运筹学--第十三章 排队论
《运筹学排队论》课件
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。
排队论及其应用
排队系统的符号表述描述符号:①/②/③/④/⑤/⑥各符号的意义:①——表示顾客相继到达间隔时间分布,常用以下符号:M——表示到达的过程为泊松过程或负指数分布;D——表示定长输入;EK——表示K阶爱尔朗分布;G——表示一般相互独立的随机分布。
②——表示效劳时间分布,所用符号与表示顾客到达间隔时间分布一样。
③——表示效劳台(员)个数:“1〞表示单个效劳台,“s〞(s>1)表示多个效劳台。
④——表示系统中顾客容量限额,或称等待空间容量。
如系统有K个等待位子,那么,0<K<∞,当K=0时,说明系统不允许等待,即为损失制。
K=∞时为等待制系统,此时一般∞省略不写。
K为有限整数时,表示为混合制系统。
⑤——表示顾客源限额,分有限与无限两种,∞表示顾客源无限,一般∞也可省略不写。
⑥——表示效劳规那么,常用以下符号FCFS:表示先到先效劳的排队规那么;LCFS:表示后到先效劳的排队规那么;PR:表示优先权效劳的排队规那么。
二、排队系统的主要数量指标描述一个排队系统运行状况的主要数量指标有:1.队长和排队长(队列长)队长是指系统中的顾客数(排队等待的顾客数与正在承受效劳的顾客数之和);排队长是指系统中正在排队等待效劳的顾客数。
队长和排队长一般都是随机变量。
2.等待时间和逗留时间从顾客到达时刻起到他开场承受效劳止这段时间称为等待时间。
等待时间是个随机变量。
从顾客到达时刻起到他承受效劳完成止这段时间称为逗留时间,也是随机变量。
3. 忙期和闲期忙期是指从顾客到达空闲着的效劳机构起,到效劳机构再次成为空闲止的这段时间,即效劳机构连续忙的时间。
这是个随机变量,是效劳员最为关心的指标,因为它关系到效劳员的效劳强度。
与忙期相对的是闲期,即效劳机构连续保持空闲的时间。
在排队系统中,忙期和闲期总是交替出现的。
4.数量指标的常用记号(1)主要数量指标L——平均队长,即稳态系统任一时刻的所有顾客数的期望值;L q——平均等待队长,即稳态系统任一时刻等待效劳的顾客数的期望值;W——平均逗留时间,即(在任意时刻)进入稳态系统的顾客逗留时间的期望值;W q——平均等待时间,即(在任意时刻)进入稳态系统的顾客等待时间的期望值。
13排队论
注: < / <1。我们称 / 为服务强度。
一般地,在系统达到稳态时,假定平均到达率
为 ,平均服务率为 ,则有下面的李特尔(John D.
C. Little) 公式:
Ls = Ws ,
Lq = Wq ,
Ws = Wq+ 1/ ,
Ls = Lq + / 。
5
1. 系统中无顾客的概率,即服务设施空闲的概率 P0
2. 排队的平均长度,即排队的平均顾客数
Lq
3. 系统中的平均顾客数(排队和被服务的顾客数) Ls 4. 顾客花在排队上的平均等待时间
Wq
5. 顾客在系统中的平均逗留时间 (排队和被服务) Ws
6. 顾客得不到及时服务必须排队等待的概率
Pw
7. 系统中恰好有 n 个顾客的概率 (排队和被服务) Pn
的来源无限制,排队(服务)规则是先到先服务。
26
泊松分布与负指数分布的联系 定理:顾客到达过程是一个具有参数 的泊松分布 的充分必要条件是,相继到达间隔 {Tk} 是一簇相互 独立的随机变量,且每个随机变量 Tk 都服从参数为
的负指数分布。
注:由定理知,“泊松流”与“到达间隔为相互独立
的负指数分布”是一回事,都具有马尔科夫性,故肯
17
P(服务时间≤ t ) = 1-e -t。
这里 为单位时间里被服务完的平均顾客数。 储蓄所认为负指数概率分布能近似地反映了储 蓄所的服务时间的概率分布情况,并统计出这一个服 务窗口平均每小时能处理 48 位顾客的业务,也就是
说每分钟平均能处理 48/60=0.8 位顾客的业务,即
平均服务率 =0.8,这样我们可求得
6
运筹学-排队论
定长分布(D):每个顾客接受的 服务时间是一个确定的常数。
负指数分布(M):每个顾客接受
的服务时间相互独立,具有相同
的负指数分布:
b(t)=
e- t
t0
0
t<0
其中>0为一常数。
K阶爱尔朗分布(En):
b(t)=
k(kt)k-1
(K-1)!
