光电编码器辨向电路

合集下载

光电编码器原理及应用电路

光电编码器原理及应用电路

光电编码器原理及应用电路1、光电编码器原理光电编码譌就星一种通过光电转换将输出轴上得机械几何位移量转换成脉冲或数字■得传感器•这就蹇目 前应用最多得传感器,光电编码器就是由光栅盘与光电检测装迓组成•光栅盘就是在一走臺径得®板上等 分地开通若干个长方形孔.由于光电码盘与电动机同轴,电动机旋转时「光栅盘与电动机同速旋车专,经发光二 极■等电子元件组成得检测装迓检测输出若干脉冲信号,其原理示总S 如ffi 1所示;通过计算每秒光电编码 器输出脉冲得个数就能反映当前电动机得转速.此外为判断旋转方向,码盘还可提供相位相差90度得脉 冲碍图1光电编码S 原理示S 图ffi 1光电缩码»原理示意® 根垢检测原理编码器可分为光学貳、磁式、感应式与电容式・根揣其刻度方法及信号输出形式,可分为增量 式、绝对式以及混合式三种.1、1增量式编码器« ■式编码器就是妣利用光电转换原理输出三组方波脉冲A 、B 与Z 相;A 、B 两组脉冲相位差90度得 脉冲信号忆相为每转一个脉冲,用于墓准点走位.它得优点就是原理构适简单,机械平均寿命可在几万小时 以上抗干扰能力强「可靠性画适合于长距离传输・其缺点就麻法输出轴转动得绝对位琶信息•1、2绝対式编码器绝对竊码器就是厦接输出数字■得传感器,在它得圆形码盘上沿径向有若干同心码匾每条通上由透光与不 透光得扇形区相间组成,相邻码iS 得扇区数目就墨双倍关嬴码盘上得码通数就就墨它得二进制数码得位埶 在码盘得一侧就是光鴻另TW 对应每Fis 有Tess 元件;当码盘处于不同位迓时各光敏元件根据受光照 与否转换岀相应得电平信号■形成二进制数・这种扁码器得持原就超不耍计数器,在转轴得任倉位迓都可读 岀一个a 走得与位迓相対应得数字码•显然「码通越多■分辨率就越画对于一个典有N 位二进制分辨率得竊 码器,其码盘必须有N 条码通・目前国内已有16位得绝对编码»产品•绝对式竊码器就是利用目然二进制或循环二逬制(葛莱码)方式进行光电转换^專・绝对式编码器与1»量式编 码器不同之处在于圆盘上透光.不透光得线条a 形,绝对編码器可有若干编码,根JB 读出码盘上得編码,检测 绝对位编码得设计可采用二iS 制码.循环码•二进制补码等•它得特原就是:1、2、1可以車接读出角度坐标得绝対值;1、2、2没有累积题1、2、3电源切除后位迓信息不会丢失.但就垂分辨率就是由二进制得位数来决走得,也就就墨说精度取决 于位K 启前育10位、14位等多种・1、3混合式绝对值媾码S混合式绝対值编码器,它输出两组信息:一组信息用于检测磁极位迓滞有绝对信息功能;另一组则完全同堆量JUUI丸溝迓饿©盘 先敏元作转轴式漏码器得输岀信息.光电编码器就迅一种角度(角速度)检测装迓^它将输入给轴得角度靈利用光电转换原理转换成相应得电脉 冲或数字■,興有体积小「精度衙,:n 乍可靠,接□数字化等优原・它广泛应用于数控机床.回转台、伺服传动、 机器人•胃达、军事目标测走等需要检测角度得装畳与设备中•2、光电编码器得应用电路2、1EPC. 755A 光电编码器得应用EPC ■ 755A 光电编码器興备ft 好彳雾使用性能,在角度测量、位移测■时抗干扰能力很弭井典材穂走可靠得 输出脉;中信号且该脉;中信号经计数后可得到被测量得数字信号.因此我们在研制汽车麗驶樓拟器时,対方 向盘旋转角度得测■选用EPC - 755A 光电编码器作为传恋器,其输出电路选用集电极开路聖输出分辨率选 用360个脉冲/圈考虑到汽车方向盘转动就罡双向得,既可顺时针旋$0也可逆时针旋辑需要对镰码器得输 岀信号鉴相后才能计数・S 2给出了光电網码》实际使用得鉴相与双向计数电路,鉴相电路用1个D 触发 器与2个与非门组成计数电路用3片74LS193组成•74151si当光电编码器顺时针旋转时,通運A 输岀波形超前通道B 输出波形90^D 赃发器输出Q (波形W1)为衙电 平Q (波形W2)为低电平上面与非门打开■计数 脉冲通过(波形W 为送至双向计数器74LS193得加脉冲输 入端CU.进行加法计数;此时下面与非门关闭,其输岀为商电平(波形W4).当光电竊码器逆时针旋转时通 )1 A 输出波形比通il B 输岀波形延迟90^D 赃发器输出Q (波形W1)为低电平,Q (波形W2)为蔺电平,上面 与非门关闭(翼输出为离电平(波形W3);此时下面与非门打开,计数脉冲通过(波形W4),送至双向计数器 74LS193得减脉冲输入揣CD,进行减法计数•汽车方向盘顺时针与逆时针旋转时,翼最大旋转角度均为两H 半■选用分辨率为360个脉冲/B 得網码譌M 最OUT-L OVT-B OVT-A JI t2 PO Pl tz P3 CUCD CL MR QOQIQ2Q3 TCV TCD 顺时针瞬逆时針删oirr-AOUT-BVI*2V3V4大输出脉冲数为900个;实际使用得计数电路用3片74LS193组成在系统上电初始化时洗对集进行复位(CLR信号h再将翼初值设为800H,即2048(10信号);如此,当方向盘顺时针旋转时,计数电路得输出范00 为2048〜2948,当方向盘逆时针旋转时计数电路得输出范围为2048〜1148;计数电路得数垢输出DO〜D11摩换处理电路.实际使用时.方向盘频繁地进行顺时针与逆时针转动,由于存在量化舷工作较长一段时间后方向盘回中时计数电路输出可能不就是204&而就是有几个字得偏差;为解决这一问观我们增加了一个方向盘回中检测电路,系统工作后,数碗理电路在欖拟器处于非操作状态时,系统检测回中检测电路,若方向盘处于回中状态両计数电路得数据输出不就是204&可対计数电路进行复位疋新设迓初值.2、2光电编码器在更力测量仪中得应用采用旋转式光电编码器,把它得转轴与■力测量仪中补偿旋钮轴相连・靂力测量仪中补悽旋tfl得角位移量转化为某种电信号量旋转式光电缩码器分两种,绝对编码器与墙量编码器.