无刷直流电动机调速

合集下载

有刷电机与无刷电机不同:工作原理、调速方式、性能详细讲解【范本模板】

有刷电机与无刷电机不同:工作原理、调速方式、性能详细讲解【范本模板】

有刷电机与无刷电机不同:工作原理、调速方式、性能详细讲解一、有刷电机与无刷电机不同有刷电机:1、摩擦大,损耗大有刷电机的时候都碰到这个问题,那就是使用电机一段时间以后,需要开电机来清理电机的碳刷,费时费力,维护强度不亚于来一次家庭大扫除.2、发热大,寿命短由于有刷电机的结构原因,电刷和换向器的接触电阻很大,造成电机整体电阻较大,容易发热,而永磁体是热敏元件,如果温度太高的话,磁钢是会退磁的,使电机性能下降,影响有刷电机的寿命。

3、效率低,输出功率小上面说到的有刷电机发热问题,很大程度是因为电流做功在电机内部电阻上了,所以电能有很大程度转化为了热能,所以有刷电机的输出功率不大,效率也不高。

无刷电机:1、无电刷、低干扰无刷电机去除了电刷,直接的变化就是没有了有刷电机运转时产生的电火花,这样就极大减少了电火花对遥控无线电设备的干扰.2、噪音低,运转顺畅无刷电机没有了电刷,运转时摩擦力大大减小,运行顺畅,噪音会低许多,这个优点对于模型运行稳定性是一个巨大的支持。

3、寿命长,低维护成本二、有刷电机与无刷电机工作原理1、有刷电机的原理有刷电机采用机械换向,磁极不动,线圈旋转。

电机工作时,线圈和换向器旋转,磁钢和碳刷不转,线圈电流方向的交替变化是随电机转动的换相器和电刷来完成的。

在有刷电机中,这个过程是将各组线圈的两个电源输入端,依次排成一个环,相互之间用绝缘材料分隔,组成一个象圆柱体的东西,与电机轴连成一体,电源通过两个碳元素做成的小柱子(碳刷),在弹簧压力的作用下,从两个特定的固定位置,压在上面线圈电源输入环状圆柱上的两点,给一组线圈通电。

随着电机转动,不同时刻给不同线圈或同一个线圈的不同的两极通电,使得线圈产生磁场的N-S 极与靠近的永磁铁定子的N-S极有一个适合的角度差,磁场异性相吸、同性相斥,产生力量,推动电机转动。

碳电极在线圈接线头上滑动,像刷子在物体表面刷,因此叫碳刷。

相互滑动,会摩擦碳刷,造成损耗,需要定期更换碳刷;碳刷与线圈接线头之间通断交替,会发生电火花,产生电磁破,干扰电子设备.2、无刷电机工作原理无刷电机采取电子换向,线圈不动,磁极旋转。

无刷电机PWM调速系统设计

无刷电机PWM调速系统设计

生 PWM 信号,采集电机的驱动电流、电机端的反电
动 势 ,进 行 PID 运 算 ,构 成 反 馈 系 统 。 根 据 运 算 结
果,调整 PWM 信号,通过图腾柱电路将单片机的控
制信号放大、分隔,使其有足够的功率来开通或者关
断 MOS 管 ,以 获 得 准 确 的 控 制 信 号 ,稳 定 地 调 节 电
(Department of Electronic Engineering,Huizhou Technician Institute,Huizhou 516003,China)
Abstract: In order to solve the problem of whether the brushless motor can respond quickly and keep the
-125-
《电子设计工程》2021 年第 7 期
图 3 MOS 驱动电路
关响应,增加电机驱动的可靠性和安全性 [7-8] 。
当 MOS 管关断时,电机线圈可能会给造成 MOS
管 的 DC 击 穿 ,因 此 ,选 取 的 PMOS 需 要 在 内 部 集 成
一 个 二 极 管 ,该 系 统 选 取 ECH8660 芯 片 ,该 芯 片 在
应快的场合,常常难以达到要求。文中设计的双闭
实现设备的精密加工,提高产品质量的同时可以延
环调速系统通过对电机的反电动势、电流进行采样,
[1]
长设备寿命 。
收稿日期:2020-05-06
通过反电动势来确定电机的速度,通过检测驱动电
稿件编号:202005022
流确定电机功率,使单片机获得当前的电机运行参
= T
I d (s) - I L (s) T m s

专升本《电力拖动与控制系统》_试卷_答案

专升本《电力拖动与控制系统》_试卷_答案

专升本《电力拖动与控制系统》一、(共75题,共150分)1。

异步电动机在采用能耗制动时需要( )。

(2分)A.转子回路串电阻B.定子回路串电阻C.把定子回路从电源断开,接制动电阻D。

定子回路通直流电流。

标准答案:D2。

三相桥式交叉连接可逆调速电路需要配置()个限环流电抗器。

(2分)A.1B.2C.3D.4。

标准答案:B3。

闸管反并联可逆调速电路中采用配合控制可以消除( ). (2分)A.直流平均环流B.静态环流C。

瞬时脉动环流 D.动态环流.。

标准答案:A4。

为了检测直流电流信号,且与系统主电路隔离,常用的电流检测方法是( )。

(2分)A。

串联采样电阻 B。

并联采样电阻C。

采用电流互感器 D.采用霍尔传感器。

标准答案:D5. 电流可反向的两象限直流PWM调速系统稳态工作时,当输出电压的平均值小于电机反电势时,电机工作在( )象限。

(2分)A。

1 B。

2 C.3 D。

4.标准答案:B6。

直流斩波调速系统在回馈电流可控的回馈发电制动时,直流电动机的反电势( )直流电源的电压。

(2分)A.大于B.等于 C。

小于。

标准答案:C7。

异步电动机串级调速系统,当调速范围较小时,一般采用的起动方法是(). (2分)A.用串级调速装置起动 B。

定子降压起动。

标准答案:B8。

串级调速系统中,串级调速装置的容量(). (2分)A.随调速范围D的增大而增加;B.随调速范围D的增大而减少;C。

与调速范围D无关..标准答案:A9。

绕线转子异步电动机的串级调速属于( )的调速方法。

(2分)A。

转差功率消耗型 B。

转差功率回馈型C.转差功率不变型.标准答案:B10。

永磁无刷直流电动机的调速系统中功率变换器的变频方式是( )。

(2分)A.他控式变频 B。

自控式变频;C.矢量控制式变频。

标准答案:B11。

无刷直流电动机调速系统的位置检测器使用的是( ) (2分)A.增量式位置检测器 B。

正余弦变压器.标准答案:A12. 永磁无刷直流电动机与永磁同步电动机结构非常相似,永磁无刷直流电动机的气隙磁密波形是() (2分)A.近似方波 B。

无刷直流电动机的转矩调速

无刷直流电动机的转矩调速

摘要无刷直流电机是以电子换相来代替机械换相的直流电机,它保持了直流电机的优良特性,具有较好的启动和调速性能,而且它无需机械换向器,结构简单,可以从根本上克服有刷直流电机易于产生火花的弊病,因此在航天、机器人、数控机床、以及医疗器械、仪器仪表、家用电器等方面得到广泛应用。

但是,无刷直流电机运行中存在的转矩脉动问题对实现精确的位置控制和高性能的速度控制存在较大影响。

本文重点研究电机转矩调速技术及其MATLAB 仿真。

文章首先介绍了无刷直流电机的工作原理、导通方式,并通过对数学模型的分析建立了无刷直流电机的MATLAB的PID调速系统模型并调用S-函数进行了仿真,验证了模型的可行性。

