窗函数法设计FIR数字滤波器
fir滤波器的设计方法
fir滤波器的设计方法一、引言二、基本概念1.数字信号2.离散时间信号3.FIR滤波器三、FIR滤波器的设计方法1.窗函数法(1)矩形窗函数法(2)汉宁窗函数法(3)汉明窗函数法(4)布莱克曼窗函数法2.最小二乘法3.频率抽样法四、FIR滤波器设计实例五、总结一、引言数字信号处理在现代通信技术中得到了广泛的应用,其中滤波器是数字信号处理的重要组成部分。
FIR滤波器是一种常用的数字滤波器,具有无限冲击响应和线性相位特性。
本文将介绍FIR滤波器的基本概念和设计方法,并给出一个实例。
二、基本概念1.数字信号数字信号是在时间轴上取样后离散化的模拟信号。
在计算机中,数字信号由一系列离散的数值表示。
2.离散时间信号离散时间信号是以时间为自变量且取值为离散值的函数。
通常使用序列表示,如x(n)。
3.FIR滤波器FIR滤波器是一种数字滤波器,其系统函数是有限长冲击响应的线性时不变系统。
FIR滤波器的输出只与当前和过去的输入有关,与未来的输入无关。
FIR滤波器具有无限冲击响应和线性相位特性。
三、FIR滤波器的设计方法1.窗函数法窗函数法是一种常用的FIR滤波器设计方法。
它通过在频域上对理想低通滤波器进行截止频率处理得到所需的频率响应,并使用窗函数将其转换为时域上的序列。
(1)矩形窗函数法矩形窗函数法是最简单的FIR滤波器设计方法。
它将理想低通滤波器在频域上乘以一个矩形窗函数,得到所需频率响应后再进行反变换得到时域上的系数序列。
(2)汉宁窗函数法汉宁窗函数法是一种常用的FIR滤波器设计方法。
它将理想低通滤波器在频域上乘以一个汉宁窗函数,得到所需频率响应后再进行反变换得到时域上的系数序列。
(3)汉明窗函数法汉明窗函数法是一种常用的FIR滤波器设计方法。
它将理想低通滤波器在频域上乘以一个汉明窗函数,得到所需频率响应后再进行反变换得到时域上的系数序列。
(4)布莱克曼窗函数法布莱克曼窗函数法是一种常用的FIR滤波器设计方法。
窗函数法设计FIR滤波器
FIR 数字滤波器的设计方法IIR 数字滤波器最大缺点:不易做成线性相位,而现代图像、语声、数据通信对线性相位的要求是普遍的。
正是此原因,使得具有线性相位的FIR 数字滤波器得到大力发展和广泛应用。
1. 线性相位FIR 数字滤波器的特点FIR DF 的系统函数无分母,为∑∑-=--=-==11)()(N n n N i ii z n h zb z H ,系统频率响应可写成:∑-=-=10)()(N n jwn jwe n h e H ,令)(jw e H =)()(w j e w H Φ,H(w)称为幅度函数,)(w Φ称为相位函数。
这与模和幅角的表示法有所不同,H(w)为可正可负的实数,这是为了表达上的方便。
如某系统频率响应)(jw e H =wj we34sin -,如果采用模和幅角的表示法,w 4sin 的变号相当于在相位上加上)1(ππj e =-因,从而造成相位曲线的不连贯和表达不方便,而用)()(w j e w H Φ这种方式则连贯而方便。
线性相位的FIR 滤波器是指其相位函数)(w Φ满足线性方程:)(w Φ=βα+-w (βα,是常数)根据群时延的定义,式中α表示系统群时延,β表示附加相移。
线性相位的FIR 系统都具有恒群时延特性,因为α为常数,但只有β=0的FIR 系统采具有恒相时延特性。
问题:并非所有的FIR 系统都是线性相位的,只有当它满足一定条件时才具有线性相位。
那么应满足什么样的条件?从例题入手。
例题:令h(n)为FIR 数字滤波器的单位抽样相应。
N n n ≥<或0时h(n)=0,并假设h(n)为实数。
(a ) 这个滤波器的频率响应可表示为)()()(w j jwew H e H Φ=(这是按幅度函数和相位函数来表示的,不是用模和相角的形式),)(w H 为实数。
(N 要分奇偶来讨论) (1) 当h(n)满足条件)1()(n N h n h --=时,求)(w H 和)(w Φ(π≤≤w 0) (2) 当h(n)满足条件)1()(n N h n h ---=时,求)(w H 和)(w Φ(π≤≤w 0)(b ) 用)(k H 表示h(n)的N 点DFT(1) 若h(n)满足)1()(n N h n h ---=,证明H(0)=0; (2) 若N 为偶数,证明当)1()(n N h n h --=时,H(N/2)=0。
(整理)FIR数字滤波器的(海明)窗函数法设计.