« ■编码SS就是以脉冲形式输出彳辱传感器,其码盘比绝对編码器码盘要简单得多且分辨率屋衙• 一般只需要三条码a这里得码連实际上已不典有绝対勰器码il得意义•而就是产生计数脉冲.它得码盘得^卜連与中间通有数目相同均匀分布得透光与不透光得扇形区(光棚“旦就是两通扇区相互错幵半个区•当码盘转动时芯得输出信号就遷相位差为90°得A相与B相脉冲借号以及只有一条透光狭缝得第三码通所产生得脉冲信号(它作为码盘得墓准匹给计数系统提供一个初始得零位信号)•从代B两个输出信号得相位关系(超前或^^后)可判断旋转得方向・由图3(3)可见,当码盘正转时,A iS脉冲波形比B連超前n/2,而反转时人il脉冲比B a滞后n/2. S 3(b)就是一实际电路,用A iKS形波彳專下沿J»发单穂态产生彳專正脉冲与B il整形波相■与;当码盘正转时只有正向口脉冲输出「反之只有逆向口脉冲输出・因此,增■網码»就是根垢输出脉冲源与脉冲计数来确走码盘得转动方向与相对角位移量.通當,若编码器育N个(码連)输岀信号■翼相位差为n/ N,可计数脉冲为2N倍光栅釵现在N=2.圏3电路得鉄点就是育时会产生淚记脉冲适成淚塑这种1•况出现在当某一運信号处于雋'或■低・电平状态両另一通信号正处于离■与低'之间得往返变化状态’此时码盘虽然未产生位移•但就是会产生单方向得输出脉冲.例如「码盘发生掛动或手动対准位迓时(下面可以瞧到,在更力仪测■时就会有这种情况)•顾T_n_m-mj~L_rL_r mwinnrrmf 正向脈冲逆向冲mwranrrnT 74LS14Ail 道」-计'74IS14碇道二一讣;(b)图3增量光电编码《基本液形和电路逹方修Y —>正方向nwmmnnr 逆向隸沖iwranm(£(b)S 4四倍计数方式的波形和电路S 4就是一个既能防止淚脉冲又删衙分辨率得四(豳细分电路・在这里採用了有记忆功能得D 型触发 器与时忡发生电路•由a 4可见,每一通育两个D 解发器串接,这样,在时钟脉冲得间隔中■两个Q 端(如对应 B74151751^^2.7两个如期得输入状态鬲两者相同,则表示时钟间隔中无变化;杏则『 可以根JB 两者关系判断岀它得变化方向『从而产生‘正向或反向'输出脉冲•当某運由于振动在橋;•低•间往 复变化时将交■产生'正向■与反向'脉冲,这在对两个计数SS 取代数与时就可消除它们得影响仟面仪器得 读数也将涉及这原).由此可见时钟发生器得频率应大于振动频率得可能最大僮.由a 4还可W 也在原一 个脉冲信号得朋内■得到了四个计数脉冲•例如,原每圈脉冲数为1000得镰码器可产生4倍频得脉冲数就 S 4000个■翼分辨率为0、09\实际上目前这类传感器产品畤光數元件输出信号得放大整形等电路与 传感检测元件封装在一fi •所以只宴力0±细分与计数电路就可以组成一个角位移测楚系统(74159就是 4・:L6译码»)•翼她资料: 編码器如以信号原理来分/»增量型網码》,绝対型镰码器.增亚编码器(旋转型)他道XTLT^f rLrmj WfiiS正向脉冲工作飓由一个中<>有轴得光电码盘,其上育环形通、as得刻线•育光电发射与接收器件读取,获得四组正弦波信号纟且合成A、B、G D每个正弦波相差90度扌目位差(相对于—Nfl波为360度)■将C、D信号反向总加在A、B两相上,可增强穂走信号;另每转输出一个Z相脉冲以代表零位拳考位•由于A. B两相相差90度「可通过t匕较A相在前还就是B相在前「以判别編码器得正转与反转■通过零位脉沖, 可获得编码81得零位対位.編码器码盘得材料有玻璃、金厲、22料•玻璃码盘就是在玻踽上沉积很薄得刻线「翼热稳定性好,精度詣,金属码4接以通与不通刻线•不易碎,但由于金厲育 F 得厚慮精度就育限制,其热稳走性就要比玻璃得差一个数■级塑料码盘就軽济型得,其成本低,但精度、礙定性.寿命均要差一些.分辨率TR码器以每旋转360度提供多少得通或暗刻线称为分辨率,鲫解析分度.或购称多少线■一般在瞬专分度5~ 10000线・信号输出: 信号输出育正弦波(电流或电压)方波(TTL、HTL)■集电极开路(PNP. NPN),推拉式多种形式,翼中TTL为长线差分驱动(对称AA・;B,B・;ZZ・),HTL也称推拉式.推挽式输岀,編码器得信号接收设备接□应与镰码器对应・信号逵接T码器4尊脉冲信号F连接嵌81、PLC、计算机PLC与计算机连接得權块育/朗屋權块与商速權块之分幵关频率有低有码如单相联接用于单方向计数,单方向测速•A. B两相联接,用于正反向计数.判断正反向与测速•A. B、Z三相联接,用于带掺考位修正得位量测杜A. A・R B・Z Z•连接,由于带育对称负信号得连接,电流对于电缆贡献得电磁场为0,衰减最小,抗干扰銀隹可传输较远得距臥対于TTL得芾材对称负信号输出得竊码器,信号耐距禹可达150米・対于HTL得带育对称负信号输出得编码器,信号传输距离可达300米.增壘式骗码制尊问题:1»量型竊码器存在零点累计课墓抗干扰较差,接收设备得停机需断电记忆,开机应找零或势考位等问题,这些问题如选用绝对型编码器可以解决.1»量型编码器得F应用:测遶测转动方向,测移动角度.距离(相对)• 绝对型编码器(旋转型)绝对漪码器光码盘上育许多通光通通刻线,每通刻线依次以2线、4线• 8线、16线……编排,这样,在编码器得每一个位迓■通过渎取每通刻线得通、晴,获得一缜从2得零次方到2彳專n-1次方得唯一彳專2进制綢码(格■码)■这就称为n位绝对編码器•这样得编码SS就是由光电码盘彳硕械位迓决走得•它不受停电、干掀專影响・绝对编码器由机械位迓决走得每个位迓就是唯一得,它无需记忆,无耀找參考点,而且不用一直计数,什么时候需要知iliaa 什么时候就去读取它彳>{2«・这样旅码器砾干扰傩数揭得可靠廿:*:}M了.。