关键词:无刷直流电机;转矩调速;MATLAB;PID;S-函数ABSTRACTBrushless DC motor based on electronic commutation instead of mechanical commutation of DC motor, it maintained the excellent characteristics of DC motor, and has a good performance of starting and rotate-speed adjustment, and it need not mechanical commutation, the structure is simple, can fundamentally overcome a brushed DC motor prone to spark the evils, so in space, the robot, NC machine tools, and medical equipment, instruments and meters, household appliances, etc widely used.But, brushless DC motor problems in the operation of the torque ripple of to achieve precise position control and high-performance speed control exist great influence. This paper mainly studies the brushless DC motor(BLDCM) torque speed controlling technology and its MATLAB simulation.This article first of brushless DC motor working principle, conduction mode of mathematical model, and then through the analysis of brushless DC motor established the MATLAB PID speed regulation system model and simulation, which validated the feasibility of the model.Keywords brushless DC motor(BLDCM);rotate-speed; torque speed-controlling; MATLAB; PID;S-function目录1 绪论 (1)1.1 无刷直流电机技术的发展及现状 (1)1.2 无刷直流电机的技术问题及其解决技术 (3)1.3 论文研究的主要问题 (5)2 无刷直流电机的构成及基本工作原理 (6)2.1 无刷直流电机电路的基本组成环节 (6)2.2 无刷直流电机的导通方式及基本工作原理 (7)2.3 本章小结 (10)3 无刷直流电机的数学模型 (11)3.1 无刷直流电机的数学模型及其基本关系式 (11)3.2 本章小结 (14)4 无刷直流电机的仿真模型及其验证 (15)4.1 仿真软件介绍 (15)4.2 S-函数简介及使用 (16)4.3 仿真建模及实现 (19)4.4 仿真验证及结果记录 (27)4.5 仿真结果分析 (27)4.6 本章小结 (28)结束语 (29)致谢 (30)参考文献 (31)附录 (32)1绪论1.1 无刷直流电机技术的发展及现状1.1.1无刷直流电机的发展及分类无刷直流电机已有四十余年的发展历史,最初是相对于具有机械电刷的传统的直流电机而言的。

永磁无刷直流电机调速控制系统的设计研究

永磁无刷直流电机调速控制系统的设计研究

Internal Combustion Engine &Parts0引言随着人类工业社会的迅速发展,能源危机是21世纪各个国家所面临的重大危机,也是要实现可持续发展所必须解决的难题。

永磁无刷直流电机的发展历史可以追溯到上世纪四十年代,直到八十年代初期,在钕铁硼稀土这一永磁材料的突破性研究取得了巨大成果,并且加上生产力迅速提升,制造投入减小的影响,永磁无刷直流电机行业迎来了蓬勃发展。

近三十年来,随着科学研究的深入,永磁体性能得到了跃进式的提升,相应的电力电子器件的完善和蓬勃发展也促进了这一行业的迅猛发展。

永磁无刷直流电机控制系统研究方向与现代电力电子技术、现代控制理论、电机集成技术和微机技术等学科密切相关,相辅相成。

科学家们通过对其研究背景、研究意义、结构组成、工作原理、数学模型、硬件电路设计、软件设计等方面的深入研究,使得永磁无刷直流电机在拥有良好调速性能的情况下,机械换向和电刷等历史研究中出现的难点获得了解决,目前永磁无刷直流电机的用途遍布各行各业,小到家用电器,大到航空航天,都有永磁无刷直流电机的身影,发展前景不可估量。

1研究背景与意义从上世纪四十年代至今,永磁无刷直流电机的发展在实际应用上与永磁材料的突破性研究,生产力迅速提升,制造投入减小,电力电子器件的迅猛发展息息相关,在理论研究上与现代电力电子技术、现代控制理论、电机集成技术和微机技术等学科的深入研究息息相关。

由于其所具有的大功率、大转矩、高速度、高性能、微型化和数字化等特点决定了该行业宽广的发展前景,也吸引了不少科研工作者的目光。

目前永磁无刷直流电机在各行各业都得到广泛的应用,小到家用电器,大到航空航天,都有永磁无刷直流电机的身影。

基于上述原因,对永磁无刷直流电机的控制系统进行合理的、科学的、系统的研究探索是非常重要且必要的,这是现代工业发展和机电一体化所提出来的必须进行的挑战,这一研究具有深远的理论意义和实际应用价值,并且会给整个社会和相关行业带来巨大的经济效益。

专升本《电力拖动与控制系统》2考试答案

专升本《电力拖动与控制系统》2考试答案

[试题分类]:专升本《电力拖动与控制系统》_08024350[题型]:填空[分数]:01. 电流可反向的两象限直流PWM 调速系统稳态工作时,当输出电压的平均值大于电机反电势时,它工作在____象限;当输出电压的平均值小于电机反电势时,它工作在____象限。

答案:Ⅱ|Ⅰ2.电力拖动系统稳定运行的条件是电动机和机械负载的机械特性曲线有交点,且在交点处满足___。

答案:3.异步电机的M-T 坐标系中M 轴的定义是___。

答案:转子综合磁链矢量的轴线,或转子励磁轴线,超前它90°的被称为T 轴。

4.{异步电动机在电压源型变频电源供电,在恒E 1 / f 1控制时,随着频率的降低,电机的机械特性斜率___,最大转矩___。

a )增大;b )减小;c )不变;d )不存在。

} 答案:c|c5.串级调速装置的容量与___有关;当调速范围很小时,一般采用___方法起动。

答案:电机的额定容量及电机的调速范围有关|绕线式转子回路串电阻。

6. PWM 调速系统中,若采用不控整流电路产生直流电压源Ud ,在电机电磁制动时会出现___现象。

答案:直流滤波电容上产生泵升电压。

7. 电力拖动系统做旋转运动时的常用运动方程式为_____。

r答案:|8.单组V-M 系统轻载时电枢电流很容易断流,这时电机的机械特性的硬度会___,理想空载转速会___。

答案:降低|增大9.{异步电动机VVVF 变频器进行脉宽调制的首要目的是___。

a )变频; b )变压; c )消除及削弱有害的谐波。

} 答案:b10.异步电机变频调速系统实现转差频率控制的前提条件是___、___。

答案:绝对转差率较小|恒定11.{超同步串级调速系统运行在次同步制动工况时,电机转子侧变流器工作在_______,变压器侧变流器工作在_______。

a )可控整流;b )有源逆变;c )无源逆变;d )不控整流。

} 答案:b|a12. 感应电动机转差频率控制的VVVF 变频调速系统满足____________且____________这两个条件。

PLC微机控制直流无刷电动机调速系统

PLC微机控制直流无刷电动机调速系统

一、概述电动机主要类型有同步电动机、异步电动机和直流电动机三种,而直流电动机具有运行效率高和调素性能好等诸多优点得以被广泛运用,但传统的直流电动机均采用电刷,以机械方法进行换向,因而存在相对的机械摩擦,由此带来了噪声、火花、无线电干扰以及寿命短等致命弱点,再加上成本高及维修困难等缺点,大大限制了它的应用范围。

随着社会生产力和科学技术的发展,大功率开关器件、模拟和数字集成、高性能磁性材料技术等取得了很大的进步,又因直流无刷电动机具有寿命长、结构简单、运行可靠、维护方便等特点,在性能上,有启动转矩大、动态制动简便、转速——转矩特性呈线性及效率等优点而得以广泛应用。

