即∠2+∠PAE=∠1+∠APF;∴∠2=∠128.∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE29.∵∠A+∠ABC+∠C+∠CDA=360°而∠A=∠C,BE平分∠ABC,DF平分∠CDA∴2∠A+2∠ABE+2∠ADF=360°即∠A+∠ABE+∠ADF=180°又∠A+∠ABE+∠AEB=180°∴∠AEB=∠ADF∴BE∥DF30.∠C=∠D.理由如下:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA.∵∠1=∠DGF,又∵∠1=∠2,∴∠2=∠DGF,∴DB∥EC,∴∠DBA=∠C,∴∠C=∠D31.∵四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠CDA=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∵∠A=90°,∴∠1+∠AEB=90°,∵∠1=∠2,∴∠AEB=∠3,∴BE∥FD.32.∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴a∥b.33.CF∥OD.理由:∵DE⊥AO,BO⊥AO,∴DE∥BO,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴CF∥OD34.∵∠DOB是△COD的外角,∴∠C+∠CDO=∠DOB,又∵∠DOB=∠1+∠2,而∠1=∠2,∠C=∠CDO,∴∠2=∠C,∴CD∥OP35.(1)∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC;(2)∵AF平分∠BAC,∴∠BAF=∠2.又∵∠1=∠2,∴∠1=∠BAF,∴DE∥AF.36.DE∥AB,∵AD平分∠BAC,∴∠BAC=2∠1,∵EF平分∠DEC,∴∠DEC=2∠2,∵∠1=∠2,∴∠BAC=∠DEC,∴DE∥AB.37.∵∠BDE+∠CDE=∠A+∠ACD,又DE是∠BDC的平分线,∠ACD=∠A,∴∠A=∠BDE,∴DE∥AC.38.∠2与∠B相等时,AC∥BD.理由如下:∵∠A=∠1,∠1=∠2,∴∠A=∠2,∵∠2=∠B,∴∠A=∠B,∴AC∥BD.39.MN与EF平行.理由如下:∵∠1=∠A,∴MN∥AB,∵∠2=∠B,∴EF∥AB,∴MN∥EF.40.∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴AB∥CD.41.∵∠E=∠F,∴BE∥CF,∴∠EBC=∠BCF,∵∠1=∠2,∴∠CBA=∠DCB,∴AB∥CD.42.∵EF⊥CD于F,∴∠EFG=90°,∵∠GEF=25°,∴∠EGF=65°,∵∠1=65°,∴∠1=∠EGF,∴AB∥CD.43.图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.45.∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°﹣∠1(直角三角形两锐角互余),∠GFC=90°﹣∠2(互余的定义),∵∠1=∠2(已知),∴∠B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵EM平分∠BEF,FN平分∠DFH,∴∠BEF=2∠MEF,∠DFH=2∠NFH,∵∠BEF=∠DFH,∴∠MEF=∠NFH,∴EM∥FN48.BE∥CF,理由是:∵BE,CF分别平分∠ABC和∠BCD,∴∠1=∠ABC,∠2=∠BCD,∵∠ABC=∠BCD,∴∠1=∠2,∴BE∥CF.49.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.50.(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠AHM,MN平分∠DNH(已知),∴∠GHM∠AHM,∠NMH=∠DMH(角平分线定义),而∠AHM=∠DMH(已知)∴∠GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行) 52.∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD53.∵EG⊥FG,∴∠G=90°,∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴AB∥CD.54.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.55.(1)∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,∴∠DAE+∠1=90°,∠BCF+∠2=90°,∵∠1=∠2,∴∠DAE=∠BCF,∴AD∥BC;(2)AB∥CD.理由如下:∵∠DAE=∠BCF,∠DAB=∠DCB,∴∠DAB﹣∠DAE=∠DCB﹣∠BCF,即∠CAB=∠ACD,∴AB∥CD.56.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.57.∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.58.EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=2(已知),∴EF∥AD(内错角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC于点D(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,所以EF与BC的位置关系是垂直.59.∵CE平分∠ACD,∴∠1=∠2,∵∠1=∠B,∴∠2=∠B,∴AB∥CE.60.∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,故可以判定AB∥CD,AD∥BC.。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的判定与性质(习题课)讲解学习
探究2、如图甲:已知AB∥DE,那么∠1+∠2+∠3等于多少度?试加以说明。 当已知条件不变,而图形变为如图乙时,结论改变了吗?图丙中的 ∠1+∠2+∠3+∠4是多少度呢?如果如丁图所示,∠1+∠2+∠3+…+∠n的和又为 多• 少度?你找到了什么规律吗?
1
2 3
1 2
3
1
2
3 4
1 2
3 4
n
求证: CD∥EF.
• 课堂练习6、 已知:如图∠1=∠2, ∠3=∠4,∠5=∠6,求证:EC∥FB
• 问题5、如图,AB∥CD,∠1=∠2,∠E=37°,求: ∠F。
A
B 问题探究 已知:AB∥CD,
1
E
2
C A
1
求证:∠A+ ∠ C+ ∠ AEC=
360°
F
证明:过E点作EF ∥ AB,则∠A+ ∠ 1= 180°
Z 形模式
next
应用模式
如图,若AB∥DF,∠2=∠A,试确定DE与AC的位置关系,并说明理由.
A
E
F
2
B
D
C
引入
建模
应用
小结
next
应用模式
如图,图中包含哪些基本模式?
A E D
B F O C
引入
建模
应用
小结
next
应用模式
已知,如图AB∥EF∥CD,AC∥BD,BC平分∠ABC,则图中 与∠EOD相等的角有( )个.
图形
同a 位 角b
1 2 c
内 错
a3
角b
2
c
七年级数学下册平行线的性质【十大题型】(举一反三)(人教版)
专题5.2 平行线的性质【十大题型】【人教版】【题型1 平行线的判定与性质的运用(计算与证明)】 (1)【题型2 平行线的判定与性质(书写过程)】 (5)【题型3 平行线与三角尺(直角顶点在平行线上)】 (9)【题型4 平行线与三角尺(直角顶点不在平行线上)】 (11)【题型5 平行线的判定与性质综合(角度之间的数量关系)】 (16)【题型6 平行线的判定与性质综合(求定值)】 (21)【题型7 平行线的判定与性质综合(规律问题)】 (31)【题型8 平行线的性质(折叠问题)】 (36)【题型9 平行线的应用(转角问题)】 (41)【题型10 平行线的判定与性质综合(旋转)】 (46)【知识点平行线的性质】【例1】(2022·西藏·林芝市广东实验中学七年级期中)如图,点D,E在AC上,点F,G分别在BC,AB上,且DG∥BC,∠1=∠2.(1)求证:DB∥EF;(2)若EF∠AC,∠1=50°,求∠ADG的度数.【答案】(1)见解析(2)∠ADG=40°【分析】(1)利用两直线平行,内错角相等,再根据同位角相等,两直线平行即可得证;(2)先求出∠C,再根据两直线平行,同位角相等,即可得解.(1)证明:∠DG∥BC,∠∠1=∠DBC.又∠∠1=∠2,∠∠2=∠DBC,∠DB∥EF.(2)∠EF∠AC,∠∠CEF=90°.∠∠2=∠1=50°,∠∠C=90°-50°=40°.∠DG∥BC,∠∠ADG=∠C=40°.【点睛】本题考查平行线的判定和性质.熟练掌握平行线的性质和判定是解题的关键.【变式1-1】(2022·湖北·五峰土家族自治县中小学教研培训中心七年级期末)已知:如图,AE⊥BC,FG⊥BC,∠CEA=∠FGB,∠D=∠ABC+50°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)证明见解析(2)∠C=30°【分析】(1)先证明AE∥GF,可得∠EAB=∠FGB,再证明∠CEA=∠EAB,从而可得答案;(2)由AB∥CD,可得∠D+∠CBD+∠ABC=180°,再把∠D=∠ABC+50°,∠CBD=70°代入进行计算即可.(1)证明:∵AE⊥BC,FG⊥BC,∠AE∥GF,∴∠EAB=∠FGB,∵∠CEA=∠FGB,∴∠CEA=∠EAB,∠AB∥CD;(2)解:由(1)得,AB∥CD,∴∠D+∠CBD+∠ABC=180°,∵∠D=∠ABC+50°,∠CBD=70°,∠∠ABC+70°+∠ABC+50°=180°∴∠ABC=30°,∴∠C=∠ABC=30°.【点睛】本题考查的是平行线的判定与性质,方程思想的应用,掌握“平行线的判定与性质”是解本题的关键.【变式1-2】(2022·重庆·巴川初级中学校七年级期中)如图,∠ABC中,∠BAC的角平分线交BC于D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,且∠BDA+∠CEG=180°.(1)求证:AD∥EF;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗?请说明理由.【答案】(1)见详解(2)∠F=∠H,说明见详解【分析】(1)根据∠BDA+∠CEG=180°,∠DEF+∠CEG=180°,可得∠BDA=∠DEF,根据同位角相等,两直线平行可判定AD∥EF;(2)根据∠EDH=∠C,可得DH∥AC,继而得到∠H=∠EGC,由对顶角∠AGF=∠EGC,可得∠H=∠AGF,由(1)AD∥EF可得∠DAG=∠AGF,∠BAD=∠F,再因为AD是∠BAC的角平分线,有∠DAG=∠BAD,即可证明∠F=∠H.(1)证明:∠∠BDA+∠CEG=180°,∠DEF+∠CEG=180°,∠∠BDA=∠DEF,∠AD∥EF.(2)解:∠F=∠H,理由如下:∠∠EDH=∠C,∠DH∥AC,∠∠H=∠EGC,∠∠AGF=∠EGC,∠∠H=∠AGF,∠AD∥EF,∠∠DAG=∠AGF,∠BAD=∠F,又∠AD是∠BAC的角平分线,∠∠DAG=∠BAD,∠∠F=∠H.【点睛】本题考查了平行线的判定与性质,角平分线的定义,熟练掌握并应用平行线的判定与性质是解答本题的关键.【变式1-3】(2022·湖北·武汉市新洲区阳逻街第一初级中学三模)如图,已知AD⊥BC,EF⊥BC,∠1=∠2.(1)求证:EF∥AD;(2)求证:∠BAC+∠AGD=180°.【答案】(1)见解析(2)见解析【分析】(1)根据垂直得出∠EFB=∠ADB=90°,根据平行线的判定得出EF∥AD;(2)根据平行线的性质得出∠1=∠BAD,由∠1=∠2得出∠2=∠BAD,根据平行线的判定得出DG∥BA,再根据平行线的性质即可得解.【详解】(1)证明:∠AD⊥BC,EF⊥BC,∠∠EFB=90°,∠ADB=90°(垂直的定义),∠∠EFB=∠ADB(等量代换),∠EF∥AD(同位角相等,两直线平行);(2)证明:∠EF∥AD,∠∠1=∠BAD(两直线平行,同位角相等),又∵∠1=∠2(已知),∠∠2=∠BAD(等量代换),∠DG∥BA(内错角相等,两直线平行),∠∠BAC+∠AGD=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.【题型2 平行线的判定与性质(书写过程)】【例2】(2022·黑龙江·哈尔滨市风华中学校七年级期中)如图,∠1=∠2,∠A=∠D.求证:∠B=∠C.(请把下面证明过程补充完整)证明:∵1=∠2(已知)又∵∠1=∠3(____________)∴∠2=∠3(____________)∴AE∥FD(_____________)∴∠A=∠_____(______________)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∠_____∥CD(__________________)∴∠B=∠C(____________)【答案】对顶角相等;等量代换;内错角相等,两直线平行;BFD;两直线平行,内错角相等;AB;内错角相等,两直线平行;两直线平行,内错角相等.【分析】先利用对顶角的性质证明∠2=∠3,再证明AE∥FD,可证明∠A=∠BFD,可得∠D=∠BFD,再证明AB∥CD,从而可得答案.【详解】证明:∵1=∠2(已知)又∵∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴AE∥FD(内错角相等,两直线平行)∴∠A=∠BFD(两直线平行,内错角相等)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∠AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等)【点睛】本题考查的是对顶角的性质,平行线的判定与性质,熟练的利用平行线的判定与性质进行证明是解本题的关键.【变式2-1】(2022·黑龙江·哈尔滨市萧红中学校七年级阶段练习)阅读并完成下面的证明过程:已知:如图,AB∥EF,∠1=∠2,BE、CE分别平分∠ABC和∠BCD,求证:BE⊥CE.证明:∠BE、CE分别平分∠ABC和∠BCD.∠ABC∠∠ABE=∠EBC=12∠2=________=1∠BCD(角平分线定义)2又∠∠1=∠2,∠∠1=∠ECD()∠EF∥CD()又∠AB∥EF(已知)∠________________()∠∠ABC+∠BCD=180°()(∠ABC+∠BCD)=90°,∠∠ABE+∠2=12又∠AB∥EF,∠∠ABE=∠BEF()∠∠BEF+∠1=90°,∠∠BEC=90°,∠BE⊥CE()【答案】∠ECD;等量代换;内错角相等,两直线平行;AB∥CD;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同旁内角互补;两直线平行,内错角相等;垂直定义.【分析】根据平行线的性质、平行线的判定以及垂直的定义进行分析即可解答.【详解】证明:∠BE、CE分别平分∠ABC和∠BCD.∠ABC∠∠ABE=∠EBC=12∠BCD(角平分线定义)∠2=∠ECD=12又∠∠1=∠2,∠∠1=∠ECD(等量代换)∠EF∥CD(内错角相等,两直线平行)又∠AB∥EF(已知)∠AB∥CD(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)∠∠ABC+∠BCD=180°(两直线平行,同旁内角互补)(∠ABC+∠BCD)=90°,∠∠ABE+∠2=12又∠AB∥EF,∠∠ABE=∠BEF(两直线平行,内错角相等)∠∠BEF+∠1=90°,∠∠BEC=90°,∠BE⊥CE(垂直定义).故答案为:∠ECD;等量代换;内错角相等,两直线平行;AB∥CD;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同旁内角互补;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定与性质、垂直的定义等知识点,灵活运用平行线的判定与性质是解答本题的关键.【变式2-2】(2022·湖南·株洲景炎学校七年级期中)完成下面证明过程并写出推理根据:已知:如图所示,∠BAP与∠APD互补,∠1=∠2.求证:∠E=∠F.证明:∠∠BAP与∠APD互补(已知),即∠BAP+∠APD=180°,∠____________∥_____________(_____________________),∠∠BAP=∠APC(_____________________).又∠∠1=∠2,∠∠BAP-∠1=∠APC-∠2(等式的性质),即∠3=∠4,∠____________∥_____________(_____________________),∠∠E=∠F(_____________________).【答案】AB;CD;同旁内角互补,两直线平行;两直线平行,内错角相等;AE;FP;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定与性质,结合图形完成填空即可求解.【详解】∠∠BAP与∠APD互补(已知),即∠BAP+∠APD=180°,∠AB∥CD(同旁内角互补,两直线平行),∠∠BAP=∠APC(两直线平行,内错角相等).又∠∠1=∠2,∠∠BAP-∠1=∠APC-∠2(等式的性质),即∠3=∠4,∠AE∥FP(内错角相等,两直线平行),∠∠E=∠F(两直线平行,内错角相等)故答案为:AB;CD;同旁内角互补,两直线平行;两直线平行,内错角相等;AE;FP;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质与判定进行证明,掌握平行线的性质与判定是解题的关键.【变式2-3】(2022·重庆·巴川初级中学校七年级期中)推理填空:完成下面的证明过程.如图,已知∠1+∠2=180°,∠B=∠DEF,求证:.DE∠BC证明:∠∠1+∠2=180°()∠2=∠3(_______________________________)∠∠1+∠3=180°∠______∥______(_____________________________)∠∠B=______(________________________________)∠∠B=∠DEF(已知)∠∠DEF=_______ (_______________________)∠DE∠BC()【答案】已知;对顶角相等;AB;EF;同旁内角互补,两直线平行;∠EFC;两直线平行,同位角相等;∠EFC;等量代换;内错角相等,两直线平行【分析】由于∠1+∠2=180°,∠2=∠3,则∠1+∠3=180°,根据同旁内角互补,两直线平行得到AB∥EF,则利用平行线的性质得∠B=∠CFE,由于∠B=∠DEF,所以∠DEF=∠CFE,于是根据平行线的判定得到DE∥BC.【详解】证明:∠∠1+∠2=180°(已知)∠2=∠3(对顶角相等)∠∠1+∠3=180°∠AB∥EF(同旁内角互补,两直线平行)∠∠B=∠EFC(两直线平行,同位角相等)∠∠B=∠DEF(已知)∠∠DEF=∠EFC(等量代换)∠DE∥BC(内错角相等,两直线平行)【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.掌握平行线的判定与性质是解题的关键.【题型3 平行线与三角尺(直角顶点在平行线上)】【例3】(2022·辽宁·阜新实验中学七年级期末)如图,含有30°角的直角三角板的两个顶点E、F放在一个长方形的对边上,点E为直角顶点,∠EFG=30°,延长EG交CD于点P,如果∠3=65°,那么∠2的度数是()A.100°B.105°C.115°D.120°【答案】C【分析】根据直角三角形两锐角互余得到∠1=25°,根据平角的定义得到∠AEF=90°-∠1=65°,根据平行线的性质即可得到结论.【详解】解:∠∠D=90°,∠3=65°,∠∠1=25°,∠∠FEG=90°,∠∠AEF=90°-∠1=65°,∠AD∥BC,∠∠2=180°-∠AEF=115°,故选:C.【点睛】本题考查了直角三角形两锐角互余和平行线的性质,关键是得出∠AEF与∠2互补.【变式3-1】(2022·浙江·金华市第四中学九年级阶段练习)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠2;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.4【答案】D【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【详解】解:∠纸条的两边平行,∠(1)∠1=∠2(两直线平行,同位角相等);(2)∠3=∠4(两直线平行,内错角相等);(4)∠4+∠5=180°(两直线平行,同旁内角互补)均正确;又∠直角三角板与纸条下线相交的角为90°,∠(3)∠2+∠4=90°,正确.