桩基础计算书

合集下载

桩基础设计计算书例题

桩基础设计计算书例题

桩基础设计计算书例题桩基础设计计算书是土木工程中的重要文件,用于评估和确定桩基础的尺寸、长度和承载能力。

下面是一个例题及其相关参考内容:例题:设计一个单桩基础,直径为0.6m,承载力要求为2500kN,地下水位0.5m,土壤类型为粘土。

步骤1:确定设计桩长根据土壤类型和地下水位,选择适当的桩长计算方法。

参考内容:- 使用管理规程 GB 50007-2011《建筑地基基础设计规范》中的方法计算桩长- 当地下水位低于地面以上1m时,桩长计算公式为L = H + 1.5B + D- 当地下水位高于地面以上1m时,桩长计算公式为L = H + B + D其中,L为设计桩长,H为地下水位深度,B为土壤的冻土深度,D为桩基础埋置深度。

- 根据相关地方标准或规范,确定特定土壤类型下的桩长计算方法,如国家标准DL/T 5044-2006《建筑地基检测与设计规范》的相应规定。

步骤2:计算桩的抗力参考内容:- 根据桩基础的尺寸、土壤类型和设计桩长,查找或计算相应的桩基础抗力表或计算方法,如《桩基础设计手册》等。

- 考虑桩基础在受压和受拉情况下的承载能力,并根据土壤的特性来计算桩的侧阻力、端阻力和摩擦力等。

- 对于复杂或独特的情况,可能需要进行现场试验或数值模拟等方法以获得更准确的桩抗力数据。

步骤3:校核桩基础的承载力参考内容:- 根据设计的承载力要求,计算桩基础的承载力,包括桩身的承载力和桩顶的承载力。

- 根据相关规范和标准,进行桩基础的稳定性和安全性校核,确保桩基础在不同条件下的承载能力满足设计要求。

- 通过安全系数的计算,评估桩基础在不同荷载工况下的安全性。

步骤4:绘制桩基础平面和纵断面图参考内容:- 绘制桩基础平面和纵断面图,清晰地表示出桩的布置、尺寸和埋置深度等。

- 在图纸中注明每根桩的编号和相应的设计参数。

- 根据需要,注明桩基础与其他结构的连接方式和构造细节。

综上所述,这个例题中涵盖了桩基础设计计算书中的关键步骤和参考内容。

桩基础设计(计算书、图纸)工程计算书

桩基础设计(计算书、图纸)工程计算书

基础工程计算书桩基础设计1.1设计资料 1.1.1上部结构资料某教学实验楼,上部结构为七层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30。

底层层高3.4m (局部10m ,内有10t 桥式吊车),其余层高3.3m ,底层拄网平面布置及柱底菏载见图2.1。

1.1.2建筑物场地资料拟建建筑场地位于市区内,地势平坦,建筑平面位置见图2.2。

建筑场地位于非地震区,不考虑地震影响。

图2.2建筑物平面位置示意图单位:m场地地下水类型为潜水,地下水位离地表 2.1m,根据已有的分析资料,该场地底下水对混凝土无腐蚀性。

建筑地基的土层分布情况及其各土层的物理、力学指标见表2.1表2.1地基各土层物理、力学指标1.2选择桩型、桩端持力层、承台埋深1.2.1选择桩型因框架跨度大而且极不均匀,柱底荷载大,不宜采用浅基础。

根据施工场地、地基条件以及场地周围的环境条件,选择桩基础。

因钻孔灌注桩水泥排泄不便,为了减小对周围环境的污染,采用静压预制桩,这样可以较好的保证桩身质量,并在较短施工工期完成沉桩任务,同时,当地的施工技术力量、施工设备及材料供应也为采用静压桩提供了可能性。

1.2.2选择桩的几何尺寸及承台埋深依据地基土的分布,第④层土是较合适的桩端持力层。

桩端全断面进入持力层1.0m(>d2),工程桩进土深度为23.1m。

承台底进入第②层土0.3m,所以承台的埋深为2.1m,桩基的有效长度即为21m。

桩截面尺寸选用450m m×450m m,由施工设备要求,桩分为两节,上段长11m,下段长11m(不包括桩尖长度在内),实际桩长比有效桩长大1m,这是考虑持力层可能有一定的起伏以及桩需嵌入承台一定长度而留有的余地。

桩基及土层分布示意图见图2.3. 1.3确定单桩极限承载力标准值本设计属二级建筑桩基,采用经验参数法和静力触探法估算单桩承载力标准值。

根据单桥探头静力触探资料s P 按图1.2确定桩侧极限阻力标准值。

桩基础设计计算书

桩基础设计计算书

桩基础设计计算书1、研究地质勘察报告地形拟建建筑场地地势平坦,局部堆有建筑垃圾。

、工程地质条件 自上而下土层一次如下:① 号土层:素填土,层厚约为1.5m ,稍湿,松散,承载力特征值a ak KP f 95=② 号土层:淤泥质土,层厚5.5m ,流塑,承载力特征值a ak KP f 65=③ 号土层:粉砂,层厚3.2m ,稍密,承载力特征值a ak KP f 110= ④ 号土层:粉质粘土,层厚5.8m ,湿,可塑,承载力特征值a ak KP f 165= ⑤ 号土层:粉砂层,钻孔未穿透,中密-密实,承载力特征值a ak KP f 280= 1.3、 岩土设计参数岩土设计参数如表1和表2所示。

表1地基承载力岩土物理力学参数表2桩的极限侧阻力标准值sk q 和极限端阻力标准值pk q 单位KPa土层编号 土层编号桩的侧 阻力sk q桩的端 阻力pk q土层编号 土层编号桩的侧 阻力sk q桩的端 阻力pk q① 素填土 22 - ④ 粉质粘土 58 900 ② 淤泥质土 20 - ⑤ 粉砂土 75 2000 ③粉砂52-1.4水文地质条件⑴拟建场区地下水对混凝土结构无腐蚀性。

⑵地下水位深度:位于地表下4.5m 。

场地条件建筑物所处场地抗震设防烈度为7度,场地内无可液化沙土、粉土。

上部结构资料拟建建筑物为六层钢筋混凝土结构,长30m ,宽9.6m 。

室外地坪标高同自然地面,室内外高差450mm 。

柱截面尺寸均为400mm 400mm ,横向承重,柱网布置如图所示。

2.选择桩型、桩端持力层 、承台埋深根据地质勘查资料,确定第⑤层粉砂层为桩端持力层。

采用钢筋混凝土预制桩,桩截面为方桩,400mm ×400mm 桩长为15.7m 。

桩顶嵌入承台70mm ,桩端进持力层1.2m 承台埋深为1.5m 。

3.确定单桩竖向承载力3.1确定单桩竖向承载力标准值Q根据静载力触探法公式:p pk i sik pk sk uk A q l q u Q Q Q +∑=+==4×(×20×+52×+58×+75×+2000×× = KN3.2确定单桩竖向承载力设计值RaRa=K Q uk =248.1444= KN式中安全系数K=24. 确定桩数n ,布置及承台尺寸4.1 桩数n最大轴力标准值,KN F k 2280=初步估算桩数,由于柱子是偏心受压,考虑一定的系数,按规范取~。

(完整版)桩基础设计计算书

(完整版)桩基础设计计算书

目录1设计任务 (2)1.1设计资料 (2)1.2设计要求 (3)2 桩基持力层,桩型,桩长的确定 (3)3 单桩承载力确定 (3)3.1单桩竖向承载力的确定 (3)4 桩数布置及承台设计 (4)5 复合桩基荷载验算 (6)6 桩身和承台设计 (9)7 沉降计算 (14)8 构造要求及施工要求 (20)8.1预制桩的施工 (20)8.2混凝土预制桩的接桩 (21)8.3凝土预制桩的沉桩 (22)8.4预制桩沉桩对环境的影响分析及防治措施 (23)8.5结论与建议 (25)9 参考文献 (25)一、设计任务书(一)、设计资料1、某地方建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。

勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。

建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。

承台底面埋深:D =2.1m。

(二)、设计要求:1、桩基持力层、桩型、承台埋深选择2、确定单桩承载力3、桩数布置及承台设计4、群桩承载力验算5、桩身结构设计和计算6、承台设计计算7、群桩沉降计算8、绘制桩承台施工图二、桩基持力层,桩型,桩长的确定根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。

由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。

根据工程请况承台埋深 2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。

桩长21.1m。

三、单桩承载力确定(一)、单桩竖向承载力的确定:1、根据地质条件选择持力层,确定桩的断面尺寸和长度。

根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层,采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层1.0m;镶入承台0.1m,桩长21.1 m。

