原子物理 原子的能级和辐射

合集下载

原子物理学教学大纲(1)

原子物理学教学大纲(1)

《原子物理学》教学大纲课程性质:专业基础课程先修课程:力学、电磁学、光学总学时:60 学分:3.5理论学时:60 实验学时:实验纳入《近代物理实验》课程开课学院:物电学院适用专业:物理学大纲执笔人:凤尔银大纲编写时间:2007年元月教研室主任审核:凤尔银教学院长审定:一、说明1、课程的性质、地位和任务原子物理学为物理学专业的必修课,是物理学专业的一门重要基础课。

本课程的主要目标和任务是:以原子结构为中心,以实验事实为线索,了解原子和原子核层次的物质结构及运动和变化规律,揭示宏观现象与规律的本质。

介绍有关问题所需要的量子力学基本概念,阐述物质微观结构三个层次的物理过程、研究方法,培养创新思维。

使学生对物质世界有更深入的认识,获得在本课程领域内分析和处理一些最基本问题的初步能力。

2、课程教学的基本要求通过本课程的学习,力图使学生初步建立描述微观世界的物理图像,理解适应微观世界的新概念,掌握处理微观世界物理问题的新方法,为后续《量子力学》课程的学习打下一定的基础;本课程涉及知识面较广,讲授时要针对实际情况,对内容加以选择,尽量做到详略得当,让学生既能较全面,又能较深刻地理解和掌握。

课程教学中,要结合有关内容,适当将一些背景材料和物理学史引入教学,以利于加深对新知识的理解和把握。

同时,通过介绍二十世纪初物理学家,在解决经典物理学应用于微观粒子体系遇到困难时的大胆探索、勇于出新的思想脉络,使学生受到创新意识和创新精神方面的熏陶和教育,提高学生分析问题和解决问题的能力。

使学生了解物理学家对物质结构的实践——理论——再实践的认识过程,引导学生养成严谨、活跃、创新的思维方式和学习方法。

3、本课程的重点与难点重点:培养学生初步建立微观世界的物理图像,掌握描述原子结构的基本概念、基本原理和方法;掌握认识原子世界的基本规律,以便从思想和方法上做好准备,为今后学习量子力学打下基础。

