考研数学二历年真题20032016(无标准答案考生练习版)
考研数学二历年真题(2003—2012)题目
2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y ==的解为y = .(13) 曲线()20y x x x =+<上曲率为2的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限. (22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.(23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a的值;将f化为标准形.(II) 求正交变换x Qy2011年全国硕士研究生入学统一考试数学二试题2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),zf x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xFx f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A 、B 均为2阶矩阵,**AB,分别为A 、B 的伴随矩阵。
2003-2016历年真题数学
,试求 dy , d 2 y . dx dx2
15. 计算曲线积分 ex cos y 3y dx ex sin ydy ,其中积分路径 L 为圆周 x2 y 2 2x 的正向. L
16. 已知可导函数 f x 满足 f x x2
x
tf
t dt
,求
f
一项是符合题目要求的。
1.
已知
f
x
ln1 x
e x 1,
,
1 x 0
则
0 x 1
f x在 x
0 处(
)
A.无极限
B.有极限但不连续
C.连续但不可导
D.可导
2. 设函数 f x 满足 x f tdt ln 1 x2 ,则 f x ( ) 0
L
()
A. 2πa 2n
B. 2πa 2n1
C. πa n
D. πa n
5. 下列级数中,条件收敛的级数是( )
A. 1 1 n n1 10
B.
1n
n1 n
C. 1n n2 n1 1 n 2
D. 1n
n1 n 2
二、填空题:本大题共 5 个小题,每小题 5 分,共 25 分。
高等数学试题
注意事项: 1.试卷分为试题和答题纸两部分。全卷共 页,其中试题 页,答题纸 页。 2.用墨迹为蓝(黑)色的钢笔、圆珠笔或签字笔将答案写在答题纸上,写在试题上的答案无效。 3.满分为 150 分。考试时间为 150 分钟。
一、单项选择题:本大题共 5 个小题,每小题 5 分,共 25 分。在每个小题给出的四个选项中,只有 一项是符合题目要求的。
2003年数二真题、标准答案及解析
2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) x y 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01x dx x02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0)(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰;(3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη 十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(l n n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1]1(1{[1)1(1231023-++=++n n n n n n n x n,可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将x x y ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y xϕ. 【详解】将x x y ln =代入微分方程(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx x x I ,dx xxI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <x x ,从而有 4t a n 401ππ>=⎰dx x x I ,4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→ =113lim 113lim 22022--=----→→x ax x ax x x=.6213lim220a x ax x -=--→ 4sin1lim )(lim )00(200x ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x a x ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a .当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u 所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由tet t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dt dx 4=, 得 ,)ln 21(24ln 212t e t t etdtdx dt dy dx dy +=+== 所以 dtdx dx dy dt d dx y d 1)(22==t t t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e +- 当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===e t t e dx y d t x 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xe x ⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰ 又t d e tdt e t t cos sin ⎰⎰-= =)cos cos (tdt e t e t t ⎰-- =tdt e t e t e t t t sin sin cos ⎰-+-, 故.)c o s (s i n 21s i n C t t e t d t e t t +-=⎰因此 dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C xe x x++- 【评注】本题也可用分布积分法: dx x xe x ⎰+232arctan )1(=x de x xarctan 21⎰+=dx x e x xe x x⎰+-+232arctan 2arctan )1(1=x xde x x xe arctan 22arctan 111⎰+-+ =dx x xe x e x xe x x x⎰+-+-+232arctan 2arctan 2arctan )1(11, 移项整理得dx x xe x⎰+232arctan )1(=.12)1(2arctan C x e x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x.六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0)(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dx dy 比较简单,dy dx =y dxdy'=11,关键是应注意: )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 y dy dx '=1,于是有 (22dy dx dy d dyx d ==dy dx y dx d ⋅'1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为.21x x e C e C Y -+=设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y x x -+=+=- 由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为 .s i n 21x e e y x x --=- 【评注】 本题的核心是第一步方程变换.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点;当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 300k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ, 故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba ⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为)(1x X y y Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y x y '+由题设知 0)(21='++y x y y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数). 由2122==x y 知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为.cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ 曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o s t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ =.4222l l=【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式;(4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而.4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u y ϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数, 由2)0(=ϕ知C=2,故所求曲线方程为.26y e x π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f a x --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dx x f a b b a =-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'b adx x f a a b f .)(2))((22ξξη 【分析】 (1) 由ax a x f a x --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f a x --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=>(2) 设F(x)=2x ,)()()(b x a dt t f x g xa ≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x x a b a a a dt t f x dt t f dt t f a b a g b g a F b F ))(()()()()()()()(222, 即 )(2)(22ξξf dx x f a b b a =-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dxx f a b b a -'=-⎰ξηξ, 即有 ⎰-=-'b a dx x f a a b f .)(2))((22ξξη 【评注】 证明(3),关键是用(2)的结论:⎰-=-'b a dx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b b a-'=-⎰ξηξ ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 )))(()()(a f a f f -'=-⇔ξηξ,可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P 【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(600280222---=------=-λλλλλλa A E=)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P 十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cb cb aA ---++++=---= =])()())[((3222a c c b b a c b a -+-+-++,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于 ])([2)(22222b b a a b ac cb b a ++-=-= =0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba c a c bcb a A ---++++-== =])()())[((3222ac c b b a c b a -+-+-++-,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac cb b a ++-=-= =-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
2016年全国硕士研究生入学统一考试数学二试题答案及解析
2016年全国硕士研究生入学统一考试数学二试题答案及解析一、选择题(1)设1231),1a x a a =,则( ).A. 123,,a a aB. 231,,a a aC. 213,,a a aD. 321,,a a a 【答案】B 【解析】21151362231101()22ln(1113x a x x x x a x x x a x +→=-=-=+==当时,所以,从低到高的顺序为a 2,a 3,a 1,选B.(2)已知函数2(1),1()ln ,1x x f x x x -<⎧=⎨≥⎩,则()f x 的一个原函数是( ).A. 2(1),1()(ln 1),1x x F x x x x ⎧-<=⎨-≥⎩B. 2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨+-≥⎩C. 2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨++≥⎩D. 2(1),1()(ln 1)1,1x x F x x x x ⎧-<=⎨-+≥⎩【答案】D【解析】对函数()f x 做不定积分可得原函数,1ln ln ln xdx x x x dx x x x C x=-⋅=-+⎰⎰,因此选择D.(3)反常函数①121x e dx x -∞⎰,②1201x e dx x+∞⎰的敛散性为( ). A. ①收敛,②收敛 B. ①收敛,②发散 C. ①发散,②收敛 D. ①发散,②发散 【答案】B【解析】①111102011[lim lim ](01)1xxx x x x e dx e d e e x x--∞-∞→∞→=-=--=--=⎰⎰收敛。
②111110200011[lim lim ]xx x xxx x e dx e d e e e x x+∞+∞+∞→∞→=-=-=--=+∞⎰⎰发散。
所以,选B.(4)设函数()f x 在(,)-∞+∞内连续,其导函数的图形如图所示,则( ).A. 函数()f x 有2个极值点,曲线()y f x =有2个拐点B. 函数()f x 有2个极值点,曲线()y f x =有3个拐点C. 函数()f x 有3个极值点,曲线()y f x =有1个拐点D. 函数()f x 有3个极值点,曲线()y f x =有2个拐点 【答案】B【解析】根据图像可知导数为零的点有3个,但是最右边的点左右两侧导数均为正值,因此不是极值点,故有2个极值点,而拐点是一阶导数的极值点或者是不可导点,在这个图像上,一阶导数的极值点有2个,不可导点有1个,因此有3个拐点.(5)设函数()(1,2)i f x i =具有二级连续导数,且0''()0(1,2)i f x i <=,若两条求曲线()(1,2)i y f x i ==在点00(,)x y 处具有公切线()y g x =,且在该点曲线1()y f x =的曲率大于曲线2()y f x =,则在0x 的某个邻域内,有( ). A. 12()()()f x f x g x ≤≤ B. 21()()()f x f x g x ≤≤ C. 12()()()f x g x f x ≤≤ D. 21()()()f x g x f x ≤≤ 【答案】A【解析】因y=f 1(x)与y=f 2(x)在(x 0,y 0)有公切线,则f 1(x 0)=f 2(x 0), f 1’ (x 0)=f 2’(x 0) 又y=f 1(x)与y=f 2(x) 在(x 0,y 0)处的曲率关系为k 1>k 2.10201233121222101010201020|''()||''()|,[1()][1()]"()0,"()0,"()"()0.f x f x k k f x f x f x f x f x f x ==++<<<<因又则从而在x 0的某个领域内f 1(x)与f 2(x)均为凸函数,故f 1(x)≤g(x), f 2(x)≤g(x),排除C,D. 令F(x)=f 1(x)-f 2(x),则F(x 0)=0,F ’(x 0)=0, F ”(x 0)<0. 由极值的第二充分条件得x=x 0为极大值点。
2003考研数二真题及解析
2003年全国硕士研究生入学统一考试数学二试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a = .(2) 设函数()y f x =由方程4ln 2y x xy =+所确定,则曲线()y f x =在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵,A B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2) 设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于( ) (A) 1)1(23++e . (B) 1)1(231-+-e . (C) 1)1(231++-e . (D) 1)1(23-+e .(3) 已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为( )(A) .22x y - (B) .22x y (C) .22yx - (D) .22y x(4 ) 设函数()f x 在),(+∞-∞则()f x 有( )(A)一个极小值点和两个极大值点.(B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(5) 设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则( )(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则( ) (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 32ln(1),0arcsin ()6,01,sin 4ax ax x x x f x x e x ax x x x ⎧⎪+<⎪-⎪⎪==⎨⎪+--⎪>⎪⎪⎩ 问a 为何值时,()f x 在0x =处连续;a 为何值时,0x =是()f x 的可去间断点?四 、(本题满分9分)设函数()y y x =由参数方程212ln 112,(1)ut x t t e y du u +⎧=+⎪>⎨=⎪⎩⎰所确定,求.922=x dxyd五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.八 、(本题满分12分)设位于第一象限的曲线()y f x =过点)21,22(,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 ()y f x =的方程;(2) 已知曲线sin y x =在],0[π上的弧长为l ,试用l 表示曲线()y f x =的弧长s .九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m . 根据设 计要求,当以min /33m 的速率向容器内注入 液体时,液面的面积将以2/min m π的速率均 匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(,)a b 内()0f x >; (2) 在(,)a b 内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(,)a b 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a2003年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】4-【详解】 当0→x 时,11(1)1~nx x n +-,sin ~x x ,则241241~1)1(ax ax ---,2~sin x x x由题设已知,当0→x 时,124(1)1ax --与sin x x 是等价无穷小,所以 12242001(1)141lim lim sin 4x x ax ax a x x x →→--===-,从而 4a =-.(2)【答案】0x y -=【分析】为了求曲线在点(1,1)处的切线方程,首先需要求出函数在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】对所给方程两边对x 求导数,将其中的y 视为x 的函数,有y y xy x y '=+'+342将1,1x y ==代入上式,得.1)1(='y 故函数在点(1,1)处的导数为1,即点(1,1)处切线的斜率为1,再利用点斜式得,过点(1,1)处的切线方程为)1(11-⋅=-x y ,即.0=-y x(3)【答案】!)2(ln n n【详解】()y f x =带佩亚诺余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x x n ο'''=+++++求()y f x =的麦克劳林公式中nx 项的系数相当于先求()y f x =在点0x =处的n 阶导数值)0()(n f,()(0)!n f n 就是麦克劳林公式中nx 项的系数. 2ln 2x y =';2)2(ln 2x y ='';()2(ln 2)n x n y = (归纳法及求导公式)于是有nn y )2(ln )0()(=,故xy 2=的麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn =(4)【答案】)1(414-ae aπ 【详解】方法1:用定积分计算. 极坐标下平面图形的面积公式:θθρβαd S ⎰=)(212,则 θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a)1(414-ae aπ. 方法2:用二重积分计算. D 表示该图形所占的区域,在极坐标下,利用二重积分面积公式:Dd d σρρθ=⎰⎰所以 2220012a e a DS d d rdr e d θππθσθθ===⎰⎰⎰⎰⎰=)1(414-ae aπ.(5)【答案】3【分析】本题的可由矩阵Tαα的秩为1,把其分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.也可设TA αα=求出α,或利用2A 或设123[]T x x x α=,定出α等.【详解】方法1:观察得A 的三个行向量成比列,其比为1:1:1, 故111111111T A αα-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT方法2:TA αα=, 2()()(1)TTTTTA Aαααααααααα===而 21111113331111113333(2)111111333A A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=----=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦比较(1),(2)式,得3Tαα=.方法3:设123[]T x x x α=211213221223231323111111111Tx x x x x A x x x x x x x x x x αα⎡⎤-⎡⎤⎢⎥⎢⎥===--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ 故 122212321233()T x x x x x x x x x αα⎡⎤⎢⎥==++⎢⎥⎢⎥⎣⎦(A 的主对角元之和)(6)【答案】21【分析】 先化简分解出矩阵B ,再计算行列式B 或者将已知等式变形成含有因子B 的矩阵乘积形式,而其余因子的行列式都可以求出即可.【详解】方法1:由E B A B A =--2,知E A B E A +=-)(2,即E A B E A E A +=-+))((,易知矩阵A E +可逆,于是有 .)(E B E A =-再两边取行列式,得 1=-B E A ,因为2002010100=-=-E A , 所以=B 21.方法2:由E B A B A =--2,得E A B E A E A +=-+))((等式两端取行列式且利用矩阵乘积的行列式=行列式的乘积,得A E A EB A E +-=+约去0A E +≠,得 112B A E ==+.二、选择题 (1)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(2)【答案】()B【详解】dx x xa n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+ (第一类换元法) =3121(1)n n n x n++321111nn n n n ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭可见 n n na ∞→lim =32lim 111n n n n →∞⎡⎤⎛⎫⎛⎫⎢⎥=+- ⎪ ⎪⎢⎥ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦=321(1)1lim 1(1)11n n n n n -+-+→∞⎡⎤⎛⎫⎢⎥-⎧⎫ ⎪++-⎢⎥⎨⎬ ⎪+⎩⎭⎢⎥⎝⎭⎢⎥⎣⎦(凑重要极限形式) 312(1)1e -=+- (重要极限)所以选项()B 正确(3)【答案】()A 【详解】将x x y ln =代入微分方程y x y x y ϕ⎛⎫'=+ ⎪⎝⎭,其中2ln 1ln x y x -'=,得: )(ln ln 1ln 1ln 2x x xx ϕ+=-,即 21(ln )ln x x ϕ=- 令ln x u =,有21)(uu -=ϕ,以xu y =代入,得 )(y xϕ=.22xy - 故选项()A 正确.