FIR数字滤波器的(海明)窗函数法设计1.课程设计目的(1)熟悉并掌握MATLAB中有关声音(wave)录制、播放、存储和读取的函数。
(2)加深对FIR数字滤波器设计的理解,并用窗函数法进行FIR数字滤波器的设计。
(3)将设计出来的FIR数字滤波器利用MATLAB进行仿真。
(4)对一段音频文件进行加入噪声处理,对带有噪声的文件进行滤波处理。
2.设计方案论证2.1 Matlab语言概述MATLAB是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。
随着版本的不断升级,内容不断扩充,功能更加强大,从而被广泛应用于仿真技术、自动控制和数字信号处理领域。
此高级语言可用于技术计算此开发环境可对代码、文件和数据进行管理交互式工具可以按迭代的方式探查、设计及求解问题数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数积分等二维和三维图形函数可用于可视化数据各种工具可用于构建自定义的图形用户界面各种函数可将基于MATLAB的算法与外部应用程序和语言(如C、C++、Fortran、Java、COM 以及Microsoft Excel)集成不支持大写输入,内核仅仅支持小写2.2声音处理语音是人类获取信息的重要来源和利用信息的重要手段。
语音信号处理是一门发展十分迅速,应用非常广泛的前沿交叉学科,同时又是一门跨学科的综合性应用研究领域和新兴技术。
声音是一种模拟信号,而计算机只能处理数字信息0和1。
因此,首先要把模拟的声音信号变成计算机能够识别和处理的数字信号,这个过程称为数字化,也叫“模数转换”。
在计算机对数字化后的声音信号处理完后,得到的依然是数字信号。
必须把数字声音信号转变成模拟声音信号,然后再图1 选择windows下的录音机”或是点击快捷按钮图5 加噪后语音信号和频谱图7 滤波器幅频特性与相频特性设计的滤波器是用单位采样响应h(n)表示的,可以利用带噪声语音图8滤波器系统函数。
数字信号实验(4) 用窗函数设计FIR滤波器
实验四用窗函数设计FIR滤波器一、实验目的1.熟悉FIR滤波器设计的基本方法。
2.掌握用窗函数设计FIR数字滤波器的原理及方法,熟悉相应的计算机高级语言编程。
3.熟悉线性相位FIR滤波器的幅频特性和相位特性。
4.了解各种不同窗函数对滤波器性能的响应。
二、实验原理与方法(一)FIR滤波器的设计目前FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。
常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。
本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求不高的时候是比较灵活方便的。
它是从时域出发,用一个窗函数截取理想的得到h(n),以有限长序列h(n)近似理想的;如果从频域出发,用理想的在单位圆上等角度取样得到H(k),根据h(k)得到H(z)将逼近理想的,这就是频率取样法。
(二)窗函数设计法同其它的数字滤波器的设计方法一样,用窗函数设计滤波器也是首先要对滤波器提出性能指标。
一般是给定一个理想的频率响应,使所设计的FIR滤波器的频率响应去逼近所要求的理想的滤波器的相应。
窗函数法设计的任务在于寻找一个可实现(有限长单位脉冲响应)的传递函数。
去逼近。
我们知道,一个理想的频率响应的傅理叶变换所得到的理想单位脉冲响应往往是一个无限长序列。
对经过适当的加权、截断处理才得到一个所需要的有限长脉冲响应序列。
对应不同的加权、截断,就有不同的窗函数。
所要寻找的滤波器脉冲响应就等于理想脉冲响应和窗函数的乘积。
即,由此可见,窗函数的性质就决定了滤波器的品质。
以下是几种常用的窗函数:1.矩形窗:2.Hanning窗:3.Hamming窗:4.Blackman窗:5.Kaiser窗:窗函数法设计线性相位FIR滤波器可以按如下步骤进行:1.确定数字滤波器的性能要求。
确定各临界频率{}和滤波器单位脉冲响应长度N。
2.根据性能要求和N值,合理地选择单位脉冲响应h(n)有奇偶对称性,从而确定理想频率响应的幅频特性和相位特性。
实验六用窗函数法设计FIR滤波器分析解析
实验六用窗函数法设计FIR滤波器分析解析一、引言数字滤波器是数字信号处理中的重要组成部分。
滤波器可以用于去除噪声、调整频率响应以及提取感兴趣的信号。
有许多方法可以设计数字滤波器,包括窗函数法、频域法和优化法等。
本实验将重点介绍窗函数法设计FIR滤波器的原理和过程。
二、窗函数法设计FIR滤波器窗函数法是设计FIR滤波器的一种常用方法。
其基本原理是将滤波器的频率响应与理想滤波器的频率响应进行乘积。
理想滤波器的频率响应通常为矩形函数,而窗函数则用于提取有限长度的理想滤波器的频率响应。
窗函数的选择在FIR滤波器的设计中起着重要的作用。
常用的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
对于每种窗函数,都有不同的特性和性能指标,如主瓣宽度、副瓣抑制比等。
根据不同的应用需求,可以选择合适的窗函数。
窗函数法设计FIR滤波器的具体步骤如下:1.确定滤波器的阶数N。
阶数N决定了滤波器的复杂度,一般情况下,阶数越低,滤波器的简单度越高,但频率响应的近似程度也会降低。
2.确定滤波器的截止频率。
根据应用需求,确定滤波器的截止频率,并选择合适的窗函数。
3.根据窗函数长度和截止频率计算理想滤波器的频率响应。
根据所选窗函数的特性,计算理想滤波器的频率响应。
4.根据理想滤波器的频率响应和窗函数的频率响应,得到所需的FIR滤波器的频率响应。
将理想滤波器的频率响应与窗函数的频率响应进行乘积,即可得到所需滤波器的频率响应。
5.对所得到的频率响应进行逆傅里叶变换,得到时域的滤波器系数。
6.实现滤波器。
利用所得到的滤波器系数,可以通过卷积运算实现滤波器。
三、实验结果与分析本实验以Matlab软件为平台,利用窗函数法设计了一个低通滤波器。
滤波器的阶数为16,截止频率为500Hz,采样频率为1000Hz,选择了汉宁窗。
根据上述步骤,计算得到了所需的滤波器的频率响应和时域的滤波器系数。