承台底部埋深2.1 m。

2、确定单桩竖向承载力标准值Quk可根据经验公式估算:Quk= Qsk+ Qpk=µ∑qsikli+qpkApQ——单桩极限摩阻力标准值(kN)skQ——单桩极限端阻力标准值(kN)pku——桩的横断面周长(m)A——桩的横断面底面积(2m)pL——桩周各层土的厚度(m)iq——桩周第i层土的单位极限摩阻力标准值(a kP)sikq——桩底土的单位极限端阻力标准值(a kP)pk桩周长:µ=450×4=1800mm=1.8m桩横截面积:Ap=0.45²=0.2025㎡桩侧土极限摩擦力标准值qsik:查表得:用经验参数法:粉质粘土层:L I=0.95,取qsk=35kPa淤泥质粉质粘土:qsk=29kPa粉质粘土:L I=0.70,取qsk=55kPa桩端土极限承载力标准值qpk,查表得:qpk=2200 kPa用经验参数法求得Quk1=1.8×(35×8.0+29×12.0+1.0×55) +2200×0.2025=1674.9KN用静力触探法求得Quk2=1.8×(36×8.0+43×12.0+1.0×111) +1784.5×0.2025=2008.4KN3、确定单桩竖向承载力设计值R,并且确定桩数n和桩的布置先不考虑群桩效应,估算单桩竖向承载力设计值R为:R=Qsk/rs+Qpk/rpR——单桩竖向极限承载力设计值,kNQ——单桩总极限侧阻力力标准值,kNskQ——单桩总极限端阻力力标准值,kNpkγ——桩侧阻力分项抗力系数sγ——桩端阻力分项抗力系数p用经验参数法时:查表rs=rp=1.65R1=Qsk/rs+Qpk/rp=1229.4/1.65+445.5/1.65=1015.09KN 用静力触探法时:查表rs=rp=1.60R2=Qsk/rs+Qpk/rp=1647/1.60+361.4/1.60=1255.25KNRz=min(R1,R2)= 1015.09 KN四、桩数布置及承台设计根据设计资料,以轴线⑦为例。

桩基础计算书

桩基础计算书

9第一部分桥梁桩基础设计一、设计题目:桥梁桩基础或沉井基础二、设计资料1.地质与水文资料图1.水文及地基土层分布表1 各层土的物理性质及力学指标2.墩底标高:90.9m3.墩底尺寸:3.5m(纵桥向) 7.0m4.上部为等跨30m的钢筋混凝土预应力桥梁,荷载为纵桥向控制设计。

5.墩底荷载:纵桥向为恒载及一孔活载时ΣN=6800+50n(kN)ΣH=360+5n( kN)(制动力及风力)ΣM=4700kN m(竖直反力偏心距、制动力及风力引起)恒载及二孔活载时ΣN=8000+50n kNn为学生学号(取后三位);三、设计任务(时间:1周)1.选择桩的类型、确定桩数、桩径、桩长、桩的平面布置、桩的配筋、混凝土标号;2.设计承台(承台尺寸、配筋、混凝土标号);3.绘制施工图(桩基础平面、桩及承台剖面、承台配筋、桩身配筋、节点详图)。

4.如果采用沉井基础,试确定沉井的高度、平面尺寸、刃脚和井壁的配筋、混凝土标号,绘制施工图(正面、侧面和平面尺寸,刃脚和井壁的配筋图)。

第一章方案拟定一.桩基础类型的选择1.摩擦桩桩基与端承桩桩基的考虑从任务书中的地质资料分析,河床7米以下的土层为密实砂卵石层,这种土层土质较好且很厚,承载能力较大,可作为持力层,但不适合柱桩的受力特性,端承桩主要指桩底支撑在基岩上的桩,适用于基岩埋深较浅的情况,埋深较大时,如果将桩一直打入基岩层,则桩的长度将很大,既不经济,给施工带来一定的难度,造成施工周期较长,故综合考虑后选择摩擦桩。

2.桩型与成桩工艺该桩基础的施工环境在水下,而钻孔灌注桩因其施工方便,基本避免了水下作业,同时施工速度快、造价低、工艺设备简单,在实际工程中广泛被采用。

灌注桩成孔的方式很多,考虑到冲抓锥更适用于淤泥、粘性土、砂土、砾石、卵石等土层的成孔,且适用孔径为0.6~1.5m,与该处条件基本相符,故综合考虑后选择钻孔灌注桩。

二.桩径的拟定查《公路桥涵地基与基础设计规范》(以下简称《规范》)知,钻孔桩设计直径不宜小于0.8m,且常用尺寸为0.8~3.2m,参照已有工程实例与荷载大小,初步拟定桩的直径为1.2m。