(4) 【答案】()C【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定. 【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(5)【答案】()B【详解】令()tan x x x ϕ=-,有2(0)0,()sec 10,0,4x x x πϕϕ⎛⎫'==-> ∈ ⎪⎝⎭,所以当0,4x π⎛⎫∈ ⎪⎝⎭时()x ϕ单调递增,则()0x ϕ>,即tan 0x x >>,tan 1x x >,<1tan xx,由定积分的不等式性质知,44412000tan 14tan x xI dx dx dx I x xππππ=>=>=⎰⎰⎰可见有 21I I >且42π<I .(6)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :rααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).三【详解】函数()f x 在0x =处连续,则要求函数()f x 在0x =处既是左连续又是右连续,即(0)(0)(0).f f f +-==300ln(1)(0)lim ()lim arcsin x x ax f f x x x ---→→+==-30lim arcsin x ax x x-→=-(由于ln(1)(0)x x x +→,所以33ln(1)ax ax +(0)x →)23lim 11x ax -→= (型极限,用洛必达法则)2lim lim x x --→→= (极限的四则运算) =2023lim 12x ax x -→- (1222211(1)1()(0)22x x x x ---=-→)6a =-2001(0)lim ()lim sin4ax x x e x ax f f x x x +++→→+--==2201lim 4ax x e x ax x +→+--= 22014lim ax x e x ax x +→+--=024lim 2ax x ae x a x +→+-= 220024lim 2lim (2)2ax ax x x a e a e ++→→+=+=224a =+ (0) 6.f =所以,0x =为()f x 的连续点⇔(0)(0)f f +-=⇔26624a a -==+,得1-=a ; 所以,0x =为()f x 的可去间断点⇔26246a a -=+≠,即22640,1a a a ++=≠-但 解得2-=a ,此时()f x 在0x =为可去间断点.四【分析】(i)变上限积分求导公式:()()()()()()()()u x v x df t dt f u u x f v v x dx''=-⎰;(ii)参数方程()()x t y t ϕψ=⎧⎨=⎩的一阶导数:1()()dy dy dt dy t dx dx dt dx dt t dtψϕ'=⋅=⋅='; (iii)若()x t ϕ=,()y t ψ=二阶可导,函数的二阶导数公式:2223()()()()()()1()()()()()()()d y d dy d t dtdx dx dx dt t dxt t t t t t t t t t t ψϕψϕψϕψϕψϕϕϕϕ'⎛⎫⎛⎫==⋅ ⎪ ⎪'⎝⎭⎝⎭''''''''''''--=⋅='''【详解】设2()12x t t ϕ==+,12ln 1()ute y t du uψ+==⎰,则 ()4dxt t dtϕ'==;12ln 2222()12ln 12ln 12ln t dy e e t et t dt t t t t t ψ+⋅'==⋅=⋅=+++; 所以 212ln 42(12ln )etdy et dx t t +==+ 所以 2222214()11()2(12ln )44(12ln )44(12ln )e d y d dy d t dt e e t dx dx dx dt t dx t t t t t t ψϕ-''⎛⎫⎛⎫⎛⎫==⋅=⋅=⋅=- ⎪ ⎪ ⎪'+++⎝⎭⎝⎭⎝⎭ 当9x =时,由221t x +=及1t >得2t =, 故2222229.4(12ln )16(12ln 2)t x d y eedx t t ===-=-++五【详解】方法1:第二类换元法. 由于被积函数中含有根号21x +,作积分变量变换tan ()22x t x ππ=-<<,那么3232(1)sec x t +=,2sec dx tdt =,则dx x xe x⎰+232arctan )1(=2322tan sec (1tan )t e ttdt t +⎰23tan sec sec t e t tdt t =⎰ 三角变换公式 tan sec tte dt t=⎰=.sin tdt e t ⎰又t d e tdt e t t cos sin ⎰⎰-==)cos cos (tdt e t e t t ⎰-- 分部积分(cos (sin ))t t e t e d t =--⎰(cos sin sin )t t t e t e t e tdt =--+⎰ 分部积分 =tdt e t e t e t t t sin sin cos ⎰-+-,故.)cos (sin 21sin C t t e tdt e tt+-=⎰由tan ()22x t x ππ=-<<得arctan t x =,因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C x e x x++- 方法2:分部积分法dx x xe x ⎰+232arctan )1(=x de xx arctan 21⎰+arctan arctan ()x xd e e ==dx x e xxe x x ⎰+-+232arctan 2arctan )1(1 分部积分=x x de xxxe arctan 22arctan 111⎰+-+arctan arctan ()x xd e e =arctan arctan arctan 322122(1)xxx x e dx x ⎛⎫-⋅ ⎪=-⎪+⎪⎭⎰ 分部积分 =dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得;dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-六【详解】 (1) 将题中的dy dx 与22d x dy 变换成以x 为自变量y 为因变量的导数dx dy 与22d ydx来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dy dx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21x x e C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为 .sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.七【详解】讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数等价于讨论方程4()ln 4ln 4x x x x k ϕ=-+-在区间(0,)+∞内的零点问题,为此对函数求导,得334ln 44()4(ln 1).x x x x x x xϕ'=-+=-+可以看出1x =是)(x ϕ的驻点,而且当10<<x 时,3ln 0x <,则3ln 10x x -+<,而40x>,有()0x ϕ'<,即)(x ϕ单调减少;当1x >时,3ln 0x >,则3ln 10x x -+>,而40x>,有()0x ϕ'>,即)(x ϕ单调增加,故k -=4)1(ϕ为函数)(x ϕ的惟一极小值即最小值.① 当(1)40k ϕ=->,即当4k <时,()(1)0x ϕϕ≥>,)(x ϕ无零点,两曲线没有交点;② 当(1)40k ϕ=-=,即当4k =时,()(1)0x ϕϕ≥=,)(x ϕ有且仅有一个零点,即两曲线仅有一个交点;③ 当(1)40k ϕ=-<,即当4k >时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 30k x x x x x x ϕ;+∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ由连续函数的介值定理,在区间(0,1)与),1(+∞内各至少有一个零点,又因)(x ϕ在区间(0,1)与),1(+∞内分别是严格单调的,故)(x ϕ分别各至多有一个零点. 总之,)(x ϕ有两个零点.综上所述,当4k <时,两曲线没有交点;当4k =时,两曲线仅有一个交点;当4k >时,两曲线有两个交点.八【详解】(1) 曲线()y f x =在点(,)P x y 处的法线方程为)(1x X y y Y -'-=- 令0X =,则它与y 轴的交点为).,0(yxy '+ 由题意,此点与点(,)P x y 所连的线段被x 轴平分,由中点公式得0)(21='++y xy y ,即.02=+xdx ydy 积分得222x y C +=(C 为任意常数),代入初始条件2122==x y得12C =,故曲线()y f x =的方程为22122x y +=,即.1222=+y x (2) 曲线sin y x =在[0,]π上的弧长为2222.x tl ππππ=+-====⎰⎰⎰弧长公式另一方面,将(1)中所求得的曲线()y f x =写成参数形式,在第一象限中考虑,于是⎪⎩⎪⎨⎧==,sin 22,cos t y t x .20π≤≤t 于是该曲线的弧长为:s ===2)t u du π=-=-= 所以12l =,即s .九【详解】(1) 设在t 时刻,液面的高度为y ,此时液面的面积为2()()A t y πϕ=圆的面积公式,由题设:液面的面积将以min /2m π的速率均匀扩大,可得2()()dA t d y dt dt πϕπ==,即2()1dy dtϕ= 所以2()y t C ϕ=+, 由题意,当0t =时()2y ϕ=,代入求得4C =,于是得2() 4.y t ϕ=+从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为20()()yV t u du πϕ=⎰,由题设:以min /33m 的速率向容器内注入液体,得()20()()3y dV t du du dt dtπϕ==⎰所以 220()33()12.yu du t y πϕϕ==-⎰上式两边对y 求导,得2()6()()y y y πϕϕϕ'=变限积分求导,即()()6d y y dy ϕπϕ= 解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知2C =, 故所求曲线方程为.26ye x π=十【详解】(1) 因为极限ax a x f ax --+→)2(lim 存在,且lim()0x a x a +→-=,故lim (2)0x a f x a +→-=又()f x 在[,]a b 上连续,从而lim (2)()x af x a f a +→-=,则()0f a =. 由于0)(>'x f ,则()f x 在(,)a b 内严格单调增加,所以()f x 在x a =处取最小值,即).,(,0)()(b a x a f x f ∈=>(2) 由要证明的形式知,要用柯西中值定理证明.取2()F x x =,()()xag x f t dt =⎰()a x b ≤≤,则0)()(>='x f x g ,则)(),(x g x F 满足柯西中值定理的条件,于是在(,)a b 内存在点ξ,使222()()()2()()()()()(())baxaaa x Fb F a b a x g b g a f f t dt f t dtf t dt ξξξ='--===-'-⎰⎰⎰ 即)(2)(22ξξf dxx f a b ba=-⎰. (3) 在区间],[ξa 上应用拉格朗日中值定理,得在),(ξa 内存在一点η,使()()()()f f a f a ξηξ'-=-因()0f a =,上式即))(()(a f f -'=ξηξ,代入(2) 的结论得,))((2)(22a f dxx f a b ba-'=-⎰ξηξ即 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη十一【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a . 至于求P ,则是常识问题. 【详解】矩阵A 的特征多项式为]16)2)[(6(628222---=------=-λλλλλλa A E =)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r42021068400000000E A a a --⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以0a =.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E ,解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 232()3()23232323a b ca b c b c a c a b A bc a b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b c a c a b c a b-=++-=-++-1006()6()c b a ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++--- 2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点. 方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦所以||0B =.而232323232323a b c a bcB bc a bc a A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a “充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb b a ++-=-==222[()]0a b a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.。
2016年全国硕士研究生入学考试数学二真题及答案
(12)已知函数 f (x) 在 (, ) 上连续,且 f (x) (x 1)2 2 x f (t)dt ,则当 n 2 时,f (n) (0) 0
____________.
2
由考研云助手整理( 专注免费考研资料 微信公众号提供更多资讯)
(13)已知动点 P 在曲线 y x3 上运动,记坐标原点与点 P 间的距离为 l .若点 P 的横坐标时间
【详解】u( x, y) 在平面有界闭区域 D 上连续,所以 u( x, y) 在 D 内必然有最大值和最小值.并且如果在
内部存在驻点 ( x0 ,
y0 ) ,也就是
u x
u y
0
,在这个点处
A
2u x 2
,C
2u y 2
,B
2u xy
2u yx
,由条
件,显然 AC B2 0 ,显然 u( x, y) 不是极值点,当然也不是最值点,所以 u( x, y) 的最大值点和最小值
Page 5 of 15
x t 2 7,
4.曲线
y
t
2
4t
1
上对应于 t 1的点处的曲率半径是(
)
(A) 10 (B) 10
50
100
(C)10 10 (D) 5 10
【详解】 曲线在点 ( x, f ( x)) 处的曲率公式 K
y" ,曲率半径 R 1 .
(1 y'2 )3
K
2
本题中 dx 2t, dy 2t 4 ,所以 dy 2t 4 1 2 , d 2 y t 2 1 ,
的变化率为常数 v0 ,则当点 P 运动到点 (1,1) 时, l 对时间的变化率是 _______ .
2003研究生考试数学二真题及详解
2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= . (2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) x y 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知x x y ln =是微分方程)(yxx y y ϕ+='的解,则)(y x ϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01xdx x 02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l032=++c by ax , :2l 032=++a cy bx , :3l032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年全国硕士研究生入学统一考试数学二试题解析一.选择题1. 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为)1(11-⋅=-x y ,即 .0=-y x3.. 【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y )2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案.4.. 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可.【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21 ==πθ20241a e a )1(414-ae aπ. 5.. 【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=6.. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.二、选择题7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n n n n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.9.. 【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yx ϕ.【详解】将x x y ln =代入微分方程)(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y x ϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C)..11.. 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >x x ,1tan <xx,从而有 4t a n 41ππ>=⎰dx x x I , 4tan 402ππ<=⎰dx x x I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.12.. 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关.或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).三 、13.. 【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→ =113lim 1113lim 22022--=----→→x ax x ax x x=.6213lim220a x ax x -=--→ 4sin1lim )(lim )00(200xx ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x ax ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a .当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.14【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由t ett t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dtdx 4=, 得 ,)ln 21(24ln 212t et t et dtdx dt dy dx dy +=+==所以 dtdx dx dy dt d dx y d 1)(22==tt t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e+-当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===et t edx y d t x 15.. 【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xe x ⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰又t d e tdt e tt cos sin ⎰⎰-==)cos cos (tdt e t e tt ⎰--=tdt e t e t e tt t sin sin cos ⎰-+-,故.)c o s (s i n 21s i n C t t e t d t e tt +-=⎰ 因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C xe x x ++-【评注】本题也可用分布积分法:dx x xe x ⎰+232arctan )1(=x de x x arctan 21⎰+=dx x e xxe x x ⎰+-+232arctan 2arctan )1(1=x x de x x xe arctan 22arctan 111⎰+-+=dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-16.. 【分析】 将dy dx 转化为dx dy 比较简单,dy dx =y dxdy '=11,关键是应注意: )(22dy dx dy d dy x d ==dydxy dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-.然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知y dy dx '=1,于是有 )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为 .21x x e C e C Y -+= 设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y xx -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为.s i n 21x e e y xx --=- 17.. 【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(l n 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k -=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点; 当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 300k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ, 故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.18.. 【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba ⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为)(1x X yy Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y x y '+由题设知 0)(21='++y x y y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数). 由2122==x y 知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为.cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o s t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ,令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ =.4222l l =【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 19.. 【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u y ϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数, 由2)0(=ϕ知C=2,故所求曲线方程为.26y e x π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解。
2003年考研数学二真题及解析
于是,根据题设有
lim
1
(1 − ax2 ) 4
= lim
− 1 ax 2 4
= − 1 a = 1,故 a=-4.
x→0 x sin x
x x →0
2
4
【评注】 本题属常规题型,完全类似例题见《数学复习指南》P.38 【例 1.62】.
2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.
(3)已知 y = x 是微分方程 y′ = y + ϕ( x ) 的解,则 ϕ ( x ) 的表达式为
ln x
xy
y
(A)
y2 −.
x2
y2
(B)
.
x2
x2 (C) − .
y2
x2
(D)
.
y2
[]
(4)设函数 f(x)在 (−∞,+∞) 内连续,其导函数的图形如图所示,则 f(x)有
(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点.
4a
0 4a
【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算
过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例 7.38】.
5.. 【分析】 本题的关键是矩阵 ααT 的秩为 1,必可分解为一列乘一行的形式,而行
您所下载的资料来源于弘毅考研资料下载中心 获取更多考研资料,请访问
七 、(本题满分 12 分)
讨论曲线 y = 4ln x + k 与 y = 4x + ln 4 x 的交点个数.
