开关电源环路设计与计算

合集下载

开关电源环路设计与计算_ON-Bright

开关电源环路设计与计算_ON-Bright

On-Bright confidential
23
零1234....极左右左右负系在系所位点半半半半反统f统有增l平平平平馈的y稳负益对b面面面面系环a定载带c环极极零零统路k性和宽O系路点点点点D补n产所为C统-::::固偿B生有1稳中/r有必i影电6g,-定h增不增增1须响压18为t/性益稳益益0使。输1C度了0衰定增增系o入f的相减sn减,大大统的(f移小开影id,导,,满情,右关e响引致引引足形n半频起系起起系稳t。及i平a率-统9-统定l909面)环t0震度0的性o度度零路荡相剩条T相相点e移下件n带移移影p的,响a宽零而o,选极且可点要择取将考单标对虑准
On-B开riOg关hn-tB电Erigleh源cttCr环oonnif路icdse设(nStiha计al tno与gThea计nip) aC算oo. Ltd
On-Bright confidential
1

开 开 开 一 讨关关关个论电电电基源源源于OO的环简nB-环路介B2r2i路分g6h3补析t的C偿(1以o2(内nW以反fid电容反激e源n激变ti环a变换l 路t换器o设器为Te计为例np实例)a例o)
18
DCvMvFB(ΛΛs(模s)O) ≈n式V-VBF0Br下ig⋅ 11h++PtRRoCoo12wCCooon11eSsfridSetnat由平对Figalye于面于lbtaoP零Cc小owwCkTw点zp系eM==e信(n1r统而RR/pSoHR2C更言t号aoao1PC1go容,Zoe1传)易D,无C补所函右M偿以半!相
On-Bright confidential
19
电流模式与电压模式的直观a理o 解 电压模式是占空比直接调制,变压器电感是开环状态,在外围电压回路 np 中引入一个DC极点(s=0) Te 电流模式是占空比间接调制,变压器电感是闭环状态。 l to 反激变换器类似于buck-boost架构,以buck-boost为例分析。 tia 无论是电压还是电流模式,CCM中RHZ始终存在,且频率相同。

开关电源环路设计与实例详解

开关电源环路设计与实例详解

$ "
2@)
!
第六章
反馈环路的稳定
的时刻开始的, 直到三角波结束时刻 ! ! 为止。对于这类芯片, "#$ 芯片输出晶体管导通 (驱动信号由芯片晶体管射极输出) 被触发导通, 这将使 " &’ 增大 时, %"% 型功率晶体管 时, 功率晶体管的导通时间增加。这时, 系统变成正反馈而不是负反馈。
图()*
一、 电路稳定的增益准则
电路稳定的第一个准则是: 在开环增益为 # 的频率 (通常称为剪切频率、 交越频率或 截止频率) 处, 系统所有环节的总开环相位延迟必须小于 /!01 (译者注: 作者表述和我们习 惯表述不一致。在 $*2%图中, 我们一般习惯讨论, 开环传递函数的相位裕量和幅值裕量是 。在剪 指开环传递函数幅频特性 (增益特性) 和相频特性, 不包括负反馈引起的 #301延迟) 切频率处, 总开环相位延迟小于 /!01 (在此频率处, 总开环增益为 #) 的角度, 称为相位裕 量。 为了使系统中各器件工作在最恶劣的情况下时, 仍然保持稳定, 通常的设计准则是, 使系统至少有 /41 5 641的相位裕量。
图 # $ % ( &) 开关整流 ’( 滤波器的幅频特性; ( )) 开关整流 ’( 滤波器的相频特性
图#$( 和图 # $ ( 所示是对应于不同输出阻抗 ! * 值, % &) % )) ’* (* 滤波器的幅频特性
# !
%+#
"
第六章
反馈环路的稳定
和相频特性。图中的曲线是对应于不同比率 ! ! " " # #( 和 !% " & $ # $$ %$ ) !! $ #$ " ! # %

开关环路设计与计算

开关环路设计与计算

开关电源系统基本组成部分(Voltage Mode PWM System)开关电源环路分析和设计流程开关电源环路的小信号传函FlybackTL431Power StageFlyback PWM Stage右半平面零点PWM Stage()t d)+考虑斜率补偿后的考虑斜率补偿后的考虑斜率补偿后的考虑斜率补偿后的考虑斜率补偿后的DCM模式下电流模式与电压模式的直观理解()(O V D V D =−−1()(v d V V vI L 1ˆˆˆ−−+=()D I I L O −=1dI i L O ˆˆ−=电压模式的信号流程图(siˆ电流模式的信号流程图零极点对环路稳定性的影响及环路带宽选择标准环路的补偿方法把控制带宽拉低,在功率部分或加有其他补偿的部分相位达环路的补偿方法常用的补偿方式.补偿网络产生一个s=0(DC)极点,而且通常所以补偿网络需补偿网络的高频极点抵消输出滤波电容的ESR零点。

环路的补偿方法复杂,适用于输出带LC滤波的拓扑结构中.补偿网络产生一个s=0(DC)极点,以及两个零点和两个极点,反激变换器反馈回路的设计采用补偿方法Power Stage GainOB2263 控制芯片内部模块图OB2263OB2263基于OB2263的基于OB2263的基于OB2263的基于OB2263的5) 确定EA补偿网络的零点和极点的位置基于OB2263的基于OB2263的附录: 431及其补偿网络传函的推导6KR I v ⋅−=Thank you Any Questions?。