故选:D.【点睛】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.【变式3-2】(2022·山东青岛·七年级期中)将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A,B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n ()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°【答案】D【分析】根据平行线的判定定理求解即可.【详解】解:由平行线的判定可知,当∠2=∠ABC+∠1时,m∥n,即∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.【变式3-3】(2022·河南南阳·二模)小明把一副三角板按如图所示方式摆放,直角边CD与直角边AB相交于点F,斜边DE∥BC,∠B=30°,∠E=45°,则∠CFB的度数是()A.95°B.115°C.105°D.125°【例4】(2022·全国·八年级专题练习)如图,a∥b,一块含45°的直角三角板的一个顶点落在直线b上,若∠1=58°54′,则∠2的度数为()A.103°6′B.104°6′C.103°54′D.104°54′【答案】C【分析】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,根据等腰三角板的特点可求出∠4,根据三角形内角和即可求出∠5,再根据平角的性质即可求出∠3,进而根据两直线平行同位角相等即可求出∠2.【详解】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,如图,∠直角三角板含一个45°的锐角,∠该三角板为等腰三角形,∠∠4=45°,∠∠1=58°54′,又∠在三角形中有∠1+∠4+∠5=180°,∠∠5=180°-(∠1+∠4)=180°-(58°54′+45°)=180°-103°54′=76°6′,∠∠3+∠5=180°,∠∠3=180°-∠5=180°-76°6′=103°54′,∠a∥b,∠∠2=∠3,∠∠2=103°54′,故选:C.【点睛】本题主要考查了平行线的性质以及三角形的内角和等知识,掌握两直线平行同位角相等是解答本题的关键.【变式4-1】(2022·山西晋中·七年级期末)用一块含60°角的直角三角板和一把直尺按图中所示的方式放置,其中直尺的直角顶点与三角板的60°角顶点重合,直尺两边分别与三角板的两条直角边相交,若∠1=50°,则∠2的度数为()A.25°B.22.5°C.20°D.15°【答案】C【分析】如图,根据题意得到∠C=90°,AB∠DE,∠CDF=60°.先根据三角形内角和求出∠ABC=40°,再根据平行的性质求出∠CDE=40°,即可求出∠2=20°.【详解】解:如图,由题意得∠C=90°,AB∠DE,∠CDF=60°.∠∠C=90°,∠1=50°,∠∠ABC=180°-∠C-∠1=40°,∠AB∠DE,∠∠CDE=∠CBA=40°,∠∠CDF=60°∠∠2=∠CDF-∠CDE=20°.故选:C【点睛】本题考查了三角形的内角和定理,平行线的性质,熟知两个定理并理解题意得到已知条件是解题的关键.【变式4-2】(2022·福建·莆田市城厢区南门学校七年级阶段练习)如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=75°;④∠AEG=∠PMN.其中正确的是_______.【答案】①②③④【分析】①由题意得∠G=∠MPN=∠MPG=90°,利用内错角相等,两直线平行即可判定GE∥MP;②由题意得∠EFG=30°,利用邻补角即可求出∠EFN的度数;③过点F作FH⊥AB,可得FH∥CD,从而得到∠HFN=∠MNP=45°,可求得∠EFN=105°,再利用平行线的性质即可求出∠BEF;④利用角的计算可求出∠AEG=45°,从而可判断.【详解】解:①∵∠G=∠MPN=∠MPG=90°,∴GE∥MP,故①正确;②∵∠EFG=30°,∴∠EFN=180°−30°=150°,故②正确;③过点F作EH∥AB,如图,∵AB∥CD,∴FH∥CD,∴∠HFN=∠MNP=45°,∴∠EFN=150°−45°=105°,∵FH∥AB,∴∠BEF=180°−105°=75°;故③正确;④∵∠GEF=60°,∠BEF=75°,∴∠AEG=180°−60°−75°=45°,∴∠AEG=∠PMN=45°,故④正确.故答案为:①②③④.【点睛】本题考查平行线的性质与判定,解题的关键是熟记平行线的判定条件与性质并灵活运用.【变式4-3】(2022·山东淄博·期末)如图所示,将一直角三角板放在AB,CD两条平行线之间:(1)图甲中,容易求得∠1+∠2=90°,请直接写出图乙中∠1,∠2的数量关系;(2)请问图丙中∠1,∠2的数量关系是什么?并加以说明;(3)请直接写出图丁中∠1,∠2的数量关系.【答案】(1)∠1+∠2=270°(2)∠2-∠1=90°;见解析(3)∠1=∠2+90°【分析】(1)过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD.根据两直线平行,同旁内角互补,即可得∠1,∠2的关系.(2)过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD.根据两直线平行,内错角相等,平角互补,即可得∠1,∠2的关系.(3)过点O作AB的平行线MN,得AB∥MN∥CD,据两直线平行,内错角相等,即可得∠1,∠2的关系.(1)如图,过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD∠∠1+∠3=180°,∠2+∠4=180°又∠∠3+∠4=90°∠∠1+∠3+∠2+∠4=180°+180°∠∠1+∠2=360°−90°=270°∠∠1+∠2=270°.(2)如图,过三角板的直角顶点作AB的平行线MN,得AB∥MN∥CD∠∠1=∠3,∠2+∠4=180°又∠∠3+∠4=90°∠∠1+180°−∠2=90°∠∠2−∠1=90°.(3)如图,过点O作AB的平行线MN,得AB∥MN∥CD∠∠MOC=∠2∠∠1=90°+∠MOC∠∠1=90°+∠2.【点睛】本题考查平行线的性质,解题的关键是掌握两直线平行,内错角相等,同旁内角互补;平角互补.【题型5 平行线的判定与性质综合(角度之间的数量关系)】【例5】(2022·黑龙江鹤岗·七年级期末)如图①,AB∥CD,M为平面内一点,若BM∠MC,则易证∠ABM与∠DCM互余.(1)如图②,AB∥CD.点M在射线EA上运动,猜想点M在点A和D之间时,∠BMC与∠ABM、∠DCM之间的数量关系,并证明.(2)在(1)的条件下,当点M在射线EA的其它位置上时(不与点E,A,D重合)请直接写出∠BMC与∠ABM、∠DCM之间的数量关系.又∠AB∥CD,∠MF∥CD,∠∠DCM=∠FMC,∠∠ABM+∠DCM=∠BMF+∠CMF=∠BMC;(2)解:当点M在E、A两点之间时,如图3,∠BMC=∠DCM-∠ABM;过M作MF∥AB,交EC于F,则∠ABM=∠BMF,又∠AB∥CD,∠MF∥CD,∠∠DCM=∠FMC,∠∠BMC=∠CMF-∠BMF=∠DCM-∠ABM;当点M在AD的延长线上时,如图4,∠BMC=∠ABM-∠DCM.过M作MF∥AB,交EC于F,则∠ABM=∠BMF,又∠AB∥CD,∠MF∥CD,∠∠DCM=∠FMC,∠∠BMC=∠BMF-∠CMF=∠ABM-∠DCM.【点睛】本题考查了平行线的判定和性质,关键是构建平行线,利用平行线的性质进行解答.解题时注意分类思想的运用.【变式5-1】(2022·辽宁·兴城市第二初级中学七年级阶段练习)已知,点A,点B分别在线段MN,PQ上,且∠ACB-∠MAC=∠CBP.(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI的两边分别与直线CH,AG交于点F和点E,如图2,试判断∠CFB、∠BEG之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=80°,求∠CFB 的度数.(直接写出答案)【答案】(1)见解析(2)∠CFB−∠BEG=90°,证明见解析(3)∠CFB=130°【分析】(1)过C作CE∥MN,根据平行线的判定和性质即可得到结论;(2)过B作BR∥AG,根据平行线的性质得到∠BEG=∠EBR,∠RBF+∠CFB=180°,等量代换即可得到结论;(3)过E作ES∥MN,根据平行线的性质得到∠NAE=∠AES,∠QBE=∠BES,根据角平分线的定义得到∠NAE=∠EAC,∠CBD=∠DBP,根据四边形的内角和即可得到结论.(1)解:如图,过C作CE∥MN,∠∠1=∠MAC,∠∠2=∠ACB-∠1,∠∠2=∠ACB-∠MAC,∠∠ACB-∠MAC=∠CBP,∠∠2=∠CBP,∠CE∥PQ,∠MN∥PQ;(2)如图,过B作BR∥AG,∠AG∥CH,∠BR∥HF,∠∠BEG=∠EBR,∠RBF+∠CFB=180°,∠∠EBF=90°,∠∠BEG=∠EBR=90°-∠RBF,∠∠BEG=90°-∠RBF=90°-(180°-∠CFB),∠∠CFB-∠BEG=90°;(3)如图,过E作ES∥MN,∠MN∥PQ,∠ES∥PQ,∠∠NAE=∠AES,∠QBE=∠BES,∠BD和AE分别平分∠CBP和∠CAN,∠∠NAE=∠EAC,∠CBD=∠DBP,∠∠CAE=∠AES,∠∠EBD=90°,∠∠EBQ+∠PBD=∠EBC+∠CBD=90°,∠∠QBE=∠EBC,∠∠EBC=∠BES,(360°−∠ACB),∠∠AEB=∠AES+∠BES=∠CAE+∠EBC=12∠∠ACB=80°,∠∠AEB=140°,∠∠BEG=40°,∠∠CFB-∠BEG=90°,∠∠CFB=130°.【点睛】本题考查了平行线的判定和性质,余角的性质,四边形的内角和,正确的作出辅助线是解题的关键.【变式5-2】(2022·湖北·宜昌市第九中学七年级期中)如图,∠1=∠2,∠D=∠CMG.(1)求证:AD∥NG;(2)若∠A+∠DHG=180°,试探索:∠ANB,∠NBG,∠1的数量关系;(3)在(2)的条件下,若∠ANB:∠BNG=2:1,∠1=100°,∠NBG=130°,求∠A的度数.【答案】(1)见解析(2)∠NBG+∠1−∠ANB=180°(3)∠A=105°【分析】(1)由∠1=∠2,∠1=∠GFC,得到∠2=∠CFG,于是得到CM∥DE,根据平行线的性质得到∠D=∠ACM,等量代换得到∠CMG=∠ACM,于是得到结论.(2)过B作BP∥AN交NG于P,由于AD∥NG,于是得到∠D=∠DHG,等量代换得到∠A+∠D=180°,得到AN∥DH,根据平行线的判定得到BP∥CM,由平行线的性质得到∠PBG+∠1=180°,等量代换即可得到结论;(3)由∠1+∠PBG=180°,∠1=100°,得到∠PBG=80°,由于∠NBG=130°,于是得到∠ANB=∠NBP=50°,根据已知条件得到∠ANB:∠BNG=2:1,即可得到结论.(1)证明:∠∠1=∠2,∠1=∠GFC,∠∠2=∠CFG,∠CM∥DE,∠∠D=∠ACM,∠∠D=∠CMG,∠∠CMG=∠ACM,∠AD∥NG;(2)解:∠NBG−∠ANB+∠1=180°;理由如下:过B作BP∥AN交NG于P,∠∠ANB=∠NBP,∠AD∥NG,∠∠D=∠DHG,∠∠A+∠DHG=180°,∠∠A+∠D=180°,∠AN∥DH,又∠CM∠DH,∠BP∥CM,∠∠PBG+∠1=180°,∠∠PBG=∠NBG−∠NBP=∠NBG−∠ANB,∠∠NBG−∠ANB+∠1=180°;(3)解:∠∠1+∠PBG=180°,∠1=100°,∠∠PBG=80°,∠∠NBG=130°,∠∠ANB=∠NBP=50°,∠∠ANB:∠BNG=2:1,∠∠BNP=25°,∠∠ANG=75°,∠∠A=105°.【点睛】本题考查了平行线的判定和性质,对顶角的性质,正确的作出辅助线是解题的关键.【变式5-3】(2022·湖北·潜江市高石碑镇第一初级中学七年级期中)如图1,AB∥CD,直线AE分别交AB、CD于点A、E.点F是直线AE上一点,连结BF,BP平分∠ABF,EP平分∠AEC,BP与EP交于点P.(1)若点F是线段AE上一点,且BF∠AE,求∠P的度数;(2)若点F 是直线AE 上一动点(点F 与点A 不重合),请写出∠P 与∠AFB 之间的数量关系并证明. 【答案】(1)45°(2)当F 点在A 点上方时,∠BPE =12∠AFB ,当F 点在A 点下方时,∠BPE =90°﹣12∠AFB【分析】(1)过点P 作PQ ∥AB ,过点F 作FH ∥AB ,由平行线的性质得∠ABP +∠CEP =∠BPE ,∠ABF +∠CEF =∠BFE ,再由垂直定义和角平分线定义求得结果;(2)分三种情况:点F 在EA 的延长线上时,点F 在线段AE 上时,点F 在AE 的延长线上时,分别进行探究便可.(1)解:过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∠AB ∥CD ,∠AB ∥CD ∥PQ ∥FH ,∠∠ABP =∠BPQ ,∠CEP =∠EPQ ,∠ABF =∠BFH ,∠CEF =∠EFH ,∠∠ABP +∠CEP =∠BPQ +∠EPQ =∠BPE ,∠ABF +∠CEF =∠BFH +∠EFH =∠BFE ,∠BF ∠AE ,∠∠ABF +∠CEF =∠BFE =90°,∠BP 平分∠ABF ,EP 平分∠AEC ,∠∠ABP +∠CEP =12(∠ABF +∠CEF )=45°, ∠∠BPE =45°;(2)①当点F 在EA 的延长线上时,∠BPE =12∠AFB ,理由如下:如备用图1,过点P作PQ∥AB,过点F作FH∥AB,过点P作PQ∥AB,过点F作FH∥AB,过点P 作PQ ∥AB ,过点F 作FH ∥AB ,∠AB ∥CD ,∠AB ∥CD ∥PQ ∥FH ,∠∠ABP =∠BPQ ,∠CEP =∠EPQ ,180°﹣∠ABF =∠BFH ,∠AEC =∠EFH ,∠∠CEP +∠ABP =∠EPQ +∠BPQ =∠BPE ,∠BFH ﹣∠EFH =180°﹣∠ABF ﹣∠AEC =∠AFB , ∠BP 平分∠ABF ,EP 平分∠AEC ,∠∠CEP +∠ABP =12(∠AEC +∠ABF )=12(180°﹣∠AFB ), ∠∠BPE =90°﹣12∠AFB ;综上,当E 点在A 点上方时,∠BPE =12∠AFB ,当E 点在A 点下方时,∠BPE =90°﹣12∠AFB . 【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同位角相等,两直线平行同旁内角互补,以及角平分线的性质,在相交线问题中通常作平行线利用平行线的性质解答,将角度转化由此求出答案.解题中运用分类思想解答问题.【题型6 平行线的判定与性质综合(求定值)】【例6】(2022·湖南·株洲二中七年级期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m 射到平面镜a 上,被a 反射后的光线为n ,则入射光线m 、反射光线n 与平面镜a 所夹的锐角∠1=∠2.(1)如图2,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.(2)请你猜想:当射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行时,两平面镜a 、b 间的夹角∠3的大小是否为定值?若是定值,请求出∠3,若不是定值,请说明理由.(3)如图3,两面镜子的夹角为α°(0<α<90),进入光线与离开光线的夹角为β°(0<β<90).试探索α与β的数量关系,并说明理由.【答案】(1)100;90;(2)90°(3)2α+β=180°【分析】(1)根据平面镜反射光线的规律得∠1=∠4=50°,再利用平角的定义得∠5=80°,然后利用平行线的性质计算出∠2=100°,则∠6=40°,再利用三角形内角和定理计算∠3;(2)当∠3=90°时,根据三角形内角和定理得∠4+∠6=90°,则2∠4+2∠6=180°,利用平角的定义得到∠2+∠5=180°,然后根据平行线的判定得到m∥n;(3)由(1)可得,∠5=180°-2∠2,∠6=180°-2∠3,再根据∠2+∠3=180°-∠α,即可得出∠β=180°-∠5-∠6=2(∠2+∠3)-180°=2(180°-∠α)-180°=180°-2∠α.(1)解:如图:∠∠1=∠4=50°,∠∠5=180°-2×50°=80°,∠m∥n∠∠2+∠5=180°,∠∠2=100°,(180°-∠2)=40°,∠∠6=12∠∠3=180°-∠4-∠6=90°;故答案为:100,90;(2)当∠3=90°时,m∥n理由如下:∠∠3=90°,∠∠4+∠6=90°,∠2∠4+2∠6=180°,∠∠2+∠5=180°,∠m∥n;(3)解:如图3,由(1)可得,∠5=180°-2∠2,∠6=180°-2∠3,∠∠2+∠3=180°-∠α,∠∠β=180°-∠5-∠6=2(∠2+∠3)-180°=2(180°-∠α)-180°=180°-2∠α,∠α与β的数量关系为:2α+β=180°,故答案为:2α+β=180°.【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,解题时注意:同旁内角互补,两直线平行;两直线平行,同旁内角互补.【变式6-1】(2022·河北保定·七年级阶段练习)如图,直线AB∠CD,点M,N分别在直线AB,CD 上,H为直线CD下方一点.(1)如图1,MH和NH相交于点H,求证:∠MHN=∠AMH−∠CNH.(温馨提示:可过点H 作AB的平行线)(2)延长HN至点G,∠BMH的平分线ME和∠GND的平分线NE相交于点E,HM与CD相交于点F.①如图2,若∠BME=50°,∠END=30°,求∠MHN的度数;②如图2,当点F在点N左侧时,若∠BME的度数为x°,∠END的度数为y°,且x+y的值是一个定值,请问∠MHN的度数是否会随x的变化而发生改变?若不变,求出∠MHN的度数;若变化,请说明理由.③如图3,当点N在点F左侧时,②中其他条件不变,请问∠MHN的度数是否会随x的变化而发生改变?若不变,直接写出....∠MHN的度数;若变化,请说明理由.【答案】(1)见解析(2)①20°;②不变,180°−2(x°+y°);③不变,2(x°+y°)−180°【分析】(1)过点H作HQ∥AB.可得HQ∥CD,从而得到∠AMH=∠MHQ,∠CNH=∠NHQ,即可求证;(2)①根据∠BME=50°,∠END=30°,可得∠BMH=100°,∠GND=60°,从而得到∠AMH=180°−∠BMH=80°,∠CNH=60°.再由∠MHN=∠AMH−∠CNH,即可求解;②根据题意可得∠AMH=180°−2x°,∠CNH=2y°,再由∠MHN=∠AMH−∠CNH,即可求解;③过点H作OH∠AB,根据平行线的性质,可证得∠MHN=∠OHM−∠OHN=∠BMH−∠DNH.从而得到∠MHN=2x°+2y°−180°=2(x°+y°)−180°,即可求解.(1)证明:如图,过点H作HQ∥AB.∠HQ∥AB且AB∥CD,∠HQ∥CD,∠∠AMH=∠MHQ,∠CNH=∠NHQ,∠∠MHN=∠MHQ−∠NHQ=∠AMH−∠CNH;(2)解:①ME平分∠BMH,∠BME=50°,∠∠BMH=100°,∠NE平分∠DNG,∠DNE=30°,∠∠GND=60°,∠∠AMH=180°−∠BMH=80°,∠CNH=60°.由(1)可知:∠MHN=∠AMH−∠CNH=80°−60°=20°.∠∠MHN=20°;②∠ME平分∠BMH,∠BME=x°,∠∠BMH=2x°,∠NE平分∠DNG,∠DNE=y°,∠∠GND=2y°,∠∠AMH=180°−2x°,∠CNH=2y°,∠∠MHN=180°−2x°−2y°=180°−2(x°+y°).∠x+y为一个定值,∠∠MHN不会随x的变化而发生改变,度数为180°−2(x°+y°);③不变,∠MHN的度数为2(x°+y°)−180°.理由如下:如图,过点H作OH∥AB,∠∠BMH=∠OHM,∠AB∥CD,∠OH∥CD,∠∠DNH=∠OHN,∠∠MHN=∠OHM−∠OHN=∠BMH−∠DNH.∠ME平分∠BMH,∠BME=x°,∠∠BMH=2x°∠NE平分∠DNG,∠DNE=y°,∠∠GND=2y°,∠∠DNH=180°−2y°,∠∠MHN=2x°−(180°−2y°),∠∠MHN=2x°+2y°−180°=2(x°+y°)−180°.∠x+y为一个定值,∠∠MHN不会随x的变化而改变.【点睛】本题主要考查了平行线的性质和判定,有关角平分线的计算,熟练掌握平行线的性质和判定,利用类比思想解答是解题的关键.【变式6-2】(2022·福建龙岩·七年级期末)如图1,点A、D分别在射线BM、CN线上,BM∥CN,BM∠BC于点B,AE平分∠BAD交BC于点E,连接DE,∠1+∠2=90°.