(一)直流无刷电动机的基本组成环节及工作原理1、直流无刷电动机的基本组成环节直流无刷电动机的基本组成框图如图1-1所示。

它主要由电动机本体、位置传感器和电子开关线路三部分组成。

图1—1 直流无刷电动机的结构原理图电动机本体在结构上与永磁同步电动机相似,但没有笼形绕组和其它启动装置,它有永磁的转子和多相定子绕组。

多相定子绕组分别与电子开关线路中相应的功率开关器件联接。

位置传感器的跟踪转子与电动机转轴相联接,其信号在转子位置译码器中转换成正确的换相顺序信号,控制功率开关器件,使定子相电流随转子位置的变化而按一定的次序换相。

由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。

因此,所谓直流无刷电动机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电动机以及位置传感器三者组成的“电动机系统”。

其中转子的永磁钢与永磁有刷电动机中所用的永磁钢的作用相似,均是在电动机的气隙中建立足够的磁场,其不同之处在于直流无刷电动机中永磁钢装在转子上,而直流有刷电动机的磁钢装在定子上。

直流无刷电动机的电子开关线路是用来控制动机定子上各相绕组通电的顺序和时间主要由功率逻辑开关单元和位置传感器信号处理单元两个部分组成。

功率逻辑开关单元是控制电路的核心,其功能是将电源的功率以一定的逻辑关系分配给流无刷电动机定子上各相绕组,以便电动机产生持续不断的转矩。

直流无刷电动机工作原理与控制方法

直流无刷电动机工作原理与控制方法

For personal use only in study and research; not for commercial use直流无刷电动机工作原理与控制方法序言由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。

一个多世纪以来,电动机作为机电能量转换装置,其应用范围已遍及国民经济的各个领域以及人们的日常生活中。

其主要类型有同步电动机、异步电动机和直流电动机三种。

由于传统的直流电动机均采用电刷以机械方法进行换向,因而存在相对的机械摩擦,由此带来了噪声、火化、无线电干扰以及寿命短等弱点,再加上制造成本高及维修困难等缺点,从而大大限制了它的应用范围,致使目前工农业生产上大多数均采用三相异步电动机。

针对上述传统直流电动机的弊病,早在上世纪30年代就有人开始研制以电子换向代替电刷机械换向的直流无刷电动机。

经过了几十年的努力,直至上世纪60年代初终于实现了这一愿望。

上世纪70年代以来,随着电力电子工业的飞速发展,许多高性能半导体功率器件,如GTR、MOSFET、IGBT、IPM等相继出现,以及高性能永磁材料的问世,均为直流无刷电动机的广泛应用奠定了坚实的基础。

三相直流无刷电动机的基本组成直流无刷永磁电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。

其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。

图1所示为三相两极直流无刷电机结构,图1 三相两极直流无刷电机组成三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、C相绕组分别与功率开关管V1、V2、V3相接。

位置传感器的跟踪转子与电动机转轴相联结。

当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各项绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。

直流无刷电动机及其调速控制

直流无刷电动机及其调速控制

直流无刷电动机及其调速控制1.直流无刷电动机的发展概况与应用有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。

但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。

为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。

早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。

1955年美国的等首次申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,标志着现代无刷直流电动机的诞生。

无刷直流电动机的发展在很大程度上取决于电力电子技术的进步,在无刷直流电动机发展的早期,由于当时大功率开关器件仅处于初级发展阶段,可靠性差,价格昂贵,加上永磁材料和驱动控制技术水平的制约,使得无刷直流电动机自发明以后的一个相当长的时间内,性能都不理想,只能停留在实验室阶段,无法推广使用。

1970年以后,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件(如GTR、MOSFET、IGBT等)相继问世,加之高磁能积永磁材料(如SmCo、NsFeB)陆续出现,这些均为无刷直流电动机广泛应用奠定了坚实的基础。

在1978年汉诺威贸易博览会上,前联邦德国的MANNESMANN公司正式推出了 MAC无刷直流电动机及其驱动器,引起了世界各国的关注,随即在国际上掀起了研制和生产无刷直流系统的热潮,这业标志着无刷直流电动机走向实用阶段。

随着现代永磁材料和相关电子元器件的性能不断提高,价格不断下降,无刷电动机的到了快速发展,并被广泛应用于各个领域,例如,在数控机床、工业机器人以及医疗器械、仪器仪表、化工、轻纺机械和家用电器等小功率场合,计算机的硬盘驱动和软盘驱动器器中的主轴电动机、录像机中的伺服电动机等。

2.直流无刷电动机的基本结构和工作原理直流无刷电动机的结构直流无刷电动机的结构示意图如图2-1所示。

基于pwm技术的无刷直流电机的调速系统设计大学论文

基于pwm技术的无刷直流电机的调速系统设计大学论文

基于PWM技术的无刷直流电机的调速系统设计Brushless DC Motor Speed Control System Based On PWM摘要无刷直流电机(BLDCM)具有调速性能优异、运行性能可靠和维护方便等优点,相较于有刷直流电机,其采用电子换向取代机械换向,有效地提高了电动机的运行效率,也使得其成品体积更加的轻巧。

但是无刷直流电机也存在转矩脉动、控制器复杂、成本较高等缺陷,这些缺陷的存在也一定程度上影响了无刷直流电机作为高效、先进电机在应用上的普及,因此研究如何改善以及解决无刷直流电机存在的问题便具有更加明显的现实意义。

MATLAB是一款用于数据分析与计算、算法开发以及动态系统建立与仿真的数学软件。

最初是由美国MathWorks公司出品的商用数学软件,其由Matlab和Simulink 两个重要组成部分构成,现在更是应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

本文通过对无刷直流电机结构以及工作原理的研究与分析,找出导致其具有较大转矩脉动的原因,并先从理论上得到如何抑制转矩脉动的方法,再通过Matlab 建立起无刷直流电机的仿真模型,对其仿真结果进行分析与改善,从而有效地抑制无刷直流电机的转矩脉动。

关键词:无刷直流电机,转矩脉动,仿真模型AbstractBrushless DC motor (BLDCM) has excellent speed performance, reliable performance and easy maintenance, etc., compared to a brush DC motor, which uses electronically commutated replace mechanical commutation, effectively improve the operating efficiency of the motor, but also so that the volume of the finished product more compact. But there brushless DC motor torque ripple controller complexity, high cost and other defects, the presence of these defects also affected to some extent, a brushless DC motor as efficient and advanced motor universal in application, how to improve and therefore research solve the problems of the brushless DC motor will have more obvious practical significance.MATLAB is a tool for data analysis and computation, algorithm development, and simulation of dynamic systems to establish and mathematical software. MathWorks was originally developed by the US company produced commercial mathematical software, which consists of Matlab and Simulink are two important parts, and now it is used in engineering calculations, control design, signal processing and communications, image processing, signal detection, financial modeling design and analysis and other fields.Based on the brushless DC motor structure and working principle of research and analysis to identify the cause of which has a large torque ripple, and theoretically first get how to suppress torque ripples, established through Matlab brushless Simulation Model DC motor, its simulation results are analyzed and improved in order to effectively suppress the torque ripple of the brushless DC motorKeywords:Brushless DC motor; The torque pulsation; The simulation model目录第一章绪论 (6)1.1 研究背景及研究意义 (6)1.2 无刷直流电机调速系统的国内外研究现状 (7)1.3 本文的主要研究内容及章节安排 (8)第二章无刷直流电机的基本原理 (9)2.1 无刷直流电机的基本结构 (9)2.1.1 电机本体 (9)1.电动机定子 (9)2. 电动机转子 (10)2.1.2 位置传感器 (10)2.2 无刷直流电机的工作原理及换相过程 (12)2.2.1 无刷直流电机的工作原理 (13)2.2.2 无刷直流电机的换相过程 (15)2.3 无刷直流电机的应用 (16)2.4 本章小结 (16)第三章基于PWM技术的无刷直流电机转矩脉动抑制 (17)3.1 PWM控制技术简介 (17)3.1.1 PWM控制技术的基本原理 (17)3.1.2 PWM控制技术的控制方法 (18)3.2 Buck变换器的原理及控制方式 (19)3.2.1 Buck变换器的原理 (19)3.2.2 Buck变换器的控制方式 (20)3.3 无刷直流电机转矩脉动的产生 (20)3.3.1传导区转矩脉动 (21)3.3.2换相区转矩脉动 (22)3.4 无刷直流电机转矩脉动的抑制 (24)3.5 本章小结 (27)第四章无刷直流电机的仿真分析 (28)4.1 MATLAB和SIMULINK的介绍 (28)4.2 无刷直流电机的数学模型 (29)4.2.1电机本体模块 (30)4.2.2转矩计算模块 (31)4.2.3速度控制模块 (32)4.2.4电流控制模块 (32)4.2.5电压逆变模块 (33)4.3无刷直流电机的仿真结果 (33)4.4本章小结 (38)结论 (39)致谢 (40)参考文献 (41)附录 (42)第一章绪论1.1 研究背景及研究意义对于工厂生产和社会发展而言,电力拖动都有着举足轻重的地位,为了满足生产工艺的需求,通过控制电机的转矩以及转速来控制电动机的转速以及位置,这样就可以形成一个自动化系统,称之为电力拖动。