光电编码器的特性及应用电路分析

光电编码器的特性及应用电路分析

光电编码器的特性及应用摘要:文中简介了光电编码器的工作原理,阐述了光电编码器的分类及其特性,列举了光电编码器的应用电路,分析了光电编码器应用中的问题并提出改进措施。

1.光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为推断旋转方向,码盘还可提供相位相差90º的两路脉冲信号。

依照检测原理,编码器可分为光学式、磁式、感应式和电容式。

依照其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90º,从而可方便地推断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数确实是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件依照受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。

显然,码道越多,分辨率就越高,关于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。

8线光电编码器电路的原理

8线光电编码器电路的原理

8线光电编码器电路的原理
光电编码器是一种将机械运动转换为数字信号输出的传感器。

8线光电编码器电路原理如下:
1.光电传感器:光电编码器利用光电传感器检测反射光信号。

光电传感器通常由一个发光二极管和一个接收光敏二极管组成。

发光二极管发射出红外光,当红外光照射到物体表面时,会被物体反射回来并被接收光敏二极管接收到。

根据接收到的光信号的变化,可以确定物体的运动方向和速度。

2.光电编码盘:光电编码盘是一种具有特定编码结构的透明圆盘。

编码盘上的透光窗口会根据运动方向的不同发出光信号。

光电传感器通过检测光电编码盘上的透光窗口,可以得到不同的光信号。

3.编码器电路:编码器电路负责将光电传感器接收到的光信号转换为数字信号输出。

编码器电路通常以二进制形式输出,即根据不同的光信号,输出不同的二进制编码。

对于8线光电编码器,它可以输出8位二进制编码,即有256种不同的状态。

4.信号处理:得到二进制编码后,可以通过信号处理电路对编码进行进一步处理。

例如,可以将二进制编码转换为脉冲信号,来表示物体的运动方向和速度。

总之,8线光电编码器电路通过光电传感器检测物体的反射光信号,并将其转换
为数字信号输出,可以用来测量和监测物体的运动。

光电编码器电路图

光电编码器电路图

光电编码器电路图文章出处: 发布时间:| 35 次阅读| 0次推荐| 0条留言EPC-755A光电编码器具备良好的使用性能,在角度测量、位移测量时抗干扰能力很强,并具有稳定可靠的输出脉冲信号,且该脉冲信号经计数后可得到被测量的数字信号。

因此,我们在研制汽车驾驶模拟器时,对方向盘旋转角度的测量选用EPC-755A光电编码器作为传感器,其输出电路选用集电极开路型,输出分辨率选用360个脉冲/圈,考虑到汽车方向盘转动是双向的,既可顺时针旋转,也可逆时针旋转,需要对编码器的输出信号鉴相后才能计数。

图2给出了光电编码器实际使用的鉴相与双向计数电路,鉴相电路用1个D触发器和2个与非门组成,计数电路用3片74LS193组成。

当光电编码器顺时针旋转时,通道A输出波形超前通道B输出波形90°,D触发器输出Q(波形W1)为高电平,Q(波形W2)为低电平,上面与非门打开,计数脉冲通过(波形W3),送至双向计数器74LS193的加脉冲输入端CU,进行加法计数;此时,下面与非门关闭,其输出为高电平(波形W4)。

当光电编码器逆时针旋转时,通道A输出波形比通道B输出波形延迟90°,D触发器输出Q(波形W1)为低电平,Q(波形W2)为高电平,上面与非门关闭,其输出为高电平(波形W3);此时,下面与非门打开,计数脉冲通过(波形W4),送至双向计数器74LS193的减脉冲输入端CD,进行减法计数。