(1)求证:AE∠ED;(2)求证:DE平分∠ADC;(3)如图2,∠EAM和∠EDN的平分线交于点F,试猜想∠F的值是否为定值,若是,请予以证明;若不是,请说明理由.【答案】(1)见解析(1)证明:如图1,过点E作EG∥BM,则∠1=∠3,∠BM∥CN,∠EG∥CN,∠∠4=∠2,∠∠3+∠4=∠1+∠2=90°,∠∠AED=90°,∠AE∠ED.(2)证明:∠ AE平分∠BAD,∠∠BAD=2∠1,∠BM∥CN,∠∠BAD+∠CDA=180°,∠2∠1+∠CDA,(3)∠F为定值.证明:如图2,过点F作FH∥BM,设∠AFH=α,∠DFH=β,∠BM∥CN,∠FH∥CN,∠∠α+∠β=∠6+∠7,∠∠EAM和∠EDN的平分线交于点F,∠∠α+∠β=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)=180°−45°=135°,∠∠F=∠α+∠β=135°,∠∠F为定值,∠F=135°,故答案为:∠F=135°.【点睛】本题主要考查垂线、角平分线的性质,解题的关键是掌握垂垂线的概念和角平分线与∠CFM互补(1)如图1,试判断直线AB与直线CD的位置关系,并说明理由.(2)如图2,∠BEF与∠EFD的平分线交于点P,EP的延长线与CD交于点G,H是MN上一点,且GH⊥EG,求证:PF∥GH.(3)如图3,在(2)的条件下,连接PH,K是GH上一点,使∠PHK=∠HPK,作PQ平分∠EPK,求证:∠HPQ的大小是定值.【答案】(1)平行;理由见解析(2)见解析(3)见解析【分析】(1)根据同旁内角互补,两条直线平行,即可判断直线AB与直线CD平行;(2)先根据两条直线平行,同旁内角互补,再根据∠BEF与∠EFD的角平分线交于点P,可得∠EPF=90°,进而证明PF∥GH;(3)根据角平分线定义,及角的和差计算即可求得∠HPQ的度数.(1)解:结论:AB∥CD;理由如下:∠∠MEB与∠CFM互补,∠MEB=∠AEF,∠∠AEF与∠CFM互补,∠AB∥CD.(2)∠EG平分∠BEF,∠∠PEF=1∠BEF,2又∠FP平分∠EFD,∠∠EFP=1∠EFD,2由(1)知AB∥CD,∠∠BEF+∠EFD=180°,∠∠PEF+∠EFP=90°,∠∠EPF=90°,【例7】(2022·辽宁·鞍山市第十四中学七年级阶段练习)如图,已知AB//CD,若按图中规律继续划分下去,则∠1+∠2+⋯+∠n等于()A.n•1800B.2n•1800C.(n−1)•1800D.(n−1)2•1800【答案】C【分析】根据第1个图形∠1+∠2=180°,第2个图形∠1+∠2+∠3=2×180°,第,3个图形∠1+∠2+∠3+∠4=3×180°…,进而得出答案.【详解】(1)∠AB∠CD,∠∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∠AB∠CD,∠AB∠EF,CD∠EF,∠∠1+∠AEF=180°,∠FEC+∠3=180°,∠∠1+∠2+∠3=360°;(3)过点E、F作EM、FN平行于AB,∠AB∠CD,∠AB∠EM∠FN∠CD,∠∠1+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠4=180°;∠∠1+∠2+3+∠4=540°;(4)中,根据上述规律,显然作(n-1)条辅助线,运用(n-1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n-1).故选:C.【点睛】此题主要考查了平行线的性质,正确得出图中变化规律是解题关键.【变式7-1】(2022·湖南·邵阳市第六中学八年级阶段练习)如图,已知直线AE,BF被直线AB所截,且AE//BF,AC1,BC1分别平分∠EAB,∠FBA;AC2,BC2分别平分∠BAC1和∠ABC1;AC3,BC3分别平分∠BAC2,∠ABC2…依次规律,得点C n,则∠C n的度数为()A.90−902n B.180−902n−1C.902n−1D.1802nAB∠CD.试求:(1)图(1)中∠A+∠C的度数,并说明理由.(2)图(2)中∠A+∠APC+∠C的度数,并说明理由.(3)图(3)中∠A+∠AEF+∠EFC+∠C的度数,并简要说明理由.(4)按上述规律,∠A+……+∠C(共有n个角相加)的和为【答案】(1)180°,理由见解析;(2)360°,理由见解析;(3)540°,理由见解析;(4)180°(n-1)【分析】(1)据两直线平行,同旁内角互补可得∠A+∠C=180°;(2)沿P作一条平行A B、CD的平行线PM,由两直线平行,同旁内角互补可得∠A+∠APM=180°,∠MPC+∠C=180°,故∠A+∠APC+∠C=360°;(3)根据第二题,同理可得∠A+∠AEF+∠EFC+∠C=540°;(4)由以上规律,有两个角时,和为180°;有三个角时和为360°;有四个角时和为540°…故可得有n个角时,和为180°(n-1).【详解】解:(1)∠AB∠CD,∠∠A+∠C=180°(两直线平行,同旁内角互补);(2)过点P作一条直线PM平行于AB,∠AB∠CD,∠AB∠PM,∠CD∠PM∠AB,∠∠A+∠APM=180°,∠MPC+∠C=180°,∠∠A+∠APC+∠C=360°;(3)分别过点E、F作EM、FN平行于AB,∠AB∠CD,∠AB∠EM∠FN∠CD,∠∠A+∠AEM=180°,∠MEF+∠EFN=180°,∠NFC+∠C=180°;∠∠A+∠AEF+∠EFC+∠C=540°;(4)由以上规律,有两个角时,和为180°;有三个角时和为360°;有四个角时和为540°…故可得有n个角时,和为180°(n-1).【点睛】本题主要考查两直线平行,同旁内角互补的性质,并考查学生通过计算总结规律的能力,是一道好题.【变式7-3】(2022·浙江·七年级阶段练习)阅读并探究下列问题.(1)如图①,将长方形纸片剪两刀,其中AB∥CD,则∠2与∠1、∠3有何关系?请进行证明.(2)如图②,将长方形纸片剪四刀,其中AB∥CD,则∠1、∠2、∠3、∠4、∠5的关系为.(3)如图③,将长方形纸片剪2016刀,其中AB∥CD,则共剪出个角.若将剪出的角(∠A、∠C除外)分别用∠E1、∠E2、∠E3…表示,则被剪出的这些角的关系为.(4)如图④,直线AB∥CD,∠EF A=∠HMN=x°,∠FGH=3x°,∠CNP=y°|2x+y−102|+√x+y−72=0由上述结论求∠GHM的度数.【答案】(1)∠1+∠3=∠2,证明见解析;(2)∠1+∠3+∠5=∠2+∠4;(3)2017,∠A+∠C+∠E2+∠E4+…+∠E2014=∠E1+∠E3+…+∠E2015.(4)48°.【分析】(1)过E点作EF∠AB,则EF∠CD,根据两直线平行,内错角相等得到∠AEF=∠1,∠CEF=∠3,即有∠2=∠1+∠3;(2)分别过E、G、F分别作EM∠AB,GN∠AB,FP∠AB,根据两直线平行,内错角相等,同(1)一样易得到∠2+∠4=∠1+∠3+∠5;(3)综合(1)(2)易得开口向左的角的度数的和等于开口向右的角的度数的和.(4)利用(3)的结论得到∠BFG+∠GHM+∠MND=∠FGH+∠HMN,易计算出∠GHM.。
7年级数学 平行线判定及性质 (1)
D EEF1 23 A CO知识精讲7 年级数学下:平行线的性质定理模块一:平行线的性质定理平行线的性质定理(1)两条平行线被第三条直线所截,同位角相等;简记为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等;简记为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补;简记为:两直线平行,同旁内角互补. 例题解析【例 1】如图,AC //DB , ∠DBC = 56 ,则∠ACB = . 【答案】124 度.【解析】因为 AC //DB (已知), 所以∠DBC + ∠ACB = 180︒ (两直线平行,同旁内角互补),因为∠DBC = 56 (已知),所以∠ACB = 180︒ - 56︒ = 124︒ (等式性质)D B【例 2】(1)如图,已知 DE //BC ,∠A = ∠C ,则与∠AED 相等的角(不包含∠AED )有 个;(2)如图,若 AB //FD ,则∠B = ,若 AC //ED ,则∠DFC = .AAB C 【答案】(1)2 个;(2) ∠3 ;∠2.B D 【解析】(1)因为 DE //BC (已知), 所以∠AED = ∠C (两直线平行,同位角相等),又因为∠A = ∠C (已知),所以∠A = ∠C = ∠AED (等量代换);(2)∠B = ∠3(两直线平行,同位角相等);∠DFC = ∠2. 【例 3】如图,直线 a / /b ,则 x - y 的值等于( ) aA .20B .80C .120D .180 b【答案】A【解析】因为 a / /b ,所以 x = 30又因为3y + x = 180 ,解得 y = 50 ,故 x - y = 30 - 50 = 20︒ .【例 4】如图,直线 a / /b ,点 B 在直线b 上,且 AB ⊥ BC , ∠1 =A . 35B . 45C . 55D .125【答案】A 【解析】因为 AB ⊥ BC (已知),所以∠ABC = 90︒ (垂直的意义)因为 a / /b (已知), 所以 ∠1 = ∠CBD (两直线平行,同位角相等) 因为∠1 = 55 (已知), 所以∠CBD = 55 (等量代换)因为∠2 + ∠ABC + ∠CBD = 180 (平角的意义)所以∠2 = 180︒ - 55︒ - 90︒ = 35︒ (等式性质)B【例5】如图,直线a / /b ,c ⊥d ,则下列说法中正确的个数有()(1)∠2 +∠4 = 90 ;(2)∠1 +∠4 = 90 ;(3)∠1 =∠3 ;(4)∠3 +∠4 = 90 .A.1 个B.2 个C.3 个D.4 个【答案】B【解析】(1)正确:因为a / /b ,所以∠2 与∠3 互为同位角,d又因为c ⊥d ,所以∠3 +∠4 = 90︒,所以∠2 +∠4 = 90︒;(2)错误:∠1 =∠4 (两直线平行,同位角相等);(3)错误∠1 +∠3 = 90︒;(4)正确.所以本题选B【例6】如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角()A.相等或互补B.互补C.相等D.相等且互余【答案】A【解析】分为同侧相等和异侧互补两种情况,故选A.【例7】如图,已知AB / /CD ,∠x 等于()A.75 B.80 C.85 D.95 【答案】C【解析】如图可过的顶点作平行线,那么被分为上下两部分.上半部分与角B 互补;下半部分与角D 互为内错角;所以易知∠x = (180︒-120︒) + 25︒= 85︒.A B120°xD 25°C【例8】如图,AB / /CD,MP / / AB,MN 平分∠AMD,∠A = 40 ,∠D = 30 ,则∠NMP 等于()A.10 B.15 C.5 D.7.5 【答案】C【解析】因为AB / /MP (已知)所以∠A =∠AMP (两直线平行,内错角相等)因为AB / /CD (已知),所以MP / /CD (平行的传递性)所以∠D =∠DMP (两直线平行,内错角相等)B MCAN PD因为∠AMD =∠AMP +∠DMP (角的和差),∠A = 40 ,∠D = 30 (已知)所以∠AMD = 30 + 40 = 70 (等式性质)因为MN平分∠AMD (已知),所以∠AMN =∠NMD = 35 (角平分线的意义)所以∠NMP = 40︒- 35︒= 5︒(等式性质)E【例9】如图,AB / /CD ,∠1 = (2x + 20) ,∠2 = (8x - 40) ,求∠1 及∠2 的度数.【答案】∠1 = 40︒,∠2 = 40︒. A1 B【解析】因为AB / /CD (已知),所以∠1 =∠2 (两直线平行,同位角相等)2 即(2x + 20) = (8x - 40) C DF 解得:x = 10所以∠1 = 40︒,∠2 = 40︒(等式性质)H 2G1C F D3 1 24【例 10】如图,已知∠1 = 40 ,∠2 = 140 ,∠3 = 40 ,能推断出 AB / /CD / / EF 吗?为什么?【答案】能;见解析. 【解析】由题意,根据对顶角的性质,可知:∠2 + ∠1 = 180︒,∠2 + ∠3 = 180︒ 所以 AB //CD ,CD //EF (同旁内角互补,两直线平行) 所以 AB //EF ,即 AB //CD //EF ,即证.N【例 11】已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的 2 倍少 30°,求∠A 与∠B 的度数.【答案】∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒ .【解析】由题意可知, ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 2 倍少 30°,所以∠A = 2∠B - 30︒ ,即∠B = 30︒,∠A = 30︒ 或∠B = 70︒ ,∠A = 110︒【总结】本题考查平行线的性质及两个角的两边平行时的两种情况的讨论.【例 12】已知:如图, ∠1 = ∠2 ,∠3 = ∠B ,AC / / DE ,且 B 、C 、D 在一条直线上.试说明 AE / / BD .AE【答案】见解析. 【解析】因为 AC / / DE (已知), 所以∠2 = ∠4 (两直线平行,内错角相等)因为∠1 = ∠2 (已知),所以∠1 = ∠(4 等量代换)所以 AB / /CE (内错角相等,两直线平行) 所以∠B = ∠ECD (两直线平行,同位角相等) B 因为∠3 = ∠B (已知),所以∠3 = ∠ECD (等量代换)所以 AE / / BD (内错角相等,两直线平行)【例 13】已知:如图,E 、F 分别是 AB 和 CD 上的点,DE 、AF 分别交 BC 于 G 、H ,∠ A = ∠ D , ∠ 1= ∠ 2,试说明: ∠ B = ∠ C .E 【答案】见解析 A B【解析】因为∠1 = ∠(2 已知),∠1 = ∠AHB (对顶角相等)所以∠2 = ∠AHB (等量代换), 所以 AF / / E D (同位角相等,两直线平行) 所以∠D = ∠AFC (两直线平行,同位角相等)因为∠A = ∠D (已知), 所以∠A = ∠AFC (等量代换)所以 AB / /CD (内错角相等,两直线平行)所以∠B = ∠C (两直线平行,内错角相等)【例 14】如图,直线 GC 截两条直线 AB 、CD ,AE 是∠GAB 的平分线,CF 是∠ACD 的平 分线,且 AE / /CF ,那么 AB ∥CD 吗?为什么?【答案】见解析 【解析】因为 AE 是∠GAB 的平分线,CF 是∠ACD 的平分线(已知)所以∠GAE = ∠EAB ,∠ACF = ∠FCD (角平分线的性质)因为 AE / /CF (已知),所以∠GAE = ∠ACF (两直线平行, 3A1 E2 D同位角相等)所以∠EAB =∠FCD(等量代换)所以AB / /CD ( 同位角相等,两直线平行)【例15】如图∠1 =∠2 ,DC / /OA ,AB / /OD ,那么∠C =∠B【答案】见解析【解析】因为DC / /OA (已知),所以∠COA =∠C(两直线平行,内错角相等),即∠COB +∠1 =∠C因为AB / /OD (已知),所以∠DOB =∠B即∠2 +∠COB =∠B ,又因为∠1 =∠2 (已知),所以∠B =∠C (等量代换)【总结】本题考查平行线的判定及性质的综合运用.【例16】如图,已知AD 平分∠BAC ,∠1 =∠2 ,试说明∠1 =∠F 的理由.【答案】见解析F【解析】因为AD 平分∠BAC (已知),所以∠2 =∠BAD (角平分线的意义)因为∠1 =∠2 (已知),所以∠1 =∠BAD (等量代换)所以EF / / AD (同位角相等,两直线平行)所以∠F =∠2 (两直线平行,同位角相等) B C 所以∠1 =∠F (等量代换)【总结】本题考查平行线的判定及性质的运用.【例17】已知:如图,∠AGH =∠B,∠CGH =∠BEF ,EF⊥AB 于F,试说明CG⊥AB.【答案】见解析【解析】因为∠AGH =∠B (已知)C所以HG / /CB (同位角相等,两直线平行)所以∠CGH =∠BCG (两直线平行,内错角相等)E 因为∠CGH =∠BEF (已知),H所以∠BEF =∠BCG (等量代换)A B所以EF / /CG (同位角相等,两直线平行)G F因为EF⊥AB(已知),所以CG⊥AB.【例18】已知,正方形ABCD 的边长为4 cm ,求三角形EBC 的面积.D【答案】8 平方厘米. A E 【解析】由题意可知:三角形EBC 与正方形同底BC,且其高即是正方形的边DC,故三角形面积为正方形面积的一半:4 ⨯ 4 ÷ 2 = 8cm2C【例19】如图,AD//BC,BC =5AD ,求三角形ABC 与三角形ACD 的面积之比.2A D【答案】5: 2 .4B CBD EA GD【解析】因为 AD / /BC (已知)所以三角形 ABC 与三角形 ACD 的高相等(平行线间的距离处处相等)所以 S ∆ABC : S ∆ACD = BC : AD = 5:2 (两三角形高相等,面积比等于底之比)【例 20】如图, AB / /GE , CD / / FG ,BE =EF =FC ,三角形 AEG 的面积等于 7,求四边形 AEFD 的面积. 【答案】21 【解析】联结 BG 、CG . 因为 AB / /GE(已知)所以 S∆BEG B = S ∆AEG (同底等高的两个三角形面积相等) E F C因为 BE =EF (已知), 所以 S ∆BEG = S ∆GEF (等底等高的两个三角形面积相等)所以 S ∆AEG = S ∆GEF =7(等量代换), 同理 S ∆GEF = S ∆DFG = 7 .所以 S 四边形AEFD = S ∆AEG + S ∆GEF + S ∆DFG = 7 + 7 + 7 = 21.【例 21】已知 E 是平行四边形 ABCD 边 BC 上一点,DE 延长线交 AB 延长线于 F ,试说明CS ∆ABE 与S ∆CEF 相等的理由. 【答案】见解析 1A1 F【解析】因为 S △ADE = S △DCF = 2 S 四边形ABCD ,所以 S △CEF = S ∆DCF - S ∆DCE = 2S 四边形ABCD - S ∆DCE , 所以 S = S - S - S = S - 1 S - S = 1 S - S∆ABE 四边形ABCD ∆ADE ∆DCE 四边形ABCD 2 四边形ABCD ∆DCE 2 四边形ABCD ∆DCE所以 S ∆ABE = S ∆CEF模块二:辅助线的添加例题解析 【例 1】如图,已知 AB ∥ED ,试说明:∠B +∠D =∠C . 【答案】见解析 【解析】过点 C 作 AB 的平行线 CF , 因为 AB ∥ED (已知) 所以 AB / /CF / / ED (平行的传递性)A BC F 所以∠B = ∠BCF ,∠D = ∠DCF (两直线平行,内错角相等)所以∠B + ∠D = ∠BCF + ∠DCF = ∠BCD (等式性质) E D【例 2】如图所示,已知, ∠A +∠B +∠C = 360︒ ,试说明 AE ∥CD . 5F E【答案】见解析A E【解析】过点 B 向右作 BF //AE , 所以∠A + ∠ABF = 180(︒ 两直线平行,同旁内角互补)因为∠A +∠B +∠C = 360︒ (已知)B F所以∠FBC + ∠C = 180︒ (等式性质) C D所以 BF / /CD (同旁内角互补,两直线平行)所以 AE / /CD (平行的传递性)【例 3】如图,已知:AB //CD ,试说明: ∠ B + ∠ D + ∠ BED = 360︒ (至少用三种方法).【答案】见解析 A【解析】方法一:连接 BD则∠EBD +∠EDB +∠E =180°(三角形内角和等于 180因为 AB //CD (已知),所以∠ABD +∠BDC =180°(两直线平行,同旁内角互补) C 所以∠ABD +∠EBD +∠EDB +∠BDC +∠E =360°,即∠B +∠D +∠BED =360°方法二:过点 E 作 EF //CD ,因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠B +∠BEF =180°,∠D +∠DEF =180°(两直线平行,同旁内角互补)所以∠B +∠BEF +∠D +∠DEF =360°(等式性质)即∠B +∠D +∠BED =360°;方法三:过点 E 作 EF / / BA因为 AB / /CD (已知), 所以 EF / / AB (平行的传递性)所以∠ABE + ∠BEF = 180︒ ,∠FED + ∠EDC = 180︒ (两直线平行,同旁内角互补) 所以∠ B + ∠ D + ∠ BED = 360︒ (等式性质);方法四:过点 E 作 EF ⊥CD 的延长线与 F ,EG 垂直于 AB 的延长线于 G ,则有:∠B =∠BGE +∠GEB ,∠D =∠EDF +∠DFE ,所以∠B +∠D +∠BED =∠BGE +∠DFE +∠GED =180+180=360°.