e- kt
当k=1时即为负指数分布;k 30,近似
M/M/1 等待制排队模型
单服务台问题,又表示为M/M/1/ : 顾客相继到达时间服从参数为的负 指数分布;服务台数为1;服务时间 服从参数为的负指数分布;系统的 空间为无限,允许永远排队。
队长的分布
记 Pn=p{N=n} , n=0,1,2….为系统达到平衡状态后队 长的概率分布,
则 n=;n= ,= /<1, 有Pn= (1-)n n=0,1,2….
排队系统类型:
顾客到达
服务台串联排队系统
排队系统类型:
聚
散
服务机构
(输入)
(输出)
随机聚散服务系统
随机性——顾客到达情况与顾客 接受服务的时间是随机的。
一般来说,排队论所研究的排队 系统中,顾客相继到达时间间隔 和服务时间这两个量中至少有一 个是随机的,因此,排队论又称 随机服务理论。
顾客(单个或成批)相继到达的时
间间隔分布:这是刻划输入过程的
最重要内容。令T0=0,Tn表示第n顾
客到达的时刻,则有T0T1 T2…..
Tn ……
记Xn= Tn –Tn-1
n=1,2,…,则Xn是第n顾客与第n-1顾
客到达的时间间隔。
一般假定{Xn}是独立同分布,并 记分布函数为A(t)。
交通流理论排队论模型跟弛模型与交通波模型
2.说明:排队等待的车辆从一开始起动,就产生了起 动波,该波以接近 的v f 速度向后传播。
交通运输与物流学院
29
交通流中观测的加速度
把速度简单地看成密度的函数v(k),使得求解连续方程变得简单。 现实中交通流的平均速度v不可能瞬时地随密度发生变化,驾驶
员总是根据前方密度来调整车速
dv
k
dv
2
17
跟驰模型稳定性
多数个车辆在做跟驰运动时,一辆车状态的改变会导致其后续车 辆运行状态接二连三的改变,称为运行状态的传播
局部稳定 关注跟驰车对引导车运行波动的反应。如车头间距摆 动大则不稳定,摆动愈小则愈稳定
引导车向后面各车传播速度变化,如果速度振幅扩大,就是不稳 定,如果振幅衰减,就是渐近稳定
C T
Reuschel, Pipes
跟驰车辆的加速度与 两车速度差成比例
Chandler, Herman, Kometani and Sasaki
Gazis, Herman (跟驰模型一般形式)
m, l 的不同取值对应着不同的密度-速度关系模型
m=0, l=2, Greenshield; m=0, l=1, Grenberg 交通运输与物流学院
交通运输与物流学院
32
密度波模型
在交通流中存在密度不连续 的地方,密度在该处的移动
速度是C。单位时间内通过
断面A、B车辆数的差等于 断面内滞留的车辆数。
波阵面
(q q) q C(k k k)
C q k
C dq dk
交通运输与物流学院
33
密度波传播分析1
密度波描述了两种交通状态的转化过程,C代表转化的方向与进程
解这是一个M/M/1排队系统
排队论练习题
4.在第一题中,设顾客到达速率增加到12人/小时,这时又增加一个同样熟练的修理工,平均 修理时间也是6分钟。求: (1)店内空闲的概率; (2)店内有两个或更多顾客的概率; (3)计算运行指标L,Lq,W,Wq。
Ls=1.47708 (7) Wq=1.08分钟
Ws=6.08分钟
例10 某车站候车室在某段时间旅客到达服从泊松流分布,平均速度 为50人/小时,每位旅客在候车室内逗留的时间服从负指数分布,平均 停留时间为0.5小时,问候车室内平均人数为多少? 解:把旅客停留在候车室看做服务,于是就看为M/M/∞/∞/∞
服从负指数分布,平均理发时间为15分钟。求:
(1)顾客来店理发不必等待的概率; (2)理发店内顾客平均数; (3)顾客在理发店内的平均逗留时间; (4)当顾客到达速率是多少时,顾客在店内的平均逗留时间将超过1.25小时。
解:这是一个[M/M/1]:[//FCFS]排队系统