无位置传感器的无刷直流电动机调速控制程序

无位置传感器的无刷直流电动机调速控制程序

《无位置传感器的无刷直流电动机调速控制程序》.include "240x.h".global _c_int0;--------------------------------------以下定义常数和变量-------------------------------------------------- KP .set 245 ;电流调节比例系数, 0.12的Q11格式KPS .set 100 ;速度调节比例系数.bss CAPT,1 ;换相控制字.bss COMP,1 ;更新占空比的比较值,由电流调节输出.bss IDC_REF,1 ;电流参考值,由速度调节输出.bss IDC_ERRORK,1 ;电流偏差.bss FLAGCUR,1 ;更新比较值和换相标志,1-允许更新,0-不允许.bss SPEED_REF,1 ;给定速度参考.bss V_ERRORK,1 ;速度偏差.bss SPEED_COUNT,1 ;速度调节环计数器.bss V1,1 ;相电压1.bss V2,1 ;相电压2.bss V3,1 ;相电压3.bss NEUTRAL,1 ;中性点电压.bss FLAG,1 ;感应电动势变符号标志,1-变了;0-没变.bss FLAGUP,1 ;转过一机械转标志,1-没转过,0-转过.bss BCOUNT,1 ;延迟时间更新值,磁定位时临时变量.bss B2COUNT,1 ;延迟时间.bss STALL,1 ;磁定位结束标志,1-结束,0-没结束.bss ASYM,1 ;延时计算感应电动势计数器.bss SPEEDFLAG,1 ;第一转时禁止速度调节标志,1-禁止,0-允许.bss TIME,1 ;每转时间计数器.bss STACK,6 ;软堆栈区;--------------------------------------定义主向量------------------------------------------------------------- .sect "vectors"RSVECT B _c_int0 ;复位INT1 B PHANTOM ;INT1INT2 B PHANTOM ;INT2INT3 B PHANTOM ;INT3INT4 B PHANTOM ;INT4INT5 B PHANTOM ;INT5INT6 B ADCINT ;ADC中断…;略;--------------------------------------以下是程序------------------------------------------------------------- .text;--------------------------------------初始化程序-------------------------------------------------------------- _c_int0SETC CNFCLRC OVMSETC SXM ;符号扩展SETC INTM ;关中断LAR AR1,#STACKLDP #0E0HSPLK #68H, WDCR ;不用看门狗SPLK #0284H,SCSR1 ;10MCLKIN,20MCLKOUTLDP #0E8HSPLK #500,T1PR ;PWM设置,周期50微秒SPLK #0000H,T1CNTSPLK #0FFFH,ACTRA ;PWM1~6全部高电平输出SPLK #01F4H,DBTCONA ;死区1.6微秒SPLK #500,CMPR1 ;占空比为0SPLK #500,CMPR2SPLK #500,CMPR3SPLK #8200H,COMCONA ;允许比较,T1下溢重载SPLK #0840H,T1CON ;连续增减计数,内部时钟,不分频SPLK #0100H,GPTCONA ;T1周期中断标志启动AD转换LDP #0E1HSPLK #0FC0H, MCRA ;引脚设置为PWMLDP #0LACC #020HSACL IMR ;允许INT6中断LACC IFR ;清标志SACL IFRLDP #0E8HLACC EV AIFRA ;清标志SACL EV AIFRALACC EV AIFRBSACL EV AIFRBLACC EV AIFRCSACL EV AIFRCSPLK #0,EV AIMRA ;屏蔽中断SPLK #0,EV AIMRBSPLK #0,EV AIMRCLDP #0E1H ;AD设置SPLK #0500H,ADCTRL2 ;允许EV A启动AD转换SPLK #0900H,ADCTRL1 ;10分频SPLK #0003H,MAXCONV ;4个转换通道SPLK #3210H,CHSELSEQ1 ;ADCIN00-03通道CLRC INTM ;开总中断;--------------------------------------变量初始化--------------------------------------------------------- LDP #0 ;变量初始化SPLK #020H,IDC_REF ;磁定位电流SPLK #0,IDC_ERRORKSPLK #0300H,SPEED_REF ;转速初值SPLK #00112,COMP ;最小占空比SPLK #0000H,FLAGCURSPLK #0000H,SPEED_COUNTSPLK #0000H,CAPTSPLK #0000H,V1SPLK #0000H,V2SPLK #0000H,V3SPLK #0000H,NEUTRALSPLK #0000H,FLAGSPLK #0001H,FLAGUP ;没转过一转SPLK #0001H,SPEEDFLAG ;禁止速度调节SPLK #0000H,BCOUNTSPLK #0000H,B2COUNTSPLK #0000H,STALLSPLK #0000H,ASYMSPLK #0000H, V_ERRORKSPLK #0000H,TIME;--------------------------------------准备磁定位------------------------------------------------------------- LDP #0LACC COMP ;装载比较初值LDP #0E8H ;反相驱动SPLK #03FDH,ACTRA ;PWM1低有效,PWM6低电平,其它高电平SACL CMPR1 ;A相入,C相出,B相不通电SPLK #0000H,CMPR2SPLK #0000H,CMPR3;--------------------------------------等待磁定位结束------------------------------------------------------ MAGSTALLLDP #0LACC STALL ;检测磁定位是否结束BCND MAGSTALL,EQ ;没结束继续等待;--------------------------------------磁定位结束换相---------------------------------------------------- LACC COMPLDP #0E8HSPLK #03DFH,ACTRA ;PWM3低有效,PWM6低电平,其它高电平SACL CMPR2 ;B相入,C相出,A不通电SPLK #0000H,CMPR3SPLK #0000H,CMPR1LDP #0SPLK #4,CAPT ;CAPT初值;--------------------------------------主循环----------------------------------------------------------------- LOOPLDP #0LACC FLAGCUR ;检测是否更新比较值BCND LOOP,EQ ;不更新跳转SPLK #0,FLAGCUR ;更新,清标志CALL SEQUENCE ;调用更新子程序B LOOP ;等待下次更新;--------------------------------------假中断处理------------------------------------------------------------- PHANTOMCLRC INTMRET;--------------------------------------更新比较值或换相子程序----------------------------------------- SEQUENCELDP #0LACC TIME ;每转时间计数器ADD #1SACL TIMELACC CAPT ;换相控制字ADD #CAPT_DETER ;加起始地址BACCCAPT_DETERB RISING1 ;相当于H1上升沿B FALLING3 ;相当于H3下降沿B RISING2 ;相当于H2上升沿B FALLING1 ;相当于H1下降沿B RISING3 ;相当于H3上升沿FALLING2 ;相当于H2下降沿LACC COMPLDP #0E8HSPLK #0D3FH,ACTRA ;PWM5低有效,PWM4低电平,其它高电平SACL CMPR3 ;C相入,B相出,A相不通电SPLK #0000H,CMPR2SPLK #0000H,CMPR1LDP #0 ;延时过滤干扰LACC ASYM ;延时计数器ADD #1 ;加1SACL ASYMSUB #10 ;检测是否到计数值BCND END,LEQ ;没到,退出SPLK #10,ASYM ;计数值已到,测量感应电动势过零点LACC FLAG ;感应电动势符号变化?BCND END,NEQ ;变了,退出LACC V1,1 ;没变,检测.V1乘2ADD V1 ;ACC=3*(BEMFA + NEUTRAL)SUB NEUTRAL ;ACC=3*BEMFABCND END,LT ;<0符号没变,退出SPLK #1,FLAG ;否则符号改变,置过零标志LACC BCOUNTSACL B2COUNT ;更新延迟时间B END ;退出RISING3LACC COMPLDP #0E8HSPLK #0DF3H,ACTRA ;PWM5低有效,PWM2低电平,其它高电平SACL CMPR3 ;C相入, A相出, B相不通电SPLK #0000H,CMPR2SPLK #0000H,CMPR1LDP #0 ;延时过滤干扰LACC ASYM ;延时计数器ADD #1 ;加1SACL ASYMSUB #10 ;检测是否到计数值BCND END,LEQ ;没到,退出SPLK #10,ASYM ;计数值已到,测量感应电动势过零点LDP #0LACC FLAG ;感应电动势符号变化?BCND END,NEQ ;变了,退出LACC V2,1 ;没变,检测.V2乘2ADD V2 ;ACC=3*(BEMFB + NEUTRAL)SUB NEUTRAL ;ACC=3*BEMFBBCND END,GEQ ;≥0符号没变,退出SPLK #1,FLAG ;否则符号改变,置过零标志LACC BCOUNTSACL B2COUNT ;更新延迟时间B END ;退出FALLING3LACC COMPLDP #0E8HSPLK #03FDH,ACTRA ;PWM1低有效,PWM6低电平,其它高电平SACL CMPR1 ; A相入, C相出, B相不通电SPLK #0000H,CMPR2SPLK #0000H,CMPR3LDP #0 ;延时过滤干扰LACC ASYM ;延时计数器ADD #1 ;加1SACL ASYMSUB #10 ;检测是否到计数值BCND END,LEQ ;没到,退出SPLK #10,ASYM ;计数值已到,测量感应电动势过零点LDP #0LACC FLAG ;感应电动势符号变化?BCND END,NEQ ;变了,退出LACC V2,1 ;没变,检测.V2乘2ADD V2 ;ACC=3*(BEMFB + NEUTRAL)SUB