【例4】如图所示,在六边形 ABCDEF 中,AF ∥CD ,∠A =∠D ,∠B=∠E ,试说明 BC ∥EF 的理由.【答案】见解析 A F【解析】连接 AD 、BEB因为 AF ∥CD (已知) E所以∠FAD = ∠ADC (两直线平行,内错角相等) C D因为∠BAF = ∠CDE (已知), 所以∠BAD = ∠ADE (等式性质)所以 AB ∥DE (内错角相等,两直线平行)所以∠ABE = ∠BED (两直线平行,内错角相等)因为∠ABC = ∠FED (已知), 所以∠EBC = ∠BEF (等式性质)所以 BC ∥EF (内错角相等,两直线平行)【例 5】如图已知,AB //CD ,∠ABF = 2 ∠ABE ,∠CDF = 2 ∠CDE ,求∠E 和∠F 的关系.3 3【答案】∠E : ∠F = 3:2 . C【解析】过点 E 、点 F 分别作 AB 的平行线 EG 、FH . 6A BD2 1 因为 EG / / AB ,FH / / AB所以 AB / / EG / FH / /CD (等量代换)所以∠ABF = ∠BFH (两直线平行,内错角相等)所以∠CDF = ∠DFH (两直线平行,内错角相等)所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF (等量代换)同理: ∠BED = ∠DEG + ∠BEG = ∠ABE + ∠CDE (等量代换)因为∠ABF = 2 ∠ABE ,∠CDF = 2 ∠CDE3 3所以∠BFD = ∠DFH + ∠BFH = ∠CDF + ∠ABF = 2 (∠ABE + ∠CDE ) = 2∠BED3 3 所以∠E : ∠F = 3:2【例 6】如图,已知:AC //BD ,联结 AB ,则 AC 、BD 及线段 AB 把平面分成①②③④四个部分,规定:线上各点不属于任何一个部分,当点 P 落在某个部分时,联结 PA 、PB ,构成 ∠ PAC 、∠ APB 、∠ PBD 三个角(提示:有公共角断点的两条重合的射线所组成的角是 0 °角)(1) 当点 P 落在第①部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB ;(2) 当点 P 落在第②部分时,试说明: ∠ PAC + ∠ PBD = ∠ APB 是否成立?(3)当点 P 落在第③部分时,全面探究∠ PAC 、 ∠ APB 、 ∠ PBD 之间的关系是 ,并写出动点 P 的具体位置和相应的结论,选择其中一种加以证明.A 3 A 3C C C A 3 C2 1B 4 D B 4 D B 4 B 4 D【解析】(1)过点 P 作 PE // AC .因为 AC / / BD ,所以 AC / / PE / / BD (平行的传递性)所以∠PAC = ∠APE ,∠BPE = ∠PBD (两直线平行,内错角相等)因为∠APB = ∠APE + ∠BPE (角的和差)所以∠APB = ∠PAC + ∠PBD (等量代换)(2)不成立,过点 P 作 AC 的平行线即可证明.(3)分类讨论如下:①当动点 P 在射线 BA 的右侧时,结论是∠PBD = ∠PAC + ∠APB ;②当动点 P 在射线 BA 上时,结论是∠PBD = ∠PAC + ∠APB 或∠PAC = ∠PBD + ∠APB 或∠APB = 0︒,∠PAC = ∠PBD (任写一个即可) ③当动点 P 在射线 BA 的左侧时,结论是∠PBD = ∠PAC + ∠APB .2 P 1 A3 2 1随堂练习【习题1】 填空:(1) 如图(1),AB //CD ,CE 平分∠ACD , ∠A = 120 ,则∠ECD ;(2) 如图(2),已知 AB //CD , ∠B = 100 ,EF 平分∠BEC , EG ⊥ EF ,则∠DEG = .【难度】★G B AFC 【答案】(1)30°; (2)50°.E图(2) C【解析】(1)因为 AB ∥CD (已知),所以∠A + ∠ACD = 180 (两直线平行,同旁内角互补)因为∠A = 120 (已知), 所以∠ACD = 180 -120 = 60 (等式性质)又因为 CE 平分∠ACD (已知), 所以∠ECD =30°(角平分线的意义)(2)因为 AB ∥CD (已知), 所以∠B + ∠BEC = 180 (两直线平行,同旁内角互补)因为∠B = 100 (已知), 所以∠BEC = 180 -100 = 80 (等式性质)又因为 EF 平分∠BEC (已知), 所以∠BEF =40°(角平分线的意义)因为 EG ⊥EF (已知), 所以∠GEF = 90 (垂直的意义)因为∠DEG + ∠GEF + ∠CEF = 180 (平角的意义)所以∠DEG = 180 - 90 - 40 = 50 (等式性质)【总结】本题考查平行线的性质的运用.【习题2】 填空:(1)如图,直线 a / /b ,三角形 ABC 的面积是 42 cm 2 ,AB =6 cm ,则 a 、b 间的距离为 ;(2)如图,在三角形 ABC 中,点 D 是 AB 的中点,则三角形 ACD 和三角形 ABC 的面 积之比为 .【难度】★ 【答案】(1)14 厘米 ;(2) 1 .2 AD【解析】(1)三角形 ABC 的高为: 42 ⨯ 2 ÷离B 为 14 厘米; C(2)因为三角形 ACD 和三角形 ABC 高相等,所以面积之比等于底之比,即 S ∆ACD = S ∆ABC AD =1AB 2【总结】本题考查平行线间距离及同高等底的三角形面积的之比.A B E 图(1) D D .【习题3】 如图,已知 FC //AB //DE , ∠α : ∠D : ∠B = 2 : 3 : 4 ,则∠α 、∠D 、∠B 的度数分别为 .【难度】★ 【答案】∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ . 【解析】因为 FC //AB //DE (已知),A 所以∠B + ∠CFB = 180 (∠D = ∠CFD (两直线平行,内错角相等)设∠α = 2x ,∠D = 3x ,∠B = 4x ,则可列方程:180 - 4x + 2x = 3x ,解得: x = 36︒则∠α = 72︒ , ∠D = 108︒ , ∠B = 144︒ .【习题4】 如果两个角的两边分别平行,其中一个角比另一个角的 3 倍多 12°,则这两个角是( ).A .42°和 138°B .都是 10°C .42°和 138°或都是 10°D .以上都不对【难度】★★【答案】A【解析】由题意假设这两个角分别为 A 、B ,则有: ∠A = ∠B 或∠A + ∠B = 180︒ ,又因为∠A 是∠B 的 3 倍多 12°,则有: ∠A = 3∠B + 12︒ ,即180︒- ∠B = 3∠B + 12︒,解得:∠B = 42︒,∠A = 138︒ .【总结】本题考查两角位置关系的可能性,注意两种情况的讨论.【习题5】 如图,已知 QR 平分∠PQN ,NR 平分∠QNM ,∠1+∠2=90°,那么直线 PQ 、MN的位置关系.P Q【难度】★★ 【答案】见解析. 1【解析】因为 QR 平分∠PQN ,NR 平分∠QNM (已知) R所以∠PQN = 2∠1 , ∠MNQ = 2∠2 (角平分线的意义)因为∠1+∠2=90°(因为),所以∠PQN +∠MNQ =180°(等式性质) 2 所以 PQ ∥MN (同旁内角互补,两直线平行) M N【总结】本题考查平行线的判定及角平分线意义的综合运用.【习题6】 如图,已知:AB ∥CD ,EF 和 AB 、CD 相交于 G 、H 两点,MG 平分∠BGH ,NH平分∠DHF ,试说明:GM ∥NH .【难度】★★ 【答案】略. 【解析】 AB / /CD (已知) ∴∠BGH = ∠DHF (两直线平行,同位角相等) 又 MG 平分∠BGH ,NH 平分∠DHF ∴∠1 = 1 ∠BGH , ∠2 = 1 ∠DHF 2 2 ∴∠1 = ∠(2 等量代换) ∴GM / / H N (同位角相等,两直线平行)【总结】本题考查平行线的判定A B 12 OC BC M1【习题7】 如图所示,在直角三角形 ABC 中,∠C =90°,AC =3,BC =4,AB =5,三角形内一点 O 到各边的距离相等,求这个距离是多少.【难度】★★【答案】1. 【解析】设这个距离是 x ,则有:S ∆ABC = 6 = 1( AC + BC + AB ) ⨯ x = 6x , 解得: x = 1 . 2 【总结】本题可以用面积法求解比较简单.【习题8】 如图,已知 AB ,CD 分别垂直 EF 于 B ,D ,且∠DCF =60°,∠1=30°.试说明: BM / / AF .A【难度】★★ 【答案】见解析. 【解析】因为 CD ⊥EF , 所以∠CDF = 90 (垂直的意义) 因为∠DCF =60°(已知), 所以∠F =30°(三角形的内角F 和等于 1D 80°) B E 因为∠1=30°(已知), 所以∠1=∠F (等量代换)所以 BM ∥AF (同位角相等,两直线平行)【总结】本题考查平行线的判定及垂直的意义的综合运用.【习题9】 如图,已知直线l 1 / /l 2 ;(1)若∠1 = (x + 2 y ) , ∠2 = x , ∠4 = ( y + 30) 求∠1 , ∠2 , ∠4 的度数;(2)若∠2 = x , ∠3 = y , ∠4 = [2(2x - y )] ,求 x 、 y 的值. 1 2 3 l【难度】★★ 【答案】见解析 4l 2【解析】(1)因为∠1+∠2=180°(平角的意义),所以 x + 2 y + x 180︒ ,即 x +y =90°因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = y +30, 解得:x =60°,y =30°,所以∠1=120°,∠2=60°,∠4=60°;(2)因为∠3+∠2=180°(平角的意义), 所以 x +y =180°,因为l 1∥l 2 (已知), 所以∠2=∠4(两直线平行,同位角相等)即 x = 4x - 2 y , 解得:x =72°,y =108°.【总结】本题考查平行线的性质及角度的简单计算.【习题10】 如图, ∠ ADC =∠ABC , ∠ 1+ ∠ FDB =180°,AD 是∠FDB 的平分线,试说明 BC 为∠DBE 的平分线.【难度】★★★ E【答案】见解析. 【解析】因为∠ 1+ ∠ FDB =180°(已知), 又因为∠1 = ∠ABD (对顶角相等) 所以∠ABD + ∠BDF = 180 (等量代换)所以 AB / / F D (同旁内角互补,两直线平行)F D CA E C所以∠ABD = ∠2 (两直线平行,内错角相等)因为∠ADC = ∠ABC (已知), 所以∠ADB = ∠CBD (等式性质)因为 AE / / FC (已证), 所以∠EBD = ∠FDB (两直线平行,内错角相等)即∠ADB + ∠ADF = ∠CBD + ∠CBE (角的和差)因为 AD 是∠FDB 平分线, 所以∠ADB = ∠ADF = ∠CBD = ∠EBC (角平分线的意义) 即 BC 为∠DBE 的平分线【总结】本题综合性较强,主要考查平行线的判定定理及性质定理以及角平分线的综合运用.【习题11】 如图,已知∠ABC =∠ACB ,AE 是∠CAD 的平分线,问:△ABC 与△EBC 的面积是否相等?为什么? D【难度】★★★【答案】相等,证明见解析. F【解析】因为∠DAE + ∠EAC + ∠BAC = 180 (平角的意义)又∠ABC + ∠ACB + ∠BAC = 180 (三角形内角和等于 180°)所以∠DAE + ∠EAC = ∠ABC + ∠ACB (等式性质) B 因为∠ABC =∠ACB ,AE 是∠CAD 的平分线(已知)所以∠ABC = ∠ACB = ∠DAE = ∠CAE所以 AE / / B C (内错角相等,两直线平行)所以 AE 与 BC 间的距离相等(夹在平行线间的距离处处相等)所以△ABC 与△EBC 的面积相等(同底等高的两个三角形面积相等).【总结】本题综合性较强,主要考查平行线的判定定理及性质定理的综合运用,同时还考查了三角形的面积问题.课后作业【作业1】 如图,AB //CD ,直线l 分别交 AB 、CD 于 E 、F ,EG 平分∠BEF ,若∠EFG = 40 ,则∠EGF 的度数是( )A . 60B . 70C . 80D . 90【难度】★【答案】B 【解析】因为 AB //CD (已知),所以∠BEF + ∠EFG = 180 因为∠EFG = 40 (已知), 所以∠BEF =140°(等式性质) 因为 EG 平分∠BEF (已知),所以∠BEG = 1∠BEF = 70 (角平分线的意义)2 因为 AB //CD (已知), 所以∠BEG = ∠EGF (两直线平行,内错角相等)所以∠EGF =70°(等量代换)【总结】本题考查平行线的性质及角平分线的意义的运用.【作业2】 如图,AB //CD ,下列等式中正确的是( )A . ∠1 + ∠2 + ∠3 = 180B . ∠1 + ∠2 - ∠3 = 90C . ∠2 + ∠3 - ∠1 = 180D . ∠2 + ∠3 - ∠1 = 90【难度】★【答案】C A B C D2D 1 2E 3 【解析】由题意可得: (180︒- ∠3) + (180︒- ∠2) + ∠1 = 180︒ ,解得: ∠2 + ∠3 - ∠1 = 180︒【总结】本题考查平行线的性质.【作业3】 若两直线被第三条直线所截,则下列说法中正确的个数有( )(1)一对同位角的角平分线互相平行,(2)一对内错角的角平分线互相平行,(3)一对同旁内角的角平分线互相平行,(4)一对同旁内角的角平分线互相垂直A .3 个B .2 个C .1 个D .0 个【难度】★【答案】D【解析】(1)同位角不一定相等,×;(2)内错角不一定相等,×;(3)×; (4)只有当这对同旁内角互补时才成立,×【总结】本题考查三线八角的基本运用.【作业4】 直线 a ∥c ,且直线 a 到直线c 的距离是 3;直线b / /c ,直线b 到直线c 的距离为5,则直线 a 到直线b 的距离为( )A .2B .3C .8D .2 或 8【难度】★★【答案】D【解析】当直线 a 和直线 b 在直线 c 的两侧时,距离为 8;当直线 a 和直线 b 在直线 c 的同一侧时,距离为 2.【总结】本题考查平行线的性质,注意分类讨论.【作业5】 已知:如图 5,∠1=∠2=∠B ,EF ∥AB .试说明∠3=∠C . A【难度】★★【答案】略.【解析】因为∠1 = ∠B (已知) 所以 DE / / B C (同位角相等,两直线平行)所以∠2 = ∠C (两直线平行,同位角相等)又因为 EF / / AB (已知), 所以∠3 = ∠B 所以∠3 = ∠C (等量代换)B FC (两直线平行,同位角相等) 【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业6】 已知:∠1=60o ,∠2=60o , AB //CD .试说明:CD //EF .【难度】★★ l【答案】略. 【解析】设∠2 的对顶角为∠3, 因为∠1=∠2 = 60o (已知),所以∠1=∠3(等量代换) 所以 AB ∥EF (同位角相等,两直线平行)A 1 BC D 又因为 AB ∥CD (已知) 所以 CD ∥EF (平行的传递性) E 2 F【总结】本题主要考查平行线的判定.D ′ C′ F【作业7】 如图,已知∠4=∠B ,∠1=∠3,试说明:AC 平分∠BAD .【难度】★★【答案】略. 【解析】因为∠4=∠B (已知)所以 CD ∥AB (同位角相等,两直线平行) 所以∠3=∠2(两直线平行,内错角相等) 又因为∠1=∠3(已知), 所以∠1=∠2(等量代换),A B所以 AC 平分∠BAD (角平分线的意义)【总结】本题考查平行线的判定定理及性质定理的综合运用.【作业8】 如图, AD / / BC ,BD 平分∠ABC ,且∠A : ∠ABC = 2 :1 ,求∠DBC 的度数.【难度】★★A D 【答案】30°.【解析】因为 AD ∥BC (已知)所以∠A +∠ABC =180°(两直线平行,同旁内角互补) B C又因为∠A :∠ABC =2:1(已知), 所以∠A =120°,∠ABC =60°(等式性质)又因为 BD 平分∠ABC (已知), 所以∠DBC =30°(角平分线的意义)【总结】本题考查平行线的性质及角平分线的综合运用【作业9】 如图,把一个长方形纸片沿 EF 折叠后,点 D 、C 分别落在 D ′、C ′的位置.若∠AED ′=65°,则∠C 'FB 的度数为 . A E D 【难度】★★【答案】65°【解析】因为翻折, 所以∠D 'EF = ∠DEF (翻折的性质) B 因为∠AED ' + ∠D 'EF + ∠DEF = 180 (平角的意义) 又∠AED ′=65°(已知), 所以∠D 'EF = ∠DEF = 180 - ∠AED '= 57.5 (等式性质)2 因为 AD / / BC (已知), 所以∠DEF + ∠EFC = 180 (两直线平行,同旁内角互补) ∠EFB = ∠DEF (两直线平行,内错角相等)所以∠EFB = 57.5 , ∠EFC = 180 - 57.5 = 122.5 (等式性质)因为∠EFC ' = ∠EFC (翻折的性质) 所以∠C 'FB = ∠EFC ' - ∠EFB = 65︒ .【总结】本题主要考查平行线的性质及翻折的性质的综合运用.【作业10】 如图,已知 AD //BC ,AB //EF ,DC //EG ,EH 平分∠FEG , ∠A = ∠D = 110 ,试说明线段 EH 的长是 AD 、BC 间的距离. AE D 【难度】★★【答案】见解析.【解析】因为 AD //BC (已知)所以∠A + ∠B = 180 , ∠C + ∠D = 180 (两直线平行,同旁内角互补)因为∠A = ∠D = 110 (已知), 所以∠B =∠C =70°(等式性质)B F H G因为 AB //EF ,DC //EG (已知),D4 3 C 1 2所以∠EFG=∠B,∠EGF=∠C(两直线平行,内错角相等)所以∠EFG = ∠EGF = 70°(等量代换),所以∠FEG=40°因为EH 平分∠FEG (已知),所以∠FEH=1∠FEG=20 (角平分线的意义)2所以∠FHE = 180 -∠FEH =∠EFH = 90 (三角形内角和等于180°)即EH 的长是AD、BC 间的距离.【总结】本题综合性较强,主要考查平行线的性质及三角形的内角和以及平行线间的距离.【作业11】如图,AB ⊥l ,CD ⊥l (点B、D 是垂足),直线EF 分别交AB、CD 于点G、H.如果∠EGB =m ,∠FGB =n ,且∠EHD = (3m -n ) ,试求出∠EGB 、∠BGF 、∠EHD的度数.【难度】★★★【答案】∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【解析】因为AB ⊥l ,CD ⊥l (已知)所以AB / /CD (垂直于同一直线的两直线平行)所以∠FGB +∠EHD =180 (两直线平行,同旁内角互补)∠EGB =∠EHD (两直线平行,同位角相等)即n + 3m -n = 180 ,m = 3m -n ,解得:m = 60︒,n = 120︒.所以∠EGB = 60︒,∠BGF = 120︒,∠EHD = 60︒.【总结】本题主要考查平行线的性质的运用.【作业12】如图,已知AB / /CD ,EG、FH 分别平分∠AEF 、∠DFN ,那么∠GEF +∠DFH = 90 ,试说明理由.【难度】★★【答案】见解析.【解析】因为AB / /CD (已知)所以∠AEF =∠CFN (两直线平行,同位角相等)因为∠CFN +∠DFN = 180︒(平角的性质)又因为EG、FH 分别平分∠AEF 、∠DFN (已知)所以∠AEG +∠GEF +∠DFH +∠NFH = 180︒(角的和差)即2∠GEF +∠DFH = 180︒,所以∠GEF +∠DFH = 90 .【总结】本题考查平行线的性质及角平分线性质的综合应用.【作业13】如图,已知AB∥EF,∠B=45°,∠C=x°,∠D=y°,∠E=z°,试说明x、y、z 之间的关系.【难度】★★★【答案】见解析.【解析】由题意,过C、D 两点分别作AB 的平行线CM、DN 因为AB∥EF(已知)所以AB / /CM / / DN / / EF (平行的传递性)N所以∠B =∠BCM ,∠MCD =∠CDN ,∠EDN =∠E (两直线平行,内错角相等)因为∠B=45°,∠C=x°,∠D=y°,∠E=z°(已知)所以x - 45 =y -z (等式性质)即x -y +z = 45 .【总结】本题综合性较强,主要考查平行线的性质以及辅助线的添加,注意观察角度间的关系.。
平行线的判定专项练习60题(有答案)