=3,=4,=/=3/4=0.75 (1) P0=1-=1-0.75=0.25 (2) (3) (4) ,=3.2,
解:这是一个[M/M/1]:[//FCFS]排队系统
=4,=10,=/=2/5=0.4 (1) P0=1-=1-2/5=3/5=0.6 (2) P3=3(1-)=0.43×0.6=0.0384 (3) 1-P0=1-(1-)==0.4 (4) (5) (6)
(7)
例7.一个单人理发点,顾客到达服从Poisson分布,平均到达时间间隔为20分钟;理发时间
问题解决:
分三种情况考虑: (1) 当无病人时,三种互不相容事件的概率分别为: (a) 在时间t内没有病人排队,时刻也没有病人到达的概 率为。 (b) 在时间t内有一个病人,内没有顾客到达,但有一位 病人接受诊断后离去的概率为。 (c) 在时间t内没有病人排队,但在时刻内有一位病人到 达,也有一位病人接受诊断后离去的概率为。
排队论
退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页退出前一页后一页退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望随机服务系统理论与展望退出前一页后一页。
运筹学排队论
降低平均服务时间
降低服务时间旳可变性
增长服务人员
降低平均到达人数
经过顾客预约等方法来降低到达旳可变性
集中使用服务资源
更加好地计划和调度
23
处理排队问题旳措施
2.其他措施
服务场合提供娱乐设施
医生等待室放报纸杂志
自动维修间用收音机或电视
航空企业提供空中电影
等待电梯处放镜子
超级市场把冲动性商品摆放在收款台附
排队论
1
2
•
排队论,又称随机服务系统理论(,是一
门研究拥挤现象(排队、等待)旳科学。详细
地说,它是在研究多种排队系统概率规律性
旳基础上,处理相应排队系统旳最优设计和
最优控制问题。
•排队论是1923年由丹麦工程师爱尔朗
(A.K.Erlang)在研究电活系统时创建旳.
3
案例-1 银行排队系统
4
案例-2 医院排队系统
用更快旳服务人员、机器或采用不同旳设施布局和政
策来影响顾客旳到达时间和服务时间。
9
1 排队论旳基本问题
1.1 排队论旳主要研究内容
• 数量指标
– 研究主要数量指标在瞬时或平稳状态下旳
概率分布及其数字特征,了解系统旳基本
运营特征。
• 统计推断
– 检验系统是否到达平稳状态;检验顾客到
达间隔旳独立性;拟定服务时间分布及参
数。
• 系统优化
– 系统旳最优设计和最优运营问题。
10
1.2排队论旳经济含义
• 排队问题旳关键问题实际上就是对不同
原因做权衡决策。管理者必须衡量为提
供更快捷旳服务(如更多旳车道、额外
旳降落跑道、更多旳收银台)而增长旳
运筹学课件:排队论总结
Operation Research
模型二:不允许缺货,生产需一定时间(1)
第八讲
该模型最早用于确定生产批量,因此也称为生产批量模型 (Production lot size)
模型假设条件
缺货费用无穷大,C2→∞
存储量随时间的变化情况
-R
Operation Research
第八讲
模型一:不允许缺货,备货时间很短(2)
问题分析
决策的要素: 确定合适的订货时间间隔;确定合适的订货量;
矛盾所在
1. 订货间隔时间短,可以减少每次的订货量,降低存储费用;但在一 个固定时间段内,必然会增加订购次数,使订购费用增加;
第八讲
模型四:允许缺货(需补足缺货),生产需一定时间(2)
存储量随时间的变化情况
Operation Research
解释
第八讲
Operation Research
第八讲
模型四:允许缺货(需补足缺货),生产需一定时间(3)
公式推导
Operation Research 求最小值
第八讲
Operation Research
单位时间内单位缺货的损失,C2为常数