利用这些系数,通过卷积运算,实现了滤波器。
为了验证滤波器的性能,将滤波器应用于输入信号,观察输出信号的变化。
实验六 用窗函数法设计FIR数字滤波器
实验六 用窗函数法设计FIR 数字滤波器一,实验目的1.掌握窗函数法设计FIR 数字滤波器的原理及具体方法;2.深入理解吉布斯现象,理解不同窗函数的特点。
二,实验内容例6.1 利用fir1函数和矩形窗设计一个N=51,截止频率ωc =0.5π的低通滤波器,画出幅频特性。
MATLAB 程序: clearN=51;wc=0.5;h=fir1(50,wc,boxcar(N)) [H,W]=freqz(h,1) plot(W/pi,abs(H));title(‘矩形窗振幅特性/dB ’);xlabel(‘相对频率’);ylabel(‘H(w)’)00.10.20.30.40.50.60.70.80.910.20.40.60.811.21.4矩形窗振幅特性/dB相对频率H (w )例6.2 利用fir1函数和布莱克曼窗设计一个N=51,截止频率为1p ω=0.3π,2p ω=0.4π的带通滤波器。
MATLAB 程序:clearN=51;wc=[0.3,0.4];h=fir1(50,wc,'bandpass',blackman(N)) [H,W]=freqz(h,1) plot(W/pi,abs(H));title('布莱克曼窗带通振幅特性/dB'); xlabel('相对频率');ylabel('H(w)')0.10.20.30.40.50.60.70.80.9100.10.20.30.40.50.60.70.80.91布莱克曼窗带通振幅特性/dB相对频率H (w )6.3.1窗函数法设计低通数字滤波器,{πωπωπωω4.0||0,||4.0,02/)(≤≤≤<-=N j e j d eH(1)N=26,分别利用矩形窗,汉宁窗和布莱克曼窗设计该滤波器,且滤波器具有线性相位。
绘出脉冲响应()n h 及滤波器的频率响应; (2)增加N ,观察过渡带和最大肩峰值的变化。
用窗函数法设计FIR滤波器
用窗函数法设计FIR滤波器窗函数法是一种常用的数字滤波器设计方法,特别是FIR(Finite Impulse Response)滤波器设计的一种方法。
FIR滤波器是一种非递归滤波器,可以实现信号的滤波,特定频率的增强或抑制,抗混叠等功能。
FIR滤波器设计过程可以分为两个步骤:确定滤波器的理论参数和设计窗函数。
第一步,确定滤波器的理论参数。
这些参数包括滤波器的采样频率,截止频率,通带和阻带的衰减要求等。
一般情况下,FIR滤波器的理论参数由滤波器的应用需求决定。
第二步,设计窗函数。
窗函数是用来限制FIR滤波器的单位冲激响应的长度的。
它决定了滤波器的频率响应特性和频率选择性。
窗函数可以通过Fourier级数展开来实现。
常用的窗函数有矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
例如,以汉宁窗为例,下面是使用窗函数法设计FIR滤波器的具体步骤:1. 确定滤波器的理论参数。
如采样频率为fs,截止频率为fc,通带衰减要求为d1,阻带衰减要求为d22.将截止频率转化为数字频率。
由于数字信号是离散的,需要将模拟信号的截止频率转化为数字频率。
数字频率的单位为π。
3.根据截止频率和采样频率计算滤波器的长度N。
通常情况下,滤波器的长度N取一个奇数值,以确保能满足线性相位要求。
4.根据窗函数的性质确定窗函数的参数。
汉宁窗的参数为α=0.55.根据窗函数的长度N和参数α计算窗函数的系数。
例如,对于汉宁窗,窗函数的系数可通过下式计算得到:w(n) = 0.5 - 0.5 * cos(2πn/N) ,其中0≤ n ≤ N-16.根据窗函数的系数计算滤波器的单位冲激响应h(n)。
滤波器的单位冲激响应即为窗函数系数的离散时间傅里叶变换(DTFT),用于表示滤波器的频率响应特性。
7.根据滤波器的单位冲激响应h(n)可以计算出滤波器的频率响应H(f)。
频率响应可以通过滤波器的单位冲激响应h(n)的离散时间傅里叶变换(DTFT)计算得到。
8.根据设计要求来检验滤波器的频率响应特性是否满足要求。
用窗函数法设计FIR数字滤波器
实验五用窗函数法设计FIR 数字滤波器一、实验目的:1.掌握用窗函数法设计FIR 数字滤波器的原理和方法 2.熟悉线性相位FIR 数字滤波器特性。
3.了解各种窗函数对滤波特性的影响。
二、实验原理线性相位特点在实际应用中非常重要,如在数据通信、图像处理、语音信号处理等领域,往往要求系统具有线性相位特性,因而常采用容易设计成线性相位的有限冲激响应FIR 数字滤波器来实现。
1. 常用窗函数:1) 矩形窗10[]0k M w k ≤≤⎧=⎨⎩其他〔5.21〕 2) Hann 〔汉纳〕窗0.5-0.5cos(2/)0[]0k M k M w k π≤≤⎧=⎨⎩其他〔5.22〕3) Hamming 〔汉明〕窗 0.54-0.46cos(2/)0[]0k M k M w k π≤≤⎧=⎨⎩其他〔5.23〕4) Blackman 〔布莱克曼〕窗 0.42-0.5cos(2/)0.08cos(4/)0[]0k M k M k M w k ππ+≤≤⎧=⎨⎩其他〔5.24〕 5) Kaiser 〔凯泽〕窗0[]0w k k M =≤≤〔5.25〕 其中2201(/2)()1!n x I x n ∞=⎡⎤=+⎢⎥⎣⎦∑ 下面介绍用窗函数设计FIR 滤波器的步骤:a) 根据技术要求确定待求滤波器的单位取样响应[]d h k 。
b) 根据对过渡带和阻带衰减的要求,选择窗函数的形式,并估计窗函数长度/N A w ≈∆,A 决定于窗口的形式,w ∆表示滤波器的过渡带。
c) 利用选好的窗函数计算滤波器的单位取样响应[][][]d h k h k w k =。
d) 验算技术指标是否满足要求。
设计出来的滤波器的频率响应用10()[]N j j n n H e h k e -Ω-Ω==∑来计算。
2. Matlab 数字信号处理工具箱中常用的FIR 数字滤波器设计函数hanning 汉纳窗函数。
hamming 汉明窗函数。
blackman 布莱克曼窗函数。
用窗函数法设计FIR数字滤波器