难点:由于原子物理学课程是学生第一次系统的接触到的近代物理学的理论体系,它的许多概念、观点与学生长期形成的观念不相符合。

原子物理学中的原子能级和辐射研究

原子物理学中的原子能级和辐射研究

原子物理学中的原子能级和辐射研究原子物理学是物理学的一个重要分支,主要研究原子的结构和性质以及原子与辐射的相互作用。

在原子物理学中,原子能级和辐射是两个基本概念,并且它们之间存在着密切的联系。

本文将介绍原子能级和辐射的研究内容和方法,并探讨它们在原子物理学中的重要性。

一、原子能级的研究原子能级是指原子中不同的能量状态。

根据量子力学理论,原子的能级是离散的,每个能级对应一个确定的能量值。

原子能级的研究主要包括能级结构、能级跃迁和谱线等方面。

1. 能级结构能级结构是指原子内部不同能量的分布状态。

一般而言,原子的能级结构可以用一系列的能级图来表示。

能级图的每一条横线代表一个能级,能级上的每个小圆点表示该能级上的一个电子。

2. 能级跃迁能级跃迁是指电子由一个能级跃迁到另一个能级的过程。

根据能级跃迁的方式和规律,可以分为自发辐射、受激辐射和吸收辐射三种形式。

自发辐射是指电子从高能级跃迁到低能级,并发射出一个光子。

受激辐射是指电子受到外界激励后,从高能级跃迁到低能级,并发射出一个与外界激励光子频率相同的光子。

吸收辐射是指电子吸收一个光子,从低能级跃迁到高能级。

3. 谱线原子能级的跃迁过程会产生特定的频率和波长的光,这些光在光谱上表现为一系列的谱线。

谱线的研究可以揭示原子的能级结构和能级跃迁的特性。

对于不同元素和分子,它们的谱线具有独特的特征,因此光谱分析成为了研究原子和辐射的重要手段之一。

二、辐射的研究辐射是指物质发射、传播或吸收的电磁波或粒子流。

在原子物理学中,辐射不仅包括可见光、紫外线、X射线等电磁波辐射,还包括带电粒子的流动,比如α粒子、β粒子和γ射线等。

1. 电磁辐射电磁辐射是原子物理学中研究的重要内容之一。

电磁辐射具有波粒二象性,既可以看作波动也可以看作粒子。

根据电磁辐射的波长或频率,可以将其分为不同的区域,如可见光、紫外线、X射线和γ射线等。

研究辐射的特性和相互作用是原子物理学的核心问题之一。

2. 带电粒子辐射带电粒子辐射是指原子核或带电粒子在运动中所发射的辐射。

原子物理学总复习

原子物理学总复习
原子物理学总复习
段正路
2014年
1
第一章 原子的基本状况
重点: 1,原子的核式结构 2,α粒子散射实验的意义
2
1、卢瑟福的原子核式模型
原子中的全部正电荷和几乎全部质量都集中在原子中央一 个很小的体积内,称为原子核。原子中的电子在核的周围 绕核运动。
2. α粒子的散射实验:
α粒子被静止核的库仑场散射的角度θ由下式决定
• Z:质子数 • A: 质量数
C4 0
20
a
原子核的角动量
P 核 LnSnLpSp
P核 I(I1)h
原子核的磁矩
I g
I(I1) he 2M
38
原子核的统计性:A为奇数的原子核属于费米子;A为偶 数的原子核属于玻色子。
原子核的结合能
E [Z m p (A Z )m n m 核 ]C 2 或 E [Z m H (A Z )m n m 原 子 ]C 2
r rr 总角动量 JLS JLS,LS 1 ,......,LS
L LS耦合下的原子态符号表示:
2S 1
s=0,单重态
J s=1,三重态
能级排布规则
洪特定则 朗德间隔定则
17
j-j 耦合
rjrj21 rrll12srsr12 rr r Jj1j2
j1 l1 s 1 ,l1 s 1 1 ,....,l1 s 1 j2 l2 s 2 ,l2 s 2 1 ,....,l2 s 2 Jj1j2,j1j2 1 ,....,j1j2
% 1R (m 12n 1 2)Tm Tn
R — 里德堡常数;T(m) —光谱项。
光谱线系 m = 1,n = 2、3、4…,赖曼系(紫外) m = 2,n = 3、4、5…,巴尔末系(可见光) m = 3,n = 4、5、6…,帕邢系(红外) m = 4,n = 5、6、7…,布喇开系(远红外)