当存货降至零时,允许拖一段时间,然后订货就逐步均匀到货, 到货(生产)速率为P为常数
需求是连续的、均匀的,设需求的速率R(单位时间的需求量)为 常数,并且P>R,则t时间的需求量为Rt
每次订货量不变,订购费不变,C3为常数 单位存储费不变,C1为常数
Operation Research
Operation Research
第八讲
排队论简述
0.9 1 2 3 0.3(人 / min) 3
八、M/M/S等待制排队模型
• 下表给出了M/M/3/∞和3个M/M/1/∞的比较:
项目 空闲的概率 顾客必须等待的概率 平均队长 平均排队长 M/M/3/∞ 0.0748 0.57 3.95 1.70 3个M/M/1/∞ 0.25(每个子系统) 0.75 9(整个系统) 2.25(每个子系统)
二、排队系统模型的基本组成部分
• 排队现象是由两个方面构成,一方要求得到服务,另 一方设法给予服务。我们把要求得到服务的人或物( 设备)统称为顾客,给予服务的服务人员或服务机构 统称为服务员或服务台。顾客与服务台就构成一个排 队系统,或称为随机服务系统。显然缺少顾客或服务 台任何一方都不会形成排队系统。 • 对于任何一个排队服务系统,每一名顾客通过排队服 务系统总要经过如下过程:顾客到达、排队等待、接 受服务和离去,其过程如下图所示: 顾客总体 输入 队 伍 服务台 输出 服务系统
五、描述排队系统的主要数量指标
4.根据排队系统对应的理论模型求用以判断系统运 行优劣的基本数量指标的概率分布或特征数。 平均队长(Ls):指系统内顾客数(包括正被服务的顾 客与排队等待服务的顾客)的数学期望。 平均队列长(Lq):指系统内等待服务的顾客数的数学 期望。 平均逗留时间(Ws):顾客在系统内逗留时间(包括排 队等待的时间和接受服务的时间)的数学期望 平均等待时间(Wq):指一个顾客在排队系统中排队等 待时间的数学期望间 忙期(Tb):指服务机构连续繁忙时间(顾客到达空 闲服务机构起,到服务机构再次空闲止的时间)长度 的数学期望
Ls Lq ,
Lq
,
Ws Wq
1
管理运筹学-排队论
排队系统
顾客到达
排队Biblioteka 服务机构服务顾客离去
2
§1 排队过程的组成部分(2)
• 考虑要点: 1、服务台个数:单服务台、多服务台 2、顾客到达过程:本教材主要考虑顾客泊松到达情况。 满足以下四个条件的输入流称为泊松流(泊松过程) *平稳性:在时间区间[t, t+t)内到达k个顾客的概率与t无关,只与t有关。记为pk(t)。 *无后效性:不相交的时间区间内到达的顾客数互相独立。 *普通性:在足够短的时间内到达多于一个顾客的概率可以忽略;
第十三章
• • • • • • •
排队论
排队过程的组成部分 单服务台泊松到达、负指数服务时间的排队模型 多服务台泊松到达、负指数服务时间的排队模型 排队系统的经济分析 单服务台泊松到达、任意服务时间的排队模型 单服务台泊松到达、定长服务时间的排队模型 多服务台泊松到达、任意的服务时间、损失制排队 模型 • 顾客来源有限制排队模型
3
§2 单服务台泊松到达、负指数 服务时间的排队模型
• 记号: M / M / 1 / ∞ / ∞ • 条件:单位时间顾客平均到达数
单位平均服务顾客数 P0 Lq Ls Wq Ws Pw Pn
4
• 关心的项目:
1、系统中无顾客的概率 2、系统中平均排队的顾客数 3、系统中的平均顾客数 4、系统中顾客平均的排队等待时间 5、系统中顾客的平均逗留时间 6、系统中顾客必须排队等待的概率 7、系统中恰好有 n 个顾客的概率
§3 多服务台泊松到达、负指数 服务时间的排队模型
• 记号: M / M / C / ∞ / ∞ • 条件:单位时间顾客平均到达数
单位平均服务顾客数 P0 Lq Ls Wq Ws Pw Pn
运筹学第十三章