平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?平行线的判定60题参考答案:1.∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC∥DE2.∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).3.∵AB⊥BC(已知),∴∠ABC=90°(垂直定义);∵BC⊥CD(已知),∴∠BCD=90°(垂直定义),∴∠ABC=∠DCB;∵∠1=∠2(已知),∴∠ABC﹣∠2=∠DCB﹣∠1,即∠FBC=∠ECB,∴BF∥CE(内错角相等,两直线平行)4.∵AB⊥BC,∴∠3+∠4=90°.∵∠2=∠3,∠1+∠2=90°,∴∠1=∠4,∴BE∥DF.5.AB平行于ON.证明:∵OP平分∠MON,∴∠BOA=∠NOA,∵∠BOA=∠BAO,∴∠BAO=∠NOA,∴AB∥ON6.∵∠1=∠2,∴DC∥AB,∴∠A+∠ADC=180°.又∵∠A=∠C,∴∠ADC+∠C=180°,∴AE∥BC.7.∵BC是∠ABE的平分线,∴∠ABC=∠CBE(角平分线定义),∵∠ABE=∠D+∠E=∠ABC+∠CBE,∠D=∠E,∴∠ABC=∠D,∴DE∥BC8.过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.9.∵AC∥ED,∴∠1=∠4;∵∠1=∠2,∴∠2=∠4;又∵EB平分∠AED,∴∠3=∠4;∴∠2=∠3,∴AE∥BD10.∵∠1+∠BEF=180°,∠1=105°,∴∠BEF=75°,∵∠2=75°,∴∠BEF=∠2,∴AB∥CD.11.∵∠D=∠A,∴ED∥AB;∵∠B=∠BCF,∴AB∥CF;∴ED∥CF.12.∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行)13.∵BE是∠B的平分线,∴∠1=∠CBE,∵∠1=∠2,∴∠2=∠CBE,∴DE∥BC.14.AC与DF平行,理由如下:∵BD∥EC,∴∠DBC+∠C=180°,又∠C=∠D,∴∠DBC+∠D=180°,∴AC∥DF.15.∵AC⊥AE,BD⊥BF,∴∠1+∠3=∠2+∠4=90°,∵∠1=35°,∠2=35°,∴∠3=∠4,∴AE∥BF.16.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).17.∵∠BAD=DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式性质),即∠2=∠4,∴AD∥BC(内错角相等,两直线平行)18.DF∥AB.理由:∵DE∥CA,∴∠1=∠CAD,∵AD是三角形ABC的角平分线,∴∠BAD=∠CAD,∵∠1=∠2,∴∠2=∠BAD,∴DF∥AB19.AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行)20.CF∥BD.理由如下:∵BD⊥BE,∴∠1+∠2=90°;∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD.21.AB∥CD.(1分)理由如下:∵∠1+∠MNC=180°,∠MNC=∠1,∴∠1=135°.(2分)又∵∠AMN=∠2=45°,(3分)∴∠1+∠AMN=180°.(4分)∴AB∥CD22.∵BF平分∠ABD,DG平分∠CDE,∴∠1=∠ABD,∠2=∠CDE,又∵∠ABD=∠CDE,∴∠1=∠2,∴BF∥DG(同位角相等,两直线平行).23.ED∥BF;证明如下:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BF、DE分别平分∠ABC、∠ADC,∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ADE+∠ABF=90°,又∵∠A=90°,∠ADE+∠AED=90°,∴∠AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵CD⊥AB,GF⊥AB,∴CD∥FG,∴∠2=∠DCG;又∵∠1=∠2,∴∠DCG=∠1,∴DE∥BC26.∵∠CAD=∠ACB,∴AD∥BC,∵EF⊥CD,∴∠EFC=90°∵∠D=90°,∴∠EFC=∠D,∴AD∥EF,∴BC∥EF,∴∠AEB=∠B.27.∵∠E=∠F,∴AE∥FP,∴∠PAE=∠APF;又∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,即∠2+∠PAE=∠1+∠APF;∴∠2=∠128.∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE29.∵∠A+∠ABC+∠C+∠CDA=360°而∠A=∠C,BE平分∠ABC,DF平分∠CDA∴2∠A+2∠ABE+2∠ADF=360°即∠A+∠ABE+∠ADF=180°又∠A+∠ABE+∠AEB=180°∴∠AEB=∠ADF∴BE∥DF30.∠C=∠D.理由如下:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA.∵∠1=∠DGF,又∵∠1=∠2,∴∠2=∠DGF,∴DB∥EC,∴∠DBA=∠C,∴∠C=∠D31.∵四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠CDA=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∵∠A=90°,∴∠1+∠AEB=90°,∵∠1=∠2,∴∠AEB=∠3,∴BE∥FD.32.∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴a∥b.33.CF∥OD.理由:∵DE⊥AO,BO⊥AO,∴DE∥BO,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴CF∥OD34.∵∠DOB是△COD的外角,∴∠C+∠CDO=∠DOB,又∵∠DOB=∠1+∠2,而∠1=∠2,∠C=∠CDO,∴∠2=∠C,∴CD∥OP35.(1)∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC;(2)∵AF平分∠BAC,∴∠BAF=∠2.又∵∠1=∠2,∴∠1=∠BAF,∴DE∥AF.36.DE∥AB,∵AD平分∠BAC,∴∠BAC=2∠1,∵EF平分∠DEC,∴∠DEC=2∠2,∵∠1=∠2,∴∠BAC=∠DEC,∴DE∥AB.37.∵∠BDE+∠CDE=∠A+∠ACD,又DE是∠BDC的平分线,∠ACD=∠A,∴∠A=∠BDE,∴DE∥AC.38.∠2与∠B相等时,AC∥BD.理由如下:∵∠A=∠1,∠1=∠2,∴∠A=∠2,∵∠2=∠B,∴∠A=∠B,∴AC∥BD.39.MN与EF平行.理由如下:∵∠1=∠A,∴MN∥AB,∵∠2=∠B,∴EF∥AB,∴MN∥EF.40.∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴AB∥CD.41.∵∠E=∠F,∴BE∥CF,∴∠EBC=∠BCF,∵∠1=∠2,∴∠CBA=∠DCB,∴AB∥CD.42.∵EF⊥CD于F,∴∠EFG=90°,∵∠GEF=25°,∴∠EGF=65°,∵∠1=65°,∴∠1=∠EGF,∴AB∥CD.43.图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.45.∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°﹣∠1(直角三角形两锐角互余),∠GFC=90°﹣∠2(互余的定义),∵∠1=∠2(已知),∴∠B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵EM平分∠BEF,FN平分∠DFH,∴∠BEF=2∠MEF,∠DFH=2∠NFH,∵∠BEF=∠DFH,∴∠MEF=∠NFH,∴EM∥FN48.BE∥CF,理由是:∵BE,CF分别平分∠ABC和∠BCD,∴∠1=∠ABC,∠2=∠BCD,∵∠ABC=∠BCD,∴∠1=∠2,∴BE∥CF.49.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.50.(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠AHM,MN平分∠DNH(已知),∴∠GHM∠AHM,∠NMH=∠DMH(角平分线定义),而∠AHM=∠DMH(已知)∴∠GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行) 52.∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD53.∵EG⊥FG,∴∠G=90°,∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴AB∥CD.54.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.55.(1)∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,∴∠DAE+∠1=90°,∠BCF+∠2=90°,∵∠1=∠2,∴∠DAE=∠BCF,∴AD∥BC;(2)AB∥CD.理由如下:∵∠DAE=∠BCF,∠DAB=∠DCB,∴∠DAB﹣∠DAE=∠DCB﹣∠BCF,即∠CAB=∠ACD,∴AB∥CD.56.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.57.∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.58.EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=2(已知),∴EF∥AD(内错角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC于点D(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,所以EF与BC的位置关系是垂直.59.∵CE平分∠ACD,∴∠1=∠2,∵∠1=∠B,∴∠2=∠B,∴AB∥CE.60.∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,故可以判定AB∥CD,AD∥BC.。
平行线的判定和性质(综合篇)
平行线的判定和性质(综合篇)一、重点和难点:重点:平行线的判定性质。
难点:①平行线的性质与平行线的判定的区分②把握推理论证的格式。
二、例题:这部份内容所涉及的题目主若是从已知图形中识别出对顶角、同位角、内错角或同旁内角。
解答这种题目的前提是熟练地把握这些角的概念,关键是把握住这些角的大体图形特点,有时还需添加必要的辅助线,用以突出大体图形的特点。
上述类型题目大致可分为两大类。
一类题目是判定两个角相等或互补及与之有关的一些角的运算问题。
其方式是“由线定角”,即运用平行线的性质来推出两个角相等或互补。
另一类题目主若是“由角定线”,也确实是依照某些角的相等或互补关系来判定两直线平行,解此类题目必需要把握好平行线的判定方式。
例1.如图,已知直线a,b,c被直线d所截,假设∠1=∠2,∠2+∠3=180°,求证:∠1=∠7分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。
∠1与∠7是直线a和c被d所截得的同位角。
须证a//c。
法(一)证明:∵d是直线(已知)∴∠1+∠4=180°(平角概念)∵∠2+∠3=180°,∠1=∠2(已知)∴∠3=∠4(等角的补角相等)∴a//c(同位角相等,两直线平行)∴∠1=∠7(两直线平行,同位角相等)法(二)证明:∵∠2+∠3=180°,∠1=∠2(已知)∴∠1+∠3=180°(等量代换)∵∠5=∠1,∠6=∠3(对顶角相等)∴∠5+∠6=180°(等量代换)∴a//c (同旁内角互补,两直线平行)∴∠1=∠7(两直线平行,同位角相等)。
例2.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。
分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而∠C=∠A于是可得∠A=∠EBC。
平行线的判定与性质(重点题专项讲练)(人教版)(解析版)
专题5.4 平行线的判定与性质【典例1】如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∠BC;(2)若FP∠AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.【思路点拨】E=∠EMA,∠BQM=∠BMQ,结合对顶角相等可得∠E=∠BQM,利用内错角相等两直线平行可证明结论;(2)根据垂直的定义可得∠PGC=90°,由两直线平行同旁内角互补可得∠EAC+∠C=180°,结合∠2+∠C=90°,可求得∠BAC=90°,利用同位角相等两直线平行可得AB∠FP,进而可证明结论;(3)根据同旁内角互补可判定AB∠FP,结合∠BAF=3∠F﹣20°可求解∠F的度数,根据平行线的性质可得∠B=∠F,即可求解.【解题过程】E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∠∠E=∠BQM,∠EF∠BC;(2)证明:∠FP∠AC,∠∠PGC=90°,∠EF∠BC,∠∠EAC+∠C=180°,∠∠2+∠C=90°,∠∠BAC=∠PGC=90°,∠AB∠FP,∠∠1=∠B;(3)解:∠∠3+∠4=180°,∠4=∠MNF,∠∠3+∠MNF=180°,∠AB∠FP,∠∠F+∠BAF=180°,∠∠BAF=3∠F﹣20°,∠∠F+3∠F﹣20°=180°,解得∠F=50°,∠AB∠FP,EF∠BC,∠∠B=∠1,∠1=∠F,∠∠B=∠F=50°.1.(2021•鞍山一模)如图,∠1=∠2=∠3=56°,则∠4的度数是()A.56°B.114°C.124°D.146°【思路点拨】根据对顶角相等得到∠2=∠5,结合∠1=∠2,得到∠1=∠5,即可判定l1∠l2,根据平行线的性质得出∠6=56°,再根据邻补角的定义求解即可.【解题过程】解:如图,∠∠1=∠2,∠2=∠5,∠∠1=∠5,∠l1∠l2,∠∠3=∠6,∠∠3=56°,∠∠6=56°,∠∠4+∠6=180°,∠∠4=180°﹣56°=124°,故选:C.2.(2021•雁塔区校级模拟)如图,在三角形ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=()A.36°B.52°C.72°D.80°【思路点拨】由平行线的判定定理可得AC∠DE,由平行线的性质可得∠ACB=∠3,由平分线的定义可得∠ACB=2∠1=72°,即得∠3的度数.【解题过程】解:∠∠1=∠2=36°,∠AC∠DE,∠∠ACB=∠3,∠CD平分∠ACB,∠∠ACB=2∠1=72°,∠∠3=72°.故选:C.3.(2021春•单县期末)如图,AB∠BC于点B,DC∠BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF,则下列结论正确的有()∠∠BAD+∠ADC=180°;∠AF∠DE;∠∠DAF=∠F.A.3个B.2个C.1个D.0个【思路点拨】∠证明AB∠CD,可做判断;∠根据平行线的判定和性质可做判断;∠根据AF∠ED得内错角相等和同位角相等,再由角平分线的定义得∠ADE=∠CDE,从而可做判断.【解题过程】解:∠∠AB∠BC,DC∠BC,∠AB∠CD,∠∠BAD+∠ADC=180°,故∠正确;∠∠AB∠CD,∠∠AFD+∠BAF=180°,∠∠BAF=∠EDF,∠∠AFD+∠EDF=180°,∠AF∠DE,故∠正确;∠∠AF∠ED,∠∠DAF=∠ADE,∠F=∠CDE,∠DE平分∠ADC,∠∠ADE=∠CDE,∠∠DAF=∠F,故∠正确;故选:A.4.(2021春•德宏州期末)如图所示,AC∠BC,DC∠EC,则下列结论:∠∠1=∠3;∠∠ACE+∠2=180°;∠若∠A=∠2,则有AB∠CE;∠若∠2=∠E,则有∠4=∠A.其中正确的有()A.∠∠∠B.∠∠∠C.∠∠D.∠∠∠∠【思路点拨】由已知可得∠1+∠2=90°,∠3+∠2=90°,等量代换即可得出∠结论;延长EC,如图1,由已知条件可得∠1+∠5=90°,∠1+∠2=90°,可得∠2=∠5,根据平角的性质可得∠ACE+∠5=180°,等量代换即可得出∠结论;由已知条件可得∠A=∠2,∠ACE+∠2=180°,等量代换可得∠A+∠ACE=180°,根据平行线的判定即可得出∠结论;由平行线的性质可得∠E=∠4,由已知条件∠2=∠E,∠2=∠A,等量代换可得∠4=∠A.即可得出∠结论.【解题过程】证明:∠AC∠BC,DC∠EC,∠∠1+∠2=90°,∠3+∠2=90°,∠∠1=∠3.故结论∠正确;延长EC,如图1,∠DC∠CE,AC∠BC,∠∠1+∠5=90°,∠1+∠2=90°,∠∠2=∠5,∠∠ACE+∠5=180°,∠∠ACE+∠2=180°.故结论∠正确;∠∠A=∠2,∠ACE+∠2=180°,∠∠A+∠ACE=180°,∠AB∠CE.故结论∠正确;∠AB∠CE,∠∠E=∠4,∠∠2=∠E,∠2=∠A,∠∠4=∠A.故结论∠正确.所以结论正确的有∠∠∠∠.故选:D.5.(2021春•汉川市期末)如图,AD∠BC,∠B=∠D,延长BA至点E,连接CE,∠EAD∠EAD+∠ECD;∠若和∠ECD的角平分线交于点P.下列三个结论:∠AB∠CD;∠∠AOC=12∠E=60°,∠APC=70°,则∠D=80°.其中结论正确的个数有()A.0B.1C.2D.3【思路点拨】∠EAD,∠E=∠根据平行线的性质与判定即可判断;∠∠AOC=∠EAP+∠E,而∠EAP==12∠ECD,即可判断;∠利用平行线的性质和角平分线定义即可判断.【解题过程】解:∠AD∠BC,∠∠BAD+∠B=180o,∠∠B=∠D,∠∠BAD+∠D=180o,∠AB∠CD,故∠正确;∠AB∠CD,∠∠ECD=∠E,∠AP平分∠EAD,∠EAD∠∠EAP=12∠∠AOC=∠EAP+∠E,∠∠AOC=1∠EAD+∠ECD,故∠正确;2∠∠ECD=∠E=60o,∠CP平分∠ECD,∠ECD=30°,∠∠ECP=12∠∠APC=70°,∠AOE=∠COP,∠∠EAP=40°,∠AP平分∠EAD,∠∠EAD=2∠EAP=80°,∠AB∠CD,∠∠D=∠EAD=80°,故∠正确;故选:D.6.(2021春•夏津县期末)如图,CB平分∠ACD,∠2=∠3,若∠4=60°,则∠5的度数是.【思路点拨】由∠2与∠3间关系,可得到AB与CD的位置关系,利用角平分线的性质和平行线的性质可求得∠5度数.【解题过程】解:∠CB平分∠ACD,∠ACD..∠∠1=∠2=12∠∠2=∠3,∠AB∠CD.∠∠5=∠2,∠4=∠ACD=60°.∠∠5=∠2=30°.故答案为:30°.7.(2021秋•嵩县期末)如图,AE∠CF,∠ACF的平分线交AE于点B,G是CF上的一点,∠GBE的平分线交CF于点D,且BD∠BC,下列结论:∠BC平分∠ABG;∠AC∠BG;∠与∠DBE互余的角有2个;∠若∠A=α,则∠BDF=180°−α.其中正确的是.(请把正确结论的序号都填上)8【思路点拨】根据平行线的性质得出∠A和∠ACB的关系,再根据角平分线的性质找出图中相等的角,由等角的余角相等即可得出结论.【解题过程】解:∠CBD=90°,∠∠ABC+∠EBD=90°,又∠∠DBG=∠EBD,∠∠ABC=∠CBG,∠BC平分∠ABG,∠∠正确,∠∠GBC=∠ABC=∠ACB,∠AC∠BG,∠∠正确,∠∠DBE=∠DBG,∠与∠DBE互余的角有∠ABC,∠GBC,∠ACB,∠GCB,有4个,∠∠错误,∠∠BDF=180°﹣∠BDG,∠BDG=90°﹣∠CBG=90°﹣∠ACB,又∠∠ACB=12×(180°﹣α)=90°−α2,∠∠BDF=180°﹣[90°﹣(90°−α2)]=180°−α2,∠∠错误,故答案为:∠∠.8.(2021春•凤山县期末)如图,已知∠1=∠2,∠C=∠F.请指出∠A与∠D的数量关系,并说明理由.【思路点拨】根据∠1=∠2,∠3=∠2,可得∠1=∠3,得BF∠CE,根据平行线的性质得∠ABF=∠C,由∠C =∠F,得∠ABF=∠F,即可得出AC∠DF,得∠A和∠D的数量关系是相等.【解题过程】解:∠A和∠D的数量关系是相等.理由是:如图,∠∠1=∠2,∠3=∠2,∠∠1=∠3,∠BF∠CE,∠∠ABF=∠C,∠∠C=∠F,∠∠ABF=∠F,∠AC∠DF,∠∠A=∠D.9.(2021春•陇县期末)如图,∠AEM+∠CDN=180°,EC平分∠AEF.若∠EFC=62°,求∠C的度数.