开关电源的设计及计算

开关电源的设计及计算

开关电源的设计及计算1.先计算BUCK 电容的损耗(电容的内阻为R buck 假设为350m Ω,输入范围为85VAC~264VAC,频率为50Hz ,P OUT =60W,V OUT =60W ):电容的损耗:P buck =R buck *I buck,rms 2I buck,rms =I in,min1**32−cline t F t c :二极管连续导通的时间t c =linelineF VpeakV e F **2)min(arcsin *41π−=3ms其中:V min =linein ch in in in F C D P V V *)1(***2min ,min ,−−V peak =2*V in,min其图中的T1就是下面公式中t c或:V min =η*)*21(**2**2min ,min ,in c line o in in C t F P V V −−所以(假设最低输入电压时,输入电流=0.7A):I buck,rms =I in,min1**32−cline t F =0.7*13*50*32−=1.3A P buck =350m*1.32=0.95W第一步计算电容损耗是为了使用其中的t c 值,电容的容量一般通用范围选2~3μ/W ,固定电压为1μ/W2.输入交流整流桥的计算(假设V TO =0.7V,R d =70m Ω)在同一个时间内有两个二极管同时导通,半个周期内两个二极管连续导通I d,rms =c line in t F I **3min ,=m3*50*37.0=1.04AP diodes =2*(V TO *2min ,in I +R d *I d,rms 2)=2*(0.7*27.0+70m*1.042)=640mW 一个周期内桥堆损耗为:P BR=2*P diodes =2*640m=1.28W桥堆功耗超过1.5W 时,我个人认为应加散热器(特别是电源的使用环境温度较高时)变压器和初级开关MOS :反激式开关电源有两种模式CCM 和DCM ,各有优缺点。