b.从占有空间来看,队列可安排具体的场所 eg. 售票处,候诊室;也可以是抽象的eg.向电话交换 台要求通话的交换。有点系统容量是有限的,有 的是无限的。 c.从队列的数目来看,可以是单列,也可以是多 列。在多列的情形下,各列顾客有的可以互相转 移,有的不能。 ⑶服务机构 将提供服务的服务者称为“服务员” 或“服务机构”它的含义是广义的。
指标 模 型 P0 Lq Ls Wq Ws Pw M/M/3型 0.0748 1.70 3.95 1.89 4.39 0.57 M/M/1型 0.25(每个子系统) 2.25 9.00 7.5 10 0.75
⑴输入过程:顾客源无限,顾客单个到来,相互独 立,一定时间的到达数服从Poisson分布 ⑵排队规则:单队,队长无限制,先到先服务 ⑶服务机构:单服务台,各顾客的服务时间相互独 立,服从相同的负指数分布 简单记作M/M/1
M/M/1的数量指标的公式 设λ为单位时间的平均到达率,μ为单位时间的平 均服务率,则有: 1 ⑴在系统中没有顾客的概率:P 0
第三节 单服务台负指数分布排队系统的分析
本节讨论输入过程是服从普阿松分布过程,服务 时间服从负指数分布单服务台的排队系统,现将 其分为: ⑴标准的M/M/1模型,即:M/M/1/∞/∞/FCFS ⑵系统的容量有限制,即:M/M/1/N/∞/FCFS ⑶顾客源有限,即:M/M/1/∞/m
一、M/M/1/∞/∞/FCFS
第十五章 排队论
第一节 排队系统及其基本概念
一、排队系统及排队论 排队论是研究排队系统(又称随机服务系统)的数学理 论和方法,是运筹学一个重要分支。它是要揭示反映各 拥挤现象的排队系统的概率规律性,并借助相应过程统 计的推断方法来解决有关排队系统的最优化问题。 排队论研究的内容有下列三部分: ⑴性态问题,即研究各种排队系统的概率规律性,主要 是研究队长分布,等待时间分布和忙期分布等,包括了 瞬态和稳态两种情形。 ⑵最优化问题,又分静态最优和动态最优,前者指最优 设计,后者指现有排队系统的最优运营。 ⑶排队系统的统计推断,即判断一个给定的排队系统符 合于那种模型,以便根据排队理论进行分析研究。
运筹学-排队论
2.1 基本概念 2.2 几个主要概率分布 2.3 单服务台负指数分布排队系统分析 2.4 多服务台负指数分布排队系统分析 2.5 一般服务时间M/G/1模型 2.6 经济分析—系统的最优化
2.1 基本概念
2.1.1 排队过程的一般表示 2.1.2 排队系统的组成和特征 2.1.3 排队模型的分类 2.1.4 排队系统的求解 2.1.5 排队论研究的基本问题
(3)系统优化问题,包括最优设计和最优运营 问题。
2.2 几个主要概率分布
2.2.1 经验分布 2.2.2 普阿松分布 2.2.3 负指数分布
2.2 几个主要概率分布
2.2.1 经验分布
在处理实际排队系统时,需要把有关的原始资料 进行统计,确定顾客到达间隔和服务时间的经验分 布,然后按照统计学的方法确定符合哪种理论分布。
系统的各项运行指标计算如下: 平均队长:
Ls=ΣnPn=λ (μ–λ) 平均排队长:
Lq=Σ(n–1)Pn =ρλ (μ-λ) =Ls–ρ =Ls–(1-P0)
逗留时间分布函数为: F(ω)=1–e-(μ-λ)ω
平均逗留时间: Ws=1 (μ–λ)=Ls λ
平均等待时间: Wq=Ws–1 μ=Lq λ
等待时间有限,即顾客在系统中的等待时 间不超过某一给定的长度T,当等待时间超过T 时,顾客将自动离去,并不再回来。如损坏的 电子元器件的库存问题。
逗留时间有限(等待时间和服务时间之和) 有限。例如用高射炮射击敌机。 (2)排队规则
当顾客到达时,若所有服务台都被占用且 又允许排队,则该顾客将进入排队系统。服务 台对顾客进行服务所遵循的规则它通常有:
=
kμ (kμt ) k −1
e −kμt
(k −1)!