NEUTRAL ;ACC=3*BEMFBBCND END,LT ;<0符号没变,退出SPLK #1,FLAG ;否则符号改变,置过零标志LACC BCOUNTSACL B2COUNT ;更新延迟时间B END ;退出RISING2LACC COMPLDP #0E8HSPLK #03DFH,ACTRA ;PWM3低有效,PWM6低电平,其它高电平SACL CMPR2 ;B相入, C相出, A相不通电SPLK #0000H,CMPR3SPLK #0000H,CMPR1LDP #0 ;延时过滤干扰LACC ASYM ;延时计数器ADD #1 ;加1SACL ASYMSUB #10 ;检测是否到计数值BCND END,LEQ ;没到,退出SPLK #10,ASYM ;计数值已到,测量感应电动势过零点LDP #0LACC FLAG ;感应电动势符号变化?BCND END,NEQ ;变了,退出LACC V1,1 ;没变,检测.V1乘2ADD V1 ;ACC=3*(BEMFA + NEUTRAL)SUB NEUTRAL ;ACC=3*BEMFABCND END,GEQ ;≥0符号没变,退出SPLK #1,FLAG ;否则符号改变,置过零标志LACC BCOUNTSACL B2COUNT ;更新延迟时间B END ;退出RISING1LACC COMPLDP #0E8HSPLK #0F3DH,ACTRA ;PWM1低有效,PWM4低电平,其它高电平SACL CMPR1 ;A相入, B相出, C相不通电SPLK #0000H,CMPR2SPLK #0000H,CMPR3LDP #0 ;延时过滤干扰LACC ASYM ;延时计数器ADD #1 ;加1SACL ASYMSUB #10 ;检测是否到计数值BCND END,LEQ ;没到,退出SPLK #10,ASYM ;计数值已到,测量感应电动势过零点LDP #0LACC FLAG ;感应电动势符号变化?BCND END,NEQ ;变了,退出LACC V3,1 ;没变,检测.V3乘2ADD V3 ;ACC=3*(BEMFC + NEUTRAL)SUB NEUTRAL ;ACC=3*BEMFCBCND END,GEQ ;≥0符号没变,退出SPLK #1,FLAG ;否则符号改变,置过零标志LACC BCOUNTSACL B2COUNT ;更新延迟时间B END ;退出FALLING1LACC COMPLDP #0E8HSPLK #0FD3H,ACTRA ;PWM3低有效,PWM2低电平,其它高电平SACL CMPR2 ; B相入, A相出, C相不通电SPLK #0000H,CMPR3SPLK #0000H,CMPR1LDP #0 ;延时过滤干扰LACC ASYM ;延时计数器ADD #1 ;加1SACL ASYMSUB #10 ;检测是否到计数值BCND END,LEQ ;没到,退出SPLK #10,ASYM ;计数值已到,测量感应电动势过零点LDP #0SPLK #0,FLAGUP ;转过一机械转,置标志LACC FLAG ;感应电动势符号变化?BCND END,NEQ ;变了,退出LACC V3,1 ;没变,检测.V3乘2ADD V3 ;ACC=3*(BEMFC + NEUTRAL)SUB NEUTRAL ;ACC=3*BEMFCBCND END,LT ;<0符号没变,退出SPLK #1,FLAG ;否则符号改变,置过零标志LACC BCOUNTSACL B2COUNT ;更新延迟时间ENDRET;--------------------------------------速度计算和调节子程序------------------------------------------------ SPEED_REGLDP #0SPLK #32,SPEED_COUNT ;25CLRC SXMLACC #0OR #0FFFFH ;ACC=FFFFH无符号数RPT #15SUBC BCOUNT ;除1/12机械转时间AND #0FFFFH ;屏蔽高位SETC SXMSUB SPEED_REFNEG ;速度偏差= SPEED_REF-SPEEDBCND POS,GEQ ;检测偏差是否超限.≥0跳转ABS ;<0则取绝对值SPLK #-32,SPEED_COUNT ;- 25POSSACL V_ERRORK ;保存速度偏差SUB #03FFH ;检测上限BCND OKPOS,LEQ ;不超上限则跳转SPLK #03FFH, V_ERRORK ;否则=3FFHOKPOSLT V_ERRORK ;-1024 <速度偏差< 1024MPY SPEED_COUNT ;乘25PACSACL V_ERRORK ;速度偏差<<5LT V_ERRORK ;速度比例调节MPY #KPS ;乘比例系数PACADD IDC_REF,16SACH IDC_REF ;IDC_REF(K)=IDC_REF(K-1) + KPS*V_ERRORKLACC IDC_REF ;检测IDC_REF是否超限BCND RES,GEQ ;≥0跳转SPLK #0,IDC_REF ;超下限则=0RESSPLK #0,SPEED_COUNT ;速度调节环计数器清0RET;--------------------------------------ADC中断子程序--------------------------------------------------- ADCINT ;每50微秒转换一次MAR *,AR1 ;保存现场MAR *+SST #1, *+ ;保存ST1SST #0, *+ ;保存ST0SACH *+ ;保存ACC高16位SACL * ;保存ACC低16位;--------------------------------------速度调节与否--------------------------------------------------------------- LDP #0LACC STALL ;检测磁定位是否完成?BCND VDC_IDC,EQ ;STALL=0(磁定位没完成)禁止速度调节LACC SPEEDFLAG ;禁止速度调节?BCND VDC_IDC,NEQ ;SPEEDFLAG=1,禁止速度调节LACC SPEED_COUNT ;检测是否该速度调节?SUB #2000 ;每100ms进行一次速度调节BCND NO_SPEED_REG,NEQ ;时间没到,跳转CALL SPEED_REG ;时间到,调速度调节子程序NO_SPEED_REGLACC SPEED_COUNTADD #1SACL SPEED_COUNT ;SPEED_COUNT+1;--------------------------------------读ADC转换结果------------------------------------------------------- VDC_IDCLDP #0E0HLACC PIVR ;清ADC中断标志LDP #0E8HLACC EV AIFRA ;清T1周期中断标志SACL EV AIFRALDP #0E1HLACC ADCTRL2OR #0202HSACL ADCTRL2LACC RESULT0,10 ;读电流值LDP #0SACH IDC_ERRORKLDP #0E1HLACC RESULT1,10 ;读A相电压LDP #0SACH V1LDP #0E1HLACC RESULT2,10 ;读B相电压LDP #0SACH V2LDP #0E1HLACC RESULT3,10 ;读C相电压LDP #0SACH V3;--------------------------------------电流比例调节----------------------------------------------------------- SETC SXMLACC IDC_ERRORK,5 ;Q5格式SUB IDC_REF,5SACL IDC_ERRORK ;保存电流偏差,Q5格式LT IDC_ERRORK ;电流比例调节MPY #KP ;Q11格式PAC ;ACC = KP*IDC_ERRORKADD COMP,16SACH COMP ;KP*IDC_ERRORK + COMP(K-1)LACC COMP ;检测是否超限BCND SUP_LIM,GTSPLK #0,COMP ;超过下限,COMP=0B COMP_OKSUP_LIMSUB #0500BCND COMP_OK,LTSPLK #0500,COMP ;超过上限,COMP=500COMP_OK ;在上下限内;--------------------------------------换相准备----------------------------------------------------------------- LDP #0LACC FLAG ;过零?BCND NEU,EQ ;没过零,跳转LACC B2COUNT ;过零,执行延迟时间SUB #1 ;延迟时间减1SACL B2COUNTSETC SXMBCND NEU,NEQ ;延迟时间没到,跳转LACC CAPT ;否则更新换相控制字ADD #2SACL CAPTSUB #0CHBCND OKCAPT,NEQ ;没超过12,跳转SPLK #0,CAPT ;超过12,CAPT=0OKCAPTSPLK #0,FLAG ;置过零标志SPLK #0,ASYM ;延时计数器清0,准备延时;--------------------------------------中性点电压计算---------------------------------------------------------- NEULACC V1ADD V2ADD V3SACL NEUTRAL ;保存3*NEUTRALSPLK #1,FLAGCUR ;允许更新比较值LACC STALL ;检查磁定位是否完成BCND SPEEDUP,NEQ ;磁定位已完成,跳转;--------------------------------------磁定位更新比较值------------------------------------------------------ CLRC SXM ;否则进行磁定位LACC COMPLDP #0E8HSACL CMPR1 ;更新A相比较值LDP #0LACC BCOUNT ;磁定位计数器ADD #1 ;加1SACL BCOUNTSUB #0FFFFH ;延时216*50微秒SETC SXMBCND RESTO,NEQ ;磁定位没完成,退出SPLK #0,TIME ;磁定位完成,修改标志和初值SPLK #050H,BCOUNT ;延迟时间初值SPLK #1,STALL ;磁定位完成标志SPLK #1,SPEEDFLAG ;禁止速度调节B RESTO ;退出;--------------------------------------计算延迟时间------------------------------------------------------ SPEEDUPLACC CAPT ;转完一转?SUB #4BCND RESTO,NEQ ;没转完,退出LACC FLAGUP ;是否计算延迟时间?BCND RESTO,NEQ ;不计算,退出SPLK #0,SPEEDFLAG ;否则计算,允许速度调节CLRC SXMLACC TIME ;每转时间计数器SPLK #12,BCOUNTRPT #15SUBC BCOUNT ;除12,得到转30º所用的时间AND #0FFFFHSACL BCOUNT ;保存作为延迟时间更新值SETC SXMSPLK #0,TIME ;每转时间计数器清0SPLK #1,FLAGUP ;改标志RESTOMAR *, AR1 ;恢复现场LACL *-ADDH *-LST #0, *-LST #1, *-CLRC INTM ;开中断RET.end。