桩基础稳定性计算书

桩基础稳定性计算书

桩基础稳定性计算书1工程;工程建设地点:;属于结构;地上o层;地下o层;建筑高度:Om标准层层高:0m ;总建筑面积:0平方米;总工期:0天。

本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。

本计算书主要依据施工图纸及以下规范及参考文献编制:《建筑基坑支护技术规程》(JGJ120-99)。

一、参数信息1. 基坑基本参数基坑开挖深度H:1.6m;桩与土接触点深度H1:1.5m;塔吊最大倾覆力矩M 630kN・m 桩直径d:0.5m;桩入土深度H2:30m;主动土压力分配系数:0.7 ;基坑外侧水位深度h wa:5m;基坑以下水位深度h wp:2m;稳定性计算安全系数K:1.2 ;2. 土层参数土层类型厚度h i 重度Y浮重度向内聚力C i 摩擦角(m)(kN/m3)(kN/m3)(kPa)(°)碎石素填土 2 19 25 0 0粉质粘土26 19.2 27.9 20 30淤泥质粉质粘土3 16.7 52.4 6 15微风化灰岩 5 18 22 4 53. 荷载参数布置方式荷载值P i (kPa)距基坑边线距离l 1(m)作用宽度a i(m)满布10 -- --局布 5 1 24. 支撑参数支撑点与填土面距离(m)作用力(kN)1 0.5 20示意图二、桩侧土压力计算1、水平荷载(1)、主动土压力系数:K ai=tan2(45° -奶/2)= tan 2(45-0/2 )=1;K a2=tan2(45° -血/2)= tan 2(45-0/2 )=1;K a3=tan2(45°-也/2) = tan 2(45-0/2 ) =1;K a4=tan2(45°-如/2) = tan 2(45-30/2 ) =0.333;K a5=tan2(45°-松/2) = tan 2(45-30/2 ) =0.333;K a6=tan2(45°-妬/2) = tan 2(45-15/2 ) =0.589;K a7=tan2(45°-也/2) = tan 2(45-5/2 ) =0.84 ;(2)、土压力、地下水以及地面附加荷载产生的水平荷载:第1层土:0 ~ 1 米;oai上= P 1 K ai-2C i K ai0.5 = 10 X 1-2 X 0X 10.5 = 10kN/m ;cai T = ( Y h1+P1)K a1-2C1K a10.5 = [19 1X10] X-2 XX10.5 = 29kN/m;第2层土:1 ~ 1.5 米;出=刀Yh i/ Y= 19/19 = 1;C2上=[Y H2'+P i+P?a2/(a2+2l2)]K a2-2C2K a20.5 = [19 1X10+2.5] X2 XX” =31.5kN/m;C2下=[Y(H2'+h2)+ P i+P2a2/(a2+2l2)]K a2-2C2K a20.5 = [19 (1+0.5) + 10+2.5] 1-2 X0X10.5 = 41kN/m;第3层土:1.5 ~ 2 米;Hs'=刀Yh i/Y = 28.5/19 = 1.5;C3上=[Y H3'+P I +P?a2/(a2+2l2)]K a3-2C3K a30.5 = [19 15+10+2.5] 1-2 X0X10.5 =41kN/m;C3下= [ Y(H3'+h3)+ P i+P2a2/(a2+2l2)]K a3-2C3K a30.5 =[19 X(1.5+0.5)+10+2.5] 1-2X>0X10.5 = 50.5kN/m;第4层土:2 ~ 5 米;W = 刀Yh/ Y = 38/19.2 = 1.979;0.5C4 上=[Y H4'+P i+F2a2/(a2+2l2)]K a4-2C4K a4 =0.5[19.2 1^979+10+2.5] 0.333-2 20X0.333 = -6.261kN/m;C4 下=[Y(H4'+h4)+ P i+P2a2/(a2+2l2)]K a4-2C4K a40.5 =[19.2 (1.979+3)+10+2.5] 0.333-2 20 >0.3330.5 = 12.939kN/m;第5层土:5 ~ 28 米;Hs'= 刀yh i/ Y = 95.6/19.2 = 4.979他5 上=[Y H5'+P I+F2宠/@+2l2)]K a5-2C5K a50.5 =0.5[19.2 电979+10+2.5] 0.333-2 20X).333 = 12.939kN/m;ca5下= [ Y(H5'+P l+P2a/(a2+2l2)]K a5-2C5K a50.5+ Y fe K a5+0.5 驹人52 =[19.2 X4.979+10+2.5] 0X.333-2 2X0X0.3330.5+27.9X23X0.333+0.5 1X0X232 =2871.839kN/m;第6层土:28 ~ 31 米;H6' = H 5' = 4.979 ;他6上=[Y H6'+P1]K a6-2C6K a6°.5+ 酋6心6+0.5 驹人62 =[16.7 X4.979+10] 0X.589-2 X6X0.5890.5+52.4X23X0.589+0.5 1X0X232 =3400.25kN/m;ca6下= [ Y H6'+P1]K a6-2C6K a6D.5+ yh6K a6+0.5 Yv h62 =[16.7 X4.979+10] 0X.589-2 X6X0.5890.5+52.4X26X0.589+0.5 1X0X262 =4227.808kN/m;第7层土:31 ~ 31.6 米;H7' = H 6' = 4.979 ;ca7上=[Y H7'+P1]K a7-2C7K a70.5+ ^K a7+0.5 ^w h72 =[18X4.979+10] 0X.84-2 4XX0.840.5+22X26X0.84+0.5 1X0X262 = 3936.608kN/m;C&7下= [ Y H7'+P1]K a7-2C7K a7).5+ yh7K a7+0.5 ^w h72 =[18X4.979+10] 0X.84-2 4XX0.840.5+22X26.6X0.84+0.5 1X0X26.62 = 4105.491kN/m;(3)、水平荷载:临界深度:Z0=(矽下X h4)/( oa4上+ ®下)=(12.939 X 3)/(6.261 X 12.939)=2.022m ; 第1 层土:E a1=0kN/m;第2层土:E a2=0kN/m;第3层土:E a3=0kN/m;第4层土:Ea4=0.5 X Z0X oa4下=0.5 X 2.022 X 12.939=13.08kN/m ;作用位置:h a4=Z0/3+ 刀hi=2.022/3+26.6=27.274m ;第5层土:艮5=馆X ( oa5上+ 阳5下)/2=23 X (12.939+2871.839)/2=33174.954kN/m ;第6层土:作用位置:h a5=h5(2 Oa5上+ 畋下)/(3 ca5上+3o a5下)+ 刀hi=23 X (2 X 12.939+2871.839)/(3 X 12.939+3X2871.839)+3.6=11.301m ;第7层土:E a6=h6 X (阳決+ 他6下)/2=3 X (3400.25+4227.808)/2=11442.086kN/m ;作用位置:h a6=h6(2 oa6上+ 笛6下)/(3 c&6上+3 oa6下)+ 刀hi=3 X (2 X3400.25+4227.808)/(3X 3400.25+3X 4227.808)+0.6=2.046m ;第7层土:E37=h7X ( oa/上+ca7下”2=0.6 X (3936.608+4105.491)/2=2412.63kN/m ; 作用位置:h a7=hz(2 商上+ca7下)/(3 商上+3o a7下)+ 刀hi=0.6 X (2 X 3936.608+4105.491)/(3 X 3936.608+3 X 4105.491)+0=0.298m ;土压力合力:E a= 2E ai= 13.08+33174.954+11442.086+2412.63=47042.75kN/m 合力作用点:h a=习lE ai/E a F(13.08 2X7.274+33174.954 1X1.301+11442.086 2X.046+2412.630X.298)/47042.75=8.49m;2、水平抗力计算(1)、被动土压力系数:2 K pi =tan (45°+忖2): = tan 2(45+0/2)=i;2K p2 =tan (45°+ 血/2):= tan 2(45+30/2)=3;K p3 =tan2(45°+ 初2): = tan 2(45+30/2)=3;K p4 =tan2(45°+ 创2): = tan 2(45+i5/2)=i.698;K p5 =tan2(45°+ 妬/2):= tan 2(45+5/2)=i.i9i;(2)、土压力、地下水产生的水平荷载:第1层土:1.6 ~ 2 米;cpi上= 2C 1 K pi0.5 = 2 X0X 10.5 = 0kN/m ;0.5 0.5c i下=Y h i K pi+2C i K pi = 19 X4 X+2X0X = 7.6kN/m;第2层土:2 ~ 3.6 米;f = 刀也/ Y= 7.6/I9.2 = 0.396;中2上=Y H2'K p2+2C2K p20.5 = I9.2 0X96 X+2X20X30.5 = 92.082kN/m;C2下= Y(H2'+h2)K p2+2C2K p20.5 = I9.2 (X396+I.6) 3+2X20X30.5 = I84.242kN/m;第3层土:3.6 ~ 28 米;H3' = H 2' = 0.396 ;0.5 2 C3上= [ Y H3']K p3+2C3K p3 + 丫'hK p3+0.5 Y h32 =[19.2 区396] 3+2>20>30'5+27.9 J0X3+O.5 X0X)2 = 92.082kN/m;§3下=[Y H3']K p3+2C3K p30.5+ Y '3K p3+0.5 Y h32 =[19.2 0.396] 3+2 >20 >30.5+27.9 24.4 3+0.5 X0 >24.42 = 5111.162kN/m;第4层土:28 ~31 米;H4' = H 3' = 0.396 ;0.5 2§4上=Y H『K p4+2C4K p4 +丫'4"K p4+0.5 Y h4 =16.7 0.396 *698+2 6 >1.6980.5+52.4 24.4 1.698+0.5 10 >24.42 = 5175.167kN/m;0.5 2§4下= Y H4‘K p4+2C4K p4 . + Y '4K p4+0.5 Y"4 =16.7 0.396 1.698+2 6 1.6980.5+52.4 27.4 1.698+0.5 10 27.42 = 6219.155kN/m;第5层土:31 ~ 31.6 米;H5' = H 4' = 0.396 ;0.5 2§5上= Y H5‘K p5+2C5K p5 . + Y 5K p5+0.5 Y"5 =0.5 218 0.396 1.191+2 4 1.1910.5+22 27.4 1.191+0.5 10 27.42 = 4488.923kN/m;§5下= Y H5'K p5+2C5K p5°.5+ Y '5K p5+0.5 Y h52 =18 >0.396 1.191+2 4 >1.1910.5+22 >28 >1.191+0.5 10 >2$ = 4670.844kN/m;(3)、水平荷载:第1 层土:Eo1=hi >(§1 上+ §1 下)/2=0.4 >(0+7.6)/2=1.52kN/m ;作用位置:h p1=hi(2 §1 上+§1 下)/(3 §1 上+3§1 下)+ 刀hi=0.4 x (2 x 0+7.6)/(3 >0+3 >7.6)+29.6=29.733m ;第2层土:Eo2=h2 >(§2上+ §2下)/2=1.6 >(92.082+184.242)/2=221.059kN/m ;作用位置:h p2=hz(2 §2上+§2下)/(3 §2上+3 §2下)+ 刀hi=1.6 X (2 X92.082+184.242)/(3 92.082+3 184.242)+28=28.711m;第4层土:第3层土:§3=馆 > (§尹+ §3下)/2=24.4 >(92.082+5111.162)/2=63479.578kN/m ;作用位置:h p3=h3(2 §3上+§3下)/(3 §3上+3 §3下)+ 刀hi=24.4 X (2 X 92.082+5111.162)/(3 X 92.082+3 X 5111.162)+3.6=11.877m ;第5层土:E p4=h4 x ( cp4上+3下)/2=3 X (5175.167+6219.155)/2=17091.484kN/m ;作用位置:h p4=h4(2 qp4上+ q54下)/(3 op4上+3 qp4下)+ 刀hi=3 X (2 X5175.167+6219.155)/(3 X5175.167+3X6219.155)+0.6=2.054m ;第5层土:Eo5=h5 X ( cps上+ qp5下)/2=0.6 X (4488.923+4670.844)/2=2747.93kN/m ;作用位置:h p5=h5(2 C5上+q55下)/(3 85上+3 C P5下)+ 刀hi=0.6 X (2 X4488.923+4670.844)/(3 X 4488.923+3X 4670.844)+0=0.298m ;土压力合力:E p= 艺E i =1.52+221.059+63479.578+17091.484+2747.93=83541.571kN/m;合力作用点:h p=》h pi/E p=(1.52 X29.733+221.059 2X8.711+63479.578 1X1.877+17091.484 2X.054+2747.930X.298)/8354 1.571=9.532m;三、桩侧弯矩计算1. 主动土压力对桩底的弯矩M = 0.7 X 0.5 X 47042.75 X 8.49 = 139788.303kN • m2. 被动土压力对桩底的弯矩M = 0.5 X 83541.571 X 9.532 = 398142.062kN • m3. 支撑对桩底弯矩M = 622kN • m四、基础稳定性计算M+M》K(M+M)622+398142.062=398764.062kN -m > 1.2 X (630+139788.303)=168501.964kN m 塔吊稳定性满足要求!。