开关电源环路补偿设计

开关电源环路补偿设计

开关电源环路补偿设计开关电源环路补偿设计在开关电源设计中,环路补偿是至关重要的一步。

环路补偿的正确设计可以提高电源的稳定性和效率,从而提供更为可靠的电源输出。

本文将针对开关电源的环路补偿设计,从三个方面进行阐述。

一、开关电源环路补偿的基本原理开关电源的环路补偿,是指将部分输出信号回馈到反馈端口,通过正反馈作用来改善系统的动态性能。

补偿的目的,是使电源输出稳定,对负载的响应性更好。

为了实现这一目的,设计师需要对开关电源的基本原理有深入的理解。

在开关电源中,电容、电感和频率之间的相互影响是至关重要的。

通过合理的组合设计,可以提高电源的效率,降低功耗。

二、开关电源环路补偿的设计方法开关电源的环路补偿设计方法,需要综合考虑多个参数,如响应时间、阻尼稳定性、相位裕度等。

其中,响应时间涉及到电路响应时间、电源传输函数以及负载条件,需要根据具体情况予以调整。

阻尼稳定性关系到系统的稳态稳定性,需要根据不同负载条件下的阻尼因素予以设计。

相位裕度涉及到极点间距,可以通过更改反馈回路的增益稳定性来达到较好的效果。

三、开关电源环路补偿的优化在实际电路中,由于电容、电感和负载等多种因素的影响,开关电源环路补偿存在一定的误差。

优化环路补偿,可以通过在电路中加入滤波电容、降低负载电感等措施,提高电源输出的稳定性。

此外,在滤波器的选型方面,选择与系统肖特基二极管参数相匹配的器件,可以较为有效地降低噪声和振荡。

总之,开关电源环路补偿对整个系统的性能至关重要。

一个合理的补偿设计将使电源输出变得更加稳定、高效,具有更好的响应性。

因此,在开发开关电源的过程中,我们应该时刻保持对环路补偿原理的理解,并综合考虑各种参数和因素,以达到最优的设计效果。

开关电源控制环路设计

开关电源控制环路设计

开关电源控制环路设计前馈环节通常由开关电源的输出电压或电流采样电路、误差放大器、比较器和PWM控制器等组成。

开关电源的输出电压或电流通过采样电路进行实时的电压或电流测量,并将测量值与设定值进行比较。

误差放大器将比较器输出的误差信号放大,并输出给PWM控制器。

PWM控制器根据误差信号调整开关管的导通和关断时间,从而控制开关电源输出电压或电流的稳定性。

反馈环节通常由输出电压或电流反馈回路组成。

反馈回路通过将开关电源输出电压或电流与参考电压或电流进行比较,得到误差信号,并将其输入到前馈环节的比较器中。

反馈环节的作用是通过不断地调整开关电源的工作状态,使输出电压或电流尽量接近设定值,并抵消部分外部环境的影响,以保持开关电源稳定工作。

在开关电源控制环路设计中,需要考虑诸多因素。

首先是前馈环节的设计。

前馈环节应具有高增益和低失真的特性,能够准确地将输出电压或电流的变化转换为误差信号,并将其输出给PWM控制器。

其次是PWM控制器的设计。

PWM控制器应能够按照误差信号的大小和方向,精确地调整开关管的导通和关断时间,并保持开关电源输出电压或电流的稳定性。

最后是反馈环节的设计。

反馈环节应能够准确地测量开关电源的输出电压或电流,并将其输入到前馈环节的比较器中。

同时,反馈环节还需考虑去除噪声和抑制振荡等问题,以保证闭环控制系统的稳定性和可靠性。

开关电源控制环路设计的关键是要平衡稳定性和动态响应速度。

稳定性是指开关电源在加载变化或输入电压波动等情况下,输出电压或电流能够尽快地恢复到设定值并保持稳定;而动态响应速度则是指开关电源对设定值的变化能够迅速地响应。

在设计中,需要根据具体的应用需求和制约条件,选择合适的控制算法、滤波器和补偿网络等,以使开关电源控制环路设计达到较好的稳定性和动态响应速度。

总之,开关电源控制环路设计是一个复杂而关键的任务。

它需要综合考虑前馈环节、反馈环节以及稳定性和动态响应速度等因素,以实现开关电源的稳定性和输出精度要求。

反激式开关电源的环路分析与设计

反激式开关电源的环路分析与设计

反激式开关电源的环路分析与设计环路设计直接影响到电源的性能[1],本文以最常用的反激电源为例,分析了环路稳定的条件以及环路设计的方法,并通过实验验证了该方法的可行性。

1 反激电源环路与常见环节的分析反激式电源的系统模型如图1 所示[2]。

其中KPWM 和KLC 为功率部分放大倍数,KLC 表示次级等效电感与滤波电容构成的滤波器的放大倍数,Kfb 是反馈分压部分的放大倍数,Vref 是参考电压,Kea 是误差放大器的放大倍数,Kmod 是调制器的放大倍数。

可以得到开环传递函数为:反馈系统稳定一般要求其开环传递函数的幅相频特性曲线小于等于-10 dB 的幅值裕度和45°~60°的相位裕度。

在低频段有较高的增益以保证输出电压的精度,在中频段有较高的频率范围以加快系统的响应速度,在高频段有较快的衰减速度,以抑制高频纹波[3]。

在反激电源中,当一个电源基本参数确定时,KPWM、KLC、Kfb、Vref、Kmod 也相应确定,系统的开环传函只能通过误差放大器Kea 来调节。

调节误差放大器Kea 实际就是调节系统零极点的个数及其分布位置,以满足系统需要的相位裕度和幅值裕度。

在实际设计时,先画出除了误差放大器之外部分的伯德图,根据需要确定合适的补偿器类型,计算补偿器参数,并进行实际电路调试,以确定最优的补偿参数。

本文以一款多路输出电源为例,分析了电源功率部分和环路的设计过程。

参考文献[1] PRESSMAN A.Switching and linear power supply,power converter design[M].Switchtronix Press,Waban,Mass,1997.[2] BASSO C.Switch mode power supplies:SPICE simulations and practical designs[M].McGraw- Hill,2008.[3] BASSO C.Transient response counts when choosing phase margin[J]. Power Electronics and Technology,2008(11):18-21.[4] KOLLMAN R,BETTEN J.Closing the loop with a popular shunt regulator[J].Power Electronics。

开关电源反馈环路设计

开关电源反馈环路设计

开关电源反馈环路设计开关电源是一种将输入直流电压转换为所需输出电压的电源装置。

为了实现稳定可靠的输出电压,开关电源需要建立反馈环路进行控制。

开关电源的反馈环路主要包括内部反馈环路和外部反馈环路。

内部反馈环路是指内部电路中的反馈控制电路,用于控制开关管的导通与截止,以维持输出电压的稳定。

外部反馈环路是指从输出端以回路的形式连接到内部反馈电路,通过比较输出电压与参考电压的差异,产生一个控制信号,用于调整开关电源的开关时间和频率,从而调整输出电压。

设计开关电源的反馈环路时,需要考虑以下几个方面:1.选择合适的参考电压源:参考电压源是反馈环路的重要组成部分,它提供一个稳定的参考电压,用作与输出电压进行比较的基准。

一般可选择使用稳压二极管、参考电压芯片或者精密电位器来作为参考电压源。

2.设计错误放大器:错误放大器是反馈环路中的核心部分,它承担着将输出电压与参考电压进行比较的作用,并产生一个误差信号。

常见的错误放大器有比较器、运算放大器等。

在设计选择错误放大器时,需要考虑它的稳定性、带宽、输入阻抗等因素。

3.设计补偿网络:由于开关电源在转换过程中存在一定的延迟、输出的电压下降等因素,所以需要通过补偿网络来减小这些不稳定因素对输出电压的影响。

常见的补偿网络包括零点补偿网络和极点补偿网络。

零点补偿网络主要通过增加相位较大的零点,来提高系统稳定性;极点补偿网络主要通过增加相位较小的极点,来提高系统的相位裕度。

4.设计输出滤波器:开关电源的输出电压通常包含一定的纹波,需要通过输出滤波器来降低纹波,使输出电压更加稳定。

输出滤波器一般由电感、电容和电阻组成,通过调整它们的数值和组合方式,可以实现对纹波的去除或衰减。

在进行开关电源反馈环路的设计时,还需要进行一系列的仿真和实验,包括频率响应的模拟分析、稳态和动态的性能测试等,以确保设计的反馈环路能够实现对输出电压的稳定控制。

总之,开关电源的反馈环路设计是一项复杂的任务,需要综合考虑电源的性能要求、稳定性要求和实际应用需求等因素,通过选择适当的参考电压源、设计错误放大器、补偿网络和输出滤波器等,来实现对输出电压的稳定控制。