八 、(本题满分 12 分)
2003-数二真题、标准答案及解析
2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01xdx x 02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xaxx x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(l n n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n fn 【详解】 因为 2ln 2x y =',2)2(ln 2xy ='',nx x y )2(ln 2,)(= ,于是有nn y )2(l n)0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案. (4) 设曲线的极坐标方程为)0(>=a ea θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ.【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n nn n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y x ϕ.【详解】将xxy ln =代入微分方程)(y x x y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(uu -=ϕ,故 )(y x ϕ=.22x y - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <xx,从而有 4t a n 401ππ>=⎰dx x x I , 4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→=113lim 1113lim 22022--=----→→x ax xax x x=.6213lim 220a x ax x -=--→ 4sin1lim )(lim )00(200xx ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x ax ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a . 当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由t et t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dtdx 4=, 得,)ln 21(24ln 212t e t t et dtdx dt dy dx dy +=+== 所以 dtdx dx dy dt d dx y d 1)(22==tt t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e+-当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===et t edx y d t x五 、(本题满分9分) 计算不定积分.)1(232arctan dx x xe x ⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant. 【详解】 设t x tan =,则dx x xe x ⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰又t d e tdt e ttcos sin ⎰⎰-==)cos cos (tdt e t e tt⎰--=tdt e t e t e tttsin sin cos ⎰-+-, 故.)c o s (s i n 21s i nC t t e t d t e tt +-=⎰ 因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan=.12)1(2arctan C xe x x ++-【评注】本题也可用分布积分法:dx x xe x ⎰+232arctan )1(=x de x x arctan 21⎰+=dx x e xxe x x ⎰+-+232arctan 2arctan )1(1=x x de x x xe arctan 22arctan 111⎰+-+=dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x. 六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dxdy比较简单,dy dx =y dxdy '=11,关键是应注意: )(22dy dx dy d dyx d ==dy dxy dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知y dy dx '=1,于是有)(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为 .21xx e C e C Y -+= 设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y xx -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为.s i n 21x e e y xx --=-【评注】 本题的核心是第一步方程变换. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点; 当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 30k x x x x x x ϕ;+∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ,故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为 )(1x X yy Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y xy '+由题设知 0)(21='++y xy y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数).由2122==x y知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为 .cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o s t y tx .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=22022cos 121)(cos 121ππ=.4222l l =【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前, 容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而.4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u yϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'= 解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知C=2, 故所求曲线方程为.26yex π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解. 十 、(本题满分10分) 设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη【分析】 (1) 由ax a x f ax --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f ax --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=> (2) 设F(x)=2x ,)()()(b x a dt t f x g xa≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x xa baaadt t f x dtt f dt t f a b a g b g a F b F ))(()()()()()()()(222,即)(2)(22ξξf dxx f a b ba=-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dxx f a b ba-'=-⎰ξηξ,即有 ⎰-=-'badx x f a a b f .)(2))((22ξξη【评注】 证明(3),关键是用(2)的结论:⎰-=-'b adx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b ba-'=-⎰ξηξ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 ) ))(()()(a f a f f -'=-⇔ξηξ, 可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(6028222---=------=-λλλλλλa A E=)2()6(2+-λλ, 故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cbcba A ---++++=---==])()())[((3222a c cb b ac b a -+-+-++, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A 由于])([2)(22222b b a a b ac cb b a ++-=-==0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba ca c bcb a A ---++++-== =])()())[((3222a c cb b ac b a -+-+-++-, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组 ⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为])([2)(22222b b a a b ac cb b a ++-=-==-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
考研数学二历年真题2003-2016(无答案考生练习版)
2003年全国硕士研究生入学统一测试数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若时, 和是等价无穷小,则a= .(2) 设函数y=f(x)由方程所确定,则曲线y=f(x)在点(1,1)处的切线方程是 . (3) 的麦克劳林公式中项的系数是__________. (4) 设曲线的极坐标方程为 ,则该曲线上相应于从0变到的一段弧和极轴所围成的图形的面积为__________.(5) 设为3维列向量,是的转置. 若,则= .(6) 设三阶方阵A,B 满足,其中E 为三阶单位矩阵,若,则________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设均为非负数列,且,,,则必有(A) 对任意n 成立. (B) 对任意n 成立.(C) 极限不存在. (D) 极限不存在. [ ](2)设, 则极限等于 (A) . (B) .(C) . (D) . [ ](3)已知是微分方程的解,则的表达式为 0→x 1)1(412--ax x x sin 4ln 2y x xy =+xy 2=nx )0(>=a e a θρθπ2αTαα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T ααααT E B A B A =--2⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A B =}{},{},{n n n c b a 0lim =∞→n n a 1lim =∞→n n b ∞=∞→n n c lim n n b a <n n c b <n n n c a ∞→lim n n n c b ∞→lim dx x xa n n nn n +=⎰+-123101n n na ∞→lim 1)1(23++e 1)1(231-+-e 1)1(231++-e 1)1(23-+e x x y ln =)(yxx y y ϕ+=')(y x ϕ(A ) (B)(C) (D) [ ](4)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ]yO x(5)设则(A) (B)(C) (D) [ ] (6)设向量组I :可由向量组II :线性表示,则 (A) 当时,向量组II 必线性相关. (B) 当时,向量组II 必线性相关.(C) 当时,向量组I 必线性相关. (D) 当时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?.22xy -.22x y .22yx -.22y x ),(+∞-∞⎰1tan πxx dx x x⎰02tan π.121>>I I .121I I >>.112>>I I .112I I >>r ααα,,,21 s βββ,,,21 s r <s r >s r <s r >,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax四 、(本题满分9分)设函数y=y(x)由参数方程所确定,求五 、(本题满分9分)计算不定积分六 、(本题满分12分)设函数y=y(x)在内具有二阶导数,且是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件的解.)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u.922=x dx y d .)1(232arctan dx x xe x ⎰+),(+∞-∞)(,0y x x y =≠'0))(sin (322=++dy dx x y dyx d 23)0(,0)0(='=y y七 、(本题满分12分)讨论曲线和的交点个数.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线和y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在上的弧长为,试用表示曲线y=f(x)的弧长s.九 、(本题满分10分)有一平底容器,其内侧壁是由曲线绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以的速率向容器内注入液体时,液面的面积将以的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 和之间的关系式;(2) 求曲线的方程.(注:m 表示长度单位米,min 表示时间单位分.)k x y +=ln 4x x y 4ln 4+=)21,22(],0[πl l )0)((≥=y y x ϕmin /33m min /2m π)(y ϕ)(y x ϕ=十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 若极限存在,证明:(1) 在(a,b)内f(x)>0; (2)在(a,b)内存在点,使; (3) 在(a,b) 内存在和(2)中相异的点,使十 一、(本题满分10分)若矩阵相似于对角阵,试确定常数a 的值;并求可逆矩阵P 使十二 、(本题满分8分)已知平面上三条不同直线的方程分别为, , . 试证这三条直线交于一点的充分必要条件为.0)(>'x f ax a x f ax --+→)2(lim ξ)(2)(22ξξf dxx f a b ba=-⎰ξη⎰-=-'ba dx x f aa b f .)(2))((22ξξη⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A Λ.1Λ=-AP P :1l 032=++c by ax :2l 032=++a cy bx :3l 032=++b ay cx .0=++c b a2004年全国硕士研究生入学统一测试数学二真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设, 则的间断点为 .(2)设函数由参数方程 确定, 则曲线向上凸的取值范围为____..(3)_____.. (4)设函数由方程确定, 则______. (5)微分方程满足的特解为_______.(6)设矩阵 , 矩阵满足 , 其中为的伴随矩阵, 是单位矩阵, 则______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把时的无穷小量,,排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ) (B )(C ) (D )(8)设, 则(A )是的极值点, 但不是曲线的拐点. (B )不是的极值点, 但是曲线的拐点. (C )是的极值点, 且是曲线的拐点. (D )不是的极值点, 也不是曲线的拐点.(9)等于(A ). (B ).(C ). (D )(10)设函数连续, 且, 则存在, 使得(A )在内单调增加. (B )在内单调减小. (C )对任意的有.(D )对任意的有.(11)微分方程的特解形式可设为2(1)()lim1n n xf x nx →∞-=+()f x x =()y x 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩()y y x =x 121x x +∞=-⎰(,)z z x y =232x zz ey -=+3z z x y∂∂+=∂∂3()20y x dx xdy +-=165x y ==210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭B 2ABA BA E **=+A *A E B =0x +→2cos xt dt α=⎰20tan x t β=⎰30x t dt γ=⎰,,.αβγ,,.αγβ,,.βαγ,,.βγα[]()(1)f x x x =-0x =()f x (0,0)()y f x =0x =()f x (0,0)()y f x =0x =()f x (0,0)()y f x =0x =()f x (0,0)()y f x =[]22212lim (1)(1)(1)n n nnnn→∞+++221ln xdx ⎰212ln xdx ⎰212ln(1)x dx +⎰221ln (1)x dx +⎰[]()f x (0)0f '>0δ>()f x (0,)δ()f x (,0)δ-(0,)x δ∈()(0)f x f >(,0)x δ∈-()(0)f x f >[]21sin y y x x ''+=++(B ). (C ).(D )(12)设函数连续, 区域, 则等于(A ). (B ).(C ).(D )(13)设是3阶方阵, 将的第1列和第2列交换得, 再把的第2列加到第3列得, 则满足的可逆矩阵为(A ). (B ).(C ). (D ).(14)设,为满足的任意两个非零矩阵, 则必有(A )的列向量组线性相关,的行向量组线性相关. (B )的列向量组线性相关,的列向量组线性相关. (C )的行向量组线性相关,的行向量组线性相关.(D )的行向量组线性相关,的列向量组线性相关.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限.(16)(本题满分10分)设函数在()上有定义, 在区间上, , 若对任意的都满足, 其中为常数.(Ⅰ)写出在上的表达式; (Ⅱ)问为何值时, 在处可导.2(sin cos )y x ax bx c A x B x *=++++2sin y ax bx c A x *=+++2cos y ax bx c A x *=+++[]()f u {}22(,)2D x y x y y =+≤()Df xy dxdy ⎰⎰221111()x x dx f xy dy ---⎰⎰222002()y y dy f xy dx -⎰⎰2sin 200(sin cos )d f r dr πθθθθ⎰⎰2sin 200(sin cos )d f r rdr πθθθθ⎰⎰[]A A B B C AQ C =Q 010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭011100001⎛⎫ ⎪⎪ ⎪⎝⎭[]A B 0AB =A B A B A B A B []3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()f x ,-∞+∞[0,2]2()(4)f x x x =-x ()(2)f x k f x =+k ()f x [2,0]-k ()f x 0x =(17)(本题满分11分) 设,(Ⅰ)证明是以为周期的周期函数;(Ⅱ)求的值域.(18)(本题满分12分)曲线和直线及围成一曲边梯形. 该曲边梯形绕轴旋转一周得一旋转体,其体积为, 侧面积为, 在处的底面积为.(Ⅰ)求的值; (Ⅱ)计算极限.(19)(本题满分12分)设, 证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为的飞机,着陆时的水平速度为.经测试,减速伞打开后,飞机所受的总阻力和飞机的速度成正比(比例系数为).问从着陆点算起,飞机滑行的最长距离是多少?注 表示千克,表示千米/小时. 2()sin x xf x t dt π+=⎰()f x π()f x 2x x e e y -+=0,(0)x x t t ==>0y =x ()V t ()S t x t =()F t ()()S t V t ()lim ()t S t F t →+∞2e a b e <<<2224ln ln ()b a b a e ->-9000kg 700/km h 66.010k =⨯kg /km h(21)(本题满分10分)设,其中具有连续二阶偏导数,求.(22)(本题满分9分) 设有齐次线性方程组试问取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵的特征方程有一个二重根, 求的值, 并讨论是否可相似对角化.22(,)xyz f x y e =-f 2,,z z z x y x y∂∂∂∂∂∂∂1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩a 12314315a -⎛⎫⎪-- ⎪ ⎪⎝⎭a A2005年全国硕士研究生入学统一测试数学二试题二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy= .(2)曲线xx y 23)1(+=的斜渐近线方程为 .(3)=--⎰1221)2(xxxdx.(4)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为 .(5)当0→x 时,2)(kx x =α和x x x x cos arcsin 1)(-+=β是等价无穷小,则k= . (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数n n n xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线和x 轴交点的横坐标是(A)32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ](A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (12)设函数,11)(1-=-x xex f 则(A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行和第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则 [ ](A) 交换*A 的第1列和第2列得*B . (B) 交换*A 的第1行和第2行得*B . (C) 交换*A 的第1列和第2列得*B -. (D) 交换*A 的第1行和第2行得*B -. 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 和x l 所围图形的面积为)(1x S ;32,C C 和y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 和2l 分别是曲线C 在点(0,0)和(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2Ta -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2006年全国硕士研究生入学统一测试数学二试题三、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)曲线 的水平渐近线方程为(2)设函数在处连续,则 .(3)广义积分.(4)微分方程的通解是(5)设函数由方程确定,则(6)设矩阵,为2阶单位矩阵,矩阵满足,则=B .二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量和微分,若,则[ ](A) . (B) .(C) . (D) .(8)设是奇函数,除外处处连续,是其第一类间断点,则是(A )连续的奇函数. (B )连续的偶函数(C )在间断的奇函数(D )在间断的偶函数. [ ](9)设函数可微,,则等于(A ). (B ) (C )(D )[ ](10)函数满足的一个微分方程是(A ) (B )(C )(D ) [ ](11)设为连续函数,则等于 (A). (B ).