桩基础计算书

桩基础计算书

本工程中fak=1000kPa1、当d=1400D=1300时,N max =D 2×3.14×f a /4=1327.321775kN192.422388kN则N =N max -N 1=1134.899388kNQ=1327.321775kNA p ×f c ×Ψc =10991.16677kN所以Q <Ap×fc×Ψc3078.7582mm 2选用钢筋为:16φ16N=16φ=16As=3216.98816 2、当d=1100D=1400时,N max =D 2×3.14×f a /4=1539.3791kN118.791372kN则N =N max -N 1=1420.587728kNQ=1539.3791kNA p ×f c ×Ψc =6785.363162kN所以Q <Ap×fc×Ψc1900.66195mm 2选用钢筋为:13φ14N=13φ=14As=2001.19283 3、当d=1200D=1500时,N max =D 2×3.14×f a /4=1767.144375kN141.37155kN则N =N max -N 1=1625.772825kNQ=1767.144375kNA p ×f c ×Ψc =8075.142936kN所以Q <Ap×fc×Ψc钢筋根数 N 钢筋直径mm 面积 As=N*(Pi*φ^2/4)配筋满足要求假设每根桩长5m,那么桩身自重N1为桩基础计算书桩的承载力计算桩的承载力计算假设每根桩长5m,那么桩身自重N1为桩身强度验算桩身强度验算按构造配筋,最小配筋面积应为配筋满足要求满足规范要求钢筋直径mm 面积 As=N*(Pi*φ^2/4)满足规范要求桩的承载力计算假设每根桩长5m,那么桩身自重N1为桩身强度验算满足规范要求按构造配筋,最小配筋面积应为钢筋根数 N2261.9448mm 2选用钢筋为:15φ14N=15φ=14As=2309.06865 4、当d=1500D=1900时,N max =D 2×3.14×f a /4=2835.284975kN220.893047kN 则N =N max -N 1=2614.391928kNQ=2835.284975kNA p ×f c ×Ψc =12617.41084kN所以Q <Ap×fc×Ψc3534.28875mm 2选用钢筋为:18φ16N=18φ=16As=3619.11168 5、当d=1600D=2000时,N max =D 2×3.14×f a /4=3141.59kN251.3272kN 则N =N max -N 1=2890.2628kNQ=3141.59kNA p ×f c ×Ψc =14355.80966kN所以Q <Ap×fc×Ψc4021.2352mm 2选用钢筋为:21φ16N=21φ=16As=4222.29696桩身强度验算面积 As=N*(Pi*φ^2/4)配筋满足要求满足规范要求按构造配筋,最小配筋面积应为钢筋根数 N 钢筋直径mm 按构造配筋,最小配筋面积应为钢筋根数 N 假设每根桩长5m,那么桩身自重N1为桩身强度验算满足规范要求按构造配筋,最小配筋面积应为钢筋直径mm 桩的承载力计算假设每根桩长5m,那么桩身自重N1为面积 As=N*(Pi*φ^2/4)桩的承载力计算配筋满足要求钢筋根数 N 钢筋直径mm 面积 As=N*(Pi*φ^2/4)配筋满足要求。

桩基础设计计算书

桩基础设计计算书

1.确定桩的规格根据地质勘察资料,确定第4层粘土为桩端持力层。

采用钢筋混凝土预制桩,桩截面为方桩,为400mm ×400mm ,桩长为22米。

承台埋深1.5米 ,桩顶嵌入承台0.1米,则桩端进持力层2.4米。

2.确定单桩竖向承载力标准值Q 和桩基竖向承载力设计值R查表内插求值得按静力触探法确定单桩竖向极限承载力标准值:p pk i sik pk sk uk A q l q u Q Q Q +=+=∑=4×0.4(24×2.0+14×15+32×2.4)+1600×0.4×0.4=791.68KN取=uk Q 791.68 kNQ 2uk R == 791.62=395kN 3.确定桩数n 及其布置粗估桩数n 为n =F/R=3200/ 395=8.1根取桩数n =9根。

桩距,查表,桩距s=3.0b p =3×0.4=1.2m承台边:a=2×(0.4+1.2)=3.2承台高度h 为1.2m, 桩顶嵌入承台0.1m ,钢筋保护层取150mm ,则h 0=1.2-0.15=1.05m=105mm4.基桩承载力验算∑++=2max max iy x x M n G F N= 3200 3.2 3.2 1.5 20(40050 1.05)1.296 1.2 1.2+⨯⨯⨯+⨯+⨯⨯ = 389+62.8 =451.8kN < 1.2R =1.2×395=474 kN 且nG F N +== 389 < R =395(满足) 5.软弱下卧层承载力验算 由Es1/Es2=3.2/1.9=1.68.z/b=2.5/2>0.5,查表得023θ=。

下卧层顶面处附加应力:()(2tan )(2tan )k c z lb p p p b z l z θθ-=++ 23.2 3.2(342.520 1.5)(3.2230.424)⨯⨯-⨯=+⨯⨯=96.9kpa 下卧层顶面处的自重应力:20 1.518.3(10.387)363.6cz σ=⨯+⨯-⨯=kpa 下卧层承载力:363.614.1/4.5czm KN m d z σγ===+ 75 1.214.1(4.50.5)142.68az f kpa =+⨯⨯-=>96.9kpa z p =(满足) 单桩水平力:1/ 5.6k k H H n kN ==(可以)相应于荷载效应基本组合时作用于桩底的荷载设计值为: 1.35 1.3532004320K F F KN ==⨯=1.35 1.35400540.K M M KN m ==⨯=1.35 1.355067.5K H H KN ==⨯=桩顶竖向设计值:480F N n==KN ()max maxmin 2iM Hh x N N x +=±∑ ()609350254067.5 1.2 1.2480480129.38{4 1.2+⨯⨯=±=±=⨯ 6.承台计算(1) 承台冲切计算:柱对承台的冲切,按下式计算:F 1.35320004320Ii l F N =-=⨯-=∑KN 受冲切承载截面高度影响系数hp β=1冲跨比λ与系数α的计算0000.80.76( 1.0)1.05a h λ===<00.840.880.760.2β==+ ()004b c hp t o a f h ββ⨯+()40.880.40.811100 1.05=⨯⨯+⨯⨯⨯ =4851>Fl角桩向上冲切,110.560.560.5830.20.760.2x βλ===++ ()102/2hp t c a f h ββ+()20.5830.60.8/211100 1.05=⨯+⨯⨯⨯ =1347.5>Nmax=609KN(可以)(2) 承台受剪计算1/408000.93hs h β⎛⎫== ⎪⎝⎭I -I 截面:00.76x λλ==175.1+=λβ=1.75/(0.76+1)=0.994 00h b f t hs ββ=0.93×0.994×1100×3.2×1.05=3416.6 kN >2Nmax=2×609=1218满足要求(3) 承台受弯计算按式计算x 34800.375769.5.i i M N y KN m ==⨯⨯=∑ 60769.5102714.0.90.93001050x s y M A KN m f h ⨯===⨯⨯ 选用1814,=s A 27702mm ,沿x,y 均匀布置。

(完整版)桩基础计算书

(完整版)桩基础计算书

桩基础计算报告书计算人校对人:审核人:计算工具:PKPM软件开发单位:中国建筑科学研究院设计单位:灌注桩计算说明书1.支架计算组件钢结构支架要在37m/s(基本风压0.85KN/m2)的风载作用下正常使用,应使其主要构件满足强度要求、稳定性要求,即横梁、斜梁、斜撑、拉杆、立柱在风载作用下不失稳且立柱弯曲强度满足要求。

组件自重19.5kg。

支架计算最大柱底反力:Fx max=5.6KN,Fy max=0.9KN,Fz max=12.1KNFx min= -6.9KN, Fy min= -0.9KN,Fz min= -7.29KN2.灌注桩设计2.1基桩设计参数成桩工艺: 干作业钻孔桩承载力设计参数取值: 根据建筑桩基规范查表孔口标高0.00 m桩顶标高0.30 m桩身设计直径: d = 0.25m桩身长度: l = 1.60 m根据《建筑地基基础设计规范》GB50007-2011,设计使用年限不少于50年时,灌注桩的混凝土强度不应低于C25;所以本次设计中混凝土强度选用C25。