%实验,用窗函数法设计FIR数字滤波器close all;b=1;i=0;while(b);N=inputdlg('输入窗函数长度N');%输入函数N=str2num(N{1});%将字符串转化为数值w=inputdlg('输入逼近理想低通滤波器截止频率Wc');w=str2num(w{1});alpha=(N-1)/2;n=[0:(N-1)];m=n-alpha+eps;% eps是双精度存储下最小的比1.0大的数与1.0的差值hd= sin(w*m)./(pi*m); %得到理想低通滤波器k=menu('请选择窗口类型:','boxcar矩形窗','hamming哈明窗','hanning汉宁窗','blackman 不莱克曼窗','triang三角形窗');if k==1B=boxcar(N);string=['Boxcar矩形窗','N=',num2str(N)];else if k==2B=hamming(N); %窗函数调用string=['Hamming哈明窗','N=',num2str(N)];else if k==3B=hanning(N);string=['Hanning汉宁窗','N=',num2str(N)];else if k==4B=blackman(N);string=['Blackman不莱克曼窗','N=',num2str(N)];else if k==5B =triang(N);string=['triang三角形窗','N=',num2str(N)];endendendendendh=hd.*(B)'; %得到FIR数字滤波器[H,m]=freqz(h,[1],1024,'whole'); %求其频率响应,函数给出了滤波器的双边频率特性,是N点的mag=abs(H); %得到幅值,将变量H的绝对值(模)赋值给变量magdb=20*log10((mag+eps)/max(mag));pha=angle(H); %得到相位i=i+1;figure(i)subplot(2,2,1);n=0:N-1;stem(n,h,'.');axis([0,N-1,-0.1,0.3]);hold on;% 启动图形保持功能,此后绘制的图形将添加到当前的图形窗口中,并自动调整坐标轴的范围;n=0:N-1;x=zeros(N);plot(n,x,'-'); %-实线xlabel('n');ylabel('h(n)');title('实际低通滤波器的h(n)');text((0.3*N),0.27,string);hold off;% 关闭图形保持功能,新绘制图形将覆盖原图形subplot(2,2,2); %第二个子图plot(m/pi,db);axis([0,1,-100,0]);% 控制坐标轴的特征x y轴上下限xlabel('w/pi');%x轴标注ylabel('dB');title('衰减特性(dB)');%图形顶部标注grid;%图形网格切换subplot(2,2,3);plot(m,pha);hold on;n=0:7;x=zeros(8);plot(n,x,'-');title('相频特性');xlabel('频率(rad)');ylabel('相位(rad)');axis([0,3.15,-4,4]);subplot(2,2,4);plot(m,mag);title('幅频特性');xlabel('频率W(rad)');ylabel('幅值');axis([0,3.15,0,1.5]);text(0.9,1.2,string); %给定标注文本在图中添加的位置b=menu('Do You want To Continue ?','Yes','No');if b==2b=0;endendtemp=menu('Close All Figure ?','Yes','No');if temp==1close allend。
窗函数法设计FIR数字滤波器
窗函数法设计FIR数字滤波器窗函数法在设计FIR数字滤波器中有很重要的作用,正确地选择窗函数可以提高设计数字滤波器的性能,或者在满足设计要求的情况下,减小FIR数字滤波器的阶次。
常用的窗函数有以下几种:矩形窗(Rectangular window)、三角窗(Triangular window)、汉宁窗(Hanning window)、海明窗(Hamming window)、布拉克曼窗(Blackman window)、切比雪夫窗(Chebyshev window)、巴特里特窗(Bartlett window)及凯塞窗(Kaiser window)。
1. 实现矩形窗的函数为boxcar和rectwin,其调用格式如下:w=boxcar(N) ; w=rectwin(N)其中N是窗函数的长度,返回值w是一个N阶的向量,它的元素由窗函数的值组成。
实际上,w=boxcar(N)等价于w=ones(N,1)。
2. 实现三角窗的函数为triang,调用格式为:w=triang(N)3. 实现汉宁窗的函数为hann,调用格式如下:w=hann(N)w=hann(N,’sflag’)Hann函数中的参数sflag为采样方式,其值可取symmetric(默认值)或periodic。
当sflag=symmetric时,为对称采样;当sflag=periodic时,为周期采样,此时hann函数计算N+1个点的窗,但是仅返回前N个点。
4. 实现海明窗的函数为hamming,调用格式分别如下:w=hamming (N)w=hamming (N,'sflag')5. 实现布拉克曼窗的函数为blackman,调用格式如下:w=blackman (N)w=blackman (N,'sflag')6. 实现切比雪夫窗的函数为chebwin,调用格式为:w=chebwin (N,r)其中r 表示切比雪夫窗函数的傅里叶变换旁瓣幅度比主瓣低rdB(其默认值为100dB),且旁瓣是等纹波的。
数字信号处理第五章 FIR滤波器、窗函数法
(5.23)
0
h(n)偶对称N为偶数时的频 率响应特性
不适用高通或带阻滤波器
2)H(w)以
为奇对称,以
偶对称
以
为奇对称,以
为偶对称
22
1. 成立条件
5.2.3 恒群延时单独成立
解线性微分方程
=
的取值条件?
0
的取值条件?
有什么特性?
(5.24)
23