【思路点拨】根据同角的补角相等可得出∠AEM=∠CDM,利用“同位角相等,两直线平行”可得出AB∠CD,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC的度数,再利用“两直线平行,内错角相等”即可求出∠C的度数.【解题过程】解:∠∠CDM+∠CDN=180°,又∠∠AEM+∠CDN=180°,∠∠AEM=∠CDM,∠AB∠CD,∠∠AEF+∠EFC=180°,∠∠EFC=62°,∠∠AEF=118°,∠EC平分∠AEF,∠∠AEC=59°,∠AB∠CD,∠∠C=∠AEC=59°.10.(2021春•江都区校级期中)已知:如图,CD∠AB,FG∠AB,垂足分别为D、G,点E 在AC上,且∠1=∠2.(1)那么DE与BC平行吗?为什么?(2)如果∠B=40°,且∠A比∠ACB小10°,求∠DEC的度数.【思路点拨】(1)根据CD∠AB,FG∠AB,可判定CD∠FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证DE与BC平行;(2)根据三角形内角和求出∠ACB=75°,再根据平行线的性质即可求解.【解题过程】解:(1)DE∠BC,理由如下:∠CD∠AB,FG∠AB,∠CD∠FG.∠∠2=∠BCD,又∠∠1=∠2,∠∠1=∠BCD,∠DE∠BC;(2)∠∠B=40°,∠ACB﹣10°=∠A,∠∠ACB+(∠ACB﹣10°)+40°=180°,∠∠ACB=75°,由(1)知,DE∠BC,∠∠DEC+∠ACB=180°,∠∠DEC=105°.11.(2021春•老河口市期末)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∠CE;(2)若DA平分∠BDC,CE∠AE于E,∠F AB=55°,求∠1的度数.【思路点拨】(1)根据同位角相等,两直线平行可判定AB∠CD,得到∠2=∠ADC,等量代换得出∠ADC+∠3=180°,即可根据同旁内角互补,两直线平行得解;(2)由CE∠AE,AD∠CE得出∠DAF=∠CEF=90°,再根据平行线的性质即可求出∠ADC =∠2=35°,再根据角平分线的定义即可得解.【解题过程】(1)证明:∠∠1=∠BDC,∠AB∠CD,∠∠2=∠ADC,∠∠2+∠3=180°,∠∠ADC+∠3=180°,∠AD∠CE;(2)解:∠CE∠AE于E,∠∠CEF=90°,由(1)知AD∠CE,∠∠DAF=∠CEF=90°,∠∠ADC=∠2=∠DAF﹣∠F AB,∠∠F AB=55°,∠∠ADC=35°,∠DA平分∠BDC,∠1=∠BDC,∠∠1=∠BDC=2∠ADC=70°.12.(2021春•镇江期中)已知:如图所示,∠BAC和∠ACD的平分线交于E,AE交CD于点F,∠1+∠2=90°.(1)求证:AB∠CD;(2)试探究∠2与∠3的数量关系,并说明理由.【思路点拨】(1)根据角平分线定义得出∠BAC=2∠1,∠ACD=2∠2,根据∠1+∠2=90°得出∠BAC+∠ACD =180°,根据平行线的判定得出即可;(2)根据平行线的性质和角平分线定义得出∠1=∠3,即可求出答案.【解题过程】(1)证明:∠∠BAC和∠ACD的平分线交于E,∠∠BAC=2∠1,∠ACD=2∠2,∠∠1+∠2=90°,∠∠BAC+∠ACD=180°,∠AB∠CD;(2)解:∠2+∠3=90°,理由如下:∠AF平分∠BAC,∠∠BAF=∠1,∠AB∠CD,∠∠BAF=∠3,∠∠1=∠3,∠∠1+∠2=90°,∠∠2+∠3=90°.13.(2021秋•禅城区期末)已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.(1)求证:AB∠CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.【思路点拨】(1)由对顶角相等可得∠AGE=∠DGC,从而可得∠AEG=∠C,则可判定AB∠CD;(2)由平角的定义可得∠AGE+∠EGH=180°,从而可求得∠EGH=∠AHF,则可判定EC∠BF,则有∠B=∠AEG,从而可求证;(3)由(2)得BF∠EC,则有∠C+∠BFC=180°,从而可求∠C的度数,利用三角形的内角和即可求∠D的度数.【解题过程】(1)证明:∠∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC,∠∠AEG=∠C,∠AB∠CD;(2)证明:∠∠AGE+∠EGH=180°,∠AGE+∠AHF=180°,∠∠EGH=∠AHF,∠EC∠BF,∠∠B=∠AEG,∠AB∠CD,∠∠C=∠AEG,∠∠B=∠C;(3)解:∠BF∠EC,∠∠C+∠BFC=180°,∠∠BFC=4∠C,∠∠C+4∠C=180°,解得∠C=36°,∠∠C=∠DGC,∠∠DGC=36°,∠∠D=180°﹣∠C﹣∠DGC=108°.14.(2021秋•南岗区期末)已知:在四边形ABCD中,∠B=∠D,点E在边BC的延长线上,连接AE交CD于点F,若∠BAF+∠AFC=180°.(1)如图1,求证:AD∠BC;(2)如图2,过点D作DG∠AE交BE的延长线于点C,若∠G=∠B,在不添加任何辅助线的情况下,请直接写出图2中除∠B以外的四个与∠G相等的角.【思路点拨】(1)由已知条件可得AB∠CD,从而有∠B=∠ECD,则可求得∠D=∠ECD,即可得AD∠BC;(2)利用平行线的性质进行求解即可.【解题过程】(1)证明:∠∠BAF+∠AFC=180°,∠AB∠CD,∠∠B=∠ECD,∠∠D=∠ECD,∠AD∠BC;(2)∠DG∠AE,∠∠G=∠AEB,由(1)得AD∠BC,∠∠AEB=∠DAE,∠ADC=∠DCG,∠∠G=∠DAE,∠∠B=∠ADC,∠G=∠B,∠∠G=∠ADC=∠DCG,综上所述,所∠G相等的角有:∠AEB,∠DAE,∠ADC,∠DCG.15.(2021秋•安居区期末)如图,∠ADE+∠BCF=180°,AF平分∠BAD,∠BAD=2∠F.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?为什么?(3)若BE平分∠ABC.试说明:∠∠ABC=2∠E;∠∠E+∠F=90°.【思路点拨】(1)由∠ADE+∠BCF=180°结合邻补角互补,可得出∠BCF=∠ADC,再利用“同位角相等,两直线平行”可得出AD∠BC;(2)根据角平分线的定义及∠BAD=2∠F,可得出∠BAF=∠F,再利用“内错角相等,两直线平行”可得出AB∠EF;(3)∠由AB∠EF,利用“两直线平行,内错角相等”可得出∠ABE=∠E,结合角平分线的定义可得出∠ABC=2∠E;∠由AD∠BC,利用“两直线平行,同旁内角互补”可得出∠BAD+∠ABC=180°,再结合∠BAD =2∠F,∠ABC=2∠E可得出∠E+∠F=90°.【解题过程】解:(1)AD∠BC,理由如下:∠∠ADE+∠BCF=180°,∠ADE+∠ADC=180°,∠∠BCF=∠ADC,(2)AB∠EF,理由如下:∠AF平分∠BAD,∠BAD=2∠F,∠BAD=∠F,∠∠BAF=12∠AB∠EF.(3)∠∠ABC=2∠E,理由如下:∠AB∠EF,∠∠ABE=∠E.∠BE平分∠ABC,∠∠ABC=2∠ABE=2∠E.∠∠E+∠F=90°,理由如下:∠AD∠BC,∠∠BAD+∠ABC=180°.∠∠BAD=2∠F,∠ABC=2∠E,∠2∠E+2∠F=180°,∠∠E+∠F=90°.16.(2021春•铁西区期末)如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF 的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)请直接写出直线AC与DG的位置关系;(2)求证:BE∠CF;(3)若∠C=35°,求∠BED的度数.【思路点拨】(1)由对顶角相等可得∠ABF=∠1,从而有∠ABF=∠2,即可得AC∠DG;(2)求出∠1=∠BFG,根据平行线的判定得出AC∠DG,求出∠EBF=∠BFC,根据平行线的判定得出即可;(3)根据平行线的性质得出∠C=∠CFG=∠BEF=35°,再求出答案即可.【解题过程】解:(1)AC∠DG,理由如下:∠∠ABF=∠1,∠1=∠2,∠∠ABF=∠2,∠AC∠DG;(2)由(1)知AC∠DG,∠∠ABF=∠BFG,∠∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∠∠EBF=12∠ABF,∠CFB=12∠BFG,∠∠EBF=∠CFB,∠BE∠CF.(3)∠AC∠DG,∠C=35°,∠∠C=∠CFG=35°,∠BE∠CF,∠∠CFG=∠BEG=35°,∠∠BED=180°﹣∠BEG=145°.17.(2021春•广陵区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠AEF与∠EFC的角平分线交于点P,EP延长线与CD交于点G,点H是MN 上一点,且PF∠GH,试判断直GH与EG的位置关系,并说明理由.【思路点拨】(1)利用邻补角的定义及已知得出∠1=∠CFE,即可判定AB∠CD;(2)利用(1)中平行线的性质推知∠AEF+∠EFC=180°,然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG∠PF,故结合已知条件PF∠GH,易证GH∠EG;【解题过程】解:(1)AB∠CD,理由如下:∠∠1与∠2互补,∠∠1+∠2=180°,又∠∠2+∠CFE=180°,∠∠1=∠CFE,∠AB∠CD;(2)GH∠EG,理由如下:由(1)知,AB∠CD,∠∠AEF+∠EFC=180°.又∠∠AEF与∠EFC的角平分线交于点P,∠∠FEP+∠EFP=1(∠BEF+∠EFD)=90°,2∠∠EPF=90°,即EG∠PF,∠PF∠GH,∠GH∠EG.18.(2021秋•嵩县期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2中,AB,BC是平面镜,入射光线m经过两次反射后得到反射光线n,已知∠1=30°,∠4=60°,判断直线m与直线n的位置关系,并说明理由.(3)图3是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?【思路点拨】(1)根据角的关系解答即可;(2)求出∠5+∠6=180°,根据平行线的判定得出即可;(3)根据平行线的性质和平均的定义得到∠5=∠6,根据平行线的判定得出即可.【解题过程】(1)证明:∠∠AFE=∠BFE=90°,∠θ1=θ2.(2)解:直线m∠直线n,理由:如图2,∠∠1=∠2=30°,∠3=∠4=60°,∠∠5=180°﹣∠1﹣∠2=120°,∠6=180°﹣∠3﹣∠4=60°,∠∠5+∠6=180°,∠直线m∠直线n;(3)解:∠AB∠CD,∠∠2=∠3,∠∠1=∠2,∠3=∠4,∠∠1=∠2=∠3=∠4,∠180°﹣∠1﹣∠2=180°﹣∠3﹣∠4,即:∠5=∠6,∠m∠n.19.(2021秋•上蔡县期末)已知:如图,AB∠CD∠GH,GH过点P.(1)如图1,若∠BAP=40°,∠DCP=30°,则∠APC=(直接写出结果);(2)如图2,直线MN分别交AB于点E,交CD于点F,点P在线段EF上,点Q在射线FC上.若∠MEB=110°,∠PQF=50°,求∠EPQ的度数;(3)如图3,点P在射线FN上,点Q在射线FD上,∠AEF的平分线交CD于点O.若∠PQF= 1∠MEB,试判断OE与PQ是否平行?并说明理由.2(1)依据平行线的性质,即可得到∠APG =∠BAP =40°,∠CPG =∠DCP =30,再根据∠APC =∠APG +∠CPG 进行计算即可;(2)利用邻补角的定义可得∠BEP =180°﹣110°=70°,利用(1)的结论即可得∠EPQ 的度数; (3)根据对顶角相等以及角平分线的定义可得∠PQF =12∠MEB =12∠AEF =∠AEO ,再根据平行线的性质∠AEO =∠EOF ,可得∠PQF =∠EOF ,根据内错角相等两直线平行即可得OE ∠PQ .【解题过程】解:(1)∠AB ∠CD ∠GH ,∠∠APG =∠BAP =40°,∠CPG =∠DCP =30,∠∠APC =∠APG +∠CPG =40°+30°=70°,故答案为:70°;(2)∠∠MEB =110°,∠∠BEP =180°﹣110°=70°,由(1)可得:∠EPQ =∠EPG +∠QPG =∠BEP +∠PQF =70°+50°=120°;(3)OE ∠PQ .理由:∠∠PQF =12∠MEB ,∠MEB =∠AEF ,∠∠PQF =12∠MEB =12∠AEF ,∠EO 平分∠AEF .∠∠PQF =12∠AEF =∠AEO , ∠AB ∠CD ,∠∠AEO =∠EOF ,∠∠PQF =∠EOF ,∠OE ∠PQ .20.(2021春•汉阳区期中)如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,F ,EM 平分∠AEF 交CD 于点M ,且∠FEM =∠FME .(1)直线AB 与直线CD 的位置关系是 ;(2)如图2,点G 是射线FD 上一动点(不与点F 重合),EH 平分∠FEG 交CD 于点H ,过点H 作HN ∠EM 于点N ,设∠EHN =α,∠EGF =β.∠当点G 在运动过程中,若β=56°,求α的度数;∠当点G 在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.【思路点拨】(1)根据角平分线的性质可得∠AEM=∠FEM,由已知条件∠FEM=∠FME,等量代换可得∠AEM=∠FME,由平行线的判定即可得出答案;(2)由平行线的性质可得β=∠GEB,由平角的性质可得∠AED=180°﹣∠GEB,根据角平分线的性质可得∠CEF=12∠AEF,∠FEH=12∠FEG,由∠CEH=∠CEF+∠FEH可计算出度数,根据垂线的性质可得α+∠CEH=90°,代入计算即可得出答案;(3)证明方法同(2).【解题过程】证明:(1)∠EM平分∠AEF,∠∠AEM=∠FEM,∠∠FEM=∠FME,∠∠AEM=∠FME,∠AB∠CD.故答案为:AB∠CD;(2)∠∠AB∠CD,∠β=∠GEB=56°,∠∠AEG=180°﹣∠GEB=180°﹣56°=124°,∠EH平分∠FEG,EM平分∠AEF,∠∠CEF=12∠AEF,∠FEH=12∠FEG,∠∠CEH=∠CEF+∠FEH=12∠AEF+12∠FEG=12(∠AEF+∠FEG)=12∠AED=12×124°=62°,∠HN∠EM,∠α+∠CEH=90°,∠α=90°﹣∠CEH=90°﹣62°=28°;∠a=12β.理由如下:∠AB∠CD,∠β=∠GEB,∠∠AED=180°﹣∠GEB=180°﹣β,∠EH平分∠FEG,EM平分∠AEF,∠∠CEF=12∠AEF,∠FEH=12∠FEG,∠∠CEH=∠CEF+∠FEH=12∠AEF+12∠FEG=12(∠AEF+∠FEG)=12∠AEG=12(180°−β),∠HN∠EM,∠α+∠CEH=90°,∠α+12(180°−β)=90°,即a=12β.21.(2021秋•南岗区校级期中)已知,直线EF分别与直线AB、CD相交于点G、H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∠CD.(2)如图2,点M在直线AB、CD之间,连接MG、HM,当∠AGM=32°,∠MHC=68°时,求∠GMH的度数.(3)只保持(2)中所求∠GMH的度数不变,如图3,GP是∠AGM的平分线,HQ是∠MHD 的平分线,作HN∠PG,则∠QHN的度数是否改变?若不发生改变,请求出它的度数.若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角)【思路点拨】(1)先由邻补角得到∠AGE+∠BGE=180°,然后结合∠AGE+∠DHE=180°得到∠BGE=∠DHE,最后得证AB∠CD;(2)先由AB∠CD得到∠AGH+∠CHG=180°,即∠AGM+∠MGH+∠MHG+∠MHC=180°,再结合∠MGH+∠MHG+∠GMH=180°得到∠GMH=∠AGM+∠MHC,最后结合已知条件得到∠GMH的大小;(3)先由(2)得到∠AGM+∠MHC=∠GMH=100°,∠MGH+∠MHG=80°,然后结合角平分线的定义得到∠MGP和∠MHQ,再结合HN∠PG得到∠GHN=∠PGH,最后由∠QHN=∠GHN﹣∠GHQ求得∠QHN的大小.【解题过程】(1)证明:∠∠AGE +∠BGE =180°,∠AGE +∠DHE =180°,∠∠BGE =∠DHE ,∠AB ∠CD .(2)解:∠AB ∠CD ,∠∠AGH +∠CHG =180°,即∠AGM +∠MGH +∠MHG +∠MHC =180°,∠∠MGH +∠MHG +∠GMH =180°,∠∠GMH =∠AGM +∠MHC ,∠∠AGM =32°,∠MHC =68°,∠∠GMH =100°.(3)解:∠QHN 的度数不发生改变,理由如下,由(2)得,∠AGM +∠MHC =∠GMH =100°,∠∠MGH +∠MHG =80°,∠GP 、HQ 分别平分∠MGA 和∠MHD ,∠∠MGP =12∠MGA ,∠MHQ =12∠MHD =12(180°﹣∠MHC )=90°−12∠MHC , ∠∠PGH =∠MGP +∠MGH =12∠MGA +∠MGH , ∠HN ∠PG , ∠∠GHN =∠PGH =12∠MGA +∠MGH ,∠∠QHN =∠GHN ﹣∠GHQ =(12∠MGA +∠MGH )﹣(∠MHQ ﹣∠MHG )=12∠MGA +∠MGH ﹣∠MHQ +∠MHG =12∠MGA +80°﹣∠MHQ ,∠∠QHN =12∠MGA +80°﹣(90°−12∠MHC )=﹣10°+12(∠MGA +∠MHC )=﹣10°+12×100°=40°.22.(2021秋•香坊区校级期中)点E 在射线DA 上,点F 、G 为射线BC 上两个动点,满足∠DBF =∠DEF ,∠BDG =∠BGD ,DG 平分∠BDE .(1)如图1,当点G 在F 右侧时,求证:BD ∠EF ;(2)如图2,当点G 在BF 左侧时,求证:∠DGE =∠BDG +∠FEG ;(3)如图3,在(2)的条件下,P 为BD 延长线上一点,DM 平分∠BDG ,交BC 于点M ,DN 平分∠PDM ,交EF 于点N ,连接NG ,若DG ∠NG ,∠B ﹣∠DNG =∠EDN ,求∠B 的度数.【思路点拨】(1)通过证明∠DBF=∠EFG,利用同位角相等,两直线平行即可得出结论;(2)过点E作GH∠BD,交AD于点H,利用(1)的结论和平行线的性质即可得出结论;(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°﹣4α,∠PDM =180°﹣α;利用已知条件用含α的式子表示∠PDN,∠EDN,∠GDN,∠DNG,再利用∠B ﹣∠DNG=∠EDN,得到关于α的方程,解方程求得α的值,则∠B=180°﹣4α,结论可求.【解题过程】证明:(1)∠DG平分∠BDE,∠∠BDG=∠ADG.又∠∠BDG=∠BGD,∠∠ADG=∠DGB.∠AD∠BC.∠∠DEF=∠EFG.∠∠DBF=∠DEF,∠∠DBF=∠EFG.∠BD∠EF.(2)过点G作GH∠BD,交AD于点H,如图,∠BD∠EF,∠GH∠EF.∠∠BDG=∠DGH,∠GEF=∠HGE,∠∠DGE=∠DGH+∠HGE,∠∠DGE=∠BDG+∠FEG.(3)设∠BDM=∠MDG=α,则∠BDG=∠EDG=∠DGB=2α,∠PDE=180°﹣4α.∠∠PDM=180°﹣α.∠DN平分∠PDM∠∠PDN=∠MDN=90°−α2.∠∠EDN=∠PDN−∠PDE=90°−α2−(180°−4α)=72α−90°.∠∠GDN=∠MDN﹣∠MDG=90°−α2−α=90°−32α.∠DG∠ON,∠∠DNG=90°.∠∠DNG=90°−(90°−32α)=32α.∠DE∠BF,∠∠B=∠PDE=180°﹣4α.∠∠B﹣∠DNG=∠EDN,∠180°−4α−32α=72α−90°,解得:α=30°.∠∠B=180°﹣4α=60°.。
5.2平行线的性质及判定(非常经典)
平行线的判定
(1)同位角相等,两直线平行
(2)内错角相等,两直线平行
(3)同旁内角互补,两直线平行
(4)平行公理的推论:如果两条直线都与第三条直线互相平行,那么这两条直线也互相平行。
【课前小测】
一.判断题:
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。()
2.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()
6.如图,下列条件能判定AD∥BC的是( )
A.∠C=∠CBEB.∠C+∠ABC=180°
B.C.∠FDC=∠CD.∠FDC=∠A
7.如图5,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()
A.60°B.80°C.100°D.120°
图7图8图9图10
8.如图7,下列能判定AB∥EF的条件有()
①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.