汽车方向盘顺时针和逆时针旋转时,其最大旋转角度均为两圈半,选用分辨率为360个脉冲/圈的编码器,其最大输出脉冲数为900个;实际使用的计数电路用3片74LS193组成,在系统上电初始化时,先对其进行复位(CLR信号),再将其初值设为800H,即2048(LD信号);如此,当方向盘顺时针旋转时,计数电路的输出范围为2048~2948,当方向盘逆时针旋转时,计数电路的输出范围为2048~1148;计数电路的数据输出D0~D11送至数据处理电路。

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路1 光电编码器的工作原理光电编码器(Optical Encoder)俗称“单键飞梭”,其外观好像一个电位器,因其外部有一个可以左右旋转同时又可按下的旋钮,很多设备(如显示器、示波器等)用它作为人机交互接口。

下面以美国Greyhill公司生产的光电编码器为例,介绍其工作原理及使用方法。

光电编码器的内部电路如图1所示,其内部有1个发光二极管和2个光敏三极管。

当左右旋转旋钮时,中间的遮光板会随旋钮一起转动,光敏三极管就会被遮光板有次序地遮挡,A、B相就会输出图2所示的波形;当按下旋钮时,2、3两脚接通,其用法同一般按键。

当顺时针旋转时,光电编码器的A相相位会比B相超前半个周期;反之,A相会比B相滞后半个周期。

通过检测A、B两相的相位就可以判断旋钮是顺时针还是逆时针旋转,通过记录A或B相变化的次数,就可以得出旋钮旋转的次数,通过检测2、3脚是否接通就可以判断旋钮是否按下。

其具体的鉴相规则如下:1.A为上升沿,B=0时,旋钮右旋;2.B为上升沿,A=l时,旋钮右旋;3.A为下降沿,B=1时,旋钮右旋;4.B为下降沿,A=O时,旋钮右旋;5.B为上升沿,A=0时,旋钮左旋;6.A为上升沿,B=1时,旋钮左旋;7.B为下降沿,A=l时,旋钮左旋;8.A为下降沿,B=0时,旋钮左旋。

通过上述方法,可以很简单地判断旋钮的旋转方向。

在判断时添加适当的延时程序,以消除抖动干扰。

2 WinCE提供的驱动模型WinCE操作系统支持两种类型的驱动程序。

一种为本地驱动程序,是把设备驱动程序作为独立的任务实现的,直接在顶层任务中实现硬件操作,因此都有明确和专一的目的。

本地设备驱动程序适合于那些集成到Windows CE平台的设备,诸如键盘、触摸屏、音频等设备。

另一种是具有定制接口的流接口驱动程序。

它是一般类型的设备驱动程序。

流接口驱动程序的形式为用户一级的动态链接库(DLL)文件,用来实现一组固定的函数称为“流接口函数”,这些流接口函数使得应用程序可以通过文件系统访问这些驱动程序。

常州大学增量式编码器方向判别和计数电路设计显示电路

常州大学增量式编码器方向判别和计数电路设计显示电路

学号:13481120常州大学《机电一体化系统》课程设计题目增量编码器方向判别和计数电路设计学生王春来学院机械工程学院专业班级机电131校内指导教师俞竹青专业技术职务教授校外指导老师专业技术职务二○一七年一月任务书1.设计题目增量编码器方向判别和计数电路设计2. 设计内容设计内容主要包括:查资料、总体设计、原理图、元器件选型、PCB、课程设计说明书六个部分。

课程设计的最后要求是写出课程设计说明书,把总体设计、原理图、元器件选型、PCB过程进行全面的说明,上升到一定高度。

具体设计步骤如下:2.1总体方案设计根据技术指标的功能要求,确定电路的总体构成,一般为信号拾取电路、信号处理电路、显示电路等。

2.2关键元器件选型根据技术要求和设计总体方案选择合适的元器件,以实现电路的功能。

2.3电路原理图根据设计总体方案和关键元器件的型号参数设计电路原理图。

2.4 PCB图根据电路原理图和元器件封装形式设计PCB图。

2.5 编写设计说明书把设计过程的总体设计方案、参数计算、元器件选型依据、实现的波形等内容编写成设计说明书。

增量式编码器方向判别和计数电路设计摘要:本设计电路分为电源电路、方向判别电路和计数电路。

电源电路通过变压器降压和全桥整流,将交流电压转化成单脉冲电压。

然后使用电容滤波和稳压器稳压,将电压控制在各芯片的电源电压5V。

方向判别电路由芯片AT288a芯片根据A、B两信号顺序,将增量式编码器的两相脉冲信号转化为正向和反向的脉冲信号,来作为计数电路的输入方向信号。

计数电路是将两片74LS192组合实现8位电路计数的功能。

因为正转时A相超过B相90°,反转时A相落后B相°,而且脉冲的个数与位移量成比例的关系,当对象发生变化时,对脉冲个数的计算(有方向地累加和减少)得到相应的位移,可以更好地实现闭环有效的控制。

最后将计数电路所得到的二进制转数利用74LS283和74LS46的芯片转化成BCD码在LED数码管上显示。

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路1 光电编码器的工作原理光电编码器(Optical Encoder)俗称“单键飞梭”,其外观好像一个电位器,因其外部有一个可以左右旋转同时又可按下的旋钮,很多设备(如显示器、示波器等)用它作为人机交互接口。