开关电源环路设计及实例详解

开关电源环路设计及实例详解

开关电源环路设计及实例详解一、开关电源的基本原理开关电源是一种将交流电转换为直流电的电源,其基本原理是通过开关管控制变压器的工作状态,从而实现对输入交流电进行变换、整流和稳压的过程。

开关电源具有输出功率大、效率高、体积小等优点,因此被广泛应用于各种电子设备中。

二、开关电源环路的组成1. 输入滤波器:用于滤除输入交流电中的高频噪声和杂波信号,保证后续环节能够正常工作。

2. 整流桥:将输入交流电转换为直流电信号。

3. 直流滤波器:用于滤除直流信号中的纹波和杂波信号,保证输出稳定。

4. 开关变换器:通过控制开关管的导通和截止状态来控制变压器的工作状态,从而实现对输入信号的变换。

5. 输出稳压器:用于对输出直流信号进行稳压处理,保证输出恒定。

三、开关电源环路设计步骤1. 确定输出功率和输出电压范围。

2. 选择合适的变压器。

3. 设计整流桥和直流滤波器。

4. 设计开关变换器,包括选择合适的开关管和控制电路。

5. 设计输出稳压器,包括选择合适的稳压芯片和反馈电路。

6. 进行整个电路的仿真和优化。

7. 进行实际电路的搭建和调试。

四、开关电源环路设计实例以12V/5A开关电源为例,进行具体设计。

1. 确定输出功率和输出电压范围:输出功率为60W,输出电压范围为11-13V。

2. 选择合适的变压器:根据需求选择带有多个二次侧绕组的变压器,其中一个二次侧用于提供控制信号,另一个二次侧用于提供输出信号。

通过计算得到变压比为1:2。

3. 设计整流桥和直流滤波器:采用全波整流桥结构,并选用大容量滤波电容进行直流滤波处理。

4. 设计开关变换器:选用MOS管作为开关管,并采用反激式结构进行设计。

控制信号通过脉冲宽度调制(PWM)技术进行控制。

同时,在输入端加入输入滤波器进行滤波处理。

5. 设计输出稳压器:选用LM2576芯片进行稳压处理,通过反馈电路控制输出电压。

同时,加入输出滤波电容进行滤波处理。

6. 进行整个电路的仿真和优化:通过仿真软件进行各个环节的仿真和优化,保证整个电路的性能符合要求。

开关电源的环路设计

开关电源的环路设计

开关电源反馈设计除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。

它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。

开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。

当负载或输入电压突变时,快速响应和较小的过冲。

同时能够抑制低频脉动分量和开关纹波等等。

为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。

并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。

最后对仿真作相应介绍。

6.1 频率响应在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。

经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。

我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。

6.1.1 频率响应基本概念电路的输出与输入比称为传递函数或增益。

传递函数与频率的关系-即频率响应可以用下式表示600 )()(f f G Gϕ∠=&其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠ϕ(f ) 表示输出信号与输入信号的相位差与频率的关系,称为相频响应。

典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。

图 6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角ϕ。

两者一起称为波特图。

在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。

当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高频截止频率与低频截止频率之间称为中频区。

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1(-20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

开关电源环路设计与计算

开关电源环路设计与计算

开关电源环路设计与计算开关电源是一种将输入的直流电转换为所需要的输出电压的电源。

其主要由开关元件、功率变压器、整流电路和滤波电路组成。

在进行开关电源的设计与计算时,需要考虑到输入电压范围、输出电压稳定性、功率转换效率、电磁干扰等因素。

首先,设计开关电源需要确定所需的输入电压范围和输出电压稳定性。

根据实际需求选择开关电源的输入电压范围,一般常见的输入电压为220V交流电。

对于输出电压稳定性的要求,需要根据实际应用来确定。

例如,对于电子设备来说,输出电压稳定性要求较高。

其次,需要选择开关元件和功率变压器。

开关元件一般选择功率MOSFET或IGBT,这两种开关元件都具有较高的开关速度和效率。

功率变压器则需要根据输出电压和输出功率来选择合适的型号。

然后,设计整流电路。

整流电路一般采用整流桥进行整流。

通过改变整流桥的二极管的导通方式,可以实现不同的输出电压。

最后,设计滤波电路。

滤波电路可以通过电感和电容的组合来实现对电源纹波的滤除。

通过计算电感和电容的取值,可以达到所需的滤波效果。

在进行开关电源的计算时,需要进行一系列的参数计算。

首先,需要计算开关元件的导通和关断损耗。

根据开关元件的参数,可以计算其导通状态下的功耗和关断状态下的功耗。

然后,需要进行功率变压器的设计和计算。

根据输入电压和输出电压的比值,可以计算变压器的变比。

同时,根据输出功率的大小,可以计算变压器的功率。

接下来,需要计算整流电路的输出电压和输出电流。

根据变压器的变比和整流电路的设计,可以计算输出电压和输出电流的大小。

最后,需要计算滤波电路的电感和电容的取值。

可以根据输出电压纹波的要求,选择合适的电感和电容。

除了上述的设计和计算,还需要考虑到开关电源的保护和安全性。

例如,需要添加过压保护、过流保护和短路保护等电路来保护开关电源和输出负载的安全。

总之,开关电源的设计与计算是一个复杂的过程,需要考虑到多个因素。

通过正确的设计和计算,可以实现稳定、高效、安全的开关电源。

精确计算开关电源-环路是如何计算出来的?