A.1个B.2个C.3个D.4个
9.如图8,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=40°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()
二.填空题:
1.∵a∥b,b∥c(已知)∴______∥______()
2.如图:
(1)∵______=∠3,∴a∥b()
(2)∵∠2=∠4,∴______∥________()
(3)∵∠2+∠3=180°,∴______∥________()
3.如图③ ∵∠1=∠2,∴______∥________()
平行线的判定、性质公理及定理
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
考点一平行线的判定:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3. 两直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.注意:证明两直线平行,关键是找到与特征结论相关的角.例1.如下图,当∠1=∠3时,直线a、b平行吗?当∠2+∠3=180°时,直线a、b平行吗?为什么?你有几种方法。
例2.请将下面的空补充完整1.如右图,若∠1=∠2,则_______∥_______()若∠3=∠4,则_________∥_________()若∠5=∠B,则_________∥_________()若∠D+∠DAB=180°,则______∥_______()2.如右图,∠1+∠2=180°(已知)∠3+∠2=180°()∴∠1=_________∴AB∥CD()课堂练习:1.如图6-21,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.2.已知,如下图(1),(2),直线AB∥ED.求证:∠ABC+∠CDE=∠BCD.(1) (2) 3.如图,如果AB∥CD,求角α、β、γ与180º之间的关系式.4.如图,已知CD 是∠ACB 的平分线,∠ACB = 500,∠B = 700,DE ∥BC,求:∠EDC 和 ∠BDC 的度数。
达标训练: 一.选择题1.下列命题中,不正确的是( )A .两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B .两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C .两条直线被第三条直线所截,那么这两条直线平行D .如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如右图,直线a 、b 被直线c 所截,现给出下列四个条件: ( ) (1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°, 其中能判定a ∥b 的条件是( ) A .(1)(3) B .(2)(4) C .(1)(3)(4) D .(1)(2)(3)(4) 3.如右图,如果∠1=∠2,那么下面结论正确的是( ) A .AD ∥BC B .AB ∥CD C .∠3=∠4 D .∠A =∠C4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来 的方向相同,这两次拐弯的角度可能是( ) A .第一次向右拐40°,第二次向左拐40° B .第一次向右拐50°,第二次向左拐130° C .第一次向右拐50°,第二次向右拐130° D .第一次向左拐50°,第二次向左拐130° 二.填空题αγβED C BAAB D E12FOCABDE5.如右图,∠1=∠2=∠3,则直线l 1、l 2、l 3的关系是________.6.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________ . 7.同垂直于一条直线的两条直线________. 8.根据图形及上下文的含义推理并填空. (1)∵∠A =_______(已知)∴AC ∥ED ( ) (2)∵∠2=_______(已知)∴AC ∥ED ( ) (3)∵∠A +_______=180°(已知) ∴AB ∥FD ( ) 三.解答题9.已知:如图7,∠1=∠2,且BD 平分∠ABC . 求证.AB ∥CD .10、.如图,∠A BC =∠BCD, ∠1=∠2,求证:BE ∥CF.11.如图,是大众汽车的标志图案,其中蕴涵着许多几何知识. 根据下面的条件完成证明.已知:如图,BC//AD ,BE//AF . (1) 求证:B A ∠=∠;(2) 若︒=∠135DOB ,求A ∠的度数.12.已知:如图,∠3与∠1互余,∠3与∠2互余.求证:AB ∥CD.考点二:1.平行线的性质.公理:两直线平行,同位角相等. 定理:两直线平行,内错角相等.CFDEBAOHG321ED C BA定理:两直线平行,同旁内角互补.例1.如图,BE∥DF,∠B =∠D,求证.AD∥BC.课堂作业:1.如上图,AB∥CD,AD∥BC则下列结论成立的是( )A.∠A+∠C=180°B.∠A+∠B=180°C.∠B+∠D=180°D.∠B=∠D2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是( )A.相等B.互补C.相等或互补D.相等且互补3.如右图,已知∠1=∠2,∠BAD=57°,则∠B=________.4.已知:如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.5.如图所示,已知AB⊥BD于点B,ED⊥BD于点D,且AB=CD,BC=DE,那么AC与CE有什么关系?写你的猜想,并说明理由6、如图所示:已知:AB∥DE。
平行线的判定与性质(含答案)-
22.平行线的判定与性质知识纵横在同一平面内,不相交的两条直线叫做平行线(parallel lines).角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、•数量关系角等角的知识。
当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用。
与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1.由角定角 已知角的关系−−−→判定两直线平行−−−→性质确定其他角的关系.2.由线定线 已知两直线平行−−−→性质角的关系−−−→判定确定其他两直线平行.例题求解【例1】如图,AB ∥CD,AC ⊥BC,图中与∠CAB 互余的角有_______个.(2003年安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断。
解:3个 提示:分别为∠BCD,∠ABC,∠EBF. 【例2】如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( • ).A.4对B.8对C.12对D.16对 (第11届“希望杯”邀请赛试题) 思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解入手。
解:选D 提示:原图形可分解出如下8个基本图形.BFDG E C AB FHD GECA【例3】如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°,求证:AB∥EF思路点拨解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB或CD平行的直线。
解:过C点作CG∥AB,过点D作DH∥AB,可证得∠HDE=10°=∠DEF,故HD∥EF,•又HD∥AB,所以AB∥EF.【例4】如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线.•求证:∠EDF=∠BDF.思路点拨综合运用角平分线、垂直(vertical)的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.解:提示:由DF∥CE得,∠BDF=∠BCE,∠FDE=∠DEC,由AC∥DE得,∠DEC=∠ECA【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?B F DE CAB FDECAB (a)DE CA B (b)DEC A(c)B D EC A B (d)F DG E C A F 2E nE 2F n-1F 1B(e)DE 1CA思路点拨:已知AB ∥CD,连结AB 、CD 的折线内折或外折;或改变E 点位置、•或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间。
第5章《相交线与平行线》 大题专项提升训练:平行线的判定和性质(含答案)
人教版七年级下册第5章《相交线与平行线》大题专项提升训练平行线的判定和性质1.如图,AE平分∠BAD,DF平分∠CDA,且AE∥DF,求证:AB∥CD.2.如图,AD⊥CB于D,EF⊥CB于F,∠1=∠2,∠BAC=70°,求∠AGD的度数.3.如图,已知∠1+∠2=180°,∠3=108°.求∠4的度数.4.如图,已知AB=CD,∠1=∠2.求证:BC=DA.5.如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.6.如图,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并对结论进行说明.7.已知:如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB,(1)求证:CE∥DF;(2)若∠DCE=130°,求∠DEF的度数.8.如图,D,E分别是三角形ABC的边AB,BC上的点,DE∥AC,点F在DE的延长线上,且∠DFC=∠A.(1)求证:AB∥CF;(2)若∠ACF比∠BDE大40°,求∠BDE的度数.9.如图,在△ABC中,EF⊥AB,CD⊥AB.(1)求证:EF∥CD;(2)若点G在AC边上,∠1=∠2,求证:∠DGC+∠GCB=180°.10.如图,在三角形ABC中,AD⊥BC于点D,点E是AB上一点,EF⊥BC于点F,点G是AC上一点,连接DG,且∠1=∠2.求证:AB∥DG.11.如图,在三角形ABC中,AD⊥BC,EF⊥BC,垂足分别为D、F.G为AC上一点,E为AB上一点,∠1=∠2.求证:DG∥AB.12.如图,在三角形ABC中,EF⊥AB,∠ADG=∠B,若点G在AC边上,∠1=∠2,判断CD与AB的位置关系,并说明理由.13.如图,在三角形ABC中,∠1=∠2,点E,F,G分别在BC,AB,AC上,且EF⊥AB,GD∥BC交AB于点D.请判断CD与AB的位置关系,并说明理由.14.如图,在三角形ABC中,点D、F在边BC上,点E在边AB上,点G在边AC上,AD∥EF,∠1+∠FEA=180°.求证:∠CDG=∠B.15.如图,在三角形ABC中,CD⊥AB,垂足为点D,F为BC上的点,FG⊥AB,垂足为点G,点E在AC上,连接DE,若∠EDC=∠BFG.求证:∠B=∠ADE.16.如图,在三角形ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.(1)EH与AD平行吗?请说明理由;(2)若∠BAD=30°,求∠H的度数.17.如图,在三角形ABC中,点D,F在边BC上,点E在边AB上,点G在边AC上,EF与GD的延长线交于点H,∠1=∠B,∠2+∠3=180°.(1)判断EH与AD的位置关系,并说明理由.(2)若∠DGC=58°,且∠H=∠4+10°,求∠H的度数.参考答案1.【解答】证明:∵AE平分∠BAD,DF平分∠CDA,∴∠DAE=∠BAD,∠ADF=∠CDA又∵AE∥DF,∴∠DAE=∠ADF,∴∠BAD=∠CDA,∴AB∥CD.2.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.3.【解答】解:给图中各角标上序号,如图所示.∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∴∠3=∠6.∵∠4+∠6=180°,∠3=108°,∴∠4=180°﹣108°=72°.4.【解答】证明:在△ABC与△CDA中,,∴△ABC≌△CDA(SAS),∴BC=DA.5.【解答】证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3.∴BD∥CE.∴∠ABD=∠C.又∠C=∠D,∴∠D=∠ABD.∴DF∥AC.∴∠A=∠F.6.【解答】解:∠ACB与∠DEB相等,理由如下:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等两直线平行),∴∠BDE=∠DEF(两直线平行,内错角相等),∵∠DEF=∠A(已知),∴∠BDE=∠A(等量代换),∴DE∥AC(同位角相等两直线平行),∴∠ACB=∠DEB(两直线平行,同位角相等).7.【解答】(1)证明:∵∠1+∠2=180°,C,D是直线AB上两点,∴∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)解:∵CE∥DF,∠DCE=130°,∴∠CDF=180°﹣∠DCE=180°﹣130°=50°,∵DE平分∠CDF,∴∠CDE=∠CDF=25°,∵EF∥AB,∴∠DEF=∠CDE=25°.8.【解答】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DFC=∠A,∴∠DFC=∠BDE,∴AB∥CF.(2)解:∵DE∥AC,∴∠ACF+∠DFC=180°,由(1)中已证∠DFC=∠BDE,∴∠ACF+∠BDE=180°,又∵∠ACF比∠BDE大40°,∴∠BDE+40°+∠BDE=180°,∴∠BDE=70°.9.【解答】证明:(1)∵EF⊥AB,CD⊥AB,∴∠BFE=∠CDB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠DGC+∠GCB=180°.10.【解答】证明:∵EF⊥BC,AD⊥BC,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.11.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠ADB=∠EFB=90°,∴AD∥EF,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB.12.【解答】解:CD⊥AB.理由如下:∵∠ADG=∠B,∴DG∥BC,∴∠1=∠DCB,∵∠1=∠2,∴∠2=∠DCB,∴CD∥EF,∴∠CDB=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CDB=90°,∴CD⊥AB.13.【解答】解:CD⊥AB.理由如下:∵DG∥BC,∴∠1=∠DCB.∵∠1=∠2,∴∠2=∠DCB.∴CD∥EF.∴∠CDB=∠EFB.∵EF⊥AB,∴∠EFB=90°.∴∠CDB=90°.∴CD⊥AB.14.【解答】证明:∵AD∥EF,(已知),∴∠2=∠3,(两直线平行,同位角相等),∵∠1+∠FEA=180°,∠2+∠FEA=180°,∴∠1=∠2(同角的补角相等),∴∠1=∠3(等量代换),∴DG∥AB(内错角相等,两直线平行),∴∠CDG=∠B.(两直线平行,同位角相等).15.【解答】证明:如图所示:∵FG⊥AB,CD⊥AB,∴∠FGB=∠CDB=90°,∴FG∥CD,∴∠BFG=∠BCD,又∵∠EDC=∠BFG,∴∠BCD=∠EDC,∴DE∥BC,∴∠B=∠ADE.16.【解答】解:(1)平行,理由如下:∵∠CDG=∠B,∴AB∥DG,∴∠BAD=∠1,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH//AD;(2)由(1)得EH//AD,∠1=∠BAD,∴∠H=∠1,∴∠BAD=∠H,∵∠BAD=30°,∴∠H=30°.17.【解答】解:(1)EH∥AD,理由如下:∵∠1=∠B,∴AB∥GD,∴∠2=∠BAD,∵∠2+∠3=180°,∴∠BAD+∠3=180°,∴EH∥AD;(2)由(1)得AB∥GD,∴∠2=∠BAD,∠DGC=∠BAC,∵∠DGC=58°,∴∠BAC=58°,∵EH∥AD,∴∠2=∠H,∴∠H=∠BAD,∴∠BAC=∠BAD+∠4=∠H+∠4=58°,∵∠H=∠4+10°,∴∠4+10°+∠4=58°,解得:∠4=24°,∴∠H=34°.。
平行线的判定与性质 2021-2022学年北师大版七年级数学下册(含答案)
平行线的判定与性质1.如图,直线a,b被直线c所截,当∠1 ∠2时,a∥b.(用“>”,“<”或“=”填空)2.如图,已知直线a,b被直线c所截,下列条件不能判断a∥b的是()A.∠2=∠6B.∠2+∠3=180°C.∠1=∠4D.∠5+∠6=180°3.如图,请填写一个条件,使结论成立:∵,∴a∥b.4.如图,不能判定AB∥CD的是()A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180°D.∠A=∠DCE5.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3B.∠A+∠2=180°C.∠1=∠4D.∠1=∠A6.如图,a∥b,∠1=60°,则∠2的度数为()A.90°B.100°C.110°D.120°7.如图,AB∥CD,EF⊥CD于点F,若∠BEF=150°,则∠ABE=()A.30°B.40°C.50°D.60°8.一把直尺与一块三角板如图放置,若∠1=47°,则∠2的度数为()A.43°B.47°C.133°D.137°9.如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB∥DE,则∠AFD的度数是()A.15°B.30°C.45°D.60°10.如图,直线l1∥l2,直线l3交l1于点A,交l2于点B,过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于()A.80°B.70°C.60°D.50°11.如图,AB∥CD,CB平分∠ECD,若∠B=26°,则∠1的度数是.12.如图,直线a∥b,∠1=60°,则∠2的度数是°.13.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.14.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.15.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.16.如图,直线a∥b,∠1=130°,则∠2等于()A.70°B.60°C.50°D.40°17.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°18.将一张矩形纸片折叠成如图所示的图形,若∠CAB=30°,则∠ACB的度数是()A.45°B.55°C.65°D.75°19.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°20.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°21.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132°B.128°C.122°D.112°22.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°23.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠1=25°,则∠2等于()A.25°B.30°C.50°D.60°24.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°25.已知直线a∥b,用一块含30°角的直角三角板按图中所示的方式放置,若∠1=25°,则∠2=.26.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°27.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°28.将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=°.29.如图,直线a∥b,在Rt△ABC中,∠C=90°,AC⊥b,垂足为A,则图中与∠1互余的角有()A.2个B.3个C.4个D.5个30.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°31.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个32.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°33.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°参考答案与试题解析1.如图,直线a,b被直线c所截,当∠1 =∠2时,a∥b.(用“>”,“<”或“=”填空)【分析】由图形可知∠1 与∠2是同位角,只需这两个同位角相等,便可得到a∥b.【解答】解:要使a∥b,只需∠1=∠2.即当∠1=∠2时,a∥b(同位角相等,两直线平行).故答案为=.2.如图,已知直线a,b被直线c所截,下列条件不能判断a∥b的是()A.∠2=∠6B.∠2+∠3=180°C.∠1=∠4D.∠5+∠6=180°【分析】根据同位角相等,内错角相等,同旁内角互补来判定两直线平行【解答】解:A,∠2和∠6是内错角,内错角相等两直线平行,能判定a∥b,不符合题意;B,∠2+∠3=180°,∠2和∠3是同旁内角,同旁内角互补两直线平行,能判定a∥b,不符合题意;C,∠1=∠4,由图可知∠1与∠2是对顶角,∴∠1=∠2=∠4,∠2和∠4互为同位角,能判定a∥b,不符合题意;D,∠5+∠6=180°,∠5和∠6是邻补角,和为180°,不能判定a∥b,符合题意;故选:D.3.如图,请填写一个条件,使结论成立:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.【分析】要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.4.如图,不能判定AB∥CD的是()A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180°D.