下面以美国Greyhill公司生产的光电编码器为例,介绍其工作原理及使用方法。

光电编码器的内部电路如图1所示,其内部有1个发光二极管和2个光敏三极管。

当左右旋转旋钮时,中间的遮光板会随旋钮一起转动,光敏三极管就会被遮光板有次序地遮挡,A、B相就会输出图2所示的波形;当按下旋钮时,2、3两脚接通,其用法同一般按键。

当顺时针旋转时,光电编码器的A相相位会比B相超前半个周期;反之,A相会比B相滞后半个周期。

通过检测A、B两相的相位就可以判断旋钮是顺时针还是逆时针旋转,通过记录A或B相变化的次数,就可以得出旋钮旋转的次数,通过检测2、3脚是否接通就可以判断旋钮是否按下。

其具体的鉴相规则如下:1.A为上升沿,B=0时,旋钮右旋;2.B为上升沿,A=l时,旋钮右旋;3.A为下降沿,B=1时,旋钮右旋;4.B为下降沿,A=O时,旋钮右旋;5.B为上升沿,A=0时,旋钮左旋;6.A为上升沿,B=1时,旋钮左旋;7.B为下降沿,A=l时,旋钮左旋;8.A为下降沿,B=0时,旋钮左旋。

通过上述方法,可以很简单地判断旋钮的旋转方向。

在判断时添加适当的延时程序,以消除抖动干扰。

2 WinCE提供的驱动模型WinCE操作系统支持两种类型的驱动程序。

一种为本地驱动程序,是把设备驱动程序作为独立的任务实现的,直接在顶层任务中实现硬件操作,因此都有明确和专一的目的。

本地设备驱动程序适合于那些集成到Windows CE平台的设备,诸如键盘、触摸屏、音频等设备。

另一种是具有定制接口的流接口驱动程序。

它是一般类型的设备驱动程序。

流接口驱动程序的形式为用户一级的动态链接库(DLL)文件,用来实现一组固定的函数称为“流接口函数”,这些流接口函数使得应用程序可以通过文件系统访问这些驱动程序。

光电编码器辨向电路

光电编码器辨向电路

光电编码器速度位置的数据在电机控制中起着非常重要的作用,其检测到的精确性能够直接影响电机控制的精度。

速度的测量方法有多种,如感应式转速传感器、测速发电机、光电式转速传感器、霍尔转速传感器以及旋转变压器式转速传感器等。

但目前调速系统速度以及位置反馈控制中应用较多的为光电编码器。

光电编码器是一种高精度的数字化检测仪器,是现代伺服系统广泛应用的角位移或者角速度的测量装置,它可以通过光电原理,将一个机械装置的角度或者位移量转化为电信号(数据串或者脉冲信号)。

光电编码器可分为绝对式和增量式两种,其中,绝对式光电编码器具有输出信号与旋转信号对应的特点,但是精度欠缺,成本高;增量式光电编码器输出信号为脉冲信号,脉冲个数和相对旋转位移相关,与旋转的绝对位置无关,成本相对于绝对式更低,并且精度高、体积小、响应快、性能稳定等特点。

如果预先设置一个基准位置,则可以利用增量式编码器完成绝对式编码器的功能,即也可以测出旋转的绝对位置。

实现绝对式编码器的功能,也即可以测出旋转的绝对位置。

增量式光电编码器在高分辨率、大量程角速率、位移的测量中,它更具有优势。

因而,在这个手指康复机器人系统中采用增量式光电编码器。

增量式光电编码器主要是由机械系统、数据扫描系统和电气系统三个部分组成。

其中机械系统主要负责外壳和转动的支撑作用。

电气系统的作用主要是保护、放大、抗干扰以及数据传输等等。

增量式光电脉冲编码器由光源、聚光镜、挡光板、码盘、检测光栅、光电检测器件和转换电路组成。

在光电码盘上刻度盘上均匀分布一定数量的光栅,光挡板(检测光栅)上刻有A、B相两组与光电码盘上光栅相对应的透光缝隙。

增量式光电脉冲编码器工作时,光电码盘随着工作轴旋转,但是光挡板(检测光栅)保持不动。

有光同时透过光电码盘和检测光栅时,电路中产生逻辑“1”信号,没有透光时产生逻辑“0”信号,从而产生了A、B两相的脉冲信号。

由于检测光栅上的A、B相两个透光缝隙的节距与光电码盘上光栅的节距是一致的,并且这两组透光缝隙错开四分之一的节距,从而使得最终信号处理输出的信号存在90°的相位差。