离散傅立叶变换: 由相位定义: 化简得:
(5.25)
n
28
相位函数:
(5.30) 线性相位
幅度函数:
(5.31)
其中
1)H(w)在
关于
处奇对称
奇对称
2)传输函数H(z)在
处有零点
0
h(n)奇对称N为奇数时的频 率响应特性
不适用于低通、高通、带阻滤波器
29
3. h(n)奇对称N为偶数(线性相位IV型)时的频率响应
所以
456 7
0123
n
(5.36)
数字信号处理 Digital Signal Processing
第五章 FIR滤波器设计和实现
Finite Impulse Response Filter Design and Implementation
2
FIR数字滤波器
• Finite Impulse Response (FIR):有限冲激响应,非递归 滤波器,输出只与当前和有限个过去输入有关
偶对称
0 h(n)偶对称N为奇数时的 频率响应特性
20
3. h(n)偶对称N为偶数(线性相位II型)时的频率响应
分拆
0123456 7 n
变量代换及
(完整word版)用窗函数法设计FIR数字滤波器
用窗函数法设计FIR 数字滤波器一、实验目的1.掌握用窗函数法设计FIR 数字滤波器的原理和方法。
2.熟悉线性相位FIR 数字滤波器特征。
3.了解各种窗函数对滤波特性的影响。
二、实验仪器微型计算机 matlab 软件 三、实验原理和方法如果所希望的滤波器的理想频率响应函数为 )(ωj d eH ,则其对应的单位脉冲响应为)(n h d =π21ωωωππd e e H j j d )(⎰-(2-1)窗函数设计法的基本原理是用有限长单位脉冲响应序列)(n h 逼近)(n h d 。
由于)(n h d 往往是无限长序列,且是非因果的,所以用窗函数)(n ω将)(n h d 截断,并进行加权处理,得到:)(n h =)(n h d )(n ω (2-2))(n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数)(ωj d e H 为: )(ωj d eH =∑-=-1)(N n j e n h ω (2-3)式中,N 为所选窗函数)(n ω的长度。
由第七章可知,用窗函数法设计的滤波器性能取决于窗函数)(n ω的类型及窗口长度N 的取值。
设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。
各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见第七章。
这样选定窗函数类型和长度N 后,求出单位脉冲响应)(n h =)(n h d ·)(n ω,并按式(2-3)求出)(ωj e H 。
)(ωj e H 是否满足要求,要进行验算。
一般在)(n h 尾部加零使长度满足于2的整数次幂,以便用FFT 计算)(ωj e H 。
如果要观察细节,补零点数增多即可。
如果)(ωj eH 不满足要求,则要重新选择窗函数类型和长度N ,再次验算,直至满足要求。
如果要求线性相位特性,则)(n h 还必须满足)1()(n N h n h --±= (2-4)根据上式中的正负号和长度N 的奇偶性又将线性相位FIR 滤波器分成四类。
实验四--FIR数字滤波器设计与软件实现
&实验四 FIR数字滤波器设计与软件实现1.实验目的(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。
(3)掌握FIR滤波器的快速卷积实现原理。
(4)学会调用MATLAB函数设计与实现FIR滤波器。
2.实验内容及步骤'(1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;(2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图所示;图具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于,将噪声频谱衰减60dB。
先观察xt的频谱,确定滤波器指标参数。
(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。
并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。
绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。
并比较两种设计方法设计的滤波器阶数。
提示:○1MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书第7章和第8章;*○2采样频率Fs=1000Hz,采样周期T=1/Fs;○3根据图和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率p 20.24pfωπ=T=π,通带最大衰为,阻带截至频率s 20.3sfωπ=T=π,阻带最小衰为60dB。
]○4实验程序框图如图所示,供读者参考。
图实验程序框图;3.信号产生函数xtg程序清单function xt=xtg(N)%实验五信号x(t)产生,并显示信号的幅频特性曲线%xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz.N=2000;Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;'fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt,频率为f0ct=cos(2*pi*fc*t); %产生载波正弦波信号ct,频率为fcxt=mt.