原子物理学课后习题答案

原子物理学课后习题答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子能级和辐射知识点总结

原子能级和辐射知识点总结

原子能级和辐射知识点总结一、原子能级1. 原子结构原子是由原子核和绕核运动的电子组成的,原子核由质子和中子组成,质子带正电荷,中子不带电。

电子是带负电的,围绕原子核轨道运动。

2. 能级原子的电子围绕原子核运动时,由于受到电子自旋磁矩和轨道磁矩的相互作用,会产生能级分裂,形成多个能级。

电子在这些能级上运动时,会处于不同的状态。

3. 能级跃迁当电子从一个能级跃迁到另一个能级时,会吸收或发射光子,这种光子的能量正好等于两个能级之间的能差。

这是光子的辐射。

4. 能级的确定能级取决于原子核的质量和电子的位置,不同的原子核和电子分布形式会导致不同的能级结构。

每个原子都有特定的能级,这些能级是由原子的物理特性所决定的。

5. 能级的作用原子的能级决定了原子的光谱特性,不同原子的能级结构不同,因此存在着不同的光谱线。

通过研究原子的能级结构,可以揭示原子内部的物理特性,从而为原子物理学和量子力学的研究提供重要的信息。

6. 能级分布原子的能级是离散的,即只能取一些特定的数值。

在研究光谱时,我们经常需要计算原子的能级分布,以便理解光谱线的产生机制。

二、辐射1. 辐射的概念辐射是指从一个物体发射出的能量或粒子,并向外传播的过程。

辐射可以是电磁波、光子、中子等形式,通常是由原子、分子或亚原子粒子发射出来的。

2. 辐射的分类辐射可以分为电磁辐射和粒子辐射两大类。

电磁辐射包括可见光、紫外线、X射线和γ射线等,而粒子辐射包括α射线、β射线和中子辐射等。

3. 电磁辐射电磁辐射是由电磁场振荡产生的,具有电磁波的性质。

根据频率不同,电磁辐射可以分为不同的波段,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

不同波长的电磁辐射具有不同的能量和穿透能力。

4. 粒子辐射粒子辐射是由高速粒子产生的,包括α粒子、β粒子和中子。

这些粒子具有质量和电荷,与物质相互作用时会产生不同的效应。

5. 吸收和发射物质对辐射的吸收和发射是辐射研究的重要课题。

原子能级的辐射和吸收过程

原子能级的辐射和吸收过程

原子能级的辐射和吸收过程原子能级的辐射和吸收过程是原子物理学中的重要研究内容。

在这个过程中,原子从一个能级跃迁到另一个能级,同时辐射或吸收能量。

这种能量的辐射和吸收是通过电磁波实现的,而电磁波的频率和能量与原子能级之间存在着密切的关系。

首先,我们来了解一下原子的能级结构。

原子的能级结构是由原子核和围绕核运动的电子组成的。

电子在不同的能级上运动,每个能级对应着不同的能量。

当电子从一个能级跃迁到另一个能级时,会释放或吸收能量,这个过程就是辐射和吸收过程。

在辐射过程中,当电子从一个较高能级跃迁到一个较低能级时,会释放出一个光子,也就是电磁波。

这个光子的能量正好等于电子在能级跃迁过程中失去的能量。

根据普朗克的量子理论,光子的能量与其频率成正比,即E=hf,其中E为光子的能量,h为普朗克常数,f为光子的频率。

因此,不同能级之间的能量差决定了辐射的光子的频率和能量。

在吸收过程中,原子吸收外界的光子,使得电子从一个较低能级跃迁到一个较高能级。

这个过程中,光子的能量被电子吸收,电子的能量增加。

同样地,光子的能量与其频率成正比,因此吸收的光子的频率和能量也与能级之间的能量差有关。

原子能级的辐射和吸收过程不仅与能级之间的能量差有关,还与原子的结构和性质有关。

首先,原子的能级结构是由原子核和电子的相互作用决定的。

原子核的质量和电子的电荷决定了原子的能级结构。

其次,原子的能级结构是离散的,也就是说,电子只能在特定的能级上运动,不能在能级之间连续地跃迁。

这是因为电子的能量是量子化的,只能取特定的数值。

另外,原子能级的辐射和吸收过程还受到外界的影响。

外界的电磁波可以与原子进行相互作用,导致原子的能级发生变化。

这种相互作用可以是共振吸收或共振辐射。

共振吸收是指外界电磁波的频率与原子能级的能量差相匹配,使得原子吸收外界的能量。

共振辐射是指原子的能级与外界电磁波的频率相匹配,使得原子辐射出能量。

总结起来,原子能级的辐射和吸收过程是原子物理学中的重要研究课题。

原子物理和量子力学

原子物理和量子力学

原子物理与量子力学习题参考答案目录原子物理学(褚圣麟编) (1)第一章原子的基本状况 (1)7.α粒子散射问题(P21) (1)第二章原子的能级和辐射 (1)5.能量比较(P76) (1)7.电子偶素(P76) (1)8.对应原理(P77) (1)9.类氢体系能级公式应用(P77) (1)11.Stern-Gerlach实验(P77) (2)第三章量子力学初步 (2)3.de Broglie公式(P113) (2)第四章碱金属原子 (2)2.Na原子光谱公式(P143) (2)4.Li原子的能级跃迁(P143) (2)7.Na原子的精细结构(P144) (2)8.精细结构应用(P144) (3)第五章多电子原子 (3)2.角动量合成法则(P168) (3)3.LS耦合(P168) (3)7.Landé间隔定则(P169) (4)第六章磁场中的原子 (4)2.磁场中的跃迁(P197) (4)3.Zeeman效应(P197) (4)7.磁场中的原子能级(P197) (5)8.Stern-Gerlach实验与原子状态(P197) (5)10.顺磁共振(P198) (5)第七章原子的壳层结构 (6)3.原子结构(P218) (6)第八章X射线 (6)2.反射式光栅衍射(P249) (6)3.光栅衍射(P249) (6)量子力学教程(周世勋编) (7)第一章绪论 (7)1.1 黑体辐射(P15) (7)1.4 量子化通则(P16) (7)第二章波函数和Schrödinger方程 (8)2.3 一维无限深势阱(P52) (8)2.6 对称性(P52) (8)2.7 有限深势阱(P52) (9)第三章力学量 (10)3.5 转子的运动(P101) (10)3.7 一维粒子动量的取值分布(P101) (10)3.8 无限深势阱中粒子能量的取值分布(P101) (11)3.12 测不准关系(P102) (11)第四章态和力学量的表象 (12)4.2 力学量的矩阵表示(P130) (12)4.5 久期方程与本征值方程的应用(P130) (13)第五章微扰理论 (16)5.3 非简并定态微扰公式的运用(P172) (16)5.5 含时微扰理论的应用(P173) (16)第七章自旋与全同粒子 (17)7.1 Pauli算符的对易关系(P241) (17)7.2 自旋算符的性质(P241) (17)7.3 自旋算符x、y分量的本征态(P241) (17)7.4 任意方向自旋算符的特点(P241) (17)7.5 任意态中轨道角动量和自旋角动量的取值(P241) (18)7.6 Bose子系的态函数(P241) (19)原子物理与量子力学习题 (20)一、波函数几率解释的应用 (20)二、态叠加原理的应用 (20)三、态叠加原理与力学量的取值 (20)四、对易关系 (21)五、角动量特性 (22)1原子物理学(褚圣麟编)第一章 原子的基本状况7.α粒子散射问题(P21)J 106.1105.3221962-⨯⨯⨯⨯==E M υ232323030m )2/3(109.1071002.61060sin 1060sin 10----⊥-⨯⨯⨯⨯=⨯⨯=⋅⨯=A N t A N Nt s ρρ C 1060.119-⨯=e ,11120m AsV 1085.8---⨯=ε,61029-⨯=n dn32521017.412.0100.6--⨯=⨯==ΩL dS d , 20=θ 2.48)4(sin 202422=⋅Ω⋅⋅=Nt d n dn eM Z πευθ第二章 原子的能级和辐射5.能量比较(P76)Li Li Li Li v hcR hcR E E hv E )427()211(32212=-⋅=-==H e H e H e H e hcR hcR E E 4)1/2(0221=⋅=-=++∞ +∞>H e v E E ,可以使He +的电子电离。