运筹学 排队论
运筹学排队论引言排队论是运筹学中的一个重要分支,它研究的是如何优化排队系统的设计和管理。
排队论广泛应用于各个领域,如交通流量控制、银行业务流程优化、生产线调度等,对于提高效率和降低成本具有重要意义。
本文将介绍排队论的基本概念、排队模型以及应用案例,帮助读者了解运筹学中排队论的基本原理和应用方法。
什么是排队论排队论是一门研究排队现象的数学理论,它通过定义排队系统的各个要素,如顾客到达率、服务率、队列容量等,建立数学模型分析和优化排队系统的性能指标。
排队论主要研究以下几个方面:•排队系统的模型:包括单服务器排队系统、多服务器排队系统、顾客数量有限的排队系统等。
•排队系统的性能指标:包括平均等待时间、系统繁忙率、系统容量利用率等。
•排队系统的优化方法:包括服务策略优化、系统容量规划等。
排队论的基本概念到达过程排队论中的到达过程是指顾客到达排队系统的时间间隔的随机过程。
常用的到达过程有泊松过程、指数分布等。
到达过程的特征决定了顾客到达的规律。
服务过程排队论中的服务过程是指服务器对顾客进行服务的时间间隔的随机过程。
常用的服务过程有指数分布、正态分布等。
服务过程的特征决定了服务的速度和效率。
排队模型排队模型是排队论中的数学模型,用于描述排队系统的性能和行为。
常用的排队模型有M/M/1模型、M/M/s模型等。
这些模型分别表示单服务器排队系统和多服务器排队系统。
性能指标排队系统的性能指标用于评估系统的性能,常见的性能指标有平均等待时间、系统繁忙率、系统容量利用率等。
这些指标可以帮助决策者优化排队系统的设计和管理。
排队模型与分析M/M/1模型M/M/1模型是排队理论中最简单的排队系统模型,它是一个单服务器、顾客到达过程和服务过程均为指数分布的排队系统。
M/M/1模型的性能指标可以通过排队论的公式计算得出。
M/M/s模型M/M/s模型是排队理论中的多服务器排队模型,它是一个多个服务器、顾客到达过程和服务过程均为指数分布的排队系统。
运筹学课件排队论
一般分布(所有顾客的服务时间都是独 立同分布的)等等。
1.基 本 概 念
(三)排队系统的描述符号与分类
为了区别各种排队系统,根据输 入过程、排队规则和服务机制的变化对 排队模型进行描述或分类,可给出很多 排队模型。为了方便对众多模型的描述, 肯道尔(D.G.Kendall)提出了一种 目前在排队论中被广泛采用的 “Kendall记号”,完整的表达方式通 常用到6个符号并取如下固定格式:
前言
顾客为了得到某种服务而到达系统、若不 能立即获得服务而又允许排队等待,则加 入等待队伍,待获得服务后离开系统,见 图1至图5。
图1 单服务台排队系统
前言
图2 单队列——S个服务台并联的排队系统 图3 S个队列——S个服务台的并联排队系统
前言
图4 单队——多个服务台的串联排队系统 图5 多队——多服务台混联、网络系统
一般来说,排队论所研究的排队系统中, 顾客到来的时刻和服务台提供服务的时间长 短都是随机的,因此这样的服务系统被称为 随机服务系统。
1.基 本 概 念
一 排队系统的描述
(一)系统特征和基本排队过程 实际的排队系统虽然千差万别,但是它们 有以下的共同特征:
(1)有请求服务的人或物——顾客; (2)有为顾客服务的人或物,即服务员或服务台;