(C). (D). [ ](12)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是 [ ](A) 若,则.4sin 52cos x xy x x+=-2301sin d ,0(),0x t t x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 0x =a =220d (1)x xx +∞=+⎰(1)y x y x-'=()y y x =1e yy x =-0d d x y x==2112A ⎛⎫=⎪-⎝⎭E B 2BA B E =+()y f x =()0,()0f x f x '''>>x ∆x 0x d y y ∆与()f x 0x 0x ∆>0d y y <<∆0d y y <∆<d 0y y ∆<<d 0y y <∆<()f x 0x =0x =0()d x f t t ⎰0x =0x =()g x 1()()e ,(1)1,(1)2g x h x h g +''===(1)g ln31-ln3 1.--ln 2 1.--ln 2 1.-212e e e x x xy C C x -=++23e .xy y y x '''--=23e .xy y y '''--=23e .xy y y x '''+-=23e .xy y y '''+-=(,)f x y 140d (cos ,sin )d f r r r r πθθθ⎰⎰2210(,)d x x x f x y y -2210(,)d x x f x y y -2210(,)d y yy f x y x -2210(,)d y y f x y x -(,)(,)f x y x y ϕ与(,)0y x y ϕ'≠00(,)x y (,)f x y (,)0x y ϕ=00(,)0x f x y '=00(,)0y f x y '=(B) 若,则. (C) 若,则.(D) 若,则. (13)设均为维列向量,为矩阵,下列选项正确的是 [ ](B) 若线性相关,则线性相关. (C) 若线性相关,则线性无关. (C) 若线性无关,则线性相关.(D) 若线性无关,则线性无关.(14)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则(A). (B).(C). (D). [ ] 三 、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)试确定的值,使得,其中是当时比高阶的无穷小.(16)(本题满分10分)求 .(17)(本题满分10分)设区域, 计算二重积分00(,)0x f x y '=00(,)0y f x y '≠00(,)0x f x y '≠00(,)0y f x y '=00(,)0x f x y '≠00(,)0y f x y '≠12,,,s αααn A m n ⨯12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A ααα12,,,s ααα12,,,s A A A αααA A B B 1-C 110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭1C P AP -=1C PAP -=T C P AP =TC PAP =,,A B C 23e (1)1()xBx Cx Ax o x ++=++3()o x 0x →3x arcsin e d exxx ⎰{}22(,)1,0D x y x y x =+≤≥221d d .1Dxyx y x y +++⎰⎰(18)(本题满分12分)设数列满足(Ⅰ)证明存在,并求该极限;(Ⅰ)计算.(19)(本题满分10分) 证明:当时,.(20)(本题满分12分)设函数在内具有二阶导数,且满足等式.(I )验证; (II )若,求函数的表达式.{}n x 110,sin (1,2,)n n x x x n π+<<==lim n n x →∞211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭0a b π<<<sin 2cos sin 2cos b b b b a a a a ππ++>++()f u (0,)+∞22z f x y=+22220z zx y∂∂+=∂∂()()0f u f u u'''+=(1)0,(1)1f f '==()f u(21)(本题满分12分)已知曲线L 的方程(I )讨论L 的凹凸性;(II )过点引L 的切线,求切点,并写出切线的方程;(III )求此切线和L (对应于的部分)及x 轴所围成的平面图形的面积.(22)(本题满分9分)已知非齐次线性方程组有3个线性无关的解.(Ⅰ)证明方程组系数矩阵的秩;(Ⅰ)求的值及方程组的通解.(23)(本题满分9分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解.(Ⅰ) 求的特征值和特征向量;(Ⅰ) 求正交矩阵和对角矩阵,使得.221,(0)4x t t y t t⎧=+≥⎨=-⎩(1,0)-00(,)x y 0x x ≤1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩A ()2r A =,a b A ()()T T121,2,1,0,1,1αα=--=-0Ax =A Q ΛTQ AQ =Λ2007年全国硕士研究生入学统一测试数学二试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当(A)(B)(C(D)[ ](2)函数在上的第一类间断点是[ ](A)0 (B)1 (C)(D)(3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是:(A)(B)(C)(D)[ ](4)设函数在处连续,下列命题错误的是:(A)若存在,则(B)若存在,则.(C)若存在,则(D)若存在,则.[ ](5)曲线的渐近线的条数为(A)0. (B)1. (C)2. (D)3. [ ](6)设函数在上具有二阶导数,且,令,则下列结论正确的是:(A) 若,则必收敛. (B) 若,则必发散(C) 若,则必收敛. (D) 若,则必发散. [ ](7)二元函数在点处可微的一个充要条件是[ ](A).(B).x+→x1e x-ln1x-11x+1x-1(e e)tan()e exxxf xx+=⎛⎫-⎪⎝⎭[],ππ-x=2π-2π()y f x=[][]3,2,2,3--[][]2,0,0,2-()()dxF x f t t=⎰3(3)(2)4F F=--5(3)(2)4F F=3(3)(2)4F F=5(3)(2)4F F=--()f x0x=()limxf xx→(0)0f=()()limxf x f xx→+-(0)0f=()limxf xx→(0)0f'=()()limxf x f xx→--(0)0f'=()1ln1e xyx=++()f x(0,)+∞()0f x''>()nu f n=12u u>{}n u12u u>{}n u12u u<{}n u12u u<{}n u(,)f x y()0,0()[](,)0,0lim(,)(0,0)0x yf x y f→-=00(,0)(0,0)(0,)(0,0)lim0,lim0x yf x f f y fx y→→--==且(C ).(D ).(8)设函数连续,则二次积分等于(A ) (B ) (C )(D )(9)设向量组线性无关,则下列向量组线性相关的是 线性相关,则(A)(B)(C) .(D) . [ ](10)设矩阵,则和(A) 合同且相似 (B )合同,但不相似.(C) 不合同,但相似. (D) 既不合同也不相似 [ ] 二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上.(11) __________.(12)曲线上对应于的点处的法线斜率为_________.(13)设函数,则________.(14) 二阶常系数非齐次微分方程的通解为________.(15) 设是二元可微函数,,则 __________.(16)设矩阵,则的秩为 .三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤. (17) (本题满分10分)设是区间上单调、可导的函数,且满足,其中是的反函数,求.(22(,)0,0lim 0x y x y→=+00lim (,0)(0,0)0,lim (0,)(0,0)0x x y y x y f x f f y f →→⎡⎤⎡⎤''''-=-=⎣⎦⎣⎦且(,)f x y 1sin 2d (,)d xx f x y y ππ⎰⎰10arcsin d (,)d y y f x y x ππ+⎰⎰1arcsin d (,)d y y f x y x ππ-⎰⎰1arcsin 02d (,)d yy f x y x ππ+⎰⎰1arcsin 02d (,)d yy f x y x ππ-⎰⎰123,,ααα122331,,αααααα---122331,,αααααα+++1223312,2,2αααααα---1223312,2,2αααααα+++211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B 30arctan sin limx x xx →-=2cos cos 1sin x t t y t⎧=+⎨=+⎩4t π=123y x =+()(0)n y =2432e xy y y '''-+=y =(,)f u v ,y x z f x y ⎛⎫=⎪⎝⎭z zx y x y ∂∂-=∂∂0100001000010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭3A ()f x 0,4π⎡⎤⎢⎥⎣⎦()100cos sin ()d d sin cos f x x t t f t t t t t t --=+⎰⎰1f -f ()f x(18)(本题满分11分) 设是位于曲线下方、轴上方的无界区域. (Ⅰ)求区域绕轴旋转一周所成旋转体的体积;(Ⅰ)当为何值时,最小?并求此最小值.(19)(本题满分10分)求微分方程满足初始条件的特解.(20)(本题满分11分)已知函数具有二阶导数,且,函数由方程所确定,设,求.(21) (本题满分11分)设函数在上连续,在内具有二阶导数且存在相等的最大值,,证明:存在,使得.D 2(1,0)xay xaa x -=>≤<+∞x D x ()V a a ()V a 2()y x y y ''''+=(1)(1)1y y '==()f u (0)1f '=()y y x =1e1y y x --=()ln sin z f y x =-2002d d ,d d x x z z xx ==(),()f x g x [],a b (,)a b ()(),()()f a g a f b g b ==(,)a b ξ∈()()f g ξξ''''=(22) (本题满分11分) 设二元函数,计算二重积分,其中.(23) (本题满分11分)设线性方程组和方程有公共解,求的值及所有公共解.(24) (本题满分11分)设三阶对称矩阵的特征向量值,是的属于的一个特征向量,记,其中为3阶单位矩阵.(I )验证是矩阵的特征向量,并求的全部特征值和特征向量; (II )求矩阵.222,||||1(,)1||||2x x y f x y x y x y ⎧+≤⎪=⎨<+≤⎪+⎩D (,)d f x y σ⎰⎰(){},||||2D x y x y =+≤123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩12321x x x a ++=-a A 1231,2,2λλλ===-T1(1,1,1)α=-A 1λ534B A A E =-+E 1αB B B2008年全国硕士研究生入学统一测试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设,则的零点个数为( )0 1. 2 3(2)曲线方程为函数在区间上有连续导数,则定积分( )曲边梯形ABOD 面积.梯形ABOD 面积.曲边三角形面积.三角形面积.(3)在下列微分方程中,以(为任意常数)为通解的是( )(5)设函数在内单调有界,为数列,下列命题正确的是( )若收敛,则收敛. 若单调,则收敛. 若收敛,则收敛.若单调,则收敛.(6)设函数连续,若,其中区域为图中阴影部分,则(7)设为阶非零矩阵,为阶单位矩阵. 若,则( )不可逆,不可逆. 不可逆,可逆. 可逆,可逆.可逆,不可逆.2()(1)(2)f x x x x =--'()f x ()A ()B ()C ()D ()y f x =[0,]a 0()at af x dx ⎰()A ()B ()C ACD ()D ACD 123cos 2sin 2xy C e C x C x =++123,,C C C ()A ''''''440y y y y +--=()B ''''''440y y y y +++=()C ''''''440y y y y --+=()D ''''''440y y y y -+-=()f x (,)-∞+∞{}n x ()A {}n x {}()n f x ()B {}n x {}()n f x ()C {}()n f x {}n x ()D {}()n f x {}n x f 2222(,)uvD F u v dxdy x y =+⎰⎰uv D Fu∂=∂()A 2()vf u ()B 2()vf u u ()C ()vf u ()D ()vf u uA n E n 30A =()A E A -E A +()B E A -E A +()C E A -E A +()D E A -E A +(8)设,则在实数域上和合同的矩阵为( ) .. ..二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数连续,且,则.(10)微分方程的通解是.(11)曲线在点处的切线方程为. (12)曲线的拐点坐标为______.(13)设,则.(14)设3阶矩阵的特征值为.若行列式,则.三、解答题:15-23题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限.(16)(本题满分10分)设函数由参数方程确定,其中是初值问题的解.求.1221A ⎛⎫=⎪⎝⎭A ()A 2112-⎛⎫⎪-⎝⎭()B 2112-⎛⎫ ⎪-⎝⎭()C 2112⎛⎫⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭()f x 21cos[()]lim1(1)()x x xf x e f x →-=-(0)____f =2()0xy x e dx xdy -+-=____y =()()sin ln xy y x x +-=()0,1 23(5)y x x =-xyy z x ⎛⎫= ⎪⎝⎭(1,2)____z x ∂=∂A 2,3,λ248A =-___λ=()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦()y y x =20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰()x t 0200x t dx te dt x --⎧-=⎪⎨⎪=⎩22y x ∂∂(17)(本题满分9分)求积分 .(18)(本题满分11分)求二重积分其中(19)(本题满分11分)设是区间上具有连续导数的单调增加函数,且.对任意的,直线,曲线以及轴所围成的曲边梯形绕轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数的表达式.(20)(本题满分11分)(1) 证明积分中值定理:若函数在闭区间上连续,则至少存在一点,使得(2)若函数具有二阶导数,且满足,证明至少存在一点121dx x-⎰max(,1),Dxy dxdy ⎰⎰{(,)02,02}D x y x y =≤≤≤≤()f x [)0,+∞(0)1f =[)0,t ∈+∞0,x x t ==()y f x =x x ()f x ()f x [,]a b [,]a b η∈()()()baf x dx f b a η=-⎰()x ϕ32(2)(1),(2)()x dx ϕϕϕϕ>>⎰(1,3),()0ξϕξ''∈<使得(21)(本题满分11分)求函数在约束条件和下的最大值和最小值.(22)(本题满分12分) 设矩阵,现矩阵满足方程,其中,,(1)求证;(2)为何值,方程组有唯一解,并求; (3)为何值,方程组有无穷多解,并求通解.(23)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足, (1)证明线性无关; (2)令,求.222u x y z =++22z x y =+4x y z ++=2221212n na a aA a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭A AX B =()1,,Tn X x x =()1,0,,0B =()1nA n a =+a 1x a A 12,ααA 1,1-3α323A ααα=+123,,ααα()123,,P ααα=1P AP -2009年全国硕士研究生入学统一测试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数,则( )1.2. 3.无穷多个.(2)当时,和()()2ln 1g x x bx =-是等价无穷小,则( ). . . . (3)设函数的全微分为,则点( )不是的连续点. 不是的极值点. 是的极大值点. 是的极小值点.(4)设函数连续,则( ).()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间上的图形为:则函数的图形为( )()3sin x x f x nx-=()A ()B ()C ()D 0x →()sin f x x ax =-()A 11,6a b ==-()B 11,6a b ==()C 11,6a b =-=-()D 11,6a b =-=(),z f x y =dz xdx ydy =+()0,0()A (),f x y ()B (),f x y ()C (),f x y ()D (),f x y (),f x y ()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰()A ()2411,xdx f x y dy -⎰⎰[]1,3-()()0xF x f t dt =⎰1-2 0 2 3 -1O....(7)设A 、B 均为2阶矩阵,**A B ,分别为A 、B的伴随矩阵。
2003年考研数学二试题及答案
2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分。
把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f (x )由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 。
(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 。
(6) 设三阶方阵A ,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题(本题共6小题,每小题4分,满分24分。
每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A ) n n b a <对任意n 成立。
(B ) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B ) 1)1(231-+-e 。
(C) 1)1(231++-e . (D ) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x )有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点。
2003考研数学二真题及答案解析
率为 1,再利用点斜式得,过点 (1,1) 处的切线方程为
y −1 = 1⋅ (x −1) ,即 x − y = 0.
(ln 2)n
(3)【答案】
n!
【详解】 y = f (x) 带佩亚诺余项的麦克劳林公式:
ln x
xy
y
(A) − y 2 . x2
y2
(B)
.
x2
(C) − x 2 . y2
x2 (D) .
y2
(4 ) 设函数 f (x) 在 (−∞,+∞) 内连续,其导函数的图形如图所示,
y
则 f (x) 有( )
(A)一个极小值点和两个极大值点.
(B)两个极小值点和一个极大值点.
(C)两个极小值点和两个极大值点.
易知矩阵 A + E 可逆,于是有 ( A − E)B = E.
再两边取行列式,得 A − E B = 1,
0 01 因为 A − E = 0 1 0 = 2 , 所以 B = 1 .
2 −2 0 0
方法 2:由 A2 B − A − B = E ,得
( A + E)( A − E)B = A + E
(A) 当 r < s 时,向量组 II 必线性相关. (C) 当 r < s 时,向量组 I 必线性相关.
(B) 当 r > s 时,向量组 II 必线性相关. (D) 当 r > s 时,向量组 I 必线性相关.
三 、(本题满分 10 分)
ln(1+ ax3)
,
x<0
2003-数二真题、标准答案及解析
2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01xdx x 02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xaxx x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(ln n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n fn 【详解】 因为 2ln 2xy =',2)2(ln 2xy ='',n x x y)2(ln 2,)(= ,于是有nn y )2(ln )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案. (4) 设曲线的极坐标方程为)0(>=a ea θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ.【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n nn n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y x ϕ.【详解】将xxy ln =代入微分方程)(y x x y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(uu -=ϕ,故 )(y x ϕ=.22x y - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <xx,从而有 4tan 401ππ>=⎰dx x x I , 4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→=113lim 1113lim 22022--=----→→x ax xax x x=.6213lim 220a x ax x -=--→ 4sin1lim )(lim )00(200xx ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x ax ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a . 当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由t et t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dtdx 4=, 得,)ln 21(24ln 212t e t t et dtdx dt dy dx dy +=+== 所以 dtdx dx dy dt d dx y d 1)(22==t t t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e+-当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===et t edx y d t x五 、(本题满分9分) 计算不定积分.)1(232arctan dx x xe x ⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant. 【详解】 设t x tan =,则dx x xe x ⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰又t d e tdt e t t cos sin ⎰⎰-==)cos cos (tdt e t e t t ⎰--=tdt e t e t e tttsin sin cos ⎰-+-, 故.)cos (sin 21sin C t t e tdt e tt +-=⎰ 因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan=.12)1(2arctan C xe x x ++-【评注】本题也可用分布积分法:dx x xe x ⎰+232arctan )1(=x de x x arctan 21⎰+=dx x e xxe x x ⎰+-+232arctan 2arctan )1(1=x x de x x xe arctan 22arctan 111⎰+-+=dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x. 六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dxdy比较简单,dy dx =y dxdy '=11,关键是应注意: )(22dy dx dy d dyx d ==dy dxy dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知y dy dx '=1,于是有)(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为 .21xxe C e C Y -+= 设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y xx -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为.sin 21x e e y xx --=-【评注】 本题的核心是第一步方程变换. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点; 当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 30k x x x x x x ϕ;+∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ,故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为 )(1x X yy Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y xy '+由题设知 0)(21='++y xy y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数).由2122==x y知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为 .cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,sin 22,cos t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ=.4222l l=【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前, 容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而.4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u yϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'= 解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知C=2, 故所求曲线方程为.26yex π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解. 十 、(本题满分10分) 设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη【分析】 (1) 由ax a x f ax --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f ax --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=>(2) 设F(x)=2x ,)()()(b x a dt t f x g xa≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x xa baaadt t f x dtt f dt t f a b a g b g a F b F ))(()()()()()()()(222,即)(2)(22ξξf dxx f a b ba=-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dxx f a b ba-'=-⎰ξηξ,即有 ⎰-=-'badx x f a a b f .)(2))((22ξξη【评注】 证明(3),关键是用(2)的结论:⎰-=-'b adx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b ba-'=-⎰ξηξ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 ) ))(()()(a f a f f -'=-⇔ξηξ, 可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(6028222---=------=-λλλλλλa A E=)2()6(2+-λλ, 故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cbcba A ---++++=---==])()())[((3222a c cb b ac b a -+-+-++, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A 由于])([2)(22222b b a a b ac cb b a ++-=-==0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba ca c bcb a A ---++++-== =])()())[((3222a c cb b ac b a -+-+-++-, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组 ⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为])([2)(22222b b a a b ac cb b a ++-=-==-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
2016考研数学二真题答案
2016考研数学二真题答案【篇一:2003-2016年考研数学二真题及解析】t>一、选择题 1—8小题.每小题4分,共32分.11.当x?0时,若ln(1?2x),(1?cosx)?均是比x高阶的无穷小,则?的可能取值范围是??()(a)(2,??)(b)(1,2)(c)(,1)(d)(0,) 2.下列曲线有渐近线的是(a)y?x?sinx(b)y?x2?sinx(c)y?x?sin(d)y?x?12121x21 x【详解】对于y?x?sin,可知x??1xy1?1且lim(y?x)?lim?0,所以有斜渐近线y?xx??x??xx应该选(c)3.设函数f(x)具有二阶导数,g(x)?f(0)(1?x)?f(1)x,则在[0,1]上()(a)当f(x)?0时,f(x)?g(x)(b)当f(x)?0时,f(x)?g(x) (c)当f??(x)?0时,f(x)?g(x)(d)当f??(x)?0时,f(x)?g(x)?x?t2?7,4.曲线?上对应于t?1的点处的曲率半径是() 2?y?t?4t?1(A)(B) (C)(D)5 501005.设函数f(x)?arctanx,若f(x)?xf(?),则x?0?2x2?()(A)1(B)121(C)(D)332?2u6.设u(x,y)在平面有界闭区域d上连续,在d的内部具有二阶连续偏导数,且满足?0及?x?y?2u?2u. ?2?0,则()2?x?y(a)u(x,y)的最大值点和最小值点必定都在区域d的边界上;(b)u(x,y)的最大值点和最小值点必定都在区域d的内部;(c)u(x,y)的最大值点在区域d的内部,最小值点在区域d的边界上;(d)u(x,y)的最小值点在区域d的内部,最大值点在区域d的边界上.7.行列式0aa0b00b0cd0c00d等于22(a)(ad?bc)(b)?(ad?bc) (c)a2d2?b2c2(d)?a2d2?b2c2 8.设?1,?2,?3是三维向量,则对任意的常数k,l,向量?1?k?3,?2?l?3线性无关是向量?1,?2,?3线性无关的(a)必要而非充分条件(b)充分而非必要条件(c)充分必要条件(d)非充分非必要条件二、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)9.?1??1dx?.x2?2x?510.设f(x)为周期为4的可导奇函数,且f(x)?2(x?1),x?0,2,则f(7)?. 11.设z?z(x,y)是由方程e2yz???x?y2?z?7确定的函数,则dz|?11??.?,?4?22?12.曲线l的极坐标方程为r??,则l在点(r,?)??????,?处的切线方程为. 22??13.一根长为1的细棒位于x轴的区间0,1上,若其线密度?(x)??x2?2x?1,则该细棒的质心坐标x?.2214.设二次型f(x1,x2,x3)?x1?x2?2ax1x3?4x2x3的负惯性指数是1,则a的取值范围是.??三、解答题15.(本题满分10分)1t?求极限limx???x1(t2(e?1)?t)dt1x2ln(1?)x.16.(本题满分10分)已知函数y?y(x)满足微分方程x?yy?1?y,且y(2)?0,求y(x)的极大值和极小值. 17.(本题满分10分)22xsin(?x2?y2)dxdy 设平面区域d?(x,y)|1?x?y?4,x?0.y?0.计算??x?yd?22?18.(本题满分10分)?2z?2zx2x设函数f(u)具有二阶连续导数,z?f(ecosy)满足.若??(4z?ecosy)e?x2?y2xf(0)?0,f(0)?0,求f(u)的表达式.19.(本题满分10分)设函数f(x),g(x)在区间a.b上连续,且f(x)单调增加,0?g(x)?1,证明:(1) 0?(2)???bxag(t)dt?x?a,x??a,b?;f(x)dx??f(x)g(x)dx.ab?a??ag(t)dta20.(本题满分11分)设函数f(x)?x,x??0,1?,定义函数列 1?xf1(x)?f(x),f2(x)?f(f1(x)),?,fn(x)?f(fn?1(x)),?设sn是曲线y?fn(x),直线x?1,y?0所围图形的面积.求极限limnsn.n??21.(本题满分11分)已知函数f(x,y)满足?f?2(y?1),且f(y,y)?(y?1)2?(2?y)lny,求曲线f(x,y)?0所?y成的图形绕直线y??1旋转所成的旋转体的体积. 22.(本题满分11分)?1?23?4???设a??01?11?,e为三阶单位矩阵.?1203???(1)求方程组ax?0的一个基础解系;(2)求满足ab?e的所有矩阵.23.(本题满分11分)?1??1证明n阶矩阵????1?1?1??0?01????1?1??0?02?与?相似. ????????????1?1??0?0n??2015年全国硕士研究生入学统一考试数学(二)试题一、选择题:1?8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. ...(1)下列反常积分收敛的是()(a)???2(b) ???2lnx(c)??1dxdx(d) ?2xxlnxx2sint???2xdx xe(2) 函数f?x??lim(1?t?0x在(??,??)内()(a) 连续 (b) 有可去间断点 (c)有跳跃间断点 (d) 有无穷间断点1??xcos,x?0?x(??0,??0),若f?x?在x?0处连续则:( ) (3) 设函数f?x?????0,x?0(a)????0 (b)0?????1 (c)????2(d)0?????2(4)设函数f(x)在???,???内连续,其中二阶导数f??(x)的图形如图所示,则曲线y?f(x)的拐点的个数为()(a) 0(b) 1 (c)2(d) 3(5) 设函数f?u,v?满足f?x?y,??x2?y2,则??(a)?y??fu?1与v?1?fu?1v?1依次是 ()1111,0 (b) 0,(c)?,0 (d) 0,?22224xy?1与直线y?x,y?围成的平面区域,(6)设d是第一象限由曲线2xy?1,函数f?x,y?在d上连续,则??f?x,y?dxdy? ()d?(a)??d?341sin212sin2?f?rcos?,rsin??rdr(b)??34d?1sin2?12sin2?f?rcos?,rsin??rdr f?rcos?,rsin??dr?(c)??d??34?(d)?d?34f?rcos?,rsin??dr【篇二:2016年考研数学二真题与解析】txt>一、选择题 1—8小题.每小题4分,共32分.11.当x?0时,若ln(1?2x),(1?cosx)?均是比x高阶的无穷小,则?的可能取值范围是()(a)(2,??)(b)(1,2) (c)(,1) (d)(0,)??1212???1?【详解】ln?(1?2x)~2?x?,是?阶无穷小,(1?cosx)?~1x?是阶无穷小,由题意可知?2??1?2???1122所以?的可能取值范围是(1,2),应该选(b). 2.下列曲线有渐近线的是(a)y?x?sinx (b)y?x2?sinx(c)y?x?sin(d)y?x?1x21 x【详解】对于y?x?sin,可知x??1xy1?1且lim(y?x)?limsin?0,所以有斜渐近线y?xx??x??xx应该选(c)3.设函数f(x)具有二阶导数,g(x)?f(0)(1?x)?f(1)x,则在[0,1]上()(a)当f(x)?0时,f(x)?g(x) (b)当f(x)?0时,f(x)?g(x) (c)当f??(x)?0时,f(x)?g(x) (d)当f??(x)?0时,f(x)?g(x) 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间[a,b]上凹凸的定义比较熟悉的话,可以直接做出判断.显然g(x)?f(0)(1?x)?f(1)x就是联接(0,f(0)),(1,f(1))两点的直线方程.故当f??(x)?0时,曲线是凹的,也就是f(x)?g(x),应该选(d)【详解2】如果对曲线在区间[a,b]上凹凸的定义不熟悉的话,可令 f(x)?f(x)?g(x)?f(x)?f(0)(1?x)?f(1)x,则f(0)?f(1)?0,且f(x)?f(x),故当f??(x)?0时,曲线是凹的,从而f(x)?f(0)?f(1)?0,即f(x)?f(x)?g(x)?0,也就是f(x)?g(x),应该选(d)?x?t2?7,4.曲线? 上对应于t?1的点处的曲率半径是() 2?y?t?4t?1(A)(B) (C)(D)5 50100y(1?y2)32【详解】曲线在点(x,f(x))处的曲率公式k?,曲率半径r?1. k22dxdydy2t?42dy1?2t,?2t?4,所以??1?,2?本题中??3,dtdtdx2tt2tdxt?对应于t?1的点处y?3,y??1,所以k?应该选(c)5.设函数f(x)?arctanx,若f(x)?xf(?),则x?0y(1?y2)3?110,曲率半径r?1?10. k?2x2?()(A)1(B)211 (C)(D) 323【详解】注意(1)f(x)?1133x?0时,arctanx?x?x?o(x).,(2)2由于f(x)?xf(?).所以可知f(?)?1f(x)arctanxx?arctanx2,, ????xx1??2(arctanx)213x)?o(x3)1?. 3x3x?0?2x2?x?0x?arxtanx?x(arctanx)2x?0x?(x??2u6.设u(x,y)在平面有界闭区域d上连续,在d的内部具有二阶连续偏导数,且满足?0及?x?y?2u?2u. ?2?0,则()2?x?y(a)u(x,y)的最大值点和最小值点必定都在区域d的边界上;(b)u(x,y)的最大值点和最小值点必定都在区域d的内部;(c)u(x,y)的最大值点在区域d的内部,最小值点在区域d的边界上;(d)u(x,y)的最小值点在区域d的内部,最大值点在区域d的边界上.【详解】u(x,y) 在平面有界闭区域d上连续,所以u(x,y)在d内必然有最大值和最小值.并且如果在内部存在驻点(x0,y0),也就是,由??0,在这个点处a?2,c?2,b?? ?x?y?x?y?y?x?x?y条件,显然ac?b?0,显然u(x,y)不是极值点,当然也不是最值点,所以u(x,y)的最大值点和最小值点必定都在区域d的边界上.所以应该选(a).2a7.行列式0cab000bcd000d22222222(a)(ad?bc)2(b)?(ad?bc)2 (c)ad?bc (d)?ad?bc 【详解】0a0cab0a0ba0b00babab??a0d0?b0c0??ad?bc??(ad?bc)2cd0cdcdc0dc0d00d应该选(b).8.设?1,?2,?3 是三维向量,则对任意的常数k,l,向量?1?k?3,?2?l?3线性无关是向量?1,?2,?3线性无关的(a)必要而非充分条件(b)充分而非必要条件(c)充分必要条件(d)非充分非必要条件【详解】若向量?1,?2,?3线性无关,则?10???(?1?k?3,?2?l?3)?(?1,?2,?3)?01??(?1,?2,?3)k,对任意的常数k,l,矩阵k的秩都等?kl???于2,所以向量?1?k?3,?2?l?3一定线性无关.?1??0??0???????而当?1??0?,?2??1?,?3??0?时,对任意的常数k,l,向量?1?k?3,?2?l?3线性无关,但?0??0??0???????. ?1,?2,?3线性相关;故选择(a)二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)1dx? 2x?2x?511dx1x?11dx??|??????x2?2x?5???(x?1)2?42219.?1??【详解】1????3?. ??(?)??2?42?810.设f(x)为周期为4的可导奇函数,且f(x)?2(x?1),x??0,2?,则f(7)?.【详解】当x??0,2?时,f(x)??2(x?1)dx?x2?2x?c,由f(0)?0可知c?0,即f(x)?x2?2x;f(x)为周期为4奇函数,故f(7)?f(?1)?f(1)?1.11.设z?z(x,y)是由方程e2yz?x?y2?z?7确定的函数,则dz|?11??.?,?4?22?【详解】设f(x,y,z)?e2yz71?x?y2?z?,fx?1,fy?2ze2yz?2y,fz?2ye2yz?1,当x?y?42时,z?0,fyf11?z1?z1??x??,????,所以dz|?11???dx?dy.?,?22?xfz2?yfz2?22?????,?处的切线方程为 22??12.曲线l的极坐标方程为r??,则l在点(r,?)??【详解】先把曲线方程化为参数方程??x?r(?)cos???cos???,于是在??处,x?0,y?,22?y?r(?)sin???sin??2dysin???cos?2????|??|???,则l在点(r,?)??,?处的切线方程为y???(x?0),即2?dx2cos???sin?2??22?y??2x??2?.213.一根长为1的细棒位于x轴的区间?0,1?上,若其线密度?(x)??x?2x?1,则该细棒的质心坐标x?11(?x?2x?x)dx?11?00【详解】质心坐标x?1. ?1??25?0?(x)dx?0(?x?2x?1)dx3201x?(x)dx1322214.设二次型f(x1,x2,x3)?x1?x2?2ax1x3?4x2x3的负惯性指数是1,则a的取值范围是.【详解】由配方法可知2f(x1,x2,x3)?x12?x2?2ax1x3?4x2x32?(x1?ax3)2?(x2?2x3)2?(4?a2)x3由于负惯性指数为1,故必须要求4?a?0,所以a的取值范围是??2,2?.2三、解答题15.(本题满分10分)?求极限limx???x1(t(e?1)?t)dt1x2ln(1?)x.21t【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限.【详解】x????limx1(t(e?1)?t)dtx2ln(1?1)x21t??limx???x1(t(e?1)?t)dtx21t?lim(x2(e?1)?x)x??1x111??1?lim?x2(??o()?x??22x??x2xx??216.(本题满分10分)已知函数y?y(x)满足微分方程x2?y2y?1?y,且y(2)?0,求y(x)的极大值和极小值.【详解】解:把方程化为标准形式得到(1?y)2dy?1?x2,这是一个可分离变量的一阶微分方程,两边分别积分dx 可得方程通解为:1312y?y?x?x3?c,由y(2)?0得c?, 333即1312y?y?x?x3?. 333dy1?x2d2y?2x(1?y2)2?2y(1?x2)2 令;??0,得x??1,且可知2? dx1?y2dx(1?y2)3当x?1时,可解得y?1,y??1?0,函数取得极大值y?1;当x??1时,可解得y?0,y?2?0,函数取得极小值y?0. 17.(本题满分10分)【篇三:考研数二历年真题(2016-2003)】t>一、选择题 1—8小题.每小题4分,共32分.11.当x?0时,若ln?(1?2x),(1?cosx)?均是比x高阶的无穷小,则?的可能取值范围?是()(a)(2,??)(b)(1,2) (c)(,1) (d)(0,) 2.下列曲线有渐近线的是(a)y?x?sinx (b)y?x2?sinx(c)y?x?(d)y?x?12121x21 x3.设函数f(x)具有二阶导数,g(x)?f(0)(1?x)?f(1)x,则在[0,1]上()(a)当f(x)?0时,f(x)?g(x) (b)当f(x)?0时,f(x)?g(x) (c)当f??(x)?0时,f(x)?g(x) (d)当f??(x)?0时,f(x)?g(x)?x?t2?7,4.曲线? 上对应于t?1的点处的曲率半径是() 2?y?t?4t?1(A)(B) (C)(D)5 501005.设函数f(x)?arctanx,若f(x)?xf(?),则x?0?2x2?()(A)1(B)121(C)(D)332?2u6.设u(x,y)在平面有界闭区域d上连续,在d的内部具有二阶连续偏导数,且满足?0?x?y?2u?2u及. ?2?0,则()2?x?y(a)u(x,y)的最大值点和最小值点必定都在区域d的边界上;(b)u(x,y)的最大值点和最小值点必定都在区域d的内部;(c)u(x,y)的最大值点在区域d的内部,最小值点在区域d的边界上;(d)u(x,y)的最小值点在区域d的内部,最大值点在区域d的边界上.7.行列式0aa0b00b0cd0c00d等于22(a)(ad?bc)(b)?(ad?bc) (c)ad?bc (d)?ad?bc222222228.设?1,?2,?3 是三维向量,则对任意的常数k,l,向量?1?k?3,?2?l?3线性无关是向量?1,?2,?3线性无关的(a)必要而非充分条件(b)充分而非必要条件(c)充分必要条件(d)非充分非必要条件二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.?1??1dx? 2x?2x?510.设f(x)为周期为4的可导奇函数,且f(x)?2(x?1),x??0,2?,则f(7)?11.设z?z(x,y)是由方程e2yz?x?y2?z?7确定的函数,则dz|?11??.?,?4?22?12.曲线l的极坐标方程为r??,则l在点(r,?)??????,?处的切线方程为.22??213.一根长为1的细棒位于x轴的区间?0,1?上,若其线密度?(x)??x?2x?1,则该细棒的质心坐标x?.2214.设二次型f(x1,x2,x3)?x1?x2?2ax1x3?4x2x3的负惯性指数是1,则a的取值范围是.三、解答题 15.(本题满分10分)?求极限limx???x1(t(e?1)?t)dt1x2ln(1?)x.21t16.(本题满分10分)已知函数y?y(x)满足微分方程x2?y2y?1?y,且y(2)?0,求y(x)的极大值和极小值. 17.(本题满分10分)22xsin(?x?y)22dxdy 设平面区域d?(x,y)|1?x?y?4,x?0.y?0.计算??x?yd??18.(本题满分10分)?2z?2z设函数f(u)具有二阶连续导数,z?f(ecosy)满足?2?(4z?excosy)e2x.若2?x?yxf(0)?0,f(0)?0,求f(u)的表达式.19.(本题满分10分)设函数f(x),g(x)在区间?a.b?上连续,且f(x)单调增加,0?g(x)?1,证明:(1) 0?(2)?bxag(t)dt?x?a,x??a,b?;f(x)dx??f(x)g(x)dx.ab?a??ag(t)dta20.(本题满分11分)设函数f(x)?x,x??0,1?,定义函数列 1?xf1(x)?f(x),f2(x)?f(f1(x)),?,fn(x)?f(fn?1(x)),?设sn是曲线y?fn(x),直线x?1,y?0所围图形的面积.求极限limnsn.n??21.(本题满分11分)已知函数f(x,y)满足?f且f(y,y)?(y?1)2?(2?y)lny,求曲线f(x,y)?0?2(y?1),?y所成的图形绕直线y??1旋转所成的旋转体的体积. 22.(本题满分11分)?1?23?4???设a??01?11?,e为三阶单位矩阵.?1203???(1)求方程组ax?0的一个基础解系;(2)求满足ab?e的所有矩阵.23.(本题满分11分)?1??1证明n阶矩阵????1?1?1??0?01????1?1??0?02?与?相似. ????????????1?1??0?0n??2015年全国硕士研究生入学统一考试数学二试题及答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. ...1、下列反常积分中收敛的是()??(a)?2(b)???2lnx(c)xx2t???21(d)xlnx???2x xe2、函数f(x)?lim(1?t?0sint)在(??,??)内() x(a)连续(b)有可去间断点(c)有跳跃间断点 (d)有无穷间断点1???xcos?,x?0(??0,??0),若f?(x)在x?0处连续,则() 3、设函数f(x)??x?0,x?0?(a)????1 (b)0?????1 (c)????2 (d)0?????24、设函数f(x)在(??,??)连续,其二阶导函数f??(x)的图形如右图所示,则曲线y?f(x)的拐点个数为()(a)0 (b)1 (c)2 (d)35、设函数f(u,v)满足f(x?y,)?x?y,则yx22?f?f与依次是() ?uu?1?vu?1v?1v?1(a)1111,0(b)0,(c)-,0(d)0 ,- 22226、设d是第一象限中曲线2xy?1,4xy?1与直线y?x,y围成的平面区域,函数f(x,y)在d上连续,则???f(x,y)dxdy=()d(a)?d?241sin2?12sin2?f(rcos?,rsin?)dr(b)?2d?4f(rcos?,rsin?)dr?(c)?34d?1sin2?12sin2??f(rcos?,rsin?)dr(d)?3d?4f(rcos?,rsin?)dr?111??1??????14a2??d2?????分必要条件为()(a)a??,d?? (b)a??,d?? (c)a??,d?? (d) a??,d??2228、设二次型f(x1,x2,x3)在正交变换x?py下的标准形为2y1?y2?y3,其中p=(e1,e2,e3),若q?(e1,e3,?e2),则f(x1,x2,x3)在正交变换x?py下的标准形为() 222222222222(a)2y1 (b) 2y1(c) 2y1(d)2y1 ?y2?y3?y2?y3?y2?y3?y2?y3二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.。
2003年全国硕士研究生入学考试数学二真题及答案
一、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上)
1
(1) 若 x 0 时, (1 ax2 ) 4 1 与 xsin x 是等价无穷小,则 a=
.