大二原子物理笔记

大二原子物理笔记

大二原子物理笔记原子物理是研究微观世界中原子的结构、性质和相互作用的学科。

了解原子物理的基本知识对于理解现代科学和技术的发展具有重要意义。

本文将简要介绍原子物理的几个基本概念和主要内容,帮助读者初步了解这一领域。

一、原子结构原子是物质最基本的组成单位,由质子、中子和电子组成。

质子和中子位于原子核内,形成原子核,而电子以轨道的方式绕核运动。

质子的电荷为正电荷,中子没有电荷,电子带有负电荷。

原子中的质子数等于电子数,因而整体上呈电中性。

原子核是原子的中心部分,集中了几乎全部的质量。

原子核由质子和中子组成,质子数称为原子序数,对应元素的种类,中子数和质子数之差称为中子数。

原子核的直径约为10^-15米,相对于整个原子来说非常小。

三、原子的能级和能量原子中的电子围绕着原子核旋转,不同的能级对应不同的能量。

电子处于低能级时,原子是稳定的。

当电子吸收足够能量后,可以跃迁到较高的能级。

这种跃迁会伴随能量的辐射或吸收,产生光谱现象。

四、原子的辐射与吸收原子在受到能量激发时会发生辐射,向外释放能量。

这种辐射包括电磁辐射和粒子辐射。

原子也可以通过吸收能量而发生电离或激发,这种吸收辐射也是原子物理中的重要内容。

五、原子的量子力学描述量子力学是描述微观粒子行为的理论体系。

原子物理中使用量子力学的概念和方法来解释原子的结构和性质。

薛定谔方程是量子力学的基本方程之一,可以描述电子在原子中的运动和状态。

六、原子与化学反应原子的结构和性质直接影响化学反应的进行和结果。

通过了解原子的电子布局和化学键的形成,可以预测化学反应的发生和产物的性质。

原子物理的研究为化学学科的发展提供了基础理论支持。

总结起来,大二原子物理笔记主要涵盖了原子结构、原子核、能级与能量、辐射与吸收、量子力学描述以及原子与化学反应等方面的内容。

通过深入学习和理解这些概念,我们可以更好地掌握原子物理学的基本原理,为今后的学习和研究奠定良好的基础。

原子物理学课件:第二章:原子的能级和辐射

原子物理学课件:第二章:原子的能级和辐射

2020/9/30
21
实验装置示意图
单色光照射到作为正极的 金属板表面,引起光电子 的逸出。
在另一端加上负电压(减速势)V,它的大小是电子能量的直接
量度。如果从正极发射出来的电子的最大动能为
eV
eV0
1 2
m
vm2
1 2
m
vm2
,那么当
时,就没有一个电子能够到达负极,于是电流i为零。V0被称为遏
止电压。 2020/9/30
1 n2
),n
4,5, 6,
(4)布喇开系(红外):
1 RH ( 42
1 n2
),n
5, 6, 7,
(5)普丰特系(红外):
RH
(
1 52
1 ),n n2
6, 7,8,
2020/9/30
38
3、里德伯公式 (1889年)
1 RH ( m2
1 n2
)
m=1,2,3……; 对每个m, n=m+1,m+2,m+3……构成谱线系
2020/9/30
5பைடு நூலகம்
从理论上分析,黑体腔壁可认为是由大量作谐振动的 谐振子(作谐振动的电偶极矩)组成
振动的固有频率可从(0-∞)连续分布,谐振子通过发 射与吸收电磁波,与腔中辐射场不断交换能量。
(2) 基尔霍夫定律 1859年
黑体辐射达平衡时,辐射能量密度E(v,T)随v的变化曲线 只与黑体的T有关,而与空腔的形状及组成材料无关。
2020/9/30
8
维恩 (Wilhelm Wien 德国人 1864-1928)
2020/9/30
热辐射定律的发现 1911年 诺贝尔物理学奖获得者 斯特藩—玻耳兹曼定律和维恩位移 律是测量高温、遥感和红外追踪等 技术的物理基础。

《原子物理》课程教学大纲

《原子物理》课程教学大纲

《原子物理》课程教学大纲课程名称:原子物理课程类别:专业必修课适用专业:物理学考核方式:考试总学时、学分:56学时 3.5学分其中实验学时:0 学时一、课程性质、教学目标原子物理学属普通物理范畴,是力学、电磁学和光学的后续课程,是物理专业的一门重要基础课。