精确计算开关电源-环路是如何计算出来的?

【我是工程师】精确计算开关电源-环路是如何计算出来的?---2015.5.18(电源网)摘要模块化设计开关电源,全方位精确计算环路模块。

以反激为例,采用mathcad软件全面精确计算环路参数,确保100%的可靠性。

正文要真正学好电源,必须学好数学。

很多人对此不以为然,或者自己不懂就刻意贬低,其实这是有害的。

数学主要分3个方向,即数学分析,高等代数,概率论。

数学分析再进一步就是实变函数论,复变函数论,泛函分析。

高等代数再进一步就是近世代数。

概率论再进一步就是数理分析。

以上这几门数学均是学好电源设计的理论基础。

就算暂时无法更近一步,至少要懂得这3个方向的第一步,即数学分析,高等代数,概率论。

数学分析即常说的微积分,对电源设计的理解相当有用。

具体主要表现在理解电路的时域波形,尤其是求解常微分方程与偏微分方程上。

有些同学自己不懂还贬低它,个人觉得相当不可取。

实变函数论在电源中较少用到,因为在开关电源设计中,绝大部分函数是黎曼可积的,即R可积的。

并不需要用到勒贝格可积,即L可积。

但凡事并没有绝对,毕竟实变函数是数学分析的深化,黎曼可积必定勒贝格可积,反之则不一定。

所以懂得实变函数论,可以用更高观点的眼光来看待电源设计。

积分如此,当然微分也是如此。

复变函数论广泛应用于电源设计中。

拉普拉斯变换与反变换是其最直接的体现。

可以这样说,如果没有复变函数论,就没有开关电源的设计。

在这个帖子中,也用到了拉普拉斯变换与反变换,因为有了这个变换与反变换,环路计算才得以简化。

而在电路时域计算中,也因为有了复变函数论的复数分裂域的特征,才使得可以把复杂的高阶运算化为简单的一阶线性运算,大大简化了计算。

至此,大部分同学应该相信高等数学在电源设计中的重要作用。

至于认为可以用简单的加减乘除平方开方等初等数学就能足够设计开关电源的想法可以休了,这样的想法是错误的。

如果不懂高等数学就认为是无用的,认为只需要初等数学就足够了,甚至认为高等数学是卖弄,是糊弄,只能说明是不懂装懂,贬低别人抬高自己。

开关电源控制环路设计

开关电源控制环路设计

开关电源控制环路设计稳压电源工作原理我们需要什么样的电源?2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

由传递函数就可以绘制增益/相位曲线。

通过代数运算,把G(s)表示为G(s)=N(s)/D(s),其分子和分母都是s的函数,然后将分子和分母进行因式分解,表示成多个因式的乘积,即G(s)=N(s)/D(s)=[(1+s/2*pi*fz1)(1+s/2*pi*fz2)(1+/2*pi*fz3)]/[(s/2*pi*f0)*(1+s/2*pi*fp1)*( 1+s/2*pi*fp2)* (1+s/2*pi*fp3)],分子中对应的频率fz为零点频率,而与分母中对应的频率称fp为极点频率。

开关电源(Buck电路)的小信号模型及环路设计

开关电源(Buck电路)的小信号模型及环路设计

0 引言设计一个具有良好动态和静态性能的开关电源时,控制环路的设计是很重要的一个部分。

而环路的设计与主电路的拓扑和参数有极大关系。

为了进行稳定性分析,有必要建立开关电源完整的小信号数学模型。

在频域模型下,波特图提供了一种简单方便的工程分析方法,可用来进行环路增益的计算和稳定性分析。

由于开关电源本质上是一个非线性的控制对象,因此,用解析的办法建模只能近似建立其在稳态时的小信号扰动模型,而用该模型来解释大范围的扰动(例如启动过程和负载剧烈变化过程)并不完全准确。

好在开关电源一般工作在稳态,实践表明,依据小信号扰动模型设计出的控制电路,配合软启动电路、限流电路、钳位电路和其他辅助部分后,完全能使开关电源的性能满足要求。

开关电源一般采用Buck电路,工作在定频PWM控制方式,本文以此为基础进行分析。

采用其他拓扑的开关电源分析方法类似。

1 Buck电路电感电流连续时的小信号模型为理想开图1为典型的Buck电路,为了简化分析,假定功率开关管S和D1关,滤波电感L为理想电感(电阻为0),电路工作在连续电流模式(CCM)下。

R为滤波电容C的等效串联电阻,R o为负载电阻。

各状态变量的正方向定义如图e1中所示。

图1 典型Buck电路S导通时,对电感列状态方程有L=U- U o (1)in续流导通时,状态方程变为S断开,D1L=-U(2)o占空比为D时,一个开关周期过程中,式(1)及式(2)分别持续了DT s和(1-D)T s的时间(T s为开关周期),因此,一个周期内电感的平均状态方程为L=D(U-U o)+(1-D)(-U o)=DU in-U o(3)in稳态时,=0,则DU in=U o。