光电编码器原理及应用电路

光电编码器原理及应用电路

光电编码器原理及应用电路光电编码器是一种利用光电效应实现位置、速度等参数检测和测量的装置。

它由发光二极管(Light Emitting Diode, LED)、光敏二极管(Photodiode, PD)、编码盘和信号处理电路组成。

光电编码器在工业自动化、机械加工、传感器技术等领域有广泛应用。

光电编码器的原理是利用LED发出的光束照射在编码盘上,光束穿过编码盘上的透光窗口,然后被PD接收。

编码盘上的透光窗口根据具体应用可设计为封闭区域或开放环形区域。

当光束穿过透光窗口时,PD会产生电流。

根据编码盘上透光窗口的位置和数量,光电编码器可以测量位置、速度和方向。

1.LED驱动电路:用于驱动LED发出光束。

常见的驱动电路有恒流源驱动电路和恒压源驱动电路。

恒流源驱动电路通过驱动电流来保持LED亮度的恒定。

恒压源驱动电路通过输出恒定的电压来驱动LED。

2.PD放大电路:PD接收到的光信号较弱,需要经过放大电路进行放大,以产生可检测的电流信号。

放大电路可以采用放大器或运算放大器构成。

3. 编码盘检测电路:编码盘上的透光窗口需要经过检测电路进行处理。

检测电路主要包括光电二极管(Phototransistor)和比较器。

光电二极管将透光窗口的光信号转换为电流信号,而比较器则将电流信号转换为数字信号。

4.信号处理电路:信号处理电路主要用于将光电编码器的输出信号进行滤波、放大和数字化处理。

滤波电路可以去除噪声和干扰,放大电路可以增加信号幅度,而数字化处理电路可以将信号转换为数字信号,便于后续处理和使用。

光电编码器具有精度高、工作可靠、抗干扰能力强等优点,因此在工业自动化中得到广泛的应用。

它常被用于位置检测、速度测量、姿态测量等场合。

例如,在机床上,光电编码器被用于测量工件的位置和轴向移动的速度,实现精确的工件加工。

在机器人领域,光电编码器可以用于测量机器人的关节位置和运动速度,实现机器人的精确控制。

在传感器技术中,光电编码器可用于测量物体的旋转速度和方向,如测量风扇的转速和风向等。

光电编码器的工作原理

光电编码器的工作原理

光电编码器的工作原理
光电编码器是一种利用光电元件和编码技术实现位置、速度等参数检测的装置。

它主要由光源、光敏元件、编码盘和信号处理电路组成。

光电编码器的工作原理是通过光源产生光线,经过光透镜聚焦后射向编码盘。

编码盘上通常有一圆形或线状的光栅结构,其由透明和不透明的区域交替排列。

当光线照射到光栅上时,透明区和不透明区会使光线产生不同的衍射效应。

光敏元件位于编码盘的另一侧,其通常是一种光电二极管或光电三极管。

当光线通过光敏元件时,根据光敏元件的特性会产生电流或电压信号。

这些信号会随着光栅的运动而改变,进而表征编码盘的位置或速度。

为了提高测量精度,光电编码器常采用两路光电传感器,即A 相和B相。

这两路光电传感器的信号相位差90度,通过检测
A相和B相的信号变化,可以精确测量编码盘的位置和方向。

此外,还可通过对A相和B相之间的脉冲信号进行计数,以
实现对位置、速度等参数的检测。

光电编码器的信号处理电路对光敏元件产生的电流或电压信号进行放大、滤波和数字化处理。

通过这些处理,可以得到高质量、准确的位置和速度信号,以满足实际应用中的需求。

总之,光电编码器的工作原理是利用光源照射光栅编码盘,光敏元件检测光线经过编码盘后的变化,并将其转化为电信号。

通过信号处理电路的处理,可以实现对位置、速度等参数的高精度检测。

光电编码器原理及应用电路

光电编码器原理及应用电路

光电编码器原理及应用电路————————————————————————————————作者:————————————————————————————————日期:光电编码器原理及应用电路1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为判断旋转方向,码盘还可提供相位相差90度的脉冲信号。

图1 光电编码器原理示意图根据检测原理,编码器可分为光学式、磁式、感应式和电容式。

根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90度的脉冲信号,Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。

显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道。

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路1 光电编码器的工作原理光电编码器(Optical Encoder)俗称“单键飞梭”,其外观好像一个电位器,因其外部有一个可以左右旋转同时又可按下的旋钮,很多设备(如显示器、示波器等)用它作为人机交互接口。

下面以美国Greyhill公司生产的光电编码器为例,介绍其工作原理及使用方法。

光电编码器的内部电路如图1所示,其内部有1个发光二极管和2个光敏三极管。

当左右旋转旋钮时,中间的遮光板会随旋钮一起转动,光敏三极管就会被遮光板有次序地遮挡,A、B相就会输出图2所示的波形;当按下旋钮时,2、3两脚接通,其用法同一般按键。

当顺时针旋转时,光电编码器的A相相位会比B相超前半个周期;反之,A相会比B相滞后半个周期。

通过检测A、B两相的相位就可以判断旋钮是顺时针还是逆时针旋转,通过记录A或B相变化的次数,就可以得出旋钮旋转的次数,通过检测2、3脚是否接通就可以判断旋钮是否按下。

其具体的鉴相规则如下:1.A为上升沿,B=0时,旋钮右旋;2.B为上升沿,A=l时,旋钮右旋;3.A为下降沿,B=1时,旋钮右旋;4.B为下降沿,A=O时,旋钮右旋;5.B为上升沿,A=0时,旋钮左旋;6.A为上升沿,B=1时,旋钮左旋;7.B为下降沿,A=l时,旋钮左旋;8.A为下降沿,B=0时,旋钮左旋。

通过上述方法,可以很简单地判断旋钮的旋转方向。

在判断时添加适当的延时程序,以消除抖动干扰。

2 WinCE提供的驱动模型WinCE操作系统支持两种类型的驱动程序。

一种为本地驱动程序,是把设备驱动程序作为独立的任务实现的,直接在顶层任务中实现硬件操作,因此都有明确和专一的目的。

本地设备驱动程序适合于那些集成到Windows CE平台的设备,诸如键盘、触摸屏、音频等设备。

另一种是具有定制接口的流接口驱动程序。

它是一般类型的设备驱动程序。

流接口驱动程序的形式为用户一级的动态链接库(DLL)文件,用来实现一组固定的函数称为“流接口函数”,这些流接口函数使得应用程序可以通过文件系统访问这些驱动程序。

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路光电编码器的工作原理包括光电传感器、光轴、编码盘和信号处理电路。