(2) 设函数 y=f(x)由方程 xy 2 ln x y 4 所确定,则曲线 y=f(x)在点(1,1)处的切线方
(A),(B),(C),因此正确选项为(D).
【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完
全类似方法见《数学最后冲刺》P.179.
8.. 【分析】 先用换元法计算积分,再求极限.
【详解】 因为
6
由考研云助手整理( 专注免费考研资料 微信公众号提供更多资讯)
2
【详解】 所求面积为
S 1 2 2 ( )d 1 2 e2a d
20
20
= 1 e 2a
2
1 (e4a 1) .
4a
0 4a
【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算
过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例 7.38】.
5.. 【分析】 本题的关键是矩阵T 的秩为 1,必可分解为一列乘一行的形式,而行
(1)
试将
x=x(y)所满足的微分方程
d2x dy2
(y
sin
x)( dx)3 dy
0
变换为
y=y(x)满足的微
分方程;
(2) 求变换后的微分方程满足初始条件 y(0) 0, y(0) 3 的解. 2
七 、(本题满分 12 分)
讨论曲线 y 4ln x k 与 y 4x ln 4 x 的交点个数.
2003年考研数学二真题答案解析
1. 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.【评注】 本题属常规题型2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x3.. 【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 4.. 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 5.. 【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=6.. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n n n n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n 【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.9.. 【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yx ϕ.【详解】将x x y ln =代入微分方程)(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题..11.. 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >x x ,1tan <xx,从而有 4t a n 41ππ>=⎰dx x x I , 4tan 402ππ<=⎰dx x x I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.12.. 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关.或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。
2003-数二真题标准答案及解析
2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01xdx x 02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xaxx x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(l n n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n fn 【详解】 因为 2ln 2xy =',2)2(ln 2xy ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n)0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案. (4) 设曲线的极坐标方程为)0(>=a ea θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ.【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n nn n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y x ϕ.【详解】将xxy ln =代入微分方程)(y x x y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(uu -=ϕ,故 )(y x ϕ=.22x y - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <xx,从而有 4t a n 401ππ>=⎰dx x x I , 4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→=113lim 1113lim 22022--=----→→x ax xax x x=.6213lim 220a x ax x -=--→ 4sin1lim )(lim )00(200xx ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x ax ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a . 当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由t et t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dtdx 4=, 得 ,)ln 21(24ln 212t e t t etdtdx dt dy dx dy +=+== 所以 dtdx dxdy dt d dx y d 1)(22==t t t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e +- 当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===e t t e dx y d t x 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xe x⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰又t d e tdt e t t cos sin ⎰⎰-==)cos cos (tdt e t e t t ⎰--=tdt e t e t e t t t sin sin cos ⎰-+-,故 .)c o s (s i n 21s i n C t t e t d t e t t +-=⎰ 因此 dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan=.12)1(2arctan C xe x x++- 【评注】本题也可用分布积分法: dx x xe x ⎰+232arctan )1(=x de x xarctan 21⎰+=dx x e x xe x x⎰+-+232arctan 2arctan )1(1=x xde x x xe arctan 22arctan 111⎰+-+ =dx x xe x e x xe x x x⎰+-+-+232arctan 2arctan 2arctan )1(11, 移项整理得dx x xe x⎰+232arctan )1(=.12)1(2arctan C x e x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x.六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dxdy 比较简单,dy dx =y dxdy '=11,关键是应注意: )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 y dy dx '=1,于是有)(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为.21xx e C e C Y -+=设方程( * )的特解为x B x A y sin cos *+=, 代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y x x -+=+=- 由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为 .s i n 21x e e y x x --=- 【评注】 本题的核心是第一步方程变换.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点;当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 300k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ, 故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba ⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为)(1x X yy Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y x y '+由题设知 0)(21='++y x y y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数). 由2122==x y 知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为.cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o s t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ =.4222l l =【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式;(4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u yϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得y Cey 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知C=2,故所求曲线方程为.26y e x π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f a x --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dx x f a b b a =-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'b adx x f a a b f .)(2))((22ξξη 【分析】 (1) 由ax a x f a x --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f a x --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=>(2) 设F(x)=2x ,)()()(b x a dt t f x g xa ≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x x a ba a a dt t f x dt t f dt t f ab a g b g a F b F ))(()()()()()()()(222,即 )(2)(22ξξf dx x f a b b a =-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dx x f a b b a -'=-⎰ξηξ, 即有 ⎰-=-'b a dx x f a a b f .)(2))((22ξξη 【评注】 证明(3),关键是用(2)的结论:⎰-=-'b a dx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b b a-'=-⎰ξηξ ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 )))(()()(a f a f f -'=-⇔ξηξ,可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P 【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(600280222---=------=-λλλλλλa A E =)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P 十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cb c ba A ---++++=---= =])()())[((3222a c cb b ac b a -+-+-++,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于 ])([2)(22222b b a a b ac c b ba ++-=-= =0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba c a cb cb a A ---++++-===])()())[((3222a c c b b a c b a -+-+-++-,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac c b b a ++-=-==-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
2003年考研数学数学二真题及答案解析
2003年考研数学数学二真题及答案解析2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2)设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4)设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5)设α为3维列向量,Tα是α的转置. 若----=111111111T αα,则ααT = .(6)设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若-=102020101A ,则=B .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=?+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ?+='的解,则)(y x ?的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)设?=401tan πdx x x I ,dx xxI ?=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<--+-+=x x x xx ax x e x x ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>??=+=?+t du u e y t x t u所确定,求.922=x dx y d五、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ?+六、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ?绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ?之间的关系式; (2) 求曲线)(y x ?=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-?; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使 ?-=-'ba dx x f aa b f .)(2))((22ξξη 十一、(本题满分10分)若矩阵=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a真题答案解析1. 【分析】根据等价无穷小量的定义,相当于已知1sin )1(lim4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xaxx x ax x x ,故a=-4.【评注】本题属常规题型,完全类似例题见《数学复习指南》P.38 【例1.62】.2.. 【分析】先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342,将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-?=-x y ,即 .0=-y x【评注】本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似例题见《数学复习指南》P.55 【例2.13】和【例2.14】.3.. 【分析】本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n fn 【详解】因为 2ln 2x y =',2)2(ln 2xy ='',nx x y )2(ln 2,)(= ,于是有nn y )2(l n)0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】本题属常规题型,在一般教材中都可找到答案. 4.. 【分析】利用极坐标下的面积计算公式θθρβαd S ?=)(212即可. 【详解】所求面积为θθθρπθπd e d S a ??==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例7.38】.5.. 【分析】本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】由----=111111111Tαα=[]111111--,知-=111α,于是[].3111111=??--=ααT【评注】一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A=完全类似例题见《数学复习指南》P.389 【例2.11】和《考研数学大串讲》P.162 【例13】.6.. 【分析】先化简分解出矩阵B ,再取行列式即可.【详解】由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算. 完全类似例题见《考研数学大串讲》P.160 【例11】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B);而极限n n n c a ∞→lim 是∞?0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞?1型,必为无穷大量,即不存在.【详解】用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.8.. 【分析】先用换元法计算积分,再求极限. 【详解】因为。
2003考研数二真题及解析
2003年全国硕士研究生入学统一考试数学二试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a = .(2) 设函数()y f x =由方程4ln 2y x xy =+所确定,则曲线()y f x =在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵,A B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2) 设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于( ) (A) 1)1(23++e . (B) 1)1(231-+-e . (C) 1)1(231++-e . (D) 1)1(23-+e .(3) 已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为( )(A) .22x y - (B) .22x y (C) .22yx - (D) .22y x(4 ) 设函数()f x 在),(+∞-∞则()f x 有( )(A)一个极小值点和两个极大值点.(B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(5) 设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则( )(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则( ) (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 32ln(1),0arcsin ()6,01,sin 4ax ax x x x f x x e x ax x x x ⎧⎪+<⎪-⎪⎪==⎨⎪+--⎪>⎪⎪⎩ 问a 为何值时,()f x 在0x =处连续;a 为何值时,0x =是()f x 的可去间断点?四 、(本题满分9分)设函数()y y x =由参数方程212ln 112,(1)ut x t t e y du u +⎧=+⎪>⎨=⎪⎩⎰所确定,求.922=x dxyd五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.八 、(本题满分12分)设位于第一象限的曲线()y f x =过点)21,22(,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 ()y f x =的方程;(2) 已知曲线sin y x =在],0[π上的弧长为l ,试用l 表示曲线()y f x =的弧长s .九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m . 根据设 计要求,当以min /33m 的速率向容器内注入 液体时,液面的面积将以2/min m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(,)a b 内()0f x >; (2) 在(,)a b 内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(,)a b 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a2003年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】4-【详解】 当0→x 时,11(1)1~nx x n +-,sin ~x x ,则241241~1)1(ax ax ---,2~sin x x x 由题设已知,当0→x 时,124(1)1ax --与sin x x 是等价无穷小,所以 12242001(1)141lim lim sin 4x x ax ax a x x x →→--===-,从而 4a =-.(2)【答案】0x y -=【分析】为了求曲线在点(1,1)处的切线方程,首先需要求出函数在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】对所给方程两边对x 求导数,将其中的y 视为x 的函数,有y y xy x y '=+'+342将1,1x y ==代入上式,得.1)1(='y 故函数在点(1,1)处的导数为1,即点(1,1)处切线的斜率为1,再利用点斜式得,过点(1,1)处的切线方程为)1(11-⋅=-x y ,即.0=-y x(3)【答案】!)2(ln n n【详解】()y f x =带佩亚诺余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x x n ο'''=+++++求()y f x =的麦克劳林公式中nx 项的系数相当于先求()y f x =在点0x =处的n 阶导数值)0()(n f,()(0)!n f n 就是麦克劳林公式中nx 项的系数.2ln 2x y =';2)2(ln 2x y ='';()2(ln 2)n x n y = (归纳法及求导公式)于是有nn y )2(ln )0()(=,故xy 2=的麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn =(4)【答案】)1(414-ae aπ 【详解】方法1:用定积分计算. 