本课程着重从物理实验规律出发,引进近代物理关于微观世界的重要概念和原理,探讨原子的结构和运动规律,介绍在现代科学技术上的重大应用。

通过本课程的教学,使学生建立丰富的微观世界的物理图象和物理概念。

通过对重要实验现象以及理论体系逐步完善过程的分析,培养学生分析问题和解决问题的能力。

本课程是量子力学、固体物理学、原子核物理学、近代物理实验等课程的基础课。

课程教学目标如下:课程教学目标1:使学生初步了解并掌握原子的结构和运动规律,了解物质世界的原子特性,原子层次的基本相互作用,为今后继续学习量子力学、固体物理学、近代物理实验等课程打下坚实基础。

课程教学目标2:使学生了解并适当涉及一些正在发展的原子物理学科前沿,扩大视野,引导学生勇于思考、乐于探索发现,培养其良好的科学素质。

的支撑强度来定性估计,H表示关联度高;M表示关联度中;L表示关联度低。

二、课程教学要求理解原子壳式结构,了解原子物理学的发展和学习方法。

掌握原子能量级概念和光谱的一般情况。

理解氢原子的波尔理论,了解富兰克-赫兹实验。

了解氢原子能量的相对论效应。

了解盖拉赫实验,理解原子的空间取向量子化,理解物质的波粒二象性了解不确定原则。

理解波函数及其物理意义和薛定谔方程。

了解碱金属光谱的精细结构,电子自旋轨道的相互作用。

理解两个价电子的原子态,了解泡利原理。

理解原子磁矩及外磁场对原子的作用,了解顺磁共振和塞曼效应,掌握原子的壳层结构和原子基态的电子组态。

了解康普顿效应,理解X 射线的衍射。

执行本大纲应注意的问题:1.原子物理学是一门实验性很强的学科,关于原子结构的一切知识均建立在实验的基础上,学生在学习过程中应特别注重这一点。

原子物理学习题答案(褚圣麟)很详细

原子物理学习题答案(褚圣麟)很详细

1.原子的基本状况1.1解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。

非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。

因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。

原子物理学知识要点总结

原子物理学知识要点总结

E s
仍与
j
有关。
能量E由
n, l , j 三个量子数决定。
碱金属原子能级的分裂 当
0
时,
1 j 2
当 0 时,
j
1 2
1 j 能级不分裂 2 2 *4 Rhc Z El , s 1 3 2n (l )(l 1) 2 Rhc 2 Z *4 El , s 1 3 2n l (l ) 2
第一章 原子的基本状况 主要内容:原子的质量和大小、原子的核式结构、α粒子散 射实验(重点)。 基本要求: (1)掌握估算原子大小的方法、理解原子量的定义和原子量、 原子质量的计算。 (2)了解汤姆逊模型的要点和遇到的困难;理解卢瑟福核式 结构的要点和提出核式结构的实验依据;
原子的质量
原子质量单位和原子量 各种原子的质量各不相同,常用它们的相对值原子量。 原子质量单位:

自旋多重度,表示原子态的多重数。对碱原子 2 s 1 S 态虽然是单层(重)能级,仍表示为:2 S
2
例: 3 2 P 表示: n 3, 1, j 3/ 2 的原子态,多重度:2 3/ 2
Li原子能级图(考虑精细结构,不包括相对论修正)
单电子辐射跃迁选择定则
1、选择定则 单电子辐射跃迁(吸收或发射光子)只能在下列条件下发生:
l
: 量子数亏损
能级图
0 5 4
s
=0 5 4 3 3
p =1 5 4 3
d =2 5 4
f =3 H 7 6 5 4 3
10000
柏 格 曼 系
20000 2
30000
2
40000
厘米-1
2
锂原子能级图
锂的四个线系