无刷直流电机控制系统的设计及仿真

无刷直流电机控制系统的设计及仿真

目录1 前言............................................................................................................... - 0 -1.1 无刷直流电机的开展......................................................................... - 0 -1.2 无刷直流电机的优越性..................................................................... - 0 -1.3 无刷直流电机的应用......................................................................... - 1 -1.4 无刷直流电机调速系统的研究现状和未来开展............................. - 1 -2 无刷直流电机的原理................................................................................... -3 -2.1 三相无刷直流电动机的根本组成..................................................... - 3 -2.2 无刷直流电机的根本工作过程......................................................... - 4 -2.3 无刷直流电动机本体......................................................................... - 5 -2.3.1 电动机定子............................................................................... - 5 -2.3.2 电动机转子............................................................................... - 6 -2.3.3 有关电机本体设计的问题....................................................... - 7 -3 转子位置检测............................................................................................... - 8 -3.1 位置传感器检测法............................................................................. - 8 -3.2 无位置传感器检测法......................................................................... - 9 -4 系统方案设计............................................................................................. - 11 -4.1 系统设计要求................................................................................... - 11 -4.1.1 系统总体框架......................................................................... - 11 -4.2 主电路供电方案选择....................................................................... - 11 -4.3 无刷直流电机电子换相器............................................................... - 13 -4.3.1 三相半控电路......................................................................... - 13 -4.3.2 三相全控电路......................................................................... - 14 -4.4 无刷直流电机的根本方程............................................................... - 15 -4.5 逆变电路的选择............................................................................... - 17 -4.6 基于MC33035的无刷直流电动机调速系统................................... - 18 -4.6.1 MC33035无刷直流电动机控制芯片...................................... - 18 -4.6.2 基于MC33035的无刷直流电动机调速系统设计 ................ - 19 -5 无刷直流电机调速系统的MATLAB仿真................................................... - 22 -5.1 电源、逆变桥和无刷直流电机模型............................................... - 23 -5.2 换相逻辑控制模块........................................................................... - 24 -5.3 PWM调制技术.................................................................................... - 29 -5.3.1 等脉宽PWM法......................................................................... - 31 -5.3.2 SPWM(Sinusoidal PWM)法..................................................... - 31 -5.4 控制器和控制电平转换及PWM发生环节设计............................... - 31 -5.5 系统的仿真、仿真结果的输出及结果分析................................... - 33 -5.5.1 起动,阶跃负载仿真............................................................. - 33 -5.5.2 可逆调速仿真......................................................................... - 35 -6 总结和体会................................................................................................. - 37 -无刷直流电机调速控制系统设计1前言直流无刷电机,无机械刷和换向器的直流电机,也被称为无换向器直流电动机。