*ct; %相乘产生单频调制信号xtnt=2*rand(1,N)-1; %产生随机噪声nt%=======设计高通滤波器hn,用于滤除噪声nt中的低频成分,生成高通噪声======= fp=150; fs=200;Rp=;As=70; % 滤波器指标fb=[fp,fs];m=[0,1]; % 计算remezord函数所需参数f,m,dev (dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(n,fo,mo,W); % 调用remez函数进行设计,用于滤除噪声nt中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt%================================================================xt=xt+yt; %噪声加信号fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(3,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');(axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形')subplot(3,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱')axis([0,Fs/2,0,]);xlabel('f/Hz');ylabel('幅度')4、滤波器参数及实验程序清单1)、滤波器参数选取根据节实验指导的提示③选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz。
用MATLAB设计FIR数字滤波器
实验八 用MATLAB 设计FIR 数字滤波器(二)一、实验目旳:1、加深对窗函数法设计FIR 数字滤波器旳基本原理旳理解。
2、学习用MATLAB 语言旳窗函数法编写设计FIR 数字滤波器旳程序。
3、理解MATLAB 语言有关窗函数法设计FIR 数字滤波器旳常用函数用法。
二、实验原理:1、用窗函数法设计FIR 数字滤波器 FIR 数字滤波器旳系统函数为N-1-n n=0H(z)=h(n)z ∑这个公式也可以当作是离散LSI 系统旳系统函数M-m -1-2-mmm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑ 分母a 0为1,其他a k 全都为0时旳一种特例。
由于极点所有集中在零点,稳定和线性相位特性是FIR 滤波器旳突出长处,因此在实际中广泛使用。
FIR 滤波器旳设计任务是选择有限长度旳h(n),使传播函数H(e j ω)满足技术规定。
重要设计措施有窗函数法、频率采样法和切比雪夫等波纹逼近法等。
本实验重要简介窗函数法。
用窗函数法设计FIR 数字滤波器旳基本环节如下:(1)根据过渡带和阻带衰减指标选择窗函数旳类型,估算滤波器旳阶数N 。
(2)由数字滤波器旳抱负频率响应H(e j ω)求出其单位脉冲响应h d (n)。
可用自定义函数ideal_lp实现抱负数字低通滤波器单位脉冲响应旳求解。
程序清单如下:function hd=ideal_lp(wc,N) %点0到N-1之间旳抱负脉冲响应%wc=截止频率(弧度)%N=抱负滤波器旳长度tao=(N-1)/2;n=[0:(N-1)];m=n-tao+eps; %加一种小数以避免0作除数hd=sin(wc*m)./(pi*m);其他选频滤波器可以由低通频响特性合成。
如一种通带在ωc1~ωc2之间旳带通滤波器在给定N值旳条件下,可以用下列程序实现:Hd=ideal_lp(wc2,N)-ideal_lp(wc1,N)(3)计算数字滤波器旳单位冲激响应h(n)=w(n)h d(n)。
窗函数法设计FIR滤波器
窗函数法设计FIR滤波器FIR(Finite Impulse Response)滤波器是一种常见的数字滤波器,通过一系列有限长度的输入信号进行系统响应的采样,使用窗函数法设计FIR滤波器是一种常用且有效的方法。
设计FIR滤波器的第一步是确定滤波器的阶数。
阶数是指滤波器的长度,通常表示为N。
设计FIR滤波器的第二步是选择滤波器的截止频率。
截止频率决定滤波器的频率响应。
设计FIR滤波器的第三步是选择窗函数。
窗函数是一种平滑函数,用于调整滤波器的频率响应。
常见的窗函数有矩形窗、汉明窗、海明窗等。
矩形窗是最简单的窗函数,没有频率响应调整的效果。
汉明窗是常用的窗函数之一,它可以提供较好的频率响应特性。
海明窗是一种能够提供更优秀频率响应的窗函数。
设计FIR滤波器的第四步是确定窗函数的参数。
这些参数包括主瓣宽度、动态范围、副瓣能量等。
设计FIR滤波器的最后一步是计算滤波器的系数。
滤波器的系数是由输入信号进行线性组合得到的。
通常采用离散频率域设计方法计算FIR滤波器的系数。
该方法通过将滤波器的频率响应与目标响应之间的差异最小化来寻找最佳系数。
具体计算过程包括以下几个步骤:1.设计一个无限长的理想低通滤波器,其频率响应与所需滤波器接近。
2. 使用离散Fourier变换将无限长的理想滤波器转换为有限长的频率响应。
3.选择适当的窗函数,根据窗函数的参数修改频率响应。
4.反变换回时间域,得到FIR滤波器的系数。
设计完滤波器后,可以通过将输入信号与滤波器系数进行卷积运算来获得滤波后的信号。
滤波器系数的选择决定了滤波器的性能。
通常可以通过频率响应、滤波器特性等指标来评估滤波器的性能。
使用窗函数法设计FIR滤波器可以得到满足特定要求的滤波器,其设计过程相对简单,易于实现。
但需要注意的是,窗函数法设计的FIR滤波器在频率响应的过渡区域可能会有较大的波动,需要根据具体应用场景对滤波器参数进行调整。
总之,窗函数法是一种常见且有效的设计FIR滤波器的方法,通过选择合适的窗函数和调整参数,可以得到满足特定要求的滤波器。
4.1 FIR数字滤波器设计的窗函数法-数字信号处理
Kaiser(凯泽)窗
N与的确定 A= 20lg (min{dp,ds })
M A 7.95 2.285 W p W s , A 21
0.1102( A 8.7), 0.5842( A 21) 0.4 0.07886 ( A 21), 0,
FIR系统与IIR系统比较
2.IIR系统零、极点全部包括,所以易取得 比较好的通带与阻带衰减特性,对于IIR DF 的设计方法,主要是借助与模拟滤波器的设 计方法,这些面向极点的设计方法不适用于 仅包含零点的FIR系统。 对于FIR DF的设计方法包括窗函数法、频率 抽样法及最佳一致逼近法 .