当物体经过光电传感器时,光轴发出光,照射到编码盘上的编码位。

编码盘上有一系列的孔,这些孔根据不同的位置组成不同的二进制编码,形成编码序列。

光电传感器会检测到编码盘上的孔是否遮挡,然后输出相应的电信号。

信号处理电路将这些电信号进行解码,转化为位置和速度等信息。

光电编码器的应用电路包括信号处理电路和接口电路。

信号处理电路负责将检测到的光电信号进行放大、滤波和解码等处理。

放大电路可以将微弱的光电信号放大到合适的电压范围,以便后续电路的处理。

滤波电路可以去除噪声信号,提高信号质量。

解码电路则是将电信号转化为数字信号,进行位置和速度的计算。

接口电路负责将光电编码器的输出信号与控制系统连接,通常是通过数字信号接口(如RS485、RS232、TTL)或模拟信号接口(如电压输出、电流输出)。

光电编码器在工业自动化系统中有广泛的应用。

例如,在机床行业中,光电编码器可以测量机械手臂、平台和夹具等的位置和速度,从而实现精确控制。

在物流仓储系统中,光电编码器可以测量输送带、托盘提升机和堆垛机等设备的位置和速度,从而实现物料的准确搬运和分拣。

在半导体制造过程中,光电编码器可以测量切割机和测量机械手的位置和速度,从而实现半导体芯片的精确制造和测试。

总之,光电编码器是一种重要的传感器设备,能够将机械运动转换为电信号,广泛应用于机械控制、位置检测和半导体制造等领域。

通过光电传感器和编码盘的配合,光电编码器能够实现高精度的位置和速度测量,为各行各业的自动化系统提供了必要的反馈和控制。

光电编码器及接口电路调试

光电编码器及接口电路调试
3 实用的方向辨别及四倍频电路
结合笔者的工作实践,下面介绍几种实用的辨向及四倍频电路。图 4 是常用 的辨向电路。
Байду номын сангаас4
图 4 中R1、C1将A相脉冲的前沿微分,微分尖脉冲同时加到IC1-2和IC1-3,而它
们分别由B和 来选通。当B超前A时,CP+输出脉冲,而当A超前B时,则由CP-
输出脉冲。该电路可在不需要倍频细分时使用,适用于双时钟计数器。若对上述 电路稍加改动,则可适用于单时钟和“加/减”控制信号的计数器,见图 5。B 相超前A相时,+/-信号为“1”,A相超前B相时,+/-信号为“0”。当采 用四倍频细分电路时,可将图 5 电路中的门IC1-4省去,即可与下述图 6 或图 8 的四倍频电路配合使用。这时对于单时钟计数器,四倍频脉冲就是CP;而对于双 时钟电路,则需再增加二只双输入端与非门,用+/-和-/+端分别选通四倍
图7 图 8 电路是图 6 的改进型。异或门输出即为A、B二相信号的二倍频方波。用 单稳电路IC2-1检出二倍频方波的前沿,IC2-2检出后其后沿,二者在IC3-1逻辑 “或”后即可得到四倍频脉冲串。为保证电路工作稳定可靠,二个单稳电路使用 了集成化单稳CD4538,这是一种结合了线性工艺技术的CMOS精密双单稳触发器,
图1
为计量并显示位移的大小,可将 A 和 B 脉冲送入可逆计数器计数,正向运动 时计数器作加计数,反向运动时则作减计数。为判断运动方向,可将 A、B 脉冲 送入辨别电路中产生出方向信号。常用的可逆计数器电路分为二种:使用“加/ 减”控制信号的单时钟电路和不使用控制信号的双时钟电路。在设计接口电路 时,应将光栅编码器的信号处理成能与你所选择的计数器相适应。
1 远距离传输及光电隔离
有时计数显示装置离安装编码器的现场较远,长距离传输会造成信号衰减、 跳变边沿陡度变差,并会引入干扰。较好的解决方法是在编码器的发送端一侧使
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电编码器
速度位置的数据在电机控制中起着非常重要的作用,其检测到的精确性能够直接影响电机控制的精度。

速度的测量方法有多种,如感应式转速传感器、测速发电机、光电式转速传感器、霍尔转速传感器以及旋转变压器式转速传感器等。

但目前调速系统速度以及位置反馈控制中应用较多的为光电编码器。

光电编码器是一种高精度的数字化检测仪器,是现代伺服系统广泛应用的角位移或者角速度的测量装置,它可以通过光电原理,将一个机械装置的角度或者位移量转化为电信号(数据串或者脉冲信号)。

光电编码器可分为绝对式和增量式两种,其中,绝对式光电编码器具有输出信号与旋转信号对应的特点,但是精度欠缺,成本高;增量式光电编码器输出信号为脉冲信号,脉冲个数和相对旋转位移相关,与旋转的绝对位置无关,成本相对于绝对式更低,并且精度高、体积小、响应快、性能稳定等特点。

如果预先设置一个基准位置,则可以利用增量式编码器完成绝对式编码器的功能,即也可以测出旋转的绝对位置。

实现绝对式编码器的功能,也即可以测出旋转的绝对位置。

增量式光电编码器在高分辨率、大量程角速率、位移的测量中,它更具有优势。

因而,在这个手指康复机器人系统中采用增量式光电编码器。

增量式光电编码器主要是由机械系统、数据扫描系统和电气系统三个部分组成。

其中机械系统主要负责外壳和转动的支撑作用。

电气系统的作用主要是保护、放大、抗干扰以及数据传输等等。

增量式光电脉冲编码器由光源、聚光镜、挡光板、码盘、检测光栅、光电检测器件和转换电路组成。

在光电码盘上刻度盘上均匀分布一定数量的光栅,光挡板(检测光栅)上刻有A、B相两组与光电码盘上光栅相对应的透光缝隙。

增量式光电脉冲编码器工作时,光电码盘随着工作轴旋转,但是光挡板(检测光栅)保持不动。

有光同时透过光电码盘和检测光栅时,电路中产生逻辑“1”信号,没有透光时产生逻辑“0”信号,从而产生了A、B两相的脉冲信号。

由于检测光栅上的A、B相两个透光缝隙的节距与光电码盘上光栅的节距是一致的,并且这两组透光缝隙错开四分之一的节距,从而使得最终信号处理输出的信号存在90°的相位差。