初中物理原子知识点总结

初中物理原子知识点总结

初中物理原子知识点总结一、原子的结构1. 原子的基本组成原子由质子、中子和电子组成。

质子带正电荷,中子不带电荷,电子带负电荷。

2. 原子核原子核位于原子的中心,由质子和中子组成,质子和中子的质量集中在原子核内。

3. 电子壳层原子核周围围绕着电子,电子围绕原子核运动的轨道称为壳层,电子的轨道排列成不同的能级。

4. 元素的周期表元素的周期表是根据元素的原子序数和原子质量排列的表格,可根据元素在周期表中的位置推断元素的壳层排布。

二、原子的性质1. 原子的大小原子的大小主要由电子的轨道决定。

由于原子核电荷吸引电子,使得电子相对集中在原子核附近,因此原子整体上看起来是较小的。

2. 原子的质量原子的质量主要由其原子核的质子和中子质量决定。

电子质量相对较小,可以忽略不计。

3. 原子的化学性质原子的化学性质取决于其电子结构。

原子通过电子的失去、获得或共享,可以形成化学键以及各种化合物。

4. 原子的核衰变原子核中的质子和中子相互作用不稳定,会发生放射性衰变,释放出粒子或能量。

三、原子的相互作用1. 原子的直接的相互作用原子之间主要通过电磁力相互作用,包括静电力和磁力。

2. 原子的间接的相互作用原子之间还通过电磁辐射相互作用,包括电磁波和光子。

3. 原子的核相互作用原子核之间的相互作用主要通过核力来实现,核力包括弱核力和强核力。

四、原子的能级与光谱1. 原子的能级原子的能级指的是电子在原子中的能量状态。

原子的能级是量子化的,能级之间的跃迁会产生光谱。

2. 光谱光谱是原子或分子在受到激发后产生的特定波长的光。

由于原子能级的量子化特性,不同元素的光谱是独特的,可以用来识别元素的成分。

五、原子的应用1. 化学实验通过对原子结构和性质的了解,可以进行化学实验,包括化学反应和化合物的合成。

2. 原子能原子核的裂变和聚变过程可以释放出巨大的能量,用于发电和核武器等领域。

3. 材料科学通过对原子结构和相互作用的研究,可以开发新的材料,提高材料的性能。

原子物理学习题标准答案(褚圣麟)很详细

原子物理学习题标准答案(褚圣麟)很详细
E
hcRH(12
12)
其中hcRH13.6电子伏特
1
n
E1
13.6
(1
1) 10.2
电子伏特
22
E2
13.6
(1
12) 12.1
电子伏特
3
E3
13.6
(1
12)
12.8
电子伏特
4
其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有
12.5电子伏特能量的
电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。
A,漫线系第一条的波长为
8193A,
基线系第一条的波长为
18459A,主线系的系限波长为
2413
A。试求



4F

3S
3P
3D
谱项的项值。
解:将上述波长依次记为
p max,d max,f max,p,
即p max5893 A,d max8193 A,f max18459 A,p2413 A
容易看出:
(1.60
10
19)2
1.14 1013

106
1.60
10
19
由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核
代替质子时,其与靶核的作用的最小距离仍为
1.14 1013米。
1/14
1.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.05 102公斤/米2的银
箔上,粒
解:设靶厚度为t'。非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的
厚度t',而是t

原子物理学三章课后习题答案

原子物理学三章课后习题答案

第一章.原子的基本状况1. 若卢瑟福散射用的α粒子是放射性物质镭C'放射的,其动能为7.68×106电子伏特.散射物质是原子序数Z=79的金箔.试问散射角θ=1500所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:222cot42Mv b Zeθπε= 而动能212k E mv =则20222cot442k E Mv b b Ze Zeθπεπε== 由此,瞄准距离为20cot 24kZe b E θπε=其中:79Z =12-1-108.854210A s V m ε-=⨯⋅⋅⋅191.6021910e C -=⨯0150θ=, 0cotcot 750.26802θ==3.14159π=6197.687.6810 1.6021910k E MeV J -==⨯⨯⨯得到:219215022126190cot 79(1.6021910)cot 4(4 3.141598.854210)(7.6810 1.6021910)k Ze b m E οθπε---⨯⨯==⨯⨯⨯⨯⨯⨯⨯153.969710m -=⨯2.已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:2min202121()(1)4sin Ze r Mv θπε=+ 2min0211()(1)4sin k Ze r E θπε=+ 其中,0150θ=, 0sinsin 750.965932θ==把上题各参数代入,得到192min12619179(1.6021910)1(1)4 3.141598.8542107.6810 1.60219100.96593r m ---⨯⨯=⨯⨯+⨯⨯⨯⨯⨯⨯143.014710m -=⨯4. 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

原子物理学课后习题答案第2章

原子物理学课后习题答案第2章

第二章 原子的能级和辐射2.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。

解:电子在第一玻尔轨道上即年n=1。

根据量子化条件,πφ2h nmvr p ==可得:频率 21211222ma h ma nh a v πππν===赫兹151058.6⨯=速度:61110188.2/2⨯===ma h a v νπ米/秒加速度:222122/10046.9//秒米⨯===a v r v w2.2 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。

解:电离能为1E E E i -=∞,把氢原子的能级公式2/n Rhc E n -=代入,得:Rhc hc R E H i =∞-=)111(2=13.60电子伏特。

电离电势:60.13==eE V i i 伏特第一激发能:20.1060.134343)2111(22=⨯==-=Rhc hc R E H i 电子伏特第一激发电势:20.1011==eE V 伏特2.3 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线?解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是:)111(22n hcRE H-= 其中6.13=HhcR电子伏特2.10)211(6.1321=-⨯=E 电子伏特 1.12)311(6.1322=-⨯=E 电子伏特 8.12)411(6.1323=-⨯=E 电子伏特其中21E E 和小于12.5电子伏特,3E 大于12.5电子伏特。