极坐标下平面图形的面积公式:θθρβαd S ⎰=)(212,则 θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a)1(414-ae aπ. 方法2:用二重积分计算. D 表示该图形所占的区域,在极坐标下,利用二重积分面积公式:Dd d σρρθ=⎰⎰所以 2220012a e a DS d d rdr e d θππθσθθ===⎰⎰⎰⎰⎰=)1(414-ae aπ.(5)【答案】3【分析】本题的可由矩阵Tαα的秩为1,把其分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.也可设TA αα=求出α,或利用2A 或设123[]T x x x α=,定出α等.【详解】方法1:观察得A 的三个行向量成比列,其比为1:1:1, 故111111111T A αα-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT方法2:TA αα=, 2()()(1)TTTTTA Aαααααααααα===而 21111113331111113333(2)111111333A A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=----=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 比较(1),(2)式,得3Tαα=.方法3:设123[]T x x x α=211213221223231323111111111Tx x x x x A x x x x x x x x x x αα⎡⎤-⎡⎤⎢⎥⎢⎥===--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦故 122212321233()T x x x x x x x x x αα⎡⎤⎢⎥==++⎢⎥⎢⎥⎣⎦(A 的主对角元之和)(6)【答案】21【分析】 先化简分解出矩阵B ,再计算行列式B 或者将已知等式变形成含有因子B 的矩阵乘积形式,而其余因子的行列式都可以求出即可.【详解】方法1:由E B A B A =--2,知E A B E A +=-)(2,即E A B E A E A +=-+))((,易知矩阵A E +可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为2002010100=-=-E A , 所以=B 21.方法2:由E B A B A =--2,得E A B E A E A +=-+))((等式两端取行列式且利用矩阵乘积的行列式=行列式的乘积,得A E A EB A E +-=+约去0A E +≠,得 112B A E ==+.二、选择题 (1)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(2)【答案】()B【详解】dx x xa n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+ (第一类换元法) =3121(1)n n n x n++321111nn n n n ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭可见 n n na ∞→lim =32lim 111n n n n →∞⎡⎤⎛⎫⎛⎫⎢⎥=+- ⎪ ⎪⎢⎥ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦=321(1)1lim 1(1)11n n n n n -+-+→∞⎡⎤⎛⎫⎢⎥-⎧⎫ ⎪++-⎢⎥⎨⎬ ⎪+⎩⎭⎢⎥⎝⎭⎢⎥⎣⎦(凑重要极限形式) 312(1)1e -=+- (重要极限)所以选项()B 正确(3)【答案】()A 【详解】将x x y ln =代入微分方程y x y x y ϕ⎛⎫'=+ ⎪⎝⎭,其中2ln 1ln x y x -'=,得: )(ln ln 1ln 1ln 2x x xx ϕ+=-,即 21(l n )ln x x ϕ=- 令ln x u =,有21)(u u -=ϕ,以xu y =代入,得 )(y xϕ=.22xy - 故选项()A 正确.(4) 【答案】()C【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定.【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧 导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(5)【答案】()B【详解】令()tan x x x ϕ=-,有2(0)0,()s e c 10,0,4x x x πϕϕ⎛⎫'==-> ∈⎪⎝⎭,所以当0,4x π⎛⎫∈ ⎪⎝⎭时()x ϕ单调递增,则()0x ϕ>,即tan 0x x >>,tan 1x x >,<1tan x x ,由定积分的不等式性质知,44412000tan 14tan x xI dx dx dx I x x ππππ=>=>=⎰⎰⎰可见有 21I I >且42π<I .(6)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).三【详解】函数()f x 在0x =处连续,则要求函数()f x 在0x =处既是左连续又是右连续,即(0)(0)(0).f f f +-==300ln(1)(0)lim ()lim arcsin x x ax f f x x x ---→→+==-30lim arcsin x ax x x-→=-(由于ln(1)(0)x x x +→,所以33ln(1)ax ax +(0)x →)23lim 11x ax -→= (型极限,用洛必达法则)2lim lim x x --→→= (极限的四则运算) =2023lim 12x ax x -→- (1222211(1)1()(0)22x x x x ---=-→)6a =-2001(0)lim ()lim sin4ax x x e x ax f f x x x +++→→+--==2201lim 4ax x e x ax x +→+--= 22014lim ax x e x ax x +→+--=024lim 2ax x ae x ax +→+-= 220024lim 2lim (2)2ax ax x x a e a e ++→→+=+=224a =+ (0) 6.f =所以,0x =为()f x 的连续点⇔(0)(0)f f +-=⇔26624a a -==+,得1-=a ; 所以,0x =为()f x 的可去间断点⇔26246a a -=+≠,即22640,1a a a ++=≠-但 解得2-=a ,此时()f x 在0x =为可去间断点.四【分析】(i)变上限积分求导公式:()()()()()()()()u x v x df t dt f u u x f v v x dx''=-⎰;(ii)参数方程()()x t y t ϕψ=⎧⎨=⎩的一阶导数:1()()dy dy dt dy t dx dx dt dx dt t dtψϕ'=⋅=⋅='; (iii)若()x t ϕ=,()y t ψ=二阶可导,函数的二阶导数公式:2223()()()()()()1()()()()()()()d y d dy d t dtdx dx dx dt t dxt t t t t t t t t t t ψϕψϕψϕψϕψϕϕϕϕ'⎛⎫⎛⎫==⋅ ⎪ ⎪'⎝⎭⎝⎭''''''''''''--=⋅='''【详解】设2()12x t t ϕ==+,12ln 1()ute y t du uψ+==⎰,则 ()4dxt t dtϕ'==;12ln 2222()12ln 12ln 12ln t dy e e t et t dt t t t t t ψ+⋅'==⋅=⋅=+++; 所以 212ln 42(12ln )etdy et dx t t +==+ 所以 2222214()11()2(12ln )44(12ln )44(12ln )e d y d dy d t dt e e t dx dx dx dt t dx t t t t t t ψϕ-''⎛⎫⎛⎫⎛⎫==⋅=⋅=⋅=- ⎪ ⎪ ⎪'+++⎝⎭⎝⎭⎝⎭ 当9x =时,由221t x +=及1t >得2t =, 故2222229.4(12ln )16(12ln 2)t x d y eedx t t ===-=-++五【详解】方法1:第二类换元法. 由于被积函数中含有根号21x +,作积分变量变换tan ()22x t x ππ=-<<,那么3232(1)sec x t +=,2sec dx tdt =,则dx x xe x⎰+232arctan )1(=2322tan sec (1tan )t e ttdt t +⎰23tan sec sec t e ttdt t =⎰ 三角变换公式 tan sec tte dt t=⎰=.sin tdt e t ⎰又t d e tdt e t tcos sin ⎰⎰-==)cos cos (tdt e t e tt⎰-- 分部积分 (c o s (s i n t t e t e dt =--⎰(c o s s i n s i nt t te t e t et d t =--+⎰ 分部积分 =tdt e t e t e tttsin sin cos ⎰-+-,故.)cos (sin 21sin C t t e tdt e tt+-=⎰由tan ()22x t x ππ=-<<得arctan t x =,因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C x e x x++-方法2:分部积分法dx x xe x ⎰+232arctan )1(=x de xx arctan 21⎰+arctan arctan ()x xd e e ==dx x e xxe x x ⎰+-+232arctan 2arctan )1(1 分部积分=x x de xxxe arctan 22arctan 111⎰+-+a r c t a n a ()x x d e e=arctan arctan arctan 322122(1)xxx x e dx x ⎛⎫-⋅ ⎪=-⎪+⎪⎭⎰ 分部积分 =dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得;dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-六【详解】 (1) 将题中的dy dx 与22d x dy 变换成以x 为自变量y 为因变量的导数dx dy 与22d ydx 来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dydx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .s i nx y y =-'' ( * ) (2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21xxe C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为.sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.七【详解】讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数等价于讨论方程4()ln 4ln 4x x x x k ϕ=-+-在区间(0,)+∞内的零点问题,为此对函数求导,得334ln 44()4(ln 1).x x x x x x xϕ'=-+=-+可以看出1x =是)(x ϕ的驻点,而且当10<<x 时,3ln 0x <,则3l n 10x x -+<,而40x>,有()0x ϕ'<,即)(x ϕ单调减少;当1x >时,3ln 0x >,则3ln 10x x -+>,而40x>,有()0x ϕ'>,即)(x ϕ单调增加,故k -=4)1(ϕ为函数)(x ϕ的惟一极小值即最小值.① 当(1)40k ϕ=->,即当4k <时,()(1)0x ϕϕ≥>,)(x ϕ无零点,两曲线没有交点; ② 当(1)40k ϕ=-=,即当4k =时,()(1)0x ϕϕ≥=,)(x ϕ有且仅有一个零点,即两曲线仅有一个交点;③ 当(1)40k ϕ=-<,即当4k >时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 30k x x x x x x ϕ;+∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ由连续函数的介值定理,在区间(0,1)与),1(+∞内各至少有一个零点,又因)(x ϕ在区间(0,1)与),1(+∞内分别是严格单调的,故)(x ϕ分别各至多有一个零点. 总之,)(x ϕ有两个零点. 综上所述,当4k <时,两曲线没有交点;当4k =时,两曲线仅有一个交点;当4k >时,两曲线有两个交点.八【详解】(1) 曲线()y f x =在点(,)P x y 处的法线方程为)(1x X yy Y -'-=- 令0X =,则它与y 轴的交点为).,0(y xy '+ 由题意,此点与点(,)P x y 所连的线段被x 轴平分,由中点公式得0)(21='++y xy y ,即.02=+xdx ydy 积分得222x y C +=(C 为任意常数),代入初始条件2122==x y 得12C =,故曲线()y f x =的方程为22122x y +=,即.1222=+y x (2) 曲线sin y x =在[0,]π上的弧长为22022.x tl ππππ=+-====⎰⎰⎰弧长公式另一方面,将(1)中所求得的曲线()y f x =写成参数形式,在第一象限中考虑,于是⎪⎩⎪⎨⎧==,sin 22,cos t y t x .20π≤≤t 于是该曲线的弧长为:s ===2)t udu π=-=-= 所以12l =,即4s =.九【详解】(1) 设在t 时刻,液面的高度为y ,此时液面的面积为2()()A t y πϕ=圆的面积公式,由题设:液面的面积将以min /2m π的速率均匀扩大,可得2()()dA t d y dt dt πϕπ==,即2()1dy dtϕ= 所以2()y t C ϕ=+, 由题意,当0t =时()2y ϕ=,代入求得4C =,于是得2() 4.y t ϕ=+从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为20()()yV t u du πϕ=⎰,由题设:以min /33m 的速率向容器内注入液体,得()20()()3y dV t du du dt dtπϕ==⎰所以 220()33()12.yu du t y πϕϕ==-⎰上式两边对y 求导,得2()6()()y y y πϕϕϕ'=变限积分求导,即()()6d y y dy ϕπϕ= 解此微分方程,得yCey 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知2C =, 故所求曲线方程为.26yex π=十【详解】(1) 因为极限ax a x f ax --+→)2(lim 存在,且lim()0x a x a +→-=,故lim (2)0x a f x a +→-=又()f x 在[,]a b 上连续,从而lim (2)()x af x a f a +→-=,则()0f a =. 由于0)(>'x f ,则()f x 在(,)a b 内严格单调增加,所以()f x 在x a =处取最小值,即).,(,0)()(b a x a f x f ∈=>(2) 由要证明的形式知,要用柯西中值定理证明.取2()F x x =,()()xag x f t dt =⎰()a x b ≤≤,则0)()(>='x f x g ,则)(),(x g x F 满足柯西中值定理的条件,于是在(,)a b 内存在点ξ,使222()()()2()()()()()(())baxaaa x Fb F a b a x g b g a f f t dt f t dtf t dt ξξξ='--===-'-⎰⎰⎰即)(2)(22ξξf dxx f a b ba=-⎰. (3) 在区间],[ξa 上应用拉格朗日中值定理,得在),(ξa 内存在一点η,使()()()()f f a f a ξηξ'-=-因()0f a =,上式即))(()(a f f -'=ξηξ,代入(2) 的结论得,))((2)(22a f dxx f a b ba-'=-⎰ξηξ即 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη十一【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a . 至于求P ,则是常识问题.【详解】矩阵A 的特征多项式为]16)2)[(6(628222---=------=-λλλλλλa A E =)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r42021068400000000E A a a --⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以0a =.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E ,解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bc a b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b c a c a b c a b -=++-=-++- 16()6()c b a ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++---2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 所以||0B =.而232323232323a b c a bcB bc a bc a A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a “充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb b a ++-=-==222[()]0a b a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2003年全国硕士研究生入学统一考试数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若时, 与是等价无穷小,则a= .(2) 设函数y=f(x)由方程所确定,则曲线y=f(x)在点(1,1)处的切线方程是 . (3) 的麦克劳林公式中项的系数是__________. (4) 设曲线的极坐标方程为 ,则该曲线上相应于从0变到的一段弧与极轴所围成的图形的面积为__________.(5) 设为3维列向量,是的转置. 若,则= .(6) 设三阶方阵A,B 满足,其中E 为三阶单位矩阵,若,则________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设均为非负数列,且,,,则必有(A) 对任意n 成立. (B) 对任意n 成立.(C) 极限不存在. (D) 极限不存在. [ ](2)设, 则极限等于 (A) . (B) .(C) . (D) . [ ](3)已知是微分方程的解,则的表达式为 (A ) (B)0→x 1)1(412--ax x x sin 4ln 2y x xy =+xy 2=nx )0(>=a e a θρθπ2αTαα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T ααααT E B A B A =--2⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A B =}{},{},{n n n c b a 0lim =∞→n n a 1lim =∞→n n b ∞=∞→n n c lim n n b a <n n c b <n n n c a ∞→lim n n n c b ∞→lim dx x xa n n nn n +=⎰+-123101n n na ∞→lim 1)1(23++e 1)1(231-+-e 1)1(231++-e 1)1(23-+e x x y ln =)(yxx y y ϕ+=')(y x ϕ.2y -.2y(C) (D) [ ](4)设函数f(x)在内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)设则(A) (B)(C) (D) [ ] (6)设向量组I :可由向量组II :线性表示,则 (A) 当时,向量组II 必线性相关. (B) 当时,向量组II 必线性相关.(C) 当时,向量组I 必线性相关. (D) 当时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?.22yx -.22y x ),(+∞-∞01x dx x02tan .121>>I I .121I I >>.112>>I I .112I I >>r ααα,,,21Λs βββ,,,21Λs r <s r >s r <s r >,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax四 、(本题满分9分)设函数y=y(x)由参数方程所确定,求五 、(本题满分9分)计算不定积分六 、(本题满分12分)设函数y=y(x)在内具有二阶导数,且是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件的解.)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u.922=x dx y d .)1(232arctan dx x xe x ⎰+),(+∞-∞)(,0y x x y =≠'0))(sin (322=++dy dxx y dyx d 23)0(,0)0(='=y y七 、(本题满分12分)讨论曲线与的交点个数.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在上的弧长为,试用表示曲线y=f(x)的弧长s.九 、(本题满分10分)有一平底容器,其内侧壁是由曲线绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以的速率向容器内注入液体时,液面的面积将以的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与之间的关系式;(2) 求曲线的方程.(注:m 表示长度单位米,min 表示时间单位分.) k x y +=ln 4x x y 4ln 4+=)21,22(],0[πl l )0)((≥=y y x ϕmin /33m min /2m π)(y ϕ)(y x ϕ=十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 若极限存在,证明:(1) 在(a,b)内f(x)>0; (2)在(a,b)内存在点,使; (3) 在(a,b) 内存在与(2)中相异的点,使十 一、(本题满分10分)若矩阵相似于对角阵,试确定常数a 的值;并求可逆矩阵P 使十二 、(本题满分8分)已知平面上三条不同直线的方程分别为, , . 试证这三条直线交于一点的充分必要条件为.0)(>'x f ax a x f ax --+→)2(lim ξ)(2)(22ξξf dxx f a b ba=-⎰ξη⎰-=-'ba dx x f aa b f .)(2))((22ξξη⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A Λ.1Λ=-AP P :1l 032=++c by ax :2l 032=++a cy bx :3l 032=++b ay cx .0=++c b a2004年全国硕士研究生入学统一考试数学二真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设, 则的间断点为 .(2)设函数由参数方程 确定, 则曲线向上凸的取值范围为____..(3)_____.. (4)设函数由方程确定, 则______. (5)微分方程满足的特解为_______.(6)设矩阵 , 矩阵满足 , 其中为的伴随矩阵, 是单位矩阵, 则______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把时的无穷小量, , 排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ) (B )(C ) (D )(8)设, 则(A )是的极值点, 但不是曲线的拐点. (B )不是的极值点, 但是曲线的拐点. (C )是的极值点, 且是曲线的拐点. (D )不是的极值点, 也不是曲线的拐点.(9)等于(A ). (B ).(C ). (D )(10)设函数连续, 且, 则存在, 使得(A )在内单调增加. (B )在内单调减小. (C )对任意的有.(D )对任意的有.(11)微分方程的特解形式可设为2(1)()lim1n n xf x nx →∞-=+()f x x =()y x 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩()y y x =x 1+∞=⎰(,)z z x y =232x zz ey -=+3z z x y∂∂+=∂∂3()20y x dx xdy +-=165x y ==210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭B 2ABA BA E **=+A *A E B =0x +→2cos xt dt α=⎰20tan x β=⎰30t dt γ=⎰,,.