在大多数情况下,如若直接由编码器的光电检测器件获取信号,信号的电平较低,波形也不规则,不能适应于信号处理、控制和远距离传输的要求。

所以,在编码器内还必须将此信号放大、整形。

经过处理的输出信号近似于正弦波或者矩形波。

由于矩形波输出信号易于进行数字处理,所以矩形信号输出在定位控制中得到广泛的应用。

正因为增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。

正转和反转时AB两路脉冲的超前、滞后关系相反。

如上图,在B相的上升沿,如果A 相是高电平,则表明电机正转;在B相的上升沿,如果A相是低电平,则表明电机反转。

通过辨向电路就可以轻松地判断出电机的旋转方向。

增量式光电编码器中还有用作参考零位Z相标志脉冲信号,每当光电码盘旋转一周,就会发出一个标志信号。

Z相标志脉冲通常用做系统坐标的原点,或清零信号,以减少测量的积累误差。

良好的光电编码器的辨向电路十分重要,因为它是影响系统控制精确度的关键因素。

任何脉冲的丢失或者脉冲输出错误都不允许。

如果仅仅知道A、B相的脉冲输出信号,计算机无法识别输出杆的位移与方向。

辨向电路可以将正转和反转时的AB相脉冲输出分离,当光电编码器正转的时候,只有A相有脉冲信号输出,B相输出的脉冲信号处理为低电平;当光电编码器反转的时候,只有B相有脉冲信号输出,A相输出的脉冲信号处理为低电平。

如此做便可以将A、B相的输出信号进行解码分离,从而便于微控制器能够通过外部的引脚触发中断计数,从而可以计算出电机旋转的角度。

光电编码器的信号处理分为两个部分。

第一部分是对光电编码器直接输出信号进行整形处理。

第二部分为光电编码器解码分离电路。

信号整形电路
施密特触发器作为一种波形整形电路,可以将模拟信号的波形整形为数字电路可以处理的方波。

在数字系统中,由于矩形脉冲在传输的过程中,容易发生波形畸变,也可能出现上升和下降不理想的情况,使用施密特触发器进行整形可以获得较为清晰理想的矩形脉冲。

这是由于施密特触发器与普通门电路不同,对于正向递加和负向递减的两种不同变化的输入信号,它具有两个阈值电压,即正向阈值电压和负向阈值电压。

输入信号由低到高电平过程中是的电路状态变化的输入电压叫正向阈值电压,反之为负向阈值电压。

正向阈值电压和负向阈值电压差值叫回差电压。

只有当输入电压有足够的变化时,才能引起输出信号的变化,施密特触发器所具备的指滞回特性,表明施密特触发器具备一定的记忆能力,回差电压的存在,使得施密特触发器具有较强的干扰能力。

实际的电路中,我们采用74HC14D六反相施密特触发器进行A、B、Z三相信号的整形。

解码分离电路
光电编码器辨向线路采用74HC74芯片。

74HC74是一款高速CMOS 器件,它是双路D 型上升沿触发器。

引脚D 是带独立数据输入端,CP 是时钟输入端,RD 是直接复位端(低电平有效),SD 是直接置位端(低电平有效),Q 和Q 是触发器的互补输出端。

SD
RD
CP D Q
Q
L H × × H L H L × × L
H
L L × × *H
*H
H H ↑ H H L H H ↑ L L
H
H
H
L
×
0Q
0Q
H 代表高电平;L 代表低电平;
0Q 代表输入条件建立前的Q 的电平;
0Q 代表输入条件建立前的Q 的电平;
↑ 代表电平由低到高的上升沿; × 代表任意值;
* 代表当SD 和RD 变为高电平时,输出不稳定。

下面是光电编码器辨向电路在Multisim 中的电路仿真。

设定的输入信号为1kHz,周期T=1/f=1/1000Hz=0.001s。

相位差为90°,即两相输出有一个延时0.00025s。

当编码器正转时,A相输出信号超出B相90°时,如下设置函数发生器的参数:
两相输入和输出波形如下:
当编码器反转时,B相输出信号超出A相90°,如下设置函数发生器的参数:
A相脉冲B相脉冲两相输入和输出波形如下:
通过上述方法实现了A、B两相信号的解码分离。

在Altium Designer中的实际电路如下:
经过一系列整形辨向后的两组输出信号接入LPC1764微处理器分析计算出旋转角度。

具体的实现方式是设置LPC1764的P2口的管脚为上升沿触发外部中断触发方式,可以完成脉冲信号计数功能。

当编码器正转时,I/O 口由 A 路脉冲触发外部中断,对 A 路脉冲数进行累加;而编码器反转的时候,I/O 口由 B 路脉冲触发外部中断,就从已经累加的脉冲数减去 B 路脉冲数,这样就能得到正确的测量角度。

另外,所选用的光电编码器的Z 相清零功能可以方便解决增量式编码器的初始角度问题。

相关文档
最新文档