灌注桩纵向钢筋的配置为3跟根Ф6,箍筋采用Ф4钢筋,箍筋间距选择300~400。

2.2岩土设计参数2.3设计依据《建筑桩基技术规范》(JGJ 94-2008) 以下简称桩基规范 《建筑地基基础设计规范》GB50007-2011 《混凝土结构设计规范》GB50010-2010 《建筑结构载荷规范》GB50009-2012 《钢结构设计规范》GB50017-2003《混凝土结构工程施工质量验收规范》GB50204-2002(2011年版) 《钢结构工程施工质量验收规范》GB50205-2001 2.4单桩竖向承载力估算当根据土的物理指标与承载力参数之间的经验关系确定单桩竖向极限承载力标准值时,宜按下式估算:式中——桩侧第i 层土的极限阻力标准值,按JGJ94-2008中表5.3.5-1取值,吐鲁番当地土质为角砾,属中密-密实状土层,查表得出干作业钻孔桩的极限侧阻力标准值为135~150;——极限端阻力标准值,按JGJ94-2008中表5.3.5-2取值,吐鲁番当地土质为角砾,属中密-密实状土层,查表得出干作业钻孔桩的极限端阻力标准值为4000~5500;μ——桩身周长; ——桩周第i 层土的厚度; ——桩端面积。

桩基础沉降计算计算书

桩基础沉降计算计算书

桩基础沉降计算书计算依据:1、《建筑地基处理技术规范》JGJ79-20122、《建筑地基基础设计规范》GB50007-20113、《建筑桩基技术规范》JGJ94-20084、《建筑施工计算手册》江正荣编著一、基本参数基础剖面图三、沉降计算1、基础底面附加应力计算考虑土的内摩擦角,基底截面计算长度:l= A0+2L×tanφ=4.2+2×1.2×tan(45)°=6.6m考虑土的内摩擦角,基底截面计算长度:b= B0+2L×tanφ=3.4+2×1.2×tan(45)°=5.8mP0=F/A+(γ0-γ)(d+L)=4500/(6.6×5.8)+(18.4-19.66)×(1.1 + 1.2)= 114.657 kN/m32、分层变形量计算z i(m) 基础中心处平均附加应力系数αi相邻基础影响αi总附加应力系数αi总z i×αi总z i×αi总-z i-1×αi-1总土的压缩模量E si(MPa)A iΔs iΣΔs i土的自重应力σc附加应力系数a附加应力σz0.4 4×0.2498 2×3×(0.20.9998 0.3999 0.3999 5.6 0.4 8.188 8.188 52.618 0.249 114.198σz /σc=32.104/182.818=0.176≤ 0.2满足要求。

4、地基最终变形量计算∑A i=6.552,得Es=5.727Mpa距径比:s a/d=(A/n)0.5/b=(L c×B c/n)0.5/b=(4.6×3.8/4)0.5/0.6=3.484长径比:L/b=1.2/0.6=2基础长宽比:L c/B c=4.6/3.8=1.211查《规范》JGJ94-2008附录表E得:C0=0.230941464,C1=1.525562524,C2=3.273900372ψe=C0+(n b-1)/(C1(n b-1)+C2)= 0.230941464+(2-1)/ (1.525562524×(2-1)+3.273900372)=0.439=ψ×ψe×∑△s=0.6×0.439×116.007=30.556mm。

桩基计算书

桩基计算书

桩基计算书根据计算后轴力资料和建筑地基基础设计规范(GB50007-2002)注:桩基计算柱底内力采用标准值1.Q k≤R a2.R a=q Pa A P1q Pa—桩端岩石承载力特征值A P1—桩扩底横载面积(A P1=πD2/4)3.Q≤A P2f cΨcA P2—桩身横载面积f c—混凝土抗压强度设计值Ψc—工作条件系数,取0.654.最小配筋率≥0.2%5. 桩身混凝土等级为C25ZH-1桩基计算:1. 取最大轴力的孔桩计算: N=1600kPa q Pa=4000kPaN= Q k≤R a= q Pa A P11624≤4600×πD2/4=4000×3.14×D2/4D≥0.67m取D=0.9 m 扩底尺寸取a=0m2.桩身混凝土承载力验算:Q≤A P2f cΨc= 3.14×450×450×11.9×0.65×1/10001424≤4918(满足要求)3.最小配筋率计算:A s/πD2/4=0.2%A s=3.14×450×450×0.2%=1271mm2实配钢筋:9φ14ZH-2桩基计算:1.取最大轴力的孔桩计算: N=2742 kPa q Pa=4600kPaN= Q k≤R a= q Pa A P12742≤4600×πD2/4=4000×3.14×D2/4D≥0.87m取D=1.0 m 扩底尺寸取a=0m2.桩身混凝土承载力验算:Q≤A P2f cΨc= 3.14×500×500×11.9×0.65×1/10002742≤6071(满足要求)3.最小配筋率计算:A s/πD2/4=0.2%A s=3.14×500×500×0.2%=1570mm2实配钢筋:11φ14。

桩基础设计实例计算书

桩基础设计实例计算书

桩基础设计实例某城市中心区旧城改造工程中,拟建一幢18层框剪结构住宅楼。

场地地层稳定,典型地质剖面图及桩基计算指标见表8-5。

柱的矩形截面边长为400mm ×500mm ,相应于荷载效应标准组合时作用于柱底的荷载为:5840=k F kN ,180=xk M kN ·m ,550=yk M kN ·m ,120=xk H kN 。

承台混凝土强度等级取C30,配置HRB400级钢筋,试设计柱下独立承台桩基础。

表8-5 地质剖面与桩基计算指标解:(1)桩型的选择与桩长的确定人工挖孔桩:卵石以上无合适的持力层。

以卵石为持力层时,开挖深度达26m 以上,当地缺少施工经验,且地下水丰富,故不予采用。

沉管灌注桩:卵石层埋深超过26m ,现有施工机械难以沉管。

以粉质粘土作为持力层,单桩承载力仅240~340 kN ,对16层建筑物而言,必然布桩密度过大,无法采用。

对钻(冲)孔灌注桩,按当地经验,单位承载力的造价必然很高,且质量控制困难,场地污染严重,故不予采用。

经论证,决定采用PHC400-95-A (直径400mm 、壁厚95mm 、A 型预应力高强混凝土管桩),十字型桩尖。

由于该工程位于城市中心区,故采用静力法压桩。

初选承台埋深d =2m 。

桩顶嵌入承台0.05m ,桩底进入卵石层≥1.0m ,则总桩长L=0.05+1.0+10.4+3.5+9.3+1.0≈25.3m 。

(2)确定单桩竖向承载力 ①按地质报告参数预估∑+=i sia P p pa a L q u A q R()4596910.1803.9105.3304.1061254.044.055002+=⨯+⨯+⨯+⨯+⨯⨯⨯+⎪⎪⎭⎫⎝⎛⨯⨯=ππ =1150kN②按当地相同条件静载试验成果u Q 的范围值为2600 ~3000kN 之间,则 1500~13002/==u a Q R kN ,经分析比较,确定采用13502/==u a Q R kN 。