αβγ,,.αγβ,,.βαγ,,.βγα[]()(1)f x x x =-0x =()f x (0,0)()y f x =0x =()f x (0,0)()y f x =0x =()f x (0,0)()y f x =0x =()f x (0,0)()y f x =[]lim n →∞221ln xdx ⎰212ln xdx ⎰212ln(1)x dx +⎰221ln(1)x dx +⎰[]()f x (0)0f '>0δ>()f x (0,)δ()f x (,0)δ-(0,)x δ∈()(0)f x f >(,0)x δ∈-()(0)f x f >[]21sin y y x x ''+=++(B ). (C ).(D )(12)设函数连续, 区域, 则等于(A ). (B ).(C ).(D )(13)设是3阶方阵, 将的第1列与第2列交换得, 再把的第2列加到第3列得, 则满足的可逆矩阵为(A ). (B ).(C ). (D ).(14)设,为满足的任意两个非零矩阵, 则必有(A )的列向量组线性相关,的行向量组线性相关. (B )的列向量组线性相关,的列向量组线性相关. (C )的行向量组线性相关,的行向量组线性相关.(D )的行向量组线性相关,的列向量组线性相关.三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限.(16)(本题满分10分)设函数在()上有定义, 在区间上, , 若对任意的都满足, 其中为常数.(Ⅰ)写出在上的表达式; (Ⅱ)问为何值时, 在处可导.2(sin cos )y x ax bx c A x B x *=++++2sin y ax bx c A x *=+++2cos y ax bx c A x *=+++[]()f u {}22(,)2D x y x y y =+≤()Df xy dxdy⎰⎰11()dx f xy dy -⎰⎰2002()dy f xy dx ⎰⎰2sin 200(sin cos )d f r dr πθθθθ⎰⎰2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[]A A B B C AQ C =Q 010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭011100001⎛⎫ ⎪⎪ ⎪⎝⎭[]A B 0AB =A B A B A B A B []3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()f x ,-∞+∞[0,2]2()(4)f x x x =-x ()(2)f x k f x =+k ()f x [2,0]-k ()f x 0x =(17)(本题满分11分) 设,(Ⅰ)证明是以为周期的周期函数;(Ⅱ)求的值域.(18)(本题满分12分)曲线与直线及围成一曲边梯形. 该曲边梯形绕轴旋转一周得一旋转体,其体积为, 侧面积为, 在处的底面积为.(Ⅰ)求的值; (Ⅱ)计算极限.(19)(本题满分12分)设, 证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为的飞机,着陆时的水平速度为.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).问从着陆点算起,飞机滑行的最长距离是多少?注 表示千克,表示千米/小时. 2()sin x xf x t dt π+=⎰()f x π()f x 2x x e e y -+=0,(0)x x t t ==>0y =x ()V t ()S t x t =()F t ()()S t V t ()lim ()t S t F t →+∞2e a b e <<<2224ln ln ()b a b a e->-9000kg 700/km h 66.010k =⨯kg /km h(21)(本题满分10分)设,其中具有连续二阶偏导数,求.(22)(本题满分9分) 设有齐次线性方程组试问取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵的特征方程有一个二重根, 求的值, 并讨论是否可相似对角化.22(,)xyz f x y e =-f 2,,z z z x y x y∂∂∂∂∂∂∂1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩a 12314315a -⎛⎫⎪-- ⎪ ⎪⎝⎭a A2005年全国硕士研究生入学统一考试数学二试题二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy= .(2)曲线xx y 23)1(+=的斜渐近线方程为 .(3)=--⎰1221)2(xxxdx.(4)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为 .(5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= . (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数n n n xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A)32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ](A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D)222xu y x u ∂∂=∂∂∂. [ ] (12)设函数,11)(1-=-x xex f 则(A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则 [ ](A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2006年全国硕士研究生入学统一考试数学二试题三、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)曲线 的水平渐近线方程为(2)设函数在处连续,则 .(3)广义积分.(4)微分方程的通解是(5)设函数由方程确定,则(6)设矩阵,为2阶单位矩阵,矩阵满足,则=B .二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数具有二阶导数,且,为自变量在点处的增量,分别为在点处对应的增量与微分,若,则[ ](A) . (B) .(C) . (D) .(8)设是奇函数,除外处处连续,是其第一类间断点,则是(A )连续的奇函数. (B )连续的偶函数(C )在间断的奇函数(D )在间断的偶函数. [ ](9)设函数可微,,则等于(A ). (B ) (C )(D )[ ](10)函数满足的一个微分方程是(A ) (B )(C )(D ) [ ](11)设为连续函数,则等于(A). (B ).(C). (D). [ ](12)设均为可微函数,且,已知是在约束条件下的一个极值点,下列选项正确的是 [ ](A) 若,则.4sin 52cos x xy x x+=-2301sin d ,0(),0x t t x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 0x =a =220d (1)x xx +∞=+⎰(1)y x y x-'=()y y x =1e yy x =-0d d x y x==2112A ⎛⎫= ⎪-⎝⎭E B 2BA B E =+()y f x =()0,()0f x f x '''>>x ∆x 0x d y y ∆与()f x 0x 0x ∆>0d y y <<∆0d y y <∆<d 0y y ∆<<d 0y y <∆<()f x 0x =0x =0()d x f t t ⎰0x =0x =()g x 1()()e ,(1)1,(1)2g x h x h g +''===(1)g ln31-ln3 1.--ln 2 1.--ln 2 1.-212e e e x x xy C C x -=++23e .xy y y x '''--=23e .xy y y '''--=23e .xy y y x '''+-=23e .xy y y '''+-=(,)f x y 140d (cos ,sin )d f r r r r πθθθ⎰⎰0(,)d x x f x y y(,)d x f x y y(,)d yy f x y x(,)d y f x y x (,)(,)f x y x y ϕ与(,)0y x y ϕ'≠00(,)x y (,)f x y (,)0x y ϕ=00(,)0x f x y '=00(,)0y f x y '=(B) 若,则. (C) 若,则.(D) 若,则. (13)设均为维列向量,为矩阵,下列选项正确的是 [ ](B) 若线性相关,则线性相关. (C) 若线性相关,则线性无关. (C) 若线性无关,则线性相关.(D) 若线性无关,则线性无关.(14)设为3阶矩阵,将的第2行加到第1行得,再将的第1列的倍加到第2列得,记,则(A). (B).(C). (D). [ ] 三 、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)试确定的值,使得,其中是当时比高阶的无穷小.(16)(本题满分10分)求 .(17)(本题满分10分)设区域, 计算二重积分00(,)0x f x y '=00(,)0y f x y '≠00(,)0x f x y '≠00(,)0y f x y '=00(,)0x f x y '≠00(,)0y f x y '≠12,,,s αααL n A m n ⨯12,,,s αααL 12,,,s A A A αααL 12,,,s αααL 12,,,s A A A αααL 12,,,s αααL 12,,,s A A A αααL 12,,,s αααL 12,,,s A A A αααL A A B B 1-C 110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭1C P AP -=1C PAP -=T C P AP =TC PAP =,,A B C 23e (1)1()xBx Cx Ax o x ++=++3()o x 0x →3x arcsin e d e xxx ⎰{}22(,)1,0D x y x y x =+≤≥221d d .1Dxyx y x y +++⎰⎰(18)(本题满分12分)设数列满足(Ⅰ)证明存在,并求该极限;(Ⅰ)计算.(19)(本题满分10分) 证明:当时,.(20)(本题满分12分)设函数在内具有二阶导数,且满足等式.(I )验证; (II )若,求函数的表达式.{}n x 110,sin (1,2,)n n x x x n π+<<==L lim n n x →∞211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭0a b π<<<sin 2cos sin 2cos b b b b a a a a ππ++>++()f u (0,)+∞z f =22220z zx y∂∂+=∂∂()()0f u f u u'''+=(1)0,(1)1f f '==()f u(21)(本题满分12分)已知曲线L 的方程(I )讨论L 的凹凸性;(II )过点引L 的切线,求切点,并写出切线的方程;(III )求此切线与L (对应于的部分)及x 轴所围成的平面图形的面积.(22)(本题满分9分)已知非齐次线性方程组有3个线性无关的解.(Ⅰ)证明方程组系数矩阵的秩;(Ⅰ)求的值及方程组的通解.(23)(本题满分9分)设3阶实对称矩阵的各行元素之和均为3,向量是线性方程组的两个解.(Ⅰ) 求的特征值与特征向量;(Ⅰ) 求正交矩阵和对角矩阵,使得.221,(0)4x t t y t t⎧=+≥⎨=-⎩(1,0)-00(,)x y 0x x ≤1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩A ()2r A =,a b A ()()T T121,2,1,0,1,1αα=--=-0Ax =A Q ΛTQ AQ =Λ2007年全国硕士研究生入学统一考试数学二试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当(A)(B)(C(D)[ ](2)函数在上的第一类间断点是[ ](A)0 (B)1 (C)(D)(3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是:(A)(B)(C)(D)[ ](4)设函数在处连续,下列命题错误的是:(A)若存在,则(B)若存在,则.(C)若存在,则(D)若存在,则.[ ](5)曲线的渐近线的条数为(A)0. (B)1. (C)2. (D)3. [ ](6)设函数在上具有二阶导数,且,令,则下列结论正确的是:(A) 若,则必收敛. (B) 若,则必发散(C) 若,则必收敛. (D) 若,则必发散. [ ](7)二元函数在点处可微的一个充要条件是[ ](A).(B).x+→1-ln11-1(e e)tan()e exxxf xx+=⎛⎫-⎪⎝⎭[],ππ-x=2π-2π()y f x=[][]3,2,2,3--[][]2,0,0,2-()()dxF x f t t=⎰3(3)(2)4F F=--5(3)(2)4F F=3(3)(2)4F F=5(3)(2)4F F=--()f x0x=()limxf xx→(0)0f=()()limxf x f xx→+-(0)0f=()limxf xx→(0)0f'=()()limxf x f xx→--(0)0f'=()1ln1e xyx=++()f x(0,)+∞()0f x''>()nu f n=12u u>{}n u12u u>{}n u12u u<{}n u12u u<{}n u(,)f x y()0,0()[](,)0,0lim(,)(0,0)0x yf x y f→-=00(,0)(0,0)(0,)(0,0)lim0,lim0x yf x f f y fx y→→--==且(C ).(D ).(8)设函数连续,则二次积分等于(A ) (B ) (C )(D )(9)设向量组线性无关,则下列向量组线性相关的是 线性相关,则(A)(B)(C) .(D) . [ ](10)设矩阵,则与(A) 合同且相似 (B )合同,但不相似.(C) 不合同,但相似. (D) 既不合同也不相似 [ ] 二、填空题:11~16小题,每小题4分,共24分. 把答案填在题中横线上.(11) __________. (12)曲线上对应于的点处的法线斜率为_________.(13)设函数,则________.(14) 二阶常系数非齐次微分方程的通解为________.(15) 设是二元可微函数,,则 __________.(16)设矩阵,则的秩为 .三、解答题:17~24小题,共86分. 解答应写出文字说明、证明过程或演算步骤.(17) (本题满分10分)设是区间上单调、可导的函数,且满足,其中是的反函数,求.((,)0,0lim 0x y →=00lim (,0)(0,0)0,lim (0,)(0,0)0x x y y x y f x f f y f →→⎡⎤⎡⎤''''-=-=⎣⎦⎣⎦且(,)f x y 1sin 2d (,)d xx f x y y ππ⎰⎰10arcsin d (,)d y y f x y x ππ+⎰⎰10arcsin d (,)d y y f x y x ππ-⎰⎰1arcsin 02d (,)d yy f x y x ππ+⎰⎰1arcsin 02d (,)d yy f x y x ππ-⎰⎰123,,ααα122331,,αααααα---122331,,αααααα+++1223312,2,2αααααα---1223312,2,2αααααα+++211100121,010112000A B --⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B 30arctan sin limx x xx→-=2cos cos 1sin x t t y t⎧=+⎨=+⎩4t π=123y x =+()(0)n y =2432e xy y y '''-+=y =(,)f u v ,y x z f x y ⎛⎫=⎪⎝⎭z zx y x y ∂∂-=∂∂01000010********A ⎛⎫⎪⎪= ⎪⎪⎝⎭3A ()f x 0,4π⎡⎤⎢⎥⎣⎦()100cos sin ()d d sin cos f x x t t f t t t t t t --=+⎰⎰1f -f ()f x(18)(本题满分11分) 设是位于曲线下方、轴上方的无界区域. (Ⅰ)求区域绕轴旋转一周所成旋转体的体积;(Ⅰ)当为何值时,最小?并求此最小值.(19)(本题满分10分)求微分方程满足初始条件的特解.(20)(本题满分11分)已知函数具有二阶导数,且,函数由方程所确定,设,求.(21) (本题满分11分)设函数在上连续,在内具有二阶导数且存在相等的最大值,,证明:存在,使得.D 2(1,0)xay a x -=>≤<+∞x D x ()V a a ()V a 2()y x y y ''''+=(1)(1)1y y '==()f u (0)1f '=()y y x =1e1y y x --=()ln sin z f y x =-2002d d ,d d x x z z xx ==(),()f x g x [],a b (,)a b ()(),()()f a g a f b g b ==(,)a b ξ∈()()f g ξξ''''=(22) (本题满分11分) 设二元函数,计算二重积分,其中.(23) (本题满分11分)设线性方程组与方程有公共解,求的值及所有公共解.(24) (本题满分11分)设三阶对称矩阵的特征向量值,是的属于的一个特征向量,记,其中为3阶单位矩阵.(I )验证是矩阵的特征向量,并求的全部特征值与特征向量; (II )求矩阵.2,||||1(,)1||||2x x y f x y x y ⎧+≤⎪=<+≤D (,)d f x y σ⎰⎰(){},||||2D x y x y =+≤123123212302040x x x x x ax x x a x ⎧++=⎪++=⎨⎪++=⎩12321x x x a ++=-a A 1231,2,2λλλ===-T1(1,1,1)α=-A 1λ534B A A E =-+E 1αB B B2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设,则的零点个数为( )0 1. 2 3(2)曲线方程为函数在区间上有连续导数,则定积分( )曲边梯形ABOD 面积.梯形ABOD 面积.曲边三角形面积.三角形面积.(3)在下列微分方程中,以(为任意常数)为通解的是( )(5)设函数在内单调有界,为数列,下列命题正确的是( )若收敛,则收敛. 若单调,则收敛. 若收敛,则收敛.若单调,则收敛.(6)设函数连续,若,其中区域为图中阴影部分,则(7)设为阶非零矩阵,为阶单位矩阵. 若,则( )不可逆,不可逆. 不可逆,可逆. 可逆,可逆.可逆,不可逆.2()(1)(2)f x x x x =--'()f x ()A ()B ()C ()D ()y f x =[0,]a 0()ataf x dx ⎰()A ()B ()C ACD ()D ACD 123cos 2sin 2xy C e C x C x =++123,,C C C ()A ''''''440y y y y +--=()B ''''''440y y y y +++=()C ''''''440y y y y --+=()D ''''''440y y y y -+-=()f x (,)-∞+∞{}n x ()A {}n x {}()n f x ()B {}n x {}()n f x ()C {}()n f x {}n x ()D {}()n f x {}n x f 2222(,)uvD F u v dxdy x y =+⎰⎰uv D Fu∂=∂()A 2()vf u ()B 2()vf u u ()C ()vf u ()D ()vf u uA n E n 30A =()A E A -E A +()B E A -E A +()C E A -E A +()D E A -E A +(8)设,则在实数域上与合同的矩阵为( ) ....二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数连续,且,则.(10)微分方程的通解是.(11)曲线在点处的切线方程为. (12)曲线的拐点坐标为______. (13)设,则.(14)设3阶矩阵的特征值为.若行列式,则.三、解答题:15-23题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限.(16)(本题满分10分)设函数由参数方程确定,其中是初值问题的解.求.1221A ⎛⎫=⎪⎝⎭A ()A 2112-⎛⎫⎪-⎝⎭()B 2112-⎛⎫⎪-⎝⎭()C 2112⎛⎫ ⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭()f x 21cos[()]lim1(1)()x x xf x e f x →-=-(0)____f =2()0xy x e dx xdy -+-=____y =()()sin ln xy y x x +-=()0,1 23(5)y x x =-xyy z x ⎛⎫=⎪⎝⎭(1,2)____z x ∂=∂A 2,3,λ248A =-___λ=()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦()y y x =20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰()x t 0200x t dx te dt x --⎧-=⎪⎨⎪=⎩22y x ∂∂(17)(本题满分9分)求积分 .(18)(本题满分11分)求二重积分其中(19)(本题满分11分)设是区间上具有连续导数的单调增加函数,且.对任意的,直线,曲线以及轴所围成的曲边梯形绕轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数的表达式.(20)(本题满分11分)(1) 证明积分中值定理:若函数在闭区间上连续,则至少存在一点,使得(2)若函数具有二阶导数,且满足,证明至少存在一点1⎰max(,1),Dxy dxdy ⎰⎰{(,)02,02}D x y x y =≤≤≤≤()f x [)0,+∞(0)1f =[)0,t ∈+∞0,x x t ==()y f x =x x ()f x ()f x [,]a b [,]a b η∈()()()baf x dx f b a η=-⎰()x ϕ32(2)(1),(2)()x dx ϕϕϕϕ>>⎰(1,3),()0ξϕξ''∈<使得(21)(本题满分11分)求函数在约束条件和下的最大值与最小值.(22)(本题满分12分) 设矩阵,现矩阵满足方程,其中,,(1)求证;(2)为何值,方程组有唯一解,并求; (3)为何值,方程组有无穷多解,并求通解.(23)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足, (1)证明线性无关; (2)令,求.222u x y z =++22z x y =+4x y z ++=2221212n na a a A a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭O O O A AX B =()1,,Tn X x x =L ()1,0,,0B =L ()1nA n a =+a 1x a A 12,ααA 1,1-3α323A ααα=+123,,ααα()123,,P ααα=1P AP -2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数,则()1. 2. 3.无穷多个.(2)当时,与()()2ln1g x x bx=-是等价无穷小,则().. ..(3)设函数的全微分为,则点()不是的连续点.不是的极值点.是的极大值点. 是的极小值点.(4)设函数连续,则(). ()B()241,xxdx f x y dy-⎰⎰.()C()2411,ydy f x y dx-⎰⎰.()D.()221,ydy f x y dx⎰⎰(5)若()f x''不变号,且曲线()y f x=在点()1,1上的曲率圆为222x y+=,则()f x在区间()1,2内()()A有极值点,无零点.()B无极值点,有零点.()C有极值点,有零点.()D无极值点,无零点.(6)设函数()y f x=在区间上的图形为:则函数的图形为()()3sinx xf xnx-=()A()B()C()Dx→()sinf x x ax=-()A11,6a b==-()B11,6a b==()C11,6a b=-=-()D11,6a b=-=(),z f x y=dz xdx ydy=+()0,0()A(),f x y()B(),f x y()C(),f x y()D(),f x y(),f x y()()222411,,yx ydx f x y dy dy f x y dx-+=⎰⎰⎰⎰()A()2411,xdx f x y dy-⎰⎰[]1,3-()()xF x f t dt=⎰1-223-1O....(7)设A 、B 均为2阶矩阵,**A B ,分别为A 、B 的伴随矩阵。