∠A=∠DCE【分析】利用平行线的判定方法一一判断即可.【解答】解:由∠B=∠DCE,根据同位角相等两直线平行,即可判断AB∥CD.由∠A=∠ACD,根据内错角相等两直线平行,即可判断AB∥CD.由∠B+∠BCD=180°,根据同旁内角互补两直线平行,即可判断AB∥CD.故A,B,C不符合题意,故选:D.5.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3B.∠A+∠2=180°C.∠1=∠4D.∠1=∠A【分析】利用平行线的判定定理,逐一判断,容易得出结论.【解答】解:A、因为∠A=∠3,所以AB∥DF(同位角相等,两直线平行),故本选项不符合题意.B、因为∠A+∠2=180,所以AB∥DF(同旁内角互补,两直线平行),故本选项不符合题意.C、因为∠1=∠4,所以AB∥DF(内错角相等,两直线平行),故本选项不符合题意.D、因为∠1=∠A,所以AC∥DE(同位角相等,两直线平行),不能证出AB∥DF,故本选项符合题意.故选:D.6.如图,a∥b,∠1=60°,则∠2的度数为()A.90°B.100°C.110°D.120°【分析】先根据图得出∠2的补角,再由a∥b得出结论即可.【解答】解:由图得∠2的补角和∠1是同位角,∵∠1=60°且a∥b,∴∠1的同位角也是60°,∠2=180°﹣60°=120°,故选:D.7.如图,AB∥CD,EF⊥CD于点F,若∠BEF=150°,则∠ABE=()A.30°B.40°C.50°D.60°【分析】过点E作GE∥AB.利用平行线的性质得到∠GEF+∠EFD=180°,由垂直的定义∠EFD=90°,进而得出∠GEF=90°,根据角的和差得到∠BEG=60°,再根据平行线的性质求解即可.【解答】解:如图,过点E作GE∥AB,∵AB∥CD,∴GE∥CD,∴∠GEF+∠EFD=180°,∵EF⊥CD,∴∠EFD=90°,∴∠GEF=180°﹣∠EFD=90°,∵∠BEF=∠BEG+∠GEF=150°,∴∠BEG=∠BEF﹣∠GEF=60°,∵GE∥AB,∴∠ABE=∠BEG=60°,故选:D.8.一把直尺与一块三角板如图放置,若∠1=47°,则∠2的度数为()A.43°B.47°C.133°D.137°【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等求解即可.【解答】解:如图,∵∠1=47°,∴∠3=90°﹣∠1=90°﹣47°=43°,∵∠3+∠4=180°,∴∠4=180°﹣43°=137°,∵直尺的两边互相平行,∴∠2=∠4=137°,故选:D.9.如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC =60°,∠EFD=90°,∠DEF=45°,AB∥DE,则∠AFD的度数是()A.15°B.30°C.45°D.60°【分析】利用三角形的内角和定理可得∠A=30°,∠D=45°,由平行线的性质定理可得∠1=∠D=45°,利用三角形外角的性质可得结果.【解答】解:如图,∵∠ACB=90°,∠ABC=60°,∴∠A=180°﹣∠ACB﹣∠ABC=180°﹣90°﹣60°=30°,∵∠EFD=90°,∠DEF=45°,∴∠D=180°﹣∠EFD﹣∠DEF=180°﹣90°﹣45°=45°,∵AB∥DE,∴∠1=∠D=45°,∴∠AFD=∠1﹣∠A=45°﹣30°=15°,故选:A.10.如图,直线l1∥l2,直线l3交l1于点A,交l2于点B,过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于()A.80°B.70°C.60°D.50°【分析】由题意得,∠2=60°,由平角的定义可得∠5=70°,再根据平行线的性质即可求解.【解答】解:如图,∵l1∥l2,∴∠1+∠3=180°,∵∠1+∠2+∠3=240°,∴∠2=240°﹣(∠1+∠3)=60°,∵∠3+∠2+∠5=180°,∠3=50°,∴∠5=180°﹣∠2﹣∠3=70°,∵l1∥l2,∴∠4=∠5=70°,故选:B.11.如图,AB∥CD,CB平分∠ECD,若∠B=26°,则∠1的度数是52°.【分析】根据平行线的性质得出∠B=∠BCD=26°,根据角平分线定义求出∠∠ECD=2∠BCD=52°,再根据平行线的性质即可得解.【解答】解:∵AB∥CD,∠B=26°,∴∠BCD=∠B=26°,∵CB平分∠ECD,∴∠ECD=2∠BCD=52°,∵AB∥CD,∴∠1=∠ECD=52°,故答案为:52°.12.如图,直线a∥b,∠1=60°,则∠2的度数是60°.【分析】根据对顶角相等求出∠3,再根据两直线平行,同位角相等求解即可.【解答】解:如图,∵∠1=60°,∴∠3=∠1=60°,∵a∥b,∴∠2=∠3=60°.故答案为:60.13.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.【分析】根据平行线的性质可得∠ACE=∠D,又∠A=∠1,利用三角形内角和定理及等式的性质即可得出∠E=∠F.【解答】证明一:∵∠A=∠1,∴AE∥BF,∴∠2=∠E.∵CE∥DF,∴∠2=∠F,∴∠E=∠F.证明二:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.14.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.15.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.【分析】根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.16.如图,直线a∥b,∠1=130°,则∠2等于()A.70°B.60°C.50°D.40°【分析】由邻补角的定义,可求得∠3的度数,又根据两直线平行,同位角相等即可求得∠2的度数.【解答】解:如图:∵∠1=130°,∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣130°=50°,∵a∥b,∴∠2=∠3=50°.故选:C.17.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°【分析】由平行线的性质得∠ADC=∠BAD=35°,再由垂线的定义可得三角形ACD是直角三角形,进而得出∠ACD的度数.【解答】解:∵AB∥CD,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.18.将一张矩形纸片折叠成如图所示的图形,若∠CAB=30°,则∠ACB的度数是()A.45°B.55°C.65°D.75°【分析】根据平行线的性质和翻折的性质解答即可.【解答】解:如图所示:∵将一张矩形纸片折叠成如图所示的图形,∴ED∥F A,∠EBC=∠CBA,∴∠EBC=∠ACB,∠CAB=∠DBA=30°,∵∠EBC+∠CBA+∠ABD=180°,∴∠ACB+∠ACB+30°=180°,∴∠ACB=75°,故选:D.19.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【分析】根据平角的定义和平行线的性质即可得到结论.【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.20.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°【分析】根据平行线和角平分线的定义即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.21.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132°B.128°C.122°D.112°【分析】根据平行线的性质得到∠BEF=180°﹣∠EFG=116°,根据角平分线的定义得到∠BEG=∠BEF=58°,由平行线的性质即可得到结论.【解答】解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故选:C.22.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【分析】根据平行线的性质即可得到结论.【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.23.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠1=25°,则∠2等于()A.25°B.30°C.50°D.60°【分析】由折叠的性质可得出∠ACB′的度数,由矩形的性质可得出AD∥BC,再利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:由折叠的性质可知:∠ACB′=∠1=25°.∵四边形ABCD为矩形,∴AD∥BC,∴∠2=∠1+∠ACB′=25°+25°=50°.故选:C.24.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠D=45°,故选:B.25.已知直线a∥b,用一块含30°角的直角三角板按图中所示的方式放置,若∠1=25°,则∠2=35°.【分析】过点B作EF∥a.利用平行线的性质,把∠1、∠2集中在∠ABC上,利用角的和差求值即可.【解答】解:过点B作EF∥a.∵a∥b,∴EF∥a∥b.∴∠1=∠ABF,∠2=∠FBC.∵△ABC是含30°角的直角三角形,∴∠ABC=60°.∵∠ABF+∠CBF=60°,∴∠2=60°﹣25=35°.故答案为:35°.26.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【解答】解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.27.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.28.将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=128°.【分析】直接利用翻折变换的性质以及平行线的性质分析得出答案.【解答】解:延长DC,由题意可得:∠ABC=∠BCE=∠BCA=26°,则∠ACD=180°﹣26°﹣26°=128°.故答案为:128.29.如图,直线a∥b,在Rt△ABC中,∠C=90°,AC⊥b,垂足为A,则图中与∠1互余的角有()A.2个B.3个C.4个D.5个【分析】首先在△ABC中由∠C=90°得∠1+∠B=90°,根据直线AC⊥b得∠1+∠2=90°,直线a∥b得∠2=∠∠3,∠2=∠4,等量代换∠1+∠3=90°,∠1+∠4=90°,最后综合所得与∠1互余的角有4个分别为:∠2、∠3、∠4、∠B.【解答】解:如图所示:∵∠C=90°,∴∠1+∠B=90°,∴∠1与∠B互余;又∵a∥b,∴∠2=∠3,∠2=∠4,又∵AC⊥b,∴∠1+∠2=90°,∴∠1+∠3=90°,∠1+∠4=90°∴∠1与∠2互余,∠1与∠3互余;综合所述与∠1互余的角有∠2、∠3、∠4、∠B,故选:C.30.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【解答】解:由题意可得:∠1=∠3=∠4=40°,则∠2=∠5==70°.故选:D.31.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.32.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.33.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【分析】由折叠可得,∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.。
专题02 平行线的判定与性质(原卷版)七年级数学下册
专题02平行线的判定与性质1.(2022秋•项城市期末)如图,已知∠B=∠ADE,∠EDC=∠GFB,GF⊥AB,求证:CD⊥AB.把以下证明过程补充完整,并在括号内填写理由或数学式.证明:∵∠B=∠ADE(已知)∴∥()∴∠EDC=∠DCB()又∠EDC=∠GFB(已知)∴∠DCB=(等量代换)∴∥()2.(2023秋•道里区校级期中)将下面的解答过程补充完整:如图,已知DE∥BC,EF平分∠CED,∠A=∠CFE,那么EF与AB平行吗?为什么?解:因为DE∥BC(已知),所以∠DEF=∠CFE(①),因为EF平分∠CED(已知),所以∠DEF=②(角平分线的定义),所以∠CFE=∠CEF(③),因为∠A=∠CFE(已知),所以∠A=④(等量代换),所以EF∥AB(⑤).3.(2022秋•尤溪县期末)如图,∠1+∠2=180°,∠B=∠3.(1)求证:DE∥BC;(2)若∠C=76°,∠AED=2∠3,求∠CEF的度数.4.(2023秋•怀宁县期中)如图,已知EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小明添加的条件:∠B=∠ADG.请你帮小明将下面的证明过程补充完整.证明:∵EF∥CD()∴∠BEF=()∵∠B=∠ADG(添加条件)∴BC∥()∴∠CDG=()∴∠BEF=∠CDG().5.(2022秋•长春期末)请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A=∠D.求证:∠B=∠C证明:∵∠1=∠2,(已知)又:∵∠1=∠3,∴∠2=,(等量代换)∴AE∥FD∴∠A=∠BFD∵∠A=∠D(已知)∴∠D=(等量代换)∴∥CD∴∠B=∠C.6.(2022秋•闽清县期末)如图,AB∥CD,E是BC的延长线上的一点,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠B=∠D;(2)AD∥BE.7.(2023春•石城县期末)如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.8.(2022秋•淇县期末)如图,已知AD∥FE,∠1=∠2.(1)试说明DG∥AC;(2)若∠BAC=70°,求∠AGD的度数.9.(2022秋•禅城区期末)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.30.(2023春•驿城区校级期末)如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.11.(2023秋•香坊区校级期中)完成下面推理过程,并在括号里填写推理依据:如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD.证明:∵AB∥EF(已知),∴∠APE=,∵EP⊥EQ(已知),∴∠PEQ=90°),即∠QEF+∠PEF=90°,∴∠QEF+∠APE=90°,∵∠EQC+∠APE=90°(已知),∴∠EQC=(),∴EF∥(),又∵AB∥EF,∴AB∥CD().12.(2022秋•邓州市期末)如图,点M在CD上,已知∠BAM+∠AMD=180°,AE平分∠BAM,MF平分∠AMC,请说明AE∥MF的理由.解:因为∠BAM+∠AMD=180°(),∠AMC+∠AMD=180°(),所以∠BAM=∠AMC().因为AE平分∠BAM,所以().因为MF平分∠AMC,所以,得(),所以().13.(2022秋•桐柏县期末)完成下面推理过程.如图:已知,∠A=112°,∠ABC=68°,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2.证明:∵∠A=112°,∠ABC=68°(已知)∴∠A+∠ABC=180°∴AD∥BC()∴∠1=()∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°()∴∠BDF=∠EFC=90°∴BD∥EF()∴∠2=()∴∠1=∠2()14.(2023秋•天山区校级期中)已知,GP平分∠BGH,HP平分∠GHD,∠GPH=90°.(1)求证:AB∥CD;(2)若∠AGE=60°,求∠4的度数.15.(2023春•覃塘区期末)如图:已知,∠HCO=∠EBC,∠BHC+∠BEF=180°.(1)求证:EF∥BH;(2)若BH平分∠EBO,EF⊥AO于F,∠HCO=64°,求∠CHO的度数.16.(2023春•新化县期末)如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O.已知∠1=∠B,∠A+∠2=90°.(1)求证:AB∥CD;(2)若AF=12,BF=5,AB=13,求点F到直线AB的距离.17.(2023春•温州月考)如图,已知∠1=∠3,∠2=∠B.(1)试判断DE与BC的位置关系,并说明理由;(2)若DE平分∠ADC,∠1=3∠B,求∠EFC的度数.18.(2023春•仙居县期末)如图是一个汉字“互”字,其中,AB∥CD,HF∥GE,∠HGE=∠HFE,M、H、G三点在同一直线上,N、E、F三点在同一直线上.求证:(1)GH∥EF;(2)∠CMH=∠BNE.19.(2022秋•东阳市期末)如图,长方形纸片ABCD中,G、H分别是AB、CD边上的动点,连GH,将长方形纸片ABCD沿着GH翻折,使得点B,C分别落在点E,F位置.(1)若∠BGH=110°,求∠AGE的度数.(2)若∠FHD=20°,求∠CHG的度数.(3)已知∠BGH和∠CHG始终互补,若∠BGH=α,请直接写出∠FHC的度数(含α的代数式).20.(2023春•金牛区校级期中)如图1,直线GH与直线l1,l2分别交于B,A两点,点C在直线l2上,射线AD平分∠BAC交直线l1于点E,∠GBE=2∠BAE.(1)求证:直线l1∥l2;(2)如图2,点Q在直线l1上(B点左侧),AM平分∠BAQ交l1于点M,过点M作MN⊥AD交AD于点N,请猜想∠BQA与∠AMN的关系;并证明你的结论;(3)若点P是线段AB上一点,射线EP交直线l2于点F,∠GBE=130°.点N在射线AD上,且满足∠EBN=∠EFC连接BN,请补全图形,探究∠BNA与∠FEA满足的等量关系,并证明.21.(2023春•义乌市校级期中)今年除夕夜长江两岸的灯光秀璀璨夺目,照亮山城的山水桥梁城市楼阁,人民欢欣鼓舞.观看表演的小语同学发现两岸的灯光运动是有规律的,如图1所示,灯A射出的光线从AQ开始顺时针旋转至AP便立即回转,灯B射出的光线从BM开始顺时针旋转至BN便立即回转,两灯不停旋转.假设长江两岸是平行的,即PQ∥MN,点A在PQ上,B、C、D在MN上,连接AB、AC、AD,已知AC平分∠BAP,AD平分∠CAP.(1)如图1,若∠ABD=40°,则∠CAQ=;(2)如图2,在PQ上另有一点E,连接CE交AD于点F,点G在MN上,连接AG,若∠CAG=∠CAE,∠EFD+∠DAG=180°,试证明:EC∥AB.(3)如图3,已知灯A射出的光线旋转的速度是每秒10°,灯B射出的光线旋转的速度是每秒30°,若灯B射出的光线从BM出发先转动2秒,灯A射出的光线才从AQ出发开始转动,设灯A转动的时间为t秒,在转动过程中,当0≤t≤12时,请直接写出灯A射出的光线与灯B射出的光线相交且互相垂直时的时间t的值.22.(2022秋•萍乡期末)已知点A在射线CE上,∠C=∠ADB.(1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.23.(2022秋•鲤城区校级期末)如图①,已知AB∥CD,一条直线分别交AB、CD于点E、F,∠EFB=∠B,FH⊥FB,点Q在BF上,连接QH.(1)已知∠EFD=70°,求∠B的度数;(2)求证:FH平分∠GFD.(3)在(1)的条件下,若∠FQH=30°,将△FHQ绕着点F顺时针旋转,如图②,若当边FH转至线段EF上时停止转动,记旋转角为α,请求出当α为多少度时,QH与△EBF某一边平行?(4)在(3)的条件下,直接写出∠DFQ与∠GFH之间的关系.24.(2023秋•香坊区校级期中)如图1,直线MN与直线AB、CD分别交于点E、F,∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,∠BEF与∠EFD的角平分线交于点P,延长EP交CD于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,∠HPQ=45°,K是GH上一点,连接PK,作PQ平分∠EPK,若∠PHG=15°,求∠QPK的度数.25.(2023秋•吉林期中)如图①,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠ACB=∠E=90°,∠EDF=36°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,如图②,记∠ADF为α(0°<α<180°),在旋转的过程中:(1)当∠α=°时,DE∥BC,当∠α=°时,DE⊥BC;(2)如图③,当顶点C在△DEF的内部时,边DF、DE分别交BC、AC的延长线于点M、N.①求出此时∠α的度数范围;②∠1与∠2的度数和是否变化?若不变,请直接写出∠1与∠2的度数和;若变化,请说明理由.。
初一下数学平行线的判定与性质复习专题(最新整理)
5.已知:如图∠1=∠2,∠C=∠D,问∠A 与∠F 相等吗?试说明理由.
6.已知:如图⑿,CE 平分∠ACD,∠1=∠B,
5
求证:AB∥CE
7.如图:∠1= 53 ,∠2=127 ,∠3= 53 , 试说明直线 AB 与 CD,BC 与 DE 的位置关系。
8.如图:已知∠A=∠D,∠B=∠FCB,能否确定 ED 与 CF 的位置关系,请说明理由。
);
(2)∵∠2 =∠ (已知),
∴AC∥ED(
);
(3)∵∠A +∠ = 180°(已知),
∴AB∥FD(
);
(4)∵∠2 +∠ = 180°(已知),
∴AC∥ED(
);
5.如图 7,AB∥DE,试问∠B、∠E、∠BCE 有什么关系.
解:∠B+∠E=∠BCE
过点 C 作 CF∥AB,
则 B ____(
A B
1
G
D
2
C F
E
13.如图,已知 AB∥CD,试再添上一个条件,使∠1 =∠2 成立.(要求给出两个以上答案,并选择 其中一个加以证明)
A
1
F
C
2
B E
D
A
B
1
16.如图,∠ABD 和∠BDC 的平分线交于 E,BE 交 CD 于点 F,∠1 +∠2 = 90°. 3
求证:(1)AB∥CD; (2)∠2 +∠3 = 90°. CF
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即 ∠MEP=∠______
∴EP∥_____.( )
专题二:求角度大小
A
E 12 3
B
D
图6