桩基础计算书

桩基础计算书

目录一.作用效应组合 (2)(一)、恒载计算 (2)(二)、活载反力计算 (3)(三)、人群荷载 (3)(四)、汽车制动力计算 (4)(五)、支座摩阻力 (4)(六)、荷载组合计算 (4)二.确定桩长 (6)三.桩基强度验算 (7)(一)、桩的内力计算 (7)(二)桩身材料截面强度验算 (11)四.桩顶纵向水平位移验算 (13)五.横系梁设计 (14)六.桩柱配筋 (14)七.裂缝宽度验算 (14)桥墩桩基础设计计算书一. 作用效应组合(一)恒载计算1、盖梁自重 )1(G =25⨯0.5⨯0.33⨯1.4=5.775 KN)2(G =(0.9+1.5)⨯2.075/2⨯25⨯1.4=87.15 KN)3(G =(0.25+1.2+5.8+1.2+5.8+1.2+0.25)⨯25⨯1.5⨯1.4=824.25KN )4(G =0.33⨯0.5⨯25⨯1.4=5.775 KN)5(G =(0.9+1.5)⨯2.065/2⨯25⨯1.4=86.73 KN1G =)1(G +)2(G +)3(G +)4(G +)5(G =1009.68 KN2、桥墩自重:2G =)]633.6738.6843.6(412.1[252++⨯⨯⨯⨯π=KN 54.5713.系梁自重:3G =253145.128.01)215.08.5(252⨯⨯⨯⨯+⨯⨯⨯⨯-⨯π=KN 54.3524.上部恒载:各梁恒载反力表 表一边梁自重:)1(G =2⨯12.54⨯19.94=500.10KN 中辆自重:)2(G =10.28⨯19.94⨯15=3074.75KN 一孔上部铺装自重:)3(G =3.5⨯19.94⨯17.5=1221.33KN 一孔上部恒载:4G =)1(G +)2(G +)3(G =4796.18KN 综上可得恒载为:G=1G +2G +3G +4G =6729.94KN(二)支座活载反力计算 1. 汽车荷载(1)一跨活载反力查规范三车道横向折减系数取0.78,根据规范的跨径在五米和五十米之内均布荷载标准值应该采用直线内插法180360180--x 4515= 解得x =237.84 故P K=237.84KN在桥跨上的车道荷载布置如图排列,均布荷载q k =10.5KN/m 满跨布置,集中荷载P K=237.84KN 布置在最大影响线峰值处,反力影响线的纵距分别为: h 1=1.0, h 2=0.0hh 1支座反力: KN l q P N k k 61.79578.03)2205.1084.237(78.03)2(6=⨯⨯⨯+=⨯⨯⨯+= 支座反力作用点离基底形心轴的距离:e a =(20-19.46)/2=0.27m由1N 引起的弯矩:KN M 81.21427.061.7951=⨯=(1) 两跨活载反力 支座反力: KN lq P N k k 68.103478.03)46.195.1084.237(78.03)22(2=⨯⨯⨯+=⨯⨯⨯⨯+= 由2N 产生的弯矩:m KN M .36.27927.068.10342=⨯= 2.行人荷载布置在5.5米人行道上,产生竖直方向力。

桩基础课程设计计算书

桩基础课程设计计算书

桩基础课程设计计算书一、引言桩基础是土木工程中常用的一种基础形式,用于承受建筑物或其他结构的重力和水平力。

本文旨在通过桩基础课程设计计算书,对桩基础的设计和计算过程进行详细介绍。

二、桩基础设计原则1.选取合适的桩型:根据工程场地的地质条件和设计要求,选择适合的桩型,常见的桩型有钢筋混凝土灌注桩、预制桩和钢管桩等。

2.确定桩的数量和布置:根据建筑物或结构的荷载和地质条件,确定桩的数量和布置方式,以保证桩基础的稳定性和承载能力。

3.计算桩的承载力:根据桩的类型和地质条件,采用适当的计算方法计算桩的承载力,包括桩身承载力和桩端承载力。

4.考虑桩与土的相互作用:在桩基础设计中,需要考虑桩与土之间的相互作用,包括桩身的摩擦阻力和桩端的土的阻力等。

5.确定桩的长度和直径:根据桩的承载力和桩身的应力条件,确定桩的长度和直径,以满足设计要求。

三、桩基础设计计算书的内容1.工程概况:包括工程名称、地理位置、建设单位、设计单位等基本信息。

2.设计依据:包括国家相关标准、规范和技术要求等。

3.地质勘察报告摘要:根据地质勘察报告的结果,对地质条件进行简要描述。

4.荷载计算:根据建筑物或结构的荷载标准,计算垂直和水平荷载,包括永久荷载、活荷载和地震荷载等。

5.桩的类型和布置:根据地质条件和设计要求,确定桩的类型和布置方式。

6.桩身承载力计算:根据所选桩的类型和地质条件,计算桩身的承载力,包括桩身的摩擦阻力和桩身的承载力等。

7.桩端承载力计算:根据所选桩的类型和地质条件,计算桩端的承载力,包括桩端的土的阻力和桩端的承载力等。

8.桩的长度和直径计算:根据桩的承载力和桩身的应力条件,计算桩的长度和直径。

9.桩基础的稳定性分析:对桩基础的稳定性进行分析,包括桩身的稳定性和桩端的稳定性等。

10.施工及验收规范:根据国家相关标准和规范,列出桩基础施工的要求和验收标准。

四、桩基础设计计算书的编写要点1.准确性:设计计算书应准确描述桩基础的设计和计算过程,避免歧义或错误信息的出现。

桩基础计算书1

桩基础计算书1

一、桩基础计算。

1、本工程基础持力层为:中风化灰岩,岩石饱和抗压强度标准值为31.6Mpa。

2、基础形式:机械钻孔桩,基础梁抬墙。

3、桩基础计算:桩基采用材料为:C25混凝土;ZJ1-800桩基计算:桩径800mm,嵌岩深度为800mm。

桩承载力的计算:Q uk=Q sk+Q rkQ sk=u∑q sik l i=0KN(本设计不考虑侧向摩阻力,设计偏于安全)Q rk=ζr f rk A p=0.81×31600×∏×0.8×0.8/4=12865KN(桩基规范5.3.9-3)Q =Q uk/2=6432KN桩身承载力R=ψc fcAps=0.7×11.9×∏×0.8×0.8×1000/4=4187KN (桩基规范5.8.2-2)取桩承载力为:4187KN>N=2275 KN(墙柱底最大轴力)1.学习与研究教育学的意义:A.教育学的理论与实践意义B.教育决策与教育改革需要教育理论的指导C.学习教育学是成为合格教诗的必要前提D.学习教育学有助于成为好家长2.学校产生于奴隶制社会。

3.现代教育的基本特征:A. 生产性 B. 普及性 C. 教育形式与手段的多样性 D. 科学性4.影响人的发展的因素:5.教育方针:是一个国家在一定时期教育发展和人才培养的行动指针。

6.教育方针的核心:教育目的。

7.素质教育:73 96-97 2418.坚持人的全面发展:A.德育:首要位置B.智育:核心地位C.体育D.美育9.学制:(学校教育制度),指一个国家各级各类学校的体系及其规则系统10.我国学校教育从类型上分为:普通教育、职业教育11.中国学校教育制度的改革趋势:A.学校教育与社会教育的联系更为密切B.学制的弹性化、开放性的特征日趋明显C.高等教育的大众化、普及化D.普通教育和职业教育一体化趋势日益增强E.现代学制逐渐向终身化方向发展12.《教育规划纲要》(2010年):A. 进一步强调了素质教育的战略意义,B. 指出“坚持以人为本、全面实施素质教育是教育改革发展的战略主题,是贯彻党的教育方针的时代要求,其核心是解决好培养什么人、怎样培养人的重大问题”,C. 并为此提出了坚持德育为先、坚持能力为重和坚持全面发展的基本策略。

桩基础设计计算书例题

桩基础设计计算书例题

桩基础设计计算书例题
桩基础设计计算书例题
一、工程概况
工程名称:某桩基础工程
建设地点:某市某县
建设单位:某建设公司
二、基础工程概况
1、桩基础类型:抗拔桩,单桩;
2、基础设计荷载:主桩设计荷载为Qk=200 kN;
3、桩径:Φ750 mm;
4、桩长:Lk=20 m;
5、地基础质地:粉土、软细黏土;
6、桩基块组:6个,每块宽度为0.8m;
7、基础深度:z=2.6 m;
三、桩基计算
1、桩基确定:
根据基础设计荷载Qk=200 kN,地基有效抗拔强度f'a=30 kPa,可得抗拔桩抗拔拉力Tk=Qk/πD2/4=200/π(0.75)2/4=26.18 kN,桩基宽度b=6*0.8=4.8 m,桩长Lk=20 m,桩深度z=2.6 m,故有效抗拔面积A=bz=4.8×2.6=12.48 m2,计算所得桩基抗拔强度
fy=Tk/A=26.18/12.48=2.1 kPa,与设计有效抗拔强度f'a=30 kPa相比满足要求,桩基确定。

2、桩基施工:
桩孔按设计图施工,桩基施工完毕后,进行桩身和桩基结合状况检验,其结合状况满足要求,可以开始桩基浇筑。

3、桩基浇筑:
按设计桩基浇筑方案施工,桩基浇筑阶段,采用挖孔补注即时混凝土施工方法,每桩须补注2m3混凝土,补注混凝土与桩身紧密结合,混凝土强度符合设计要求。

桩基浇筑完毕后,进行桩基检验,检验结果合格,桩基浇筑完毕。

四、总结
本桩基础工程按设计要求,桩孔挖掘、桩身施工、桩基浇筑等施工工序设计合理,可满足设计要求。

完整版)桩基础设计计算书

完整版)桩基础设计计算书

完整版)桩基础设计计算书设计任务书设计要求:1.确定桩基持力层、桩型、桩长;2.确定单桩承载力;3.确定桩数布置及承台设计;4.进行复合桩基荷载验算;5.进行桩身和承台设计;6.进行沉降计算;7.确定构造要求及施工要求。