可见,具有12.5电子伏特能量的电子不足以把基态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。

跃迁时可能发出的光谱线的波长为:οοολλλλλλAR R AR R AR R HH HH H H 102598)3111(1121543)2111(1656536/5)3121(1322322221221==-===-===-=2.4 试估算一次电离的氦离子+e H 、二次电离的锂离子+iL 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。

《原子物理学》(褚圣麟)第二章 原子的能级和辐射

《原子物理学》(褚圣麟)第二章  原子的能级和辐射

第2章 原子的能级和辐射 十九世纪中期,物理学理论在当时看来已经发展到了相当完善的阶段,那 时,一般的物理现象都可以用相应的理论加以解释。物体的宏观机械运动,准 确地遵从牛顿力学规律;电磁现象被总结为麦克斯韦方程;热现象有完整的热 力学及统计物理学;……;物理学的上空可谓晴空万里,在这种情况下,有许 多人认为物理学的基本规律已完全被揭示,剩下的工作只是把已有的规律应用 到各种具体的问题上,进行一些计算而已。 到了十九世纪末期,物理学晴朗的天空出现了几朵令人不安的“乌云”, 在物理学中出现了一系列令人费解的实验现象。物理学遇到了严重的困难,其 中两朵最黑的云分别是:麦克尔逊--莫雷实验和黑体辐射实验;前者导致了相 对论的诞生后,后者导致了量子论的诞生。
第2章 原子的能级和辐射
• 重 点
• • • • • • 玻尔氢原子理论、类氢离子光谱 夫兰克—赫兹实验 量子化通则 空间量子化 旧量子数的取值范围和所表征的物理量表达式 玻尔的对应原理
难 点
• 量子理论的建立
• 空间量子化
第2章 原子的能级和辐射
2.1
玻尔理论的实验基础
1. 黑体辐射 普朗克能量子 2. 光电效应 爱因斯坦光量子 3. 氢原子光谱
第2章 原子的能级和辐射 (2)经典物理在解释光电效应所遇到的困难 经典物理认为光是一种波动,其能量连续分布在波前上;当光照射在电子上 时,电子得到并不断积聚能量,当电子积聚的能量达到一定程度时,它就能脱离原 子核的束缚而逸出,但能量的积聚是需要时间的。例如,用光强为1µw/m2 的 光照到钠金属表面,根据经典理论的推算,至少要107 秒(约合120天)的时间来 积聚能量,才会有光电子产生;事实上,只要ν>ν0,就立即有光电子产生,可见理论 与实验产生了严重的偏离。 此外,按照经典理论,决定电子能量的是光强,而不是频率。但实验事实却 是:暗淡的蓝光照出的电子能量居然比强烈的红光照出的电子能量大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子只能在一系列分立的轨道上绕核运动,且不辐射电 磁波,能量稳定。
电子轨道和能量分立
En
1 2
Ze2
4π 0 rn
n 1, 2, 3, K
(2) 跃迁(transition)假设
原子在不同定态之间跃迁,以电磁
h
h
辐射形式吸收或发射能量。
吸收 发射
hv En Em 频率条件
跃迁频率:
En Em
第二章 原子的能级和辐射
2.1 光谱---研究原子结构的重要手段
1.光谱及其分类 光谱(spectrum) 电磁辐射频率成分和强度分布的关系图
光谱仪
将混合光按不同波长 成分展开成光谱的仪 器。
按光谱结构分类
光源 分光器(棱镜或光栅)
纪录仪 (感光 底片或 光电纪 录器)
连续光谱
固体热辐射
线光谱
原子发光
库仑力提供电子绕核运动的向心力:
r
mev2 r
Ze2
4 0 r 2
原子体系的能量:
E
1 2
mev2
Ze2
4π 0 r
1
4π 0
Ze2 2r
电子轨道运动的频率:
f V e
2 r 2
Z
4 0 me r 3
2. 经典理论的困难
! 原子稳定性困难:
电子加速运动辐射电磁波,能量不断损失,电子回转半径 不断减小,最后落入核内,原子塌缩。
MM
B
n2 n2
4
n 3, 4, 5, K B 3645.6 Å
Balmer经验公式
n , B 线系限
1890年 Rydberg用波数改写:
v%
1
4 B
1 22
1 n2
RH
1 22
1 n2
n 3, 4, 5, K
RH 1.0967758107 m1
巴尔末线系限:
v%
RH 22
两边同乘 hc :
hcv%
hcRH m2
hcRH n2

左边:为每次发射光子的能量;