矩形窗和汉宁窗设计的低通对比
0
-20
Square Hanning
-44 -60 -80 0
0.25
0.5
0.75
1
例:用非矩形窗设计截频为Wc =0.5的线性相位理想低通,并将设计结 果与利用矩形窗设计结果比较。
矩形窗和哈明窗设计的低通对比
0 -20
Square Hamming
-52 -60
-80 0
As(dB) 21 44 53 74
例:用非矩形窗设计截频为Wc =0.5的线性相位理想低通,并将设计结 果与利用矩形窗设计结果比较。
解: (1) 确定线性相位FIR滤波器类型
(2) 确定理想滤波器的幅度函数Ad()和相位fd()
1 c Ad (e ) 0 其他
jW
fd(W)= M/2
第4章
有限冲激响应数字滤波器设计
窗函数法设计FIR数字滤波器
频率抽样法 最佳一致逼近法
FIR数字滤波器
LTI系统
H ( z)
实验六指导书 用窗函数法设计FIR数字滤波器
实验六 用窗函数法设计FIR 数字滤波器1、实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。
(2)熟悉线性相位FIR 数字滤波器特性。
(3)了解各种窗函数对滤波特性的影响。
2、实验原理如果所希望的滤波器的理想频率响应函数为)(jw d e H ,则其对应的单位脉冲响应为:⎰-=πππdw e e H n h jwn jw d d )(21)(窗函数设计法的基本原理是用有限长单位脉冲响应h(n)逼近h d (n)。
由于h d (n)往往是无限长序列,且是非因果的,所以用窗函数ω(n)将h d (n)截断,并进行加权处理,得到:)()()(n w n h n h d ⋅=h(n)就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数H(e jω)为:∑-=-=10)()(N n jwn jwe n h e H 式中,N 为所选窗函数ω(n)的长度。
这种对理想单位取样响应的加窗处理对滤波器的频率响应会产生以下三点影响:(1)使理想特性不连续的边沿加宽,形成一个过渡带,过渡带的宽度取决于窗函数频谱的主瓣宽度。
(2)在过渡带两旁产生肩峰和余振,它们取决于窗函数频谱的旁瓣;旁瓣越多,余振也越多;旁瓣相对值越大,肩峰则越强。
(3)增加截断长度N ,只能缩小窗函数频谱的主瓣宽度而不能改变旁瓣的相对值;旁瓣与主瓣的相对关系只决定于窗函数的形状。
因此增加N ,只能相对应减小过渡带宽。
而不能改变肩峰值。
肩峰值的大小直接决定通带内的平稳和阻带的衰减,对滤波器性能有很大关系。
例如矩形窗的情况下,肩峰达8.95%,致使阻带最小衰减只有21分贝,这在工程上往往是不够的。
怎样才能改善阻带的衰减特性呢?只能从改善窗函数的形状上找出路,所以希望的窗函数频谱中应该减少旁瓣,使能量集中在主瓣,这样可以减少肩峰和余振,提高阻带衰减。
而且要求主瓣宽度尽量窄,以获得较陡的过渡带,然而这两个要求总不能同时兼得,往往需要用增加主瓣宽度带换取较大的阻带衰急,于是提出了海明窗、汉宁窗、布莱克曼窗、凯塞窗、切比雪夫窗等窗函数。
数字信号处理---窗函数法设计FIR滤波器,窗函数选取原则
)
)]
W Hm ( ) 0.54W R ( ) 0.23[W R (
2 N 1
) W R (
2 N 1
)]
15 Logo
请加入标题 窗函数介绍
汉明窗
16 Logo
请加入标题 窗函数介绍
汉明窗
主瓣宽度 B m 8 / 23 1.092 -41dB
旁瓣峰值衰减
幅频响应窗函数介绍布莱克曼窗04205cos18频率响应窗函数介绍布莱克曼窗19窗函数介绍布莱克曼窗20主瓣宽度旁瓣峰值衰减57db阻带最小衰减74db精确过渡带12231638231502凯塞窗kaiserwindow窗函数介绍21其中22窗函数介绍23旁瓣峰值衰减57db阻带最小衰减80db精确过渡带1023136524各种窗函数性能比较窗类型主瓣宽度精确过旁瓣峰值衰减db阻带最小衰减db矩形窗18n1321三角窗61n252562n314466n4153布莱克曼窗12n11n577410n5780各种窗函数性能比较克曼窗阻带最小衰减较大凯塞窗的阻带最小衰减最大各窗函数的旁瓣峰值衰减规律与此关系相同
精确过渡带 Bt 6.6 / 23 0.9010 阻带最小衰减 53dB
17 Logo
布莱克曼窗
窗函数介绍
布莱克曼窗(Blankman Window) ,又
称二阶升余弦窗。
w Bl ( n ) [0.42 0.5 cos( 2 n N 1 ) 0.08 cos(
j
4 n N 1
各种窗函数性能比较
窗类型
矩形窗 三角窗
主瓣宽度
精确过
渡带 B t
1.8π/N 6.1π/N
旁瓣峰值
衰减/dB
-13 -25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验报告---实验4窗函数法设计FIR数字滤波器