60kW 无刷直流电动机调速装置的研制

60kW 无刷直流电动机调速装置的研制

60kW无刷直流电动机调速装置的研制*李宏1彭毅21)西安石油大学,(710065) 2)解放军某部队摘要介绍了一种60kW无刷直流电动机调速装置,它的主电路应用绝缘栅控双极型晶体管IGBT,控制脉冲形成单元由无刷直流电动机驱动控制芯片MC33035完成,IGBT的驱动电路应用HL402A,保护电路设计较完善,文中不但详细介绍了该电动机调速器各主要部分的组成和工作原理,而且给出了其实用效果。

关键词无刷直流电动机调速装置,驱动电路,控制脉冲,电流传感器,保护电路1.引言电动机作为各种生产机械或旋转机械的拖动单元,获得了极为广泛的应用,据统计发达国家发电量的50%~70%消耗于电动机,我国发电量的65%被电动机消耗,尽管电动机发明已有一百多年的历史,但从大的方面仍可将其分为交流电动机和直流电动机两大类,他励直流电动机具有调速性能好,调速范围宽,励磁与电枢电压可独立控制,调速精度高等交流电动机无法比拟的优点。

至今仍有一定量的应用,但其致命缺点是存在换向火花,电刷维护工作量大,体积大,运行噪音大,交流电动机具有体积小,运行噪音小,不存在换向器及电刷等优点,但由于其旋转磁场与定子电压极难精确的解耦控制,尽管应用了许多诸如矢量控制的方法,其调速性能仍然较直流电动机要差,为了充分发挥直流电动机与交流电动机两者的共同优点,而扬弃它们各自的不足,随着稀土材料制造技术的日新月异,各种新型的电动机不断涌现,其中发展极为迅速的是无刷直流电动机,无刷直流电动机是一种永磁的交流同步电动机,结构与交流电动机十分类似,但由于受生产量等因素的影响,它的成本还相对较高,特别是其调速控制器的容量还无法做到与交流电动机变频调速及普通直流电动机调速装置那样大,限制了其应用的快速发展,本文介绍我们最近研制的一种60kW无刷直流电动机调速装置。

2.系统基本构成和工作原理60kW无刷直流电动机调速装置由主电路、驱动电路、控制脉冲形成电路、信号检测电路、保护电路、*本项目受某国防科技基金资助操作电路、报警及显示电路、给定及闭环调节电路,工作电源电路九大功能块组成,限于篇幅,本文仅介绍其主要核心单元的工作原理。

电动车用无刷直流电动机的调速控制

电动车用无刷直流电动机的调速控制


V1 ,输 入 L 2 M3 4的 比较器 反 相输 入 端 ,由无 刷 电 ∞
~ ≮ 一 ≮ ≯ 叫 《 《 . 冠
~ t , ¨
动机 输 出的霍 尔方 波信 号 ( 图 2 ,经 过沿 触 发 电 如 )

路 ,在方 波上 跳沿 和下 跳 沿分别 产 生触 发脉 冲 ,达
1 概 述
当给无刷 直 流电动 机定 子绕组 通 电时 ,该 电流 与转子 永磁体 的磁 极所 产生 的磁场 相互 作用 而产 生
转 矩 ,驱动转 子旋 转 ,再 由位 置传 感器 将转 子位 置
变换成 方波 信号 ,通过 控制 电路 去控 制开关 线路 的 通断 ,从 而使定 子各相 绕组 按一定 顺 序导通 ,定 子 相 电流随转 子位 置 的变化 而按一定 的次序换 相 。由 于 电子开关 线路 的 导 通次 序 是 与转 子 转 角 同步 的 , 因而起 到 了机械 换相 器 的换 相作 用 。因此 ,所谓 无 刷直 流 电动 机 ,就其结 构而 言 ,可 以认 为是 一 台 由
电子 开关线 路 、永磁 式 同步 电动 机 以及位 置传 感器
图 1 电 动 车 用 无 刷 直 流 电机 设 计 流 程
6。 10 10 0 2 。 。 2 0 3 0 3 0 8 4。 0 。 6。
三者 组成 的“ 电动机 系统” 。
2 设 计 方 案
本设计 应用 于控 制 电动 自行 车 和 电动 摩托 车 的
黄 涛 李 晶
( 汉 理 工 大 学 信 息 学 院 ,武 汉 武 407) 3 0 0
摘 要 :对 当前 无刷直 流 电动机在 电动车 中的应用做 了简单分 析 ,详 细 阐述 了其 驱 动 电路 和调 整 部 分 的实现 方案 以及过 流保 护等 功 能。 关键 词 :无 刷直流 电动机 ;霍 尔位 置传 感器 ;驱 动 电路 ;调速 ;过 流保 护 ; 电动助力 车 ;应用

无刷直流电动机的控制方法

无刷直流电动机的控制方法

无刷直流电动机的控制方法无刷直流电动机的控制方法主要有以下三种:
1、方波控制。

通过霍尔传感器或者无感估算算法获得电机转子的位置,然后根据转子的位置在360°的电气周期内进行6次换向。

方波控制的位置精度是电气60°,适用于对电机转动性能要求不高的场合。

2、正弦波控制。

使用SVPWM波,输出的是3相正弦波电压,电机相电流为正弦波电流。

正弦波控制相比方波控制,其转矩波动较小,电流谐波少。

3、FOC控制。

FOC控制可以认为是正弦波控制的升级版本,实现了电流矢量的控制,也即实现了电机定子磁场的矢量控制。

无刷直流电动机的调速方法

无刷直流电动机的调速方法

无刷直流电动机的调速方法
无刷直流电动机的调速方法多种多样,常见的方法有以下几种: 1. 脉宽调制(PWM)控制法:通过调整PWM的占空比来调节电动机的转速。

这种方法简单易行,适用于大多数情况。

2. 电压调制控制法:通过调整电压的大小来控制电动机的转速。

这种方法可以实现高精度的调速,但是需要专门的控制器。

3. 矢量控制法:通过精确控制电动机的电流和电压来实现高精度的调速。

这种方法最为复杂,但是可以实现极高的精度和效率。

4. 直接转矩控制法:通过直接控制电动机的电流来实现精确的转矩控制。

这种方法适用于需要精确控制转矩的场合,如工业自动化等。

总的来说,无刷直流电动机的调速方法多种多样,需要根据具体的应用场合和要求选择合适的控制方法。

- 1 -。

无刷直流电机工作原理及PWM调速

无刷直流电机工作原理及PWM调速
永磁材料的去磁曲线表示永
磁材料被完全磁化后无外励
磁时的 B—H关系。
华北电力大学 电机教研室
《电机学》
§25-1永磁材料及其特性参数

永磁材料分类 常用的永磁材料有铝镍钴(AlniCo)、钡铁氧体 (Ba-Ferrite)和锶铁氧体(Sr-Ferrite)、钐钴 (SmCo 2∶17 型和SmCo 1∶5 型)和钕铁硼 (NdFeB),这是按发明的先后顺序排列的; 若按年产吨位排列则为:铁氧体、钕铁硼、铝镍 钴、钐钴;若按销售额排列则为:铁氧体和钕铁 硼并列第一,然后是钐钴、铝镍钴。

无刷直流电机的构成
无刷直流电机包括:直流电源,永磁电机,电子换向 电路(逆变器),转子位置检测,电流换向控制。
华北电力大学 电机教研室
《电机学》
§25-2 无刷直流电机的工作原理