设计资料:场地土层自上而下划分为5层,勘查期间测得地下水混合水位深为2.1m,建筑安全等级为2级,已知上部框架结构由柱子传来的荷载,承台底面埋深为2.1m。

桩基持力层、桩型、桩长的确定:根据场地的土层特征和勘查数据,确定了桩基持力层、桩型和桩长。

单桩承载力确定:通过计算,确定了单桩竖向承载力。

桩数布置及承台设计:根据单桩承载力和建筑荷载,确定了桩数布置和承台设计方案。

复合桩基荷载验算:进行了复合桩基荷载验算,确保了基础的稳定性和安全性。

桩身和承台设计:根据桩基的荷载情况,进行了桩身和承台的设计。

沉降计算:进行了沉降计算,确保了基础的稳定性和安全性。

构造要求及施工要求:确定了基础的构造要求和施工要求,确保施工的质量和安全。

预制桩的施工、混凝土预制桩的接桩、凝土预制桩的沉桩、预制桩沉桩对环境的影响分析及防治措施:详细介绍了预制桩的施工、混凝土预制桩的接桩、凝土预制桩的沉桩、预制桩沉桩对环境的影响分析及防治措施。

结论与建议:总结了本次基础设计的主要内容,并提出了建议。

参考文献:列出了本次设计中所使用的参考文献。

根据设计任务书提供的资料,分析表明在柱下荷载作用下,天然地基基础难以满足设计要求,因此考虑采用桩基础。

经过地基勘查,确定选用第四土层黄褐色粉质粘土为桩端持力层。

同时,根据工程情况,承台埋深为2.1m,预选钢筋混凝土预制桩断面尺寸为45㎜×45㎜,桩长为21.1m。

为了确定单桩承载力,首先需要根据地质条件选择持力层,确定桩的断面尺寸和长度。

在本工程中,采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层1.0m,镶入承台0.1m,承台底部埋深2.1m。

(完整版)桩基础计算书

(完整版)桩基础计算书

(完整版)桩基础计算书桩基础计算报告书计算⼈校对⼈:审核⼈:计算⼯具:PKPM软件开发单位:中国建筑科学研究院设计单位:灌注桩计算说明书1.⽀架计算组件钢结构⽀架要在37m/s(基本风压0.85KN/m2)的风载作⽤下正常使⽤,应使其主要构件满⾜强度要求、稳定性要求,即横梁、斜梁、斜撑、拉杆、⽴柱在风载作⽤下不失稳且⽴柱弯曲强度满⾜要求。

组件⾃重19.5kg。

⽀架计算最⼤柱底反⼒:Fx max=5.6KN,Fy max=0.9KN,Fz max=12.1KNFx min= -6.9KN, Fy min= -0.9KN,Fz min= -7.29KN2.灌注桩设计2.1基桩设计参数成桩⼯艺: ⼲作业钻孔桩承载⼒设计参数取值: 根据建筑桩基规范查表孔⼝标⾼0.00 m桩顶标⾼0.30 m桩⾝设计直径: d = 0.25m桩⾝长度: l = 1.60 m根据《建筑地基基础设计规范》GB50007-2011,设计使⽤年限不少于50年时,灌注桩的混凝⼟强度不应低于C25;所以本次设计中混凝⼟强度选⽤C25。

灌注桩纵向钢筋的配置为3跟根Ф6,箍筋采⽤Ф4钢筋,箍筋间距选择300~400。

2.2岩⼟设计参数2.3设计依据《建筑桩基技术规范》(JGJ 94-2008) 以下简称桩基规范《建筑地基基础设计规范》GB50007-2011 《混凝⼟结构设计规范》GB50010-2010 《建筑结构载荷规范》GB50009-2012 《钢结构设计规范》GB50017-2003《混凝⼟结构⼯程施⼯质量验收规范》GB50204-2002(2011年版)《钢结构⼯程施⼯质量验收规范》GB50205-2001 2.4单桩竖向承载⼒估算当根据⼟的物理指标与承载⼒参数之间的经验关系确定单桩竖向极限承载⼒标准值时,宜按下式估算:式中——桩侧第i 层⼟的极限阻⼒标准值,按JGJ94-2008中表5.3.5-1取值,吐鲁番当地⼟质为⾓砾,属中密-密实状⼟层,查表得出⼲作业钻孔桩的极限侧阻⼒标准值为135~150;——极限端阻⼒标准值,按JGJ94-2008中表5.3.5-2取值,吐鲁番当地⼟质为⾓砾,属中密-密实状⼟层,查表得出⼲作业钻孔桩的极限端阻⼒标准值为4000~5500;µ——桩⾝周长; ——桩周第i 层⼟的厚度; ——桩端⾯积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桩基础设计1 设计资料1.1 工程名称:上海**重型机械厂机加工车间1.2 工程概况:单层工业厂房,单跨,跨度24米,柱距6迷(图1)图(1)起重量75Q t =吊车二台;单层排架结构,预制柱截面600⨯1200mm 。

作用于基础顶面荷载为:第一组 N max =3900KN 第二组 N=3300KN M=185KN.m M max =250KN.m Q=60KN Q=72KN 外墙1砖,N 1=460KN 。

预制基础梁,高450mm 。

1.3 地质资料:底下水在天然地面下2.0m 处。

室内外地面差0.20m 。

室外设计地面标高与天然地面一致。

桩身采用30C 混凝土,钢筋采用HRB335级钢筋,承台采用20C 混凝土,钢筋采用HPB235,垫层采用10C 素混凝土,100mm 厚。

采用钢筋混凝土预制桩,桩的截面尺寸选用400mm ⨯400mm ,桩基有效长度18.7m ,桩顶嵌入承台0.1米,实际桩长18.8米,桩分为持力层,桩端全截面进入持力层1.0m ,承台埋深1.8米。

承台梁截面尺寸为240mm ⨯450mm 。

见图(2)图(2)桩基及土层分布示意图3 桩基设计3.1 按经验公式确定单桩承载力 单桩竖向极限承载力标准值 UK SK PK pQ Q Q u =+=sik ipk p ql q A +=∑240.5(45 1.257.433 5.733 5.1552 1.047)12000.5⨯⨯⨯+⨯+⨯+⨯+⨯+⨯=1907.1KN 竖向承载力设计值 //SK S PK P R Q Q γγ=+1.65S P γγ==则 SK R=Q /1.65/1.65PK Q +=1158KN 3.2 确定桩的数量,排列及承台面积尺寸 3.2.1初步确定桩数按最大轴力组合的荷载 max 39004604360N KN =+= max 185193.2378.2.M KN m =+= 60Q KN = .F n R μ≥=max .N Rμ=43601.11158⨯=4.3(根)取n=5 桩距3a S d ≥。