一、实验目的
1.掌握用窗函数法、频率采样法设计FIR数字滤波器的原理及方法,熟悉相应的计算机编程。
2.熟悉线性相位FIR数字滤波器的幅频特性和相频特性。
3.了解各种不同窗函数对滤波器性能的影响。
二、实验原理
1.常用的窗函数:
矩形窗函数为boxcar和rectwin,调用格式:
w= boxcar(N)w= rectwin(N)
其中N是窗函数的长度,返回值w是一个N阶的向量。
三角窗函数为triang,调用格式:
w= triang(N)
汉宁窗函数为hann,调用格式:
w= hann(N)
汉明窗函数为hamming,调用格式:
w= hamming(N)
三、设计指标
(1)矩形窗设计线性相位低通滤波器(参数自主设定)。
(2)改用汉宁窗,设计参数相同的低通滤波器。
四、上机程序及运行结果
生成四种窗函数:矩形窗、三角窗、汉宁窗、海明窗,并观察其频率响应。
n=30;
%矩形窗及其频响
window1=rectwin(n);
[h1,w1]=freqz(window1,1);
subplot(4,2,1);
stem(window1);title('矩形窗');subplot(4,2,2);
plot(w1/pi,20*log(abs(h1))/abs(h1(1)));title('矩形窗频响'); %三角窗及其频响
window2=triang(n);
[h2,w2]=freqz(window2,1);
subplot(4,2,3);stem(window2);title('三角窗');
subplot(4,2,4);
plot(w2/pi,20*log(abs(h2))/abs(h2(1)));title('三角窗频响'); %汉宁窗及其频响
window3=hann(n);
[h3,w3]=freqz(window3,1);
subplot(4,2,5);stem(window3);title('汉宁窗');
subplot(4,2,6);
plot(w3/pi,20*log(abs(h3))/abs(h3(1)));title('汉宁窗频响'); %汉明窗频响
window4=hamming(n);
[h4,w4]=freqz(window4,1);
subplot(4,2,7);stem(window4);title('汉明窗');
subplot(4,2,8);
plot(w4/pi,20*log(abs(h4))/abs(h4(1)));title('汉明窗频响');
根据下列技术指标:wp=0.2π,ws=0.4π,ap=0.25dB,as=50dB,用矩形和汉宁窗函数,确定单位冲激响应,绘出所设计的滤波器的幅度响应。
%理想低通滤波器单位冲激响应函数
function hd=ideal_lp1(wc,N);
alpha=(N-1)/2;
n=0:1:N-1;
m=n-alpha+eps;
hd=sin(wc*m)./(pi*m);
%滤波器幅值、相位响应函数
function[db,mag,pha,w]=freqz_m2(b,a);
%db:相对幅值响应
%mag:绝对幅值响应
%pha:相位响应
%w:采样频率
%b:系统函数H(Z)的分子项(对FIR,b=h)
%a:系统函数H(Z)的分母项(对FIR,a=1)
[H,w]=freqz(b,a,1000,'whole');
H=(H(1:1:501))';
w=(w(1:1:501))';
mag=abs(H);
db=20*log10((mag+eps)/max(mag));
pha=angle(H);
%主程序
clear all;
wp=0.2*pi;
ws=0.4*pi;
tr_wdith=ws-wp;
N=ceil(6.6*pi/tr_wdith)+1;
n=0:1:N-1;
wc=(ws+wp)/2;%理想低通滤波器的截止频率
hd=ideal_lp1(wc,N);%理想低通滤波器的单位冲激响应
w_ham=(hamming(N))';%汉明窗
h=hd.*w_ham;%截取得到实际的单位脉冲响应
[db,mag,pha,w]=freqz_m2(h,[1]);%计算实际滤波器的幅度响应
delta_w=2*pi/1000;
ap=-(min(db(1:1:wp/delta_w+1)));%实际带通波纹
as=-round(max(db(ws/delta_w+1:1:501)));%实际阻带波纹
subplot(221);stem(n,hd);title('理想单位脉冲响应hd(n)');
subplot(222);stem(n,w_ham);title('汉明窗w(n)');
subplot(223);stem(n,h);title('实际单位脉冲响应hd(n)');
subplot(224);stem(w/pi,db);title('幅度响应(dB)');
axis([0,1,-100,10])
四、实验总结及心得。