队长和排队长一般都是随机变量。 我们希望能确定它们的分布,或至少能 确定它们的平均值(即平均队长和平均 排队长)及有关的矩(如方差等)。队长 的分布是顾客和服务员都关心的,特别 是对系统设计人员来说,如果能知道队长
的分布,就能确定队长超过某个数的概率, 从而确定合理的等待空间。
1.基 本 概 念
2.等待时间和逗留时间 从顾客到达时刻起到他开始接受服务止这段
上海交通大学管理科学-运筹学课件排队论
排队论在日常生活和工作中,人们常常会为了得到某种服务而排队等候。
比如顾客到商店购买东西,病人到医院看病,汽车进加油站加油,轮船进港停靠码头等,都会因为拥挤而发生排队等候的现象。
这时,商店的售货员和顾客,医院的医生和病人,加油站的加油泵和待加油的汽车,码头的泊位和停泊的轮船等,形成了各自的排队服务系统,简称排队系统。
在一个排队系统中,通常包括一个或多个“服务设施”,服务设施可以指人,如售货员,医院大夫等。
也可以是物,如加油泵、码头泊位等。
同时还包括许多进入排队系统要求得到服务的“顾客”。
这里的顾客是指请求服务的人或物。
如到医院看病的病人,或等待加油的汽车等。
作为顾客总希望一到系统马上就能得到服务,但客观情况并非如此。
由于顾客的到达和服务机构对每个顾客的服务时间具有随机性,因此出现排队现象几乎是不可避免的。
当然,为了方便顾客减少排队时间,排队系统可以多开设服务设施。
但那将增加系统的投资和运营成本,还可能发生空闲浪费。
排队论(Queueing Theory)是为解决上述问题而发展起来的一门学科。
排队论起源于上世纪初,当时的美国贝尔(Bell)电话公司发明了自动电话后,满足了日益增长的电话通讯的需要。
但另一方面,也带来了新的问题,即如何合理配置电话线路的数量,以尽可能减少用户的呼叫次数。
如今,通讯系统仍然是排队论应用的主要领域。
同时在运输、港口泊位设计、机器维修、库存控制等领域也获得了广泛的应用。
6. 1 排队系统的基本概念6. 1. 1排队系统的一般表示一个排队系统可以抽象描述为:为了获得服务的顾客到达服务设施前排队,等候接受服务。
服务完毕后就自行离开。
其中把要求得到服务的对象称为顾客,而把服务者统称为服务设施或服务台。
在排队论中,把顾客的到达和离开称为排队系统的输入和输出。
而潜在的顾客总体又称为顾客源或输入源。
因此任何一个排队系统是一种输入-输出系统,其基本结构如图6-1所示。
排队系统图6-16. 1. 2排队系统的特征由排队系统的基本结构可知,任何一个排队系统的特征可以从以下三个方面加以描述。
排队论练习题
分三种情况考虑: (1) 当无病人时,三种互不相容事件的概率分别为: (a) 在时间t内没有病人排队,时刻也没有病人到达的概 率为。 (b) 在时间t内有一个病人,内没有顾客到达,但有一位 病人接受诊断后离去的概率为。 (c) 在时间t内没有病人排队,但在时刻内有一位病人到 达,也有一位病人接受诊断后离去的概率为。
装卸费每泊位每天a=2千元,停留损失费b=1.5千元/日
目标是总费用最少。
解:模型 M/M/C/∞/∞ C待定
总费用:F=ac+bLs(c)
离散,无法用求导来解。
考虑。 M/M/C/∞/∞ 要求 ρ=λ/cμ<1 即c>λ/μ=1.5
讨论 c=2,3,4…….