永磁电机
表面磁钢结构的永磁电机
内永磁结构的永磁电机
分数槽绕组的永磁电机
华北电力大学 电机教研室
《电机学》
§25-2 无刷直流电机的工作原理
华北电力大学电机教研室电机学无刷直流电机的pwm调速252无刷直流电机的工作原理pwmon模式调制方法示意图华北电力大学电机教研室电机学无刷直流电机的pwm调速252无刷直流电机的工作原理onpwm模式调制方法示意图华北电力大学电机教研室电机学无刷直流电机的pwm调速252无刷直流电机的工作原理pwmonpwm模式调制方法示意图华北电力大学电机教研室电机学无刷直流电机的pwm调速252无刷直流电机的工作原理通过调整pwm的占空比调节加在电机绕组上的电压的大小可以实现像直流电机一样调速性能
华北电力大学 电机教研室
《电机学》
§25-2 无刷直流电机的工作原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制电路 CT
转子位置检测器
这一节,主要任务有两个:讨论工作原理和控制方式。
一、工作原理
V1、V6导通,定子绕组流过电流iAB , 定子绕组合成磁通势Fa垂直C相
轴线。
1
3
5
4
6
2
A
B C
励磁磁场F0与电枢磁场Fa相差1200(这实 际上是最大相位差)。
两磁场相互作用使转子顺时针旋转。
当转子旋转到F01位置时,F0和Fa垂直,
首先介绍同步电动机及其调速的基本概念、特点和基本类型。
9.1 同步电动机变压变频调速系统的特点及基本类型
同步电动机的定子与三相异步电动机的一样,而转子是磁极,由 直流励磁或永久磁铁励磁,是交流电动机中两大机种之一。同步 电动机因其转速n与供电电源频率f1之间保持严格的同步关系而得 名。只要供电电源的频率f1不变,其转速n就绝对不变。
旋转电枢磁场和励磁磁场的相互作用,使电动机能够连续旋转。 磁极每转动600电角度,电流换流一次,电枢磁场在空间上也跃进
600。在稳定运转时,电枢磁场Fa与励磁磁势F0的相位差 始终在
600≤ ≤1200范围内,其平均值处于正交状态,这样同样的定子电 流下使转矩最大。从原理可知,无刷直流电动机的磁场是一种步 进式的旋转磁场、产生的电磁转矩是脉动的。
1 iAB
F0
NS B 6
C21Fra bibliotekiAC A
Fa
F0
NS B 6
C
2
+
- (b)
+
- (c)
控制电路控制切换功率晶体管,使V6截止、V2导通,定子绕组流过电流
iAC, 定子磁势Fa相应地转过600 。此时,F0和Fa相位差又变为1200 。
如此重复进行,每当转子磁极转动600,在控制电路的控制下,使 相应的功率晶体管导通、切断,从而使定子进行一次换流,改变 电枢磁场方向,转子跟着电枢磁场旋转。
上述逆变器为1200通电型的六拍逆变器,每一时刻都只有两只功率 管导通,至于哪两只功率管导通则由转子位置检测器发出的信号 来控制。
第九章 无刷直流电动机调速系统
主要内容:
同步电动机变压变频调速的特点及基本类型 无刷直流电动机的工作原理 无刷直流电动机调速系统(举例)
无刷直流电动机调速系统是一种自控变频的同步电动机调速系统。 了解同步电动机是理解无刷直流电动机调速系统的基础。同步电动 机在结构上与异步电动机有以下区别:
转子采用永久磁铁励磁; 电动机轴上带有转子位置检测器来控制逆变器换流; 无机械换向器; 输入定子的电流为方波电流。
相位差900,电动机的转矩最大。
F02
电机学知识:
电磁转矩既与定子磁动势的幅值、 F01 转子磁动势的幅值成正比,也与这两个磁 动势夹角的正弦值成正比。
S Fa
F02 C
1
A iAB
S N
B6
F0
N
F0 +
- (a)
转子继续旋转,当转子磁极转到图b 所示位置时,F0和Fa相位差为600。
Fa A
2、按定子供电电源分为:三相永磁同步电动机和无刷直流电动机两类。 三相永磁同步电动机:转子采用永久磁铁励磁,给同步电动机的定子输 入三相正弦电流时,称为三相永磁同步电动机。
无刷直流电动机:转子采用永久磁铁励磁,给同步电动机的定子输入方 波电流时,称为无刷直流电动机。
无刷直流电动机也称为梯形波永磁同步电动机,属于自控变频同步电动 机。它是根据转子位置检测器检测到的信号来控制逆变器的通/断,控制 逆变器的输出功率,从而控制电动机的转速的。
同步电动机的应用范围也比较广泛,小到电子钟和记录仪表的定 时旋转机构,大到发电机组、空气压缩机、鼓风机等无不利用其 转速恒定的特点。
一、同步电动机变压变频调速系统的特点
和异步电动机变压变频调速系统相比,同步电动机的变压变频 调速系统有以下特点:
同步电动机的转速与电源输出的基波频率之间保持严格的同步关系:
同步电动机可通过改变(转子)励磁电流,改变定子相电压U和相电流I
之间的相位差 ,即改变功率因数cos ,进而使其工作在感性、电阻
性或容性三种状态下(同步补偿机就工作在容性状态下)。可调节转子
励磁电流改变输入功率因数,使其在 cos 1下运行。
异步电动机靠加大转差率提高转矩,同步电动机靠加大功率角来提高转 矩。(功率角为定子相电流与感应电动势的夹角)。
例如,同步电动机的变频启动,转子先加励磁电流,定子绕组输入频率很 低的三相交流电,由于定子(电枢)旋转磁通势的转速很低,可带动转子 开始旋转。将定子频率逐步增加,转子转速随之逐步升高,到达额定转速 时,启动过程结束。
二、同步电动机变压变频系统的分类
1、根据频率控制方法可分为:他控变频和自控变频两大类。
ns
60 f s np
其转差s1率 0
。 由于极对数固定,惟一靠变频进行调速。
同步电动机本身没有转矩,刚启动时,定子虽然能产生旋转磁场,但转 子是静止的,在惯性的作用下跟不上旋转磁场的转动,转子所受到的平 均转矩为零。(启动比较困难)。
同步电动机启动困难,重载时有振荡或失步(负载突然增大而超过电磁 转矩)现象。这些问题随着变频调速技术的发展得到了很好解决。
同步电动机有励磁回路,在较低的频率下也能运行,因此同步电动机的 调速范围较宽;而异步电动机的转子电流靠电磁感应产生,在较低频率 下转子难以产生必须的电流而无法工作,因此调速范围较窄。
异步电动机的电流在相位上总是滞后于电压,因而对晶闸管逆变器而言 必须设置强制换流电路;同步电动机能运行在超前功率因数下,可利用 反电动势实现逆变器的自然换流,不需设置附加换流电路。
他控变频调速就是用独立的变压变频装置给同步电动机供电。变频装置中 逆变器的输出频率独立设定,不取决于转子的位置。显然,这是一种频率 开环的控制方式,重载时仍存在振动和失步现象。
自控变频调速是根据检测到的转子的位置来控制逆变器开关器件的通断, 从而使逆变器的输出频率追随电动机的转速。这是一种频率闭环的控制方 式,能保证转子与旋转磁场同步旋转,从根本上避免振动和失步的产生 。
无刷直流电动机是带有电子换向器的永磁直流电动机,它用位置检测器 和逆变器代替了机械式的电刷和换向器,有直流电动机的性能。
9.2 无刷直流电动机的工作原理
无刷直流电动机由三相永磁方波电动机、位置检测器、逆变器、控制
器组成,如下图所示。

Ud



A B
N S
工作原理
永磁方波电动机
C
控制方式
驱动电路 GD
相关文档
最新文档