右边:也必为能量,应该是原子在辐射 前后的能量之差

h E2 E1
原子的能量仍采用负值, 则原子能量的一般表示:
Em
RH hc m2
玻尔基本假设(1913年)
(1) 定态(stationary state)假设
线系的一般表示:
v%
RH
1 m2
1 n2
令:
T (m)
RH m2
T (n)
RH n2
并合原则: v% T (m) T (n)
光谱项
每一谱线的波数差都可表达为二光谱项之差
这些经验公式是否反映了原子内部结构的规律性??
2.3 玻尔氢原子理论
一、经典理论的困难
1. 经典理论(行星模型)对原子体系的描述
,4a0
,9a0 等玻尔半径的整数倍,
电子的轨道运动速度: 精细结构常数:
Vn
c
n
n 1, 2, 3, K
e2 1 40hc 137
有用的组合常数:
hc 197nmeV mec2 511keV
e2 1.44nm eV
4 0
2、量子化能量
En
1
4π 0
Ze2 2rn
mee4
2(40 )
氢原子的Rydberg常数
2.H原子光谱的其它线系
(远紫外)赖曼系:
v%
RH
1 12
1 n2
n 2,3, 4 K
(红外三个线系)
帕邢系:
v%
RH
1 32
1 n2
n 4,5,6 K
布喇开系:
v%
RH
1 42
1 n2
n 5,6,7 K
普丰特系:
v%
RH
1 52
1 n2
n 6,7,8 K
自 氢原子能级图

态 n E / eV 0
激 n4 发 n3
0.85 1.51

n2
3.4
结合能:
基态 n 1
13.6
3、氢原子光谱
~ (En Em ) / hc
En
2 2me4 (4 0 )2 h2
Z2 n2
~
2 2me4 (4 0 )2 h3c
(
1 m2
~
RZ
2
(
1 m2
1 n2
)
1 n2
)
R
2 2me4 (40 )2 h3c
~
R(
1 m2
1 n2
)
对氢原子
R
2 2me4 (4 0)2 h3c
1.0973731107 m1
RH 1.0967758 107 m1
(理论值) (实验值)
赖曼系
n
电子轨道
3
巴耳末系
2
帕邢系
n12 3
4
1
4、非量子化轨道跃迁——连续谱的形成
1、量子化轨道半径
电子定态轨道角动量满足量子化条件: mernvn nh
圆周运动:
me
vn2 rn
Ze2
4π 0 rn2
rn
4 0h 2
mee2
n2 Z
a0
n2 Z
n 1, 2,...
轨道量子化
a0
4π 0h 2
mee2
0.529
Å
氢原子玻尔半径
电子的轨道半径只能是 a0
即轨道半径是量子化的。
2
h
2
Z2 n2
13.59
Z2 n2
n 1, 2,.....
能量的数值是分立的,能量量子化
基态(ground state)
n 1 E1 13.6 eV r1 a0
激发态(excited state)
n 2 En E1 n2
电离能:将一个基态 电子电离至少需要的 能量。对氢,13.59eV.
h
(3) 角动量量子化假设
为保证定态假设中能量取不连续值,必须 rn 取不连续值,
如何做到?
玻尔认为:符合经典力学的一切可能轨道中,只有
那些角动量为 h的整数倍的轨道才能实际存在。
L n h nh
2
n 1, 2,3....
一个硬性的规定常常是在建立一个新理 论开始时所必须的。
三、关于氢原子的主要结果
带光谱
分子发光
按光谱机制分类
发射光谱
I
样品光源
分光器
纪录仪
吸收光谱
I
连续光源 样品 分光器 纪录仪
光谱由物质内部运动决定,包含内部结构信息
2.2氢原子的光谱实验规律
一.氢原子光谱的线系 1.巴尔末系
光谱的研究从1853年Angstron 发现 到14条谱线,
开始。 1885年,已观察
(Å )
H 6562.8 H 4861.3 H 4340.5 H 4101.7 H 3970.1
原子寿命 ~ 1010 s
! 光谱分立性困难:
电子绕核运动频率
v e
2πr 2π
1
4π 0 me r 3
电磁波频率等于电子回转频率,发射光谱为连续谱。
描述宏观物体运动规律的经典理论,不能随意地推广到原子 这样的微观客体上。必须另辟蹊径!
二、玻尔的基本假设
氢原子光谱的经验公式:
v%
RH m2
RH n2
连续谱是由自由电子与氢离子结合形成氢 原子时产生的光谱。
俘获前:
1 2
meV
2
俘获后:电子Rhc n2
减少的能量以光子的形式辐射,
h
1 2
meV
2
Rhc n2
频率连续分布,在线系 限的短波方向。
2.4 类氢离子及其光谱
1.类氢离子光谱
类氢 离子
原子核外只有一个 电子的离子,但 原子核带有Z >1的正电荷,Z不同 代表不同的类氢体系。
相关文档
最新文档