桩位平面布置见图(3),承台底面尺寸4.0m ⨯4.0m.1500150********500150********+0.000--0.200YX图(3) 五桩基础 4 桩顶作用效应验算 五桩承台设承台厚度为1m ,荷载作用于承台顶面处,本工程安全等级为二级,建筑物重要系数1.0γ=,承台平均埋深d=1(2.0 1.8) 1.92+=m4.1 按最大轴力控制的受力验算作用在承台底型心处的竖向力 :436020 4.0 4.0 1.9 1.25089.6F G KN +=+⨯⨯⨯⨯= 作用在承台底型心处的弯矩: 378.2601438.2.M KN m =+⨯=∑桩顶受力 max max min2.iM y F G Nn y +=±∑∑ 25089.6438.2 1.554 1.5⨯=±⨯ =1017.9273.03±KN max 1090.95N KN =, min 944.89N KN = 1017.92F GN K n+== max 1.01090.95 1.21389.6N R KNγ=⨯<=min 0N γ>1.01017.921158N R γ=⨯<=KN 满足要求 4.2 按最大弯矩控制的受力验算作用在承台底型心处的弯矩max M 组合: 3760F KN = max 443.2.M KN m = 72Q KN =443.2721515.2M =+⨯=∑KN桩顶受力max maxmin 22.3760729.6515.2 1.554 1.5iM y F G N n y ++⨯=±=±⨯∑∑KN max 879.9285.87983.79N KN =+= min 897.9285.87812.05N =-=KN 812.05F GN KN n+== max 1.0983.791983.79 1.21389.6N R KN γ=⨯=<= 1.0897.92897.921158N R KN γ=⨯=<=min 0N γ> 满足要求5 桩基水平承载力验算5..1 桩基桩顶水平荷载设计值当最大轴力控制时: 60125i Q H KN n === 当最大轴力控制时: 7214.45i Q H KN n ===5.2 桩的水平变形系数415 4.5 5.3110mb mm EI α--===⨯ 查<<建筑桩基技术规范>>其中6621224.510 4.510.10Nm N mm mm -⨯==⨯,对于钢筋混凝土桩 0.85c EI E I =,c E 为混凝土弹性模量423.010.c E N mm =⨯, 3394500500 5.21101212bh I mm ⨯===⨯435.311018.7109.934h α-=⨯⨯⨯=>取h α=4.0,查得0.94x ν=,取10a mm χ=34349(4.7010)0.85 3.010 5.2110100.94h a x EI R αχν-⨯⨯⨯⨯⨯⨯==⨯=211.61KN5.3 群桩效应综合系数 0.866 3.10a S d === 122,2n n ==20.0150.4512()0.7170.150.10 1.9n a i S d n n η+==++ /262312 4.51010500010000.1332222211.6110a c c l h m B h n n R χη-⨯⨯⨯⨯===⨯⨯⨯⨯r η-桩顶约束效应系数 2.07r η=/c B -承台受X 侧力向土一边的计算宽度,/1 4.01 5.0c c B B m =+=+=c h -承台高度(1)m0,0ck c c ck c q p q A η=== 0b η∴=0.717 2.070.133 1.617h i r l b ηηηηη=++=⨯+= 1.07272i H KN γ=⨯=1.617211.61342.17h h R KN η=⨯= 342.17i h h H R KN γη<= 满足要求 6 桩基沉降验算6.1实体基础的计算简图(4) 6.2桩穿过土层的内摩擦角加权平均值/(8.65 1.8)13 5.710 5.1512 1.0116.85 5.7 5.151φ-⨯+⨯+⨯+⨯=+++=11.7扩散角/2.93,tan 0.0514φαα===边框的外围之间的尺寸 3.5 3.5m m ⨯等待实体基础底边长 3.5218.70.051 5.407a =+⨯⨯=m 等待实体基础底面宽 3.5218.70.051 5.407b =+⨯⨯=m 6.3 实体自重标准值 0.25.407 5.407(2010)(18.7 1.8)6022.542K G KN =⨯⨯-⨯++= 设计值 1.2 1.26022.547117.05K G G KN ==⨯=max 43606022.541.3320.785.407 5.407K N G P KPa A ++===⨯桩尖平面处土的自重力0.2(1.25)18.70.7517.90.57.9 6.15(17.910) 5.7(17.110) 5.15(18.710)2cz σ=+⨯+⨯+⨯+⨯-+⨯-+⨯- 1(17.710)184.18KPa +⨯-= 计算基地附加应力320.72184.18136.54cz p p KPa σ=-=-= 6.4 确定沉降计算深度n Z(2.50.4ln ) 5.407(2.50.4ln 5.407)9.87n Z b b =-=⨯-=m 取10n Z =m 6.5 沉降计算求α 使用《土力学与地基基础》,因为它是角点下平均附加应力系数,而所计算的则为基础中点下的沉降量,因此查表时应用“角点法”即将基础分为4快相同的小面积,查表是按bL =b2L 2,Z L 查,查得的平均附加应力系数应乘以4。

n Z 校核根据规范规定,先用表4.6《土力学与地基基础》定下0.8Z m ∆=,计算出 5.82n S m ∆=除以260.04i S mm ∆=∑,得0.022〈0.025,表明:10n Z m =符合要求。

1111()989.63632.48105.922.5989.63632.48105.92()()[]2.5 2.5 2.5i i i i i iiii i iiA P z z ES MPa Az z P ES ES αααα-----++====-++∑∑∑∑查表4.5《土力学与地基基础》得 1.1ψ=s ,基础最终沉降量 1.1260.04286.04s i S S mm ψ=∆=⨯=∑满足沉降要求0.3166iiP ES ES =桩端平面以下受力层范围内不存在软弱下卧层,因此无需验算 8 桩身结构设计计算长分别为10m, 8.8m,采用单点吊立的强度计算进行桩身配筋设计,吊点位置在距桩顶,桩平面0.293L 处起吊时桩身最大正M max =0.0429kqL 2其中K=1.3,q=0.52⨯25⨯1.2=7.5KN/m 2,采用混凝土强度C30钢筋选用HRB335级, 8.1下段桩L=10mM max =0.0429⨯1.3⨯7.5⨯102=41.83KN.m 面有效高度 50040460h mm =-=622141.83100.02761.014.3500460s c M f bh αα⨯===⨯⨯⨯ 110.0270.518b ξξ===<= 21 1.014.30.0276500460296.05300c s y f A bh mm f αξ⨯==⨯⨯⨯= 选用218φ钢筋,因此整个截面主筋418φ2(1018)s A mm =其配筋率min 10180.44%0.4%500500ρρ==>=⨯.桩身强度验算() 1.0(1.014.35004603001018)3594.41158c c y S f A f A KN R KN ϕψ+=⨯⨯⨯+⨯=>= 8.2 对上段桩(L=8.8米)进行配筋验算M max =0.0429⨯1.3⨯0.52⨯25⨯1.2⨯8.8. 2=32.39KN.m6221032.39100.0211.014.3500460s c M f bh αα⨯===⨯⨯⨯110.021ξ===210.14.30.021*********.23300s A mm ⨯=⨯⨯⨯=选用118φ整个截面选用218φ2(508.5)s A mm =配筋率min 508.50.22%0.4%500460ρρ==<=⨯不满足构造,所以选用418φ钢筋min 10180.44%0.4%500500ρρ==>=⨯桩身强度验算() 1.0(1.014.35004603001018)3594.41158c c y S f A f A KN R KN ϕψ+=⨯⨯⨯+⨯=>= 其他构造钢筋见施工图. 9 承台的设计计算承台混凝土强度等级采用C20 五桩承台桩顶最大反力max 1090.95N KN =,平均反力1017.92N KN = 桩顶的净反力1017.92872n GN KN n =-= max max 945.03n GN N KN n=-=9.1 柱对承台的冲切 见图(5)4000950750I I600,1200c c b mm h mm == 950,650x y a mm a mm ==承台厚度为1m ,计算截面处的有效高度.1.5 1.5396000.72311044360c l n f A KN β=⨯⨯⨯=>100010035865h mm =--= 冲切比 0.950.9820.865x x a h λ=== 0.650.750.865y y a hλ===冲切系数 0.720.720.6090.20.9820.2x x αλ===++0.720.720.7580.20.750.2y y αλ===++冲切设计值 44608923568l t F F Q KN =-=-=∑2[()()]2[0.609(0.60.65)0.65(0.609 1.2)]11000.865Xc y y c x t b a h a f h αα+++=+++⨯⨯03686.3 1.034883488L KN E KNγ=>=⨯=9.2 角桩对承台的冲切1112,,750x x x x a a c c mm λλ====110.480.480.5060.20.9820.2x x αλ===++110.480.480.5050.20.750.2y y αλ===++01120100.650.506[()()][0.506(0.75)0.65(0.75)]11000.8652222y xx y t a c a c f h αα+++=+++⨯⨯0max 1137.89 1.0872872KN N KN γ=>=⨯=9.3 承台受剪切承载力计算(斜截面抗剪计算)计算截面I -I 截面有效高度865h mm =,截面的计算宽度3200b mm =,混凝土轴心抗压强度29.6/9600c f N mm KPa ==,该计算截面上的最大剪力设计值max 22945.031890.06n V N KN ==⨯= ,剪跨比与以上冲跨比相同故对I -I 斜截面 0.982(0.2 1.0x x λλ==介于之间) 故剪切系数 0.120.120.0940.30.9820.3βλ===++0.0949600 4.00.8653122.301890.06c f b h KN V KN βγ=⨯⨯⨯=>= 满足要求II -II 斜截面λ按0.2计,其受剪切承载力更大故无须验算9.4 承台受弯承载力计算2945.03 1.32457.08.y i i M N x KN m ==⨯⨯=∑622457.081010520.570.90.9300865yS y M A mm f h ⨯===⨯⨯选用2822φ,210640S A mm =沿平行X 轴方向均匀布置`28720.91569.6.x i i M N y KN m ==⨯⨯=∑621569.6106720.620.90.9300865x S y M A mm f h ⨯===⨯⨯选用钢2022φ筋,27600S A mm =沿平行于Y 轴方向布置 9.5 承台局部受压计算20.6 1.20.72z A m =⨯=,混凝土局部受压净2.0.72l n z A A m ==面积,计算面积 230.6(1.220.6)1.82.4 4.32b A m=⨯⨯+⨯=⨯=混凝土局部受压时强度提高系数2.45β=== .1.5 1.5 2.4596000.72254014360c l n f A KN KN β=⨯⨯⨯=> 满足要求。

相关文档
最新文档