M/M/2/∞/∞ M/M/3/∞/∞ M/M/4/∞/∞
队长 Ls =λ/μ-λ) 总费用 C=aμ+bLs=aμ+bλ/(μ-λ) 求极值(最小值)
求导dc/du=a+-bλ/(μ-λ)2 所以 μ=λ+(bλ/a)1/2=4.5(只/位数。
已知:预计到达 λ=3只/天,泊松流
装卸
μ=2只/天,负指数分布。
例2 高速公路入口收费处设有一个收费通道,汽车到达服从Poisson分布,平均到达速率为200 辆/小时,收费时间服从负指数分布,平均收费时间为15秒/辆。求L、Lq、W和Wq。
根据题意,=200辆/小时,=240辆/小时,=/=5/6。
例3.设公用电话通话的持续时间平均为3分钟,一个人等待打电话的平均忍耐时间也是 3分钟。求一个公用电话可以支持的最大呼叫量。 解:设为M/M/1模型。
i链平均时延 E (T i )’ =1/ (2μC i -2λi) = 0.5 E (T i ) i链队长 E (N i )’ =2λi(0.5) E (T i )= E (N i )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
328
习题十三
13.1 某市消费者协会一年365天接受顾客对产品质量的申诉。
设申诉以λ=4件/天的普阿松流到达,该协会每天可以处理申诉5件,当天处理不完的将移交专门小组处理,不影响每天业务。
试求:
(1)一年内有多少天无一件申诉;
(2)一年内多少天处理不完当天的申诉。
13.2 来到某餐厅的顾客流服从普阿松分布,平均每小时20人。
餐厅于上午11:00开始营业,试求:
(1)当上午11:07有18名顾客在餐厅时,于11:12恰好有20名顾客的概率(假定该时间段内无顾客离去);
(2)前一名顾客于11:25到达,下一名顾客在11:28至11:30之间到达的概率。
13.3 某银行有三个出纳员,顾客以平均速度为4人/分钟的泊松流到达,所有的顾客排成一队,服务时间服从均值为0.5分钟的负指数分布,试求:
(1) 银行内空闲时间的概率;
(2) 银行内顾客数为n 时的稳态概率;
(3) 平均队列长Lq ;
(4) 银行内的顾客平均数Ls ;
(5) 平均逗留时间Ws ;
(6) 平均等待时间Wq 。
13.4 某加油站有一台油泵。
来加油的汽车按普阿松分布到达,平均每小时20辆,但当加油站中已有n 辆汽车时,新来汽车中将有一部分不愿等待而离去,离去概率为4
n (n =0,1,2,3,4)。
油泵给一辆汽车加油所需时间为具有均值3分钟的负指数分布。
(1)画出此排队系统的速率图;
(2)导出其平衡方程式;
(3)求出加油站中汽车数的稳态概率分布;
(4)求那些在加油站的汽车的平均逗留时间。
13.5 某无线电修理商店保证每件送到的电器在一小时内修完取货,如超过一小时则分文不取。
已知该商店每修理一件平均收费10元,其成本平均每件5.50元。
已知送来修理的电器按普阿松分布到达,平均每小时6件,每维修一件的时间平均为7.5分钟,服从负指数分布。
试问:
(1)该商店在此条件下能否盈利;
(2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。
13.6 某企业有5台车运货,已知每台车每运行100小时平均需维修2次,每次需时20分钟,以上分别服从普阿松及负指数分布。
求该企业全部车辆正常运
行的概率,及分别有1,2,3辆车不能正常运行的概率。
13.7 要求在某机场着陆的飞机服从普阿松分布,平均每小时18架次,每次着陆需占用基础跑道的时间为2.5分钟,服从负指数分布。
试问该机场应设置多少条跑道,使要求着陆飞机需要在空中等待的概率不超过5%;求这种情况下跑道的平均利用率。
13.8 某仓库贮存的一种商品,每天的到货与出货量分别服从普阿松分布,其平均值为λ和μ,因此该系统可以近似看成为M/M/1/∞/∞的排队系统。
设该仓库贮存费为每天每件c1元,一旦发生缺货时,其损失为每天每件c2元,已知c2>c1,要求:
(1)推导每天总期望费用的公式;
(2)使总期望费用为最小的ρ=λ/μ值。
13.9 某电话亭有一部电话,来打电话的顾客服从普阿松分布,相继两个人到达的平均时间为10分钟,通话时间服从负指数分布,平均为3分钟。
求:(1)顾客到达电话亭要等待的概率;
(2)等待打电话的平均顾客数;
(3)打一次电话要等10分钟以上的概率是多少?;
(4)当一个顾客至少要等待3分钟才能打电话时,电信局打算增设一台电话机,问到达速度增加到多少时,安装第二台电话机才是合理的?
(5)第二台电话机安装后,顾客的平均等待时间为多少?
329。