这说明稳态时输出电压是一个常数,其大小与占空比D和输入电压U in成正比。

由于电路各状态变量总是围绕稳态值波动,因此,由式(3)得L=(D+d)(Uin+)-(U o+) (4)式(4)由式(3)的稳态值加小信号波动值形成。

开关电源控制环路如何设计

开关电源控制环路如何设计

1. 绪论在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。

因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。

由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。

下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。

给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。

测试结果和测量方法也包含在其中。

2. 基本控制环概念2.1 传输函数和博得图系统的传输函数定义为输出除以输入。

它由增益和相位因素组成并可以在博得图上分别用图形表示。

整个系统的闭环增益是环路里各个部分增益的乘积。

在博得图中,增益用对数图表示。

因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。

系统的相位是整个环路相移之和。

2.2 极点数学上,在传输方程式中,当分母为零时会产生一个极点。

在图形上,当增益以20dB每十倍频的斜率开始递减时,在博得图上会产生一个极点。

图1举例说明一个低通滤波器通常在系统中产生一个极点。

其传输函数和博得图也一并给出。

2.3 零点零点是频域范围内的传输函数当分子等于零时产生的。

在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。

图2描述一个由高通滤波器电路引起的零点。

存在第二种零点,即右半平面零点,它引起相位滞后而非超前。

伴随着增益递增,右半平面零点引起90度的相位滞后。

右半平面零点经常出现于BOOST和BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。

右半平面零点的博得图见图3。

3.0 开关电源的理想增益相位图设计任何控制系统首先必须清楚地定义出目标。

通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。

开关电源环路设计(详细)

开关电源环路设计(详细)

23
1 (6-55) 1+ j f f esr esr ( / 2πL) 。 在此频率范围, 感抗以 20dB/dec 增加, 而 ESR 保持常数, 增益以-20dB/dec 式中转折频率 fesr=Resr 斜率下降。 =
幅频特性由-40dB/dec 转为-20dB/dec 斜率点为 fesr,这里电容阻抗等于 ESR。ESR 提供一个零点。转 变是渐近的,但所示的突然转变也足够精确。 2. PWM 增益 并定义为 Gm。 图 6.32(a)中由误差放大器输出到电感输入电压 Uy 的平均值 UaU 的增益是 PWM 增益, 三 一般电压型控制芯片中误差放大器的输出 Uea 与内部三角波比较产生 PWM 信号调整输出电压。 角波的幅值 0~3V(实际上是 0.5~3V)。如果芯片控制推挽(桥式、半桥)电路,变压器频率是芯片频率 的一半,占空比 D 随误差放大器输出可以在 0~1 之间改变。如果是正激,只采用一半脉冲,占空度在 0~0.5 之间改变。 在图 6.34b 中,当 Uea=0,D=ton/T=0,在 Uy 的宽度为零, UaU 也为零。如果 Uea 移动到 3V,在三 角波的峰值,ton /T =D=0.5,Uy 的平均值就是 UaU=(Usp-1)D,其中 Usp 是变压器次级电压,1 为整流 二极管压降。则调制器的直流增益为 UaU 与 Uea 的比值
Gs =
Us R2 = U o R1 + R2
(6-57)
如果输出 5V,采样电阻 R1=R2,Us(Uref)与 Uo 之间的增益为-6dB,即 1/2。 4. 输出 LC 滤波器加上 PWM 和采样网络的总增益 为了得到环路增益波特图,我们先将输出 LC 滤波器增益 Gf、PWM 增益 Gm 和采样网络增益 Gs 之 和 Gt 如图 6.33 所示。从 0Hz(直流)到频率 f 0 = 1 2π LC 的增益是 Gm+Gs,这里 LC 滤波器增益为 零。在 f0 转折为-40dB/dec 斜率,并保持此斜率一直到 fesr,这里电容阻抗等于 Resr。在这个频率它转折 为斜率-20dB/dec。由这个曲线可以确定误差放大器的幅频和相频特性以满足稳定环路的两个判据。 6.4.3 误差放大器的幅频特性整形 如果将开关电源的闭环作为一个放大器来研究,放大器输入信号为开关电源的参考电压。从负反 馈组态来说是一个电压串联负反馈。 这里误差放大器是一个同相放大器。 从误差放大器的同相端到误差 放大器输出、 PWM 发生、 电源输出和取样返回到误差放大是反相输入端, 在任何频率在增益下降到 0dB 时附加相位移小于 135°。以下来讨论误差放大器的补偿。为讨论方便,取样信号加在反相端,放大器 输出总是反相,反馈信号返回到反相端附加相移不能超过 135°,即 45°相位裕度。 第一步首先建立穿越频率 fc0,在此频率总增益为 0dB。然后选择误差放大器的增益,迫使总环路 增益在 fc0 为 0dB。 下一步设计误差放大器的增益斜率, 以使得总开环增益在 fc0 以斜率-20dB/dec 穿越 (图 6.18) 。最后,调整幅频特性达到希望的相位裕度。 采样理论指出,为了闭环的稳定,fc0 必须小于开关频率的一半。但必须远远小于开关频率,否则 有较大幅值的开关频率纹波。一般经验取 fc0 为开关频率的 1/4~1/5。 参考图 6.33 中除误差放大器以外的环路增益 Gt 是 LC 滤波器增益 Gf、调节器增益 Gm 和检测网络 增益 Gs 之和。假定滤波电容有 ESR,在 fesr 由斜率-40dB/dec 转折为-20dB/dec。假定 fc0=1/5fs,fs-开 关频率。要使 fc0 增益为 0dB,误差放大器的增益应当等于 Gt 在此频率读取增益衰减量。 在大多数情况下,滤波电容具有 ESR,且 fesr 低于 fc0。因此在 fc0 的 Gt =Gf+Gm+Gs 的曲线总是斜

开关电源环路设计要点

开关电源环路设计要点
Type-3的使用要点在于将两个零点置于LC谐振频率附近, 一个极点放在变换器本身的零点附近,最后一个零点放在高频 处已提供足够的幅值余量。
All rights reserved.
电压型控制的基本框图
1. Gvd(s)对应着变换器本身的特征,我们在功率设计的时候已经确 定了,Fm对应ramp信号的斜率,Gea(s)是补偿网络。
Zo
vˆo ⋅ D + Vo ⋅ dˆ
RL
iˆL
Lfs
1 C fs
R load
Z o1
I L ⋅ dˆ + iˆL ⋅ D
Rc


iˆL
=
IL
⋅ dˆ
+
iˆL
⋅D
+
vˆo Zin
Zo ⋅ iˆL = vˆo ⋅ D + Vo ⋅ dˆ − vˆo
Gvd
=
vˆo dˆ
=
Vin D′2

(1−
s

Le R
2.简单的说,电流型控制降低了所需要补偿网络的阶数,从二阶系 统降低到一阶系统(在一些我们感兴趣的频段内)。
3.电流型控制并不能消除右边平面零点。
All rights reserved.
电压型与电流型控制模式功率级的对比
电压模式与电流模式的功率级对比可以看到,电压模式双极点的影响在 电流模式里大大简化了。电流模式带来了更容易补偿的特性.
vˆ in
电压源短路
iˆL
1
iˆo = 0
Vin ⋅ dˆ + vˆin ⋅ D
Cˆo
电流源短路
Io ⋅ dˆ + iˆL ⋅ D
d

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)

开关电源控制环路设计(初级篇)电源联盟---高可靠电源行业第一自媒体在这里有电源技术干货、电源行业发展趋势分析、最新电源产品介绍、众多电源达人与您分享电源技术经验,关注我们,搜索微信公众号:Power-union,与中国电源行业共成长!开关电源控制环路设计(初级篇)1、环路和直流稳压电源的关系稳压电源工作原理我们需要什么样的电源?原文档:开关电源控制环路设计(初级篇)下载方法:请看文章底部第一条留言2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1(-20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ro
+ ss
LCo1 n2 D'2
)
right 系统右半平面零点: On-B 负载电容ESR 零点:
wrz
=
n2Ro (1− D)2 Lm D
wz
=
1 Ro1C
On-Bright confidential
11
右半平面零点(RHZ)的直观理ao解 RHZ在boost, buck-boost, flyback(占空比由输入输出电压和匝比决 np 定)CCM中都存在,而DCM中没有RHZ。 Te 负载突然增加→输出电压下降→EA+PWM 反应→占空比增大(Wrong to Way)→反激时间减小→输出电流减小(通过输出diode)→输出电压下降更多 l (临时)。此即典型RHZ响应特性。 On-Bright Confidentia 在DCM中,占空比增大导致输出电流增大,故不存在此RHZ
fiden 控制模式 n ¾ 电压模式 o ¾ 电流模式
ht C 开关电源系统可分为两大块 -Brig ¾ 负反馈回路(feedback loop) On ¾ 保护功能(OVP, OCP, OTP ……)
On-Bright confidenቤተ መጻሕፍቲ ባይዱial
4
开(OV关no-Bl电traigg源het MC系oon统dfeid基PeWn本tiaMl组tSo成yTsetn部epma分)o
On-Bright confidential
24
环路的补偿考虑

出况一环环通裕者位统对跨也些路路常量高增有(这接可高需补补(频益1G8样,以频要偿偿的带0ai-等n或适极补的网。宽9O0效m者当点偿目络内=na9为r-输引或以的放只0gB°环irn出入者获是在有ig)相路,到一零得:E一h位带A因t地些点足在个C裕宽(为e。零。够带极or量内环rn在点的宽点o)只rf路i环或相内(,da一有m存e路者位等pn个或一在l的极裕效itf导者个i很iae其点量为rl致一极多,t他以(单oP9个点例零h地抵极0Ta°极)如极es方消点.en相点.T点m,环系.pL移和,a4a根路统r3go,一1i据带.低)n个的)实宽从环频零和输际外而路的极增入情的系单或点益输
9
1. 2.
3. 4. 5.
是对微对得建对方扰方到立P一程(程等Ppooe个组组效wwrte开uO作作的errbSn关r状线 小at-atSB周i态形信goretni期g空化号a中),gh内间(模电ltei作nC平型感即小eoa平均,对rn信i均z化电方faidt(容程i号osetna等组n)t模et器作iasp件小l型atco的信e建Ta时号even域扰立rap微g动ai流n分og)方程,程也组就
fiden VL = VI D −VO (1− D) = (VI +VO )D −VO Con vˆL = (VI +VO )dˆ − vˆO (1− D) ≅ (VI +VO )dˆ right iˆL = vˆL / sL On-B IO = IL (1− D)
iˆO = iˆL (1− D) − I Ldˆ


电流电斜电考流环流率流虑模,模补环式从式偿小斜工而P能信OWn率作改够号M-B的善消模系补riP系除型g统Wh偿M统此当t系的震CD后统o瞬荡>的n5的态0f电i%d响P压时e应no环,twia路存el 内在tro嵌SSTue入tba-nh一gparea个mo传o局ni部c函震的荡电
On-Bright confidential
On-Bright confidential
22
负反馈环路稳定性

环幅单相增路频位位益增-增裕裕相益益量量O频[带((nGPl曲o-h宽aoBai线pnrs(iefgg,mramehaiq波natrugrTCeg特inn(ions)c图))ynTf@(id>s>)T-e4包1=5n2°含0dtdiBa了Bl)系to统Te稳n定pa性o信息]
On-Bright confidential
12
PWM Stage 的小信号建模ao 写出时域方程
enp d(t) = Vc (t)
for
T Vpk
0 ≤ Vc (t ) ≤ Vpk
to 微扰和线性化
l ⎧
entia ⎪⎪⎪⎨vdc((tt))==DVc++d)v)(ct
(t )
)
fid ⎪
On-Bright confidential
5


确画确根¾¾¾¾ 定出定据ECPPWoAo环环环实w开mM(eep路路路际rreSrS关nOot基的的应tsaraagngate本信带用ime电o-nBp组号宽,lrnifi源egi成流,设tewrh)o模程设计环trkC块图计和o路,,补调n确偿整f分i辨d定网外e认析n环络围环t路参i和a路l的数t。设o小T信e计n号p流传ao输程函数
On-Bright confidential
16

考存存存关虑在在在,一一一很斜G个个个难(s)率=与电右补vOv负容半偿FB(补ΛΛs(ns)载E平,)-SB≈偿等R面设r(引i2g效零计n后起Vho电点时nt+R的C的Vo阻,应Vg零go)有该该RPn点sen关零使fsoeid(w的点环1e+n滤与路eRotr1C波输带iasS)1l极入宽(1+tt−o1aC点电应+nRgT20D压该RseesoL(n传、远1m−pD负离Da函)2o载这) (、个C电零C感点M量,)有以
On-Bright confidential
20
dˆOof电f n-B压∫rig模dhˆ itˆL式(Cs)o的nfiiˆdO信e= iˆnL号(t1i−aD流l )t−o程ILTdeˆ 图niˆO p= VsaLI odˆ − ILdˆ
On-Bright confidential
21
Vi
电流模式的信号流程图ao 1/sL
On-Bright confidential
6


EPP考¾¾WoA虑wCDMe(CC斜r例MMSS率t开如tssaammg补gOTaaeell关传lLl偿nss传4ii-函gg后3B电nn函1ara的)illg及mm源P(hoo可其oddtwee环Cll参补eor考偿s路nta[f网ig1d的e]络e)传n的小t函i传a信l函to号Te传npa函o
On-Bright confidential
25


补把补到偿控偿18网制所0环度络带需以路产宽元前O生拉器的使n一低件-其B补个,少r增igs在,偿h=益0功但t(降C方D率闭C到o)部环n法极0f分带di点dB(或宽e1n加小)t:i有,a单l其暂to他态极T补响en点偿应p的慢a补o部偿分相位达
nfid Full Bridge, Push-Pull o ¾ 整流型: 全桥型整流
ht C 全波型整流 On-Brig 同步整流(SR)
On-Bright confidential
3
开关电源简介 npao 调制方式 Te ¾ PWM (pulse width modulation) l to ¾ PFM (pulse frequency modulation) tia ¾ 其它衍生调制方式
On-Bright confidential
7
OFnly-Bbriagchkt C系on统fid控ent制ial流to 程Ten图pao
On-Bright confidential
8
OnT-BLrig4h3t1C及onf其ide等nti效al t模o T型enpao
On-Bright confidential
On-Bright confidential
23
零1234....极左右左右负系在系所位点半半半半反统f统有增l平平平平馈的y稳负益对b面面面面系环a定载带c环极极零零统路k性和宽O系路点点点点D补n产所为C统-::::固偿B生有1稳中/r有必i影电6g,-定h增不增增1须响压18为t/性益稳益益0使。输1C度了0衰定增增系o入f的相减sn减,大大统的(f移小开影id,导,,满情,右关e响引致引引足形n半频起系起起系稳t。及i平a率-统9-统定l909面)环t0震度0的性o度度零路荡相剩条T相相点e移下件n带移移影p的,响a宽零而o,选极且可点要择取将考单标对虑准
减小其影响
On-Bright confidential
17
考 零时输虑点有入频不斜电率稳压率越越O定低补低n倾-→,B向偿r低右ig!压后h半t输平C的入面oPnfoidwenetri满点不aSl载低 稳ttoa条于定gT件轻倾een传下载向p的状!a函o右态(半→C平满C面载M零有)
On-Bright confidential
∫ Tenp iˆL(s) Rs
iˆO = iˆL (1 − D) − I Ldˆ
iˆO
=
iˆL (1−
D) − iˆL
sL × I L
(VI + VO )
tial to dˆoff n -1

FB
Gpwm
On-Bright Confide Vo Don→Doff
Variable Gain, is a function of FB and slope compensation
On-Bright confidential
10
Flyback PWM SCtoangfied小ent信ial号to 模Ten型pa(oCCM) Power Stage传函:
Λ
v(s)
Λ
d (s)

Vg nD'2
(1 +
Ro1Cs)(1

n2
sLm D Ro (1 